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Abstract. We present a new distributed-memory algorithm for enumer-
ative LTL model-checking that is designed to be run on a cluster of work-
stations communicating via MPI. The detection of accepting cycles is
based on computing maximal accepting predecessors and the subsequent
decomposition of the graph into independent predecessor subgraphs in-
duced by maximal accepting predecessors. Several optimizations of the
basic algorithm are presented and the influence of the ordering on the
algorithm performance is discussed. Experimental implementation of the
algorithm shows promising results.

1 Introduction

Model-checking has become a very practical technique for automated verification
of computer systems due to its push-button character and has been applied fairly
successfully for verification of quite a few real-life systems. Its applicability to
a wider class of practical systems has been hampered by the state explosion
problem (i.e. the enormous increase in the size of the state space).

The use of distributed and/or parallel processing to combat the state explo-
sion problem gained interest in recent years (see e.g. [4, 5, 10–12,15]). For large
industrial models, the state space does not completely fit into the main memory
of a single computer and hence model-checking algorithm becomes very slow as
soon as the memory is exhausted and system starts swapping. A typical approach
to dealing with these practical limitations is to increase the computational power
(especially random-access memory) by building a powerful parallel computer as a
network (cluster) of workstations. Individual workstations communicate through
message-passing-interface such as MPI. From outside a cluster appears as a single
parallel computer with high computing power and huge amount of memory.

In this paper we present a novel approach to distributed explicit-state (enu-
merative) model-checking for linear temporal logic LTL. LTL is a major logic
used in formal verification known for very efficient sequential solution based on
automata [16] and successful implementation within several verification tools.
The basic idea is to associate a Büchi automaton with the verified LTL formula
so that the automaton accepts exactly all the computations of the given model
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satisfying the formula. This makes possible to reduce the model-checking prob-
lem to the emptiness problem for Büchi automaton. A Büchi automaton accepts
a word if and only if there is an accepting state reachable from the initial state
and from itself.

Courcoubetis et al. [9] proposed an elegant way to find accepting states that
are reachable from themselves (to compute accepting cycles) by employing a
nested depth first search. The first search is used to search for reachable accept-
ing states while the second one (nested) tries to detect accepting cycles. Our aim
is to solve the LTL model-checking problem by distribution, i.e. by utilizing sev-
eral interconnected workstations. The standard sequential solution as described
above is based on the depth-first search (DFS), in particular the postorder as
computed by DFS is crucial for cycle detection. However, when exploring the
state space in parallel, the DFS postorder is not generally maintained any more
due to different speeds of involved workstations and communication overhead.

The extremely high effectiveness of the DFS based model-checking procedure
in the sequential case is due to a simple and easily computable criterion charac-
terizing the existence of a cycle in a graph: a graph contains a cycle if and only
if there is a back-edge. A distributed solution requires other appropriate criteria
to be used as the DFS based ones do not have the same power in the distributed
setting. E.g. in [1] the authors proposed to use back-level edges as computed by
breadth first search (BFS) as a necessary condition for a path to form a cycle.
The reason, why such a criterion works well in a distributed environment is that
BFS search can be (unlike DFS) reasonably parallelized. In [7] the used criterion
is that each state on an accepting cycle is reachable from an accepting state.
Every state can be tested for this criterion independently and thus the algo-
rithm is well distributable. Another example of a necessary condition suitable
for distribution and used in [3] employs the fact that the graph to be checked is
a product of two graphs and it can contain a cycle only if one of the component
graphs has a cycle.

The main idea of our new approach to distributed-memory LTL model-
checking has born from a simple observation that all states on a cycle have
exactly the same predecessors. Hence, having the same set of predecessors is a
necessary condition for two states to belong to the same cycle and the mem-
bership in its own set of predecessors is a necessary condition for a state to
belong to a cycle. In particular, in case of accepting cycles we can restrict our-
selves to accepting predecessors only. Even more, it is not necessary to compute
and store the entire set of accepting predecessors for each state, it is sufficient to
choose a suitable representative of the set of all accepting predecessors of a given
state instead. It is crucial that the cycle-check becomes significantly cheaper if
representatives are used. We consider an ordering of states and we choose as a
representative of a set of accepting predecessors the accepting predecessor which
is maximal with respect to this ordering, called maximal accepting predecessor.
A necessary condition for a graph to contain an accepting cycle is that there is
an accepting state with itself as maximal accepting predecessor. However, this is
not a sufficient condition as there can exist an accepting cycle with “its” maxi-
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mal accepting predecessor lying outside of it. For this reason we systematically
re-classify those accepting vertices which do not lie on any cycle as non-accepting
and re-compute the maximal accepting predecessors.

The main technical problem is how to compute maximal accepting prede-
cessors in a distributed environment. Our algorithm repeatedly improves the
maximal accepting predecessor for a state as more states are considered. This
requires propagating a new value to successor states each time the maximum
has changed. In this way the procedure resembles the relaxation procedure as
used in the single source shortest path problem. The main advantage of such an
approach is that relaxations can be performed in an arbitrary order in a BFS
manner, hence in parallel. There is even another source of parallelism in our al-
gorithm. Maximal accepting predecessors define independent subgraphs induced
by vertices with the same maximal accepting predecessor. These subgraphs can
be explored simultaneously and again in an arbitrary order. In both cases a
re-distribution of the graph among the workstations involved in the distributed
computing might be necessary to optimize the performance of the algorithm.

Another distinguished feature of the algorithm is that due to the breadth-first
exploration of the state space the counter-examples produced by the algorithm
tend to be short, which is very important for debugging.

There are several known approaches to distribution and/or parallelization of
the explicit-state LTL model-checking problem and we relate our algorithm to
other work in Section 6.

2 Model-Checking and Accepting Cycles

In the automata-based approach to LTL model-checking [16], one constructs a
Büchi automaton A¬Ψ for the negation of the property Ψ one wishes to verify
and takes its product with the Büchi automaton modeling the given system
S. The system (more exactly the model) is correct with respect to the given
property if and only if the product automaton recognizes an empty language,
i.e. no computation of S violates Ψ . The size of the product automaton is linear
with respect to the size of the model and exponential with respect to the size
of Ψ .

The model-checking problem is thus reduced to the emptiness problem for
automata. It can be reduced even further to a graph problem [8]. Let A =
(Σ, S, δ, s, Acc) be a Büchi automaton where Σ is an input alphabet, S is a
finite set of states, δ : S × Σ → 2S is a transition relation, s is an initial state
and Acc ⊆ V is a set of accepting states. The automaton A can be identified
with a directed graph GA = (V, E, s,A), called automaton graph, where V ⊆ S
is a set of vertices corresponding to all reachable states of the automaton A,
E = {(u, v) | u, v ∈ V and v ∈ δ(u, a) for some a ∈ Σ}, s ∈ V is a distinguished
initial vertex corresponding to the initial state of A and A is a distinguished set
of accepting vertices corresponding to reachable accepting states of A.

Definition 1. Let G = (V, E, s, A) be an automaton graph. The reachabil-
ity relation �+⊆ V × V is defined as u �+ v iff there is a directed path
< u0, u1, . . . , uk > where u0 = u, uk = v and k > 0.
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A directed path < u0, u1, . . . , uk > forms a cycle if u0 = uk and the path
contains at least one edge. A cycle is accepting if at least one vertex on the path
< u0, u1, . . . , uk > belongs to the set of accepting vertices A.

Note that according our definition every cycle in an automaton graph is reachable
from the initial vertex.

Theorem 1. [8] Let A be a Büchi automaton and GA its corresponding au-
tomaton graph. Then A recognizes a nonempty language iff GA contains an
accepting cycle.

In this way the original LTL model-checking problem is reduced to the ac-
cepting cycle detection problem for automaton graphs and we formulate our
model-checking algorithm as a distributed algorithm for accepting cycle detec-
tion problem. The algorithm is based on the notion of predecessors. Intuitively,
an automaton graph contains an accepting cycle iff some accepting vertex is a
predecessor of itself.

To avoid computing of all predecessors for

4 3
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Fig. 1. Undiscovered cycle

each vertex we introduce a concept of maximal
accepting predecessor, denoted by map. We pre-
suppose a linear ordering of the set of vertices
given e.g. by their numbering. Other possible or-
derings are discussed in Section 4. From now on
we therefore assume that for any two vertices u,
v we can decide which one is greater. Further-
more, we extend the ordering to the set V ∪ {null} (null /∈ V ) and put null < v
for all v ∈ V .

Definition 2. Let G = (V, E, s,A) be an automaton graph. A maximal accept-
ing predecessor function of the graph G, mapG : V → (V ∪ {null}), is defined
as

mapG(v) =

{
max{u ∈ A | u �+ v} if {u ∈ A | u �+ v} �= ∅
null otherwise

Corollary 1. For any two vertices u, v ∈ V , the vertices cannot lie on the same
cycle whenever mapG(u) �= mapG(v).

The definition of the maximal accepting predecessor function map gives the
sufficient condition characterizing the existence of an accepting cycle in the au-
tomaton graph.

Lemma 1. Let G = (V, E, s,A) be an automaton graph. If there is a vertex
v ∈ V such that mapG(v) = v then the graph G contains an accepting cycle.

The opposite implication is not generally true, for a counterexample see the
graph in Figure 1. The accepting cycle 2 �+ 2 is not revealed due to the greater
accepting predecessor 4 outside the cycle. However, as the state 4 the does not
lie on any cycle, it can be safely deleted from the set of accepting states and
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the accepting cycle will still be discovered in the resulting graph. This idea is
formalized in the notion of a deleting transformation. Whenever the deleting
transformation is applied to an automaton graph G with mapG(v) �= v for all
v ∈ V , it shrinks the set of accepting vertices by deleting those ones which
evidently do not lie on any cycle.

Definition 3. Let G = (V, E, s,A) be an automaton graph and mapG its maxi-
mal accepting predecessor function. A deleting transformation, del , is defined as
del (G) = (V, E, s,A), where A = A \ {u ∈ A | ∃v ∈ V.mapG(v) = u}).

Directly from the definition we have the following result.

Lemma 2. Let G be an automaton graph and v an accepting vertex in G such
that map(v) �= v. Then v is an accepting vertex in del(G).

Note that the application of the deleting transformation can result in a dif-
ferent map function. For the graph G given in Figure 1, del (G) has state 2 as its
only accepting state, hence mapdel(G)(2) = 2 (and the existence of the accepting
cycle is certified by the new function).

The next Lemma states formally the invariance property just exemplified,
namely that the application of the deleting transformation to a graph with an
accepting cycle results in a graph having an accepting cycle as well.

Lemma 3. Let G = (V, E, s,A) be an automaton graph containing an accepting
cycle and such that map(v) �= v for every v ∈ A. Then the graph del(G) contains
an accepting cycle.

Proof: Let C be an accepting cycle in G and v ∈ C be an accepting vertex. For
every successor u of v we have map(u) ≥ map(v) > v. Therefore the vertex v is
accepting in del (G). The transformation does not change the set of vertices and
edges and the conclusion follows. �

It can happen that even in the

4 3 2 1

Fig. 2. Deleting transformation

transformed graph del(G) there is no
vertex such that its map value would
certify the existence of an accepting
cycle. This situation is depicted in
Figure 2. However, after a finite num-

ber of applications of the deleting transformation an accepting cycle will be
certified.

Definition 4. Let G be an automaton graph. For i ∈ N a graph Gi is defined
inductively as G0 = G and Gi+1 = del(Gi). The set of accepting vertices of Gi

is denoted Ai.

Lemma 4. Let G = (V, E, s,A) be an automaton graph containing an accepting
cycle. Then there is a natural number i ∈ N and a vertex v ∈ V such that
mapGi(v) = v.
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Proof: Let C be an accepting cycle in G and u ∈ A be the maximal accepting
vertex on C. For any j ∈ N let Rj be a set of accepting predecessors of u in Gj ,
Rj = {v ∈ Aj | v �+ u}. If mapGj (u) > u, then obviously |Rj | > |Rj+1|. Since
R0 is finite, there is an index i for which |Ri+1| = |Ri| and mapGi(u) = u. In
other words, after at most |R0| − 1 applications of the deleting transformation
on G the map value of u changes to u. �

Putting together Lemma 1 and Lemma 4 we can state the main theorem
justifying the correctness of our algorithm.

Theorem 2. Let G = (V, E, s,A) be an automaton graph. The graph G contains
an accepting cycle if and only if there is a natural i ∈ N and a vertex v ∈ V such
that mapGi(v) = v.

Note that for an automaton graph without accepting cycles the repetitive
application of the deleting transformation results in an automaton graph with
an empty set of accepting states.

3 Distributed Detection of Accepting Cycles

It is now apparent how to make use of the map function and the deleting trans-
formation to build an algorithm which detects accepting cycles. We first present
a straightforward approach with the aim to introduce clearly the essence of
our distributed algorithm (Subsection 3.1). The distributed-memory algorithm
which employs several additional optimizations is presented in Subsection 3.2
and finally, the correctness and complexity of the algorithm is discussed in Sub-
section 3.3. We do not explicitly describe the actual distribution of the algorithm
as this is quite direct and follows the standard technique used e.g. in [1, 6].

3.1 The Algorithmic Essence
The code is rather self-explanatory, we add a few additional comments only.
The MAP procedure always starts by initializing the map value of the initial
vertex to null , all the other vertices are assigned the undefined initial map value,
denoted by ⊥. Every time a vertex receives a new (greater) map value, the
vertex is pushed into a waiting queue and the new map value is propagated to
all its successors. If an accepting vertex is reached for the first time (line 15)
the vertex is inserted into the set shrinkA of vertices to be removed from A by
the deleting transformation. However, if the accepting vertex is reached from a
greater accepting vertex (lines 16 and 17) this value will be propagated to all its
successors and the vertex is removed from the set shrinkA (Lemma 2).

1 proc Main(G) //G = (V, E, s, A)
2 while A �= ∅ do
3 MAP(G)
4 A := A \ shrinkA
5 od
6 report (NO ACCEPTING CYCLE exists)
7 end
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8 proc MAP(G)
9 foreach u ∈ V do map(u) := ⊥ od

10 map(s) := null
11 waiting .push(s)
13 while waiting �= ∅ do
14 u := waiting .pop()
15 if u ∈ A then if map(u) < u then propagate := u; shrinkA.add(u)
16 else propagate := map(u);
17 shrinkA.remove(u)
18 fi
19 else propagate := map(u)
20 fi
21 foreach (u, v) ∈ E do
22 if propagate = v then report (ACCEPTING CYCLE found) fi
23 if propagate > map(v) then map(v) := propagate
24 waiting .push(v) fi
25 od
27 od
28 end

3.2 Distributed Algorithm

To build up an effective distributed algorithm we consider two optimizations
of the above given basic algorithm. The first one comes out from the fact that
every time the set of accepting states has been shrunk and a new map function
is going to be computed, the algorithm from 3.1 needs to traverse the whole
graph, update the flags for vertices removed from the set of accepting vertices,
and re-initialize the map values to ⊥.

The second improvement is more important with respect to the distribution
and it is a consequence of Corollary 1. An accepting cycle in G can be formed
from vertices with the same maximal accepting predecessor only. A graph in-
duced by the set of vertices having the same maximal accepting predecessor
will be called predecessor subgraph. It is clear that every strongly connected
component (hence every cycle) in the graph is completely included in one of the
predecessor subgraphs. Therefore, after applying the deleting transformation the
new map function can be computed separately and independently for every pre-
decessor subgraph. This allows for speeding up the computation (values are not
propagated to vertices in different subgraphs) and for an efficient distribution of
the computation.

In the distributed algorithm CycleDetection (see Figure 3) we first compute
in parallel the map function on the given input graph G (line 2). If no accepting
cycle is detected and the set shrinkA of vertices to be removed from the set of
accepting vertices is nonempty, then the vertices from shrinkA define predecessor
subgraphs. Every predecessor subgraph is identified through the accepting vertex
(seed) which is the common maximal accepting predecessor for all vertices in the
subgraph. Seeds are stored in the waitingseed queue and are used as a parameter
when calling the DistributedMAP procedure. After the map function is computed
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1 proc CycleDetection(G) //G = (V, E, s, A)
2 MAP(G)
3 waitingseed := shrinkA
4 shrinkA := ∅
5 while waitingseed �= ∅ do
6 while waitingseed �= ∅ do
7 seed := waitingseed .pop()
8 DistributedMAP(G, seed)
9 od

10 waitingseed := shrinkA
11 shrinkA := ∅
12 od
13 report (NO ACCEPTING CYCLE exists)
15 end

16 proc DistributedMAP(G, seed)
17 oldmap(seed) := seed
18 map(seed) := null
19 waiting .push(seed)
20 while waiting �= ∅ do
21 u := waiting .pop()
22 if (u ∈ A) ∧ (u �= oldmap(u))
23 then if map(u) < u then propagate := u
24 shrinkA.add(u)
25 else propagate := map(u)
26 shrinkA.remove(u) fi
27 else propagate := map(u)
28 fi
29 foreach (u, v) ∈ E do
30 if propagate = v then report (ACCEPTING CYCLE found) fi
31 if map(v) = oldmap(u)
32 then oldmap(v) := oldmap(u)
33 map(v) := propagate
34 waiting .push(v)
35 else if (propagate > map(v)) ∧ (oldmap(v) = oldmap(u))
36 then map(v) := propagate
37 waiting .push(v)
38 fi
39 fi
40 od
41 od
42 end

Fig. 3. Distributed Cycle Detection Algorithm

for every predecessor subgraph, the vertices that should be deleted from the set
of accepting vertices form a new content of the waitingseed queue.

Vertices from the same predecessor subgraph are identified with the help of
the oldmap value. For every vertex v, oldmap(v) maintains the value of map(v)



360 Luboš Brim et al.

from the previous iteration. When a vertex v with map(v) = seed (line 31)
is reached the value of oldmap(v) is set to seed . Accepting predecessors are
propagated only to successors identified to be in the same predecessor subgraph
through the variable oldmap (line 35). Sets waiting and shrinkA are maintained
in the same way as in the basic algorithm presented in Subsection 3.1.

For the distributed computation we assume a network of collaborating work-
stations with no global memory. Communication between workstations is real-
ized by sending messages only. In the distributed computation the input graph
is divided into parts, one part per each workstation.

In the CycleDetection algorithm every workstation has local data structures
waitingseed , waiting and shrinkA and computes the values of the map function
for its part of the graph. Workstations have to be synchronized every time the
computation of the map function is finished and the set of accepting vertices is
to be shrunk.

An important characteristic of the distributed algorithm is that the map
values for different predecessor subgraphs can be computed in parallel, i.e. the
procedure DistributedMAP can be called for different values of seed in parallel.

Another distinguished feature of our distributed algorithm is the possibility
to make use of dynamic re-partitioning, i.e. of a new assignment of vertices to
workstations after each iteration. The map function induces a decomposition of
the graph into predecessor subgraphs. After a new map function is computed the
graph can be re-partitioned so that the new partition function respects prede-
cessor subgraphs as much as possible which can result in significant reduction in
the communication among the workstations as well as in speed-up of the entire
computation.

In the case the given graph contains an accepting cycle an output reporting
such a cycle is required. The proposed algorithm can be simply extended to re-
port an accepting cycle. Let v be a vertex certifying the existence of an accepting
cycle (v = propagate). Then two distributed searches are initiated. The first one
finds a path from the initial vertex s to v and the second one a path from v to
itself. In the second search the predecessor subgraph of v is searched-through
only.

3.3 Correctness and Complexity

Theorem 3. The CycleDetection algorithm terminates and correctly detects an
accepting cycle in an automaton graph.

Proof: Every time a vertex is pushed into the waiting queue in both the MAP
and the DistributedMAP procedure, its map value is strictly increased. Thus a
vertex can be pushed and popped from the waiting queue a finite number of
times only and both procedures terminate. As accepting vertices are pushed to
the waitingseed queue in CycleDetection only and whenever a vertex is pushed
to the waitingseed queue it is deleted from the set of accepting vertices the
algorithm terminates.

For the second half it is sufficient to note that the algorithm reports cycle
whenever a vertex which is its own maximal accepting predecessor is reached
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(line 30). The correctness follows from Lemma 1. The other direction follows
from Lemma 4 and from the observation that in the procedures DistributedMAP
and MAP the map function is correctly computed for all vertices in the actual
predecessor subgraph. �

Theorem 4. The time complexity of the CycleDetection algorithm is O(a2 ·m),
where m is the number of edges and a is the number of accepting vertices in the
input (automaton) graph.

Proof: The cycle in the CycleDetection procedure is repeated at most a times.
Every vertex is pushed to the waiting queue in the procedures DistributedMAP
and MAP at most a times and all successors of a vertex popped from the waiting
queue are tested. The overall complexity of both MAP and DistributedMAP is
O(a · m). �

Experiments with model-checking graphs (see Section 5) demonstrate that
the actual complexity is typically significantly lower.

4 Ordering of Vertices

One of the key aspects influencing the overall performance of our distributed
algorithm is the underlying ordering of the vertices used by the algorithm. The
direct way to order the vertices is to use the enumeration order as it is com-
puted in the enumerative on-the-fly model-checking. The first possibility is to
order the vertices by the time they have been reached (sooner visited vertices
receive smaller values). In this case the algorithm tends to return short coun-
terexamples and generally detects the accepting cycles very quickly. Moreover,
since the graph is splitted into “as many” subgraphs “as possible”, less iterations
are performed. On the other hand, the running time of each iteration increases,
because the vertices with small values will be usually updated several times. Al-
ternatively, we can employ the reverse ordering (sooner visited vertices receive
larger values). The behavior of the algorithm is now completely different. Both
the size of subgraphs and the number of iterations increase, while the number
of the subgraphs as well as the running time of each iteration decrease. As a
third possibility we can consider a combination of these two orderings, which
can result in fast computation with small number of iterations.

Another set of heuristics can be based on different graph traversal algo-
rithms (e.g. depth-first search or breadth-first search). Finally, yet another sim-
ple heuristic is to compare the bit-vector representations of vertices.

In the future we plan to implement, compare and systematically evaluate all
the orderings of vertices mentioned above.

In our implementation each vertex is identified by a vector of three numbers
– the workstation identifier, the row number in the hash table, and the column
number in the row. The ordering of vertices is given by the lexicographical or-
dering of these triples. Note that there are six possible lexicographical orderings
and by reversing these orderings one gets another six possibilities. This gives us
a range of twelve possible orderings. We have implemented and compared six of
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them. The results we obtained show that there is no real difference among these
six approaches, which in some sense demonstrate the robustness of an ordering
with respect to the random partitioning of the graph among the workstations.

5 Experiments

We have implemented the distributed algorithm described in Section 3.2. The
implementation has been done in C++ and the experiments have been performed
on a network of thirteen Intel Pentium 4 2.6 GHz workstations with 1 GB of
RAM each interconnected with a fast 100Mbps Ethernet and using tools provided
by our own distributed verification environment – DiVinE.

The vertices have been partitioned among the workstations using random
hash function and no re-partitioning was implemented.

We performed several sets of tests on different instances of the model-checking
problem with the primary aim to evaluate the scalability of our algorithm. Here
we report results for a variant of the Mutual exclusion protocol problem based
on a token ring and parametrized by the number n of processes (denoted by
TR(n)) and the Producer-consumer protocol problem parametrized by the num-
ber n of messages which can be lost in a row (denoted by PC(n)). For each
parametrized model we report the results for one LTL property. The property
being checked over the TR class was GF (P0.CS), i.e. the process P0 enter its
critical section infinitely many times. The property being checked over the PC
class was GF (Consumer.consume0 ∨ Consumer.consume1), i.e. the consumer
will consume some value infinitely many times. Both properties have been sat-
isfied by the respective models.

The results of the experiments are presented in Figure 4 and all the results
are taken as an average of 5 executions of the distributed algorithm. Because of
the size of state graphs (from 500.000 to 1.5 millions vertices and the amount
of memory needed to store a vertex description), we did not get results when
running the algorithm on less than 3 workstations due to memory restrictions.
Therefore, the shown speedups are calculated relative to 3 workstations instead
of one. We found that we gain a linear speedup for reasonably large graphs.

The second set of tests was designed to evaluate the actual performance
of the algorithm. We have implemented an experimental version of the token-
based distributed-memory nested depth-first search algorithm (Nested DFS ) and
compared the running time of both algorithms. The comparison of our algorithm
(DACD) and the Nested DFS algorithm (NDFS ) is given in Table 1 for various
numbers of workstations (NW ) involved in the distributed computation. The
results shown are running times in seconds. It can be seen that our algorithm
outperforms the Nested DFS algorithm even when the number of workstation is
small.

We have compared the sequential version of our algorithm to the sequential
Nested DFS algorithm as well. As expected, the sequential version of our al-
gorithm performs slightly worse. However, the experiments have demonstrated
comparability of both approaches. Our algorithm needs, on average, around 30%
more time and memory than Nested DFS algorithm.
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Fig. 4. Scalability of the distributed algorithm

Table 1. Nested DFS vs. DACD on PC(20)

NW NDFS DACD Speedup NW NDFS DACD Speedup

3 1251 846 1.5 7 1904 208 9.2

4 1801 402 4.5 8 2132 219 9.7

5 1610 252 6.4 9 2166 174 12.4

6 1958 223 8.8 10 2306 137 16.8

We have also considered verification problems on models with an error (e.g.
Dining philosophers, various models of an elevator, and some communication
protocols). Since our algorithm is entirely based on the breadth-first search, the
counterexamples were much more shorter than counterexamples provided by the
Nested DFS algorithm. Moreover, in all cases the accepting cycle was detected
very early by our algorithm (within tens of seconds), while the Nested DFS
algorithm was incomparably slower. For the parametrized models where the size
of the state space was larger than the size of the (distributed) memory (e.g.
for forty dining philosophers), our algorithm detected a counterexample, while
the Nested DFS algorithm failed due to memory limitations. These results were
almost independent on the ordering of vertices chosen and on the number of
workstations involved.

In the erroneous version of the general Peterson algorithm for 4 processes,
where the error is very “deep” (according to the breadth-first search level). In this
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case the Nested DFS algorithm detected the counterexample very early, since the
depth-first search tends to follow the erroneous path, while our algorithm failed.
In several other examples with similar characteristics our algorithm was able
to detect the error as well, but later than the Nested DFS algorithm. However,
the “depth of an error” is typically small, hence our distributed algorithm will
outperform the Nested DFS algorithm in most cases.

The last interesting conclusion we would like to point out is that the number
of iterations in all models without an error was up to 20. On the other hand, an
error was already detected during the first iteration in all performed tests. As a
consequence the algorithm is usually able to detect the faulty behavior without
exploring the entire graph (state space).

6 Conclusions

In this paper, we have presented a new distributed-memory algorithm for enu-
merative LTL model-checking.

We plan to implement two improvements of our algorithm. Both use addi-
tional conditions characterizing the existence of an accepting cycle in an automa-
ton graph augmented with the maximal accepting predecessors information.

Suppose that the graph contains an accepting cycle such that the maximal
accepting predecessor of this cycle is outside of it. Then there must exist a vertex
on the cycle with the in-degree at least two. One of the incoming edges comes
from the cycle, a different one comes from the maximal accepting predecessor.
Therefore, we do not need to explore a predecessors subgraph which does not
fulfill this condition.

For the second condition suppose again that the graph contains an accepting
cycle such that the maximal accepting predecessor of this cycle is outside of it.
Then the graph must contain at least one another accepting vertex (besides the
maximal accepting predecessor). It is possible to combine these two methods. An
effective way to check the conditions requires a more sophisticated techniques
for computing the set shrinkA in the distributed environment.

There are several already known approaches to distributed-memory LTL
model-checking. In [14] a distributed implementation of the SPIN model checker,
restricted to perform model-checking of safety properties only is described. In [2],
the authors build on the safety model-checking work of [14] to create a distri-
buted-memory version of SPIN that does full LTL model-checking. The disad-
vantage of this algorithm is that it performs only one nested search at a time.
Recently, in [7] another algorithm for distributed enumerative LTL model check-
ing has been proposed. The algorithm implements the enumerative version of the
symbolic “One-Way-Catch-Them-Young ” algorithm [13]. The algorithm shows
in many situations a linear behavior, however it is not on-the-fly, hence the whole
state space has to be generated. Our algorithm is in some sense similar to [7],
although their original ideas are different. Both algorithms work in iterations
started from a set of accepting vertices. In general, the time complexity of [7]
is better (O(n · m) in comparison to O(a2 · m)), but our algorithm has three
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advantages. It is adjustable according to the input problem by setting some spe-
cial ordering of vertices, it can guess the counterexample very quickly before the
whole graph is traversed and it has one instead of two synchronizations during
the iteration cycle. Since the number of iterations is very similar, on the larger
and slower nets this can be a significant factor. Similar arguments are valid if
comparing our algorithm to another recently proposed algorithm [1]. This algo-
rithm uses back-level edges to discover cycles, works on-the-fly and is effective
in finding bugs. All these three algorithms could be meant not to replace but to
complement each other.

In [6], the problem of LTL model checking is reduced to detecting negative cy-
cles in a weighted directed graph. Since the basic method (edge relaxation) is the
same, the behavior of both algorithms will be generally similar. The algorithm
in [6] suffers by clumsy cycle detection, our approach needs costly synchroniza-
tion and many searches are often redundantly called.

For each of the above mentioned distributed-memory algorithm for the enu-
merative LTL model-checking there will most likely exist a set of input problems
on which it is superior to the others. Our future work will be focused on system-
atic, mainly experimental, comparison of these algorithms.
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