
FACS 2008

The CoIn Tool: Modelling and Verification
of Interactions in Component-Based Systems

N. Beneš, L. Brim, I. Černá, J. Sochor, P. Vařeková and B. Zimmerova1,2

Faculty of Informatics, Masaryk University
Brno, Czech Republic

Abstract

The paper presents a modelling and model-checking tool designed for formal verification of interactions
among components in hierarchical component-based systems. As distinct from existing verification frame-
works, the presented CoIn Tool is able to analyse complex hierarchical models on the fly, and to verify
linear temporal properties involving both state and action propositions.

Keywords: Component-based systems, Component-Interaction automata, formal verification, LTL, model
checking.

1 Introduction and Motivation

Construction of correct component-based systems out of individual components is
in principle a very difficult task, partly due to a high possibility of discrepancies in
interaction of the components. Since the components are often developed indepen-
dently of each other, the correctness of the cooperation logic among them becomes
a significant issue.

One of the methods with the capacity to tackle this issue is the formal ver-
ification, and the LTL model checking [6,14] in particular. The existing LTL
model-checking tools [1,10] are however not prepared to cope with a number of
component-interaction specifics, like hierarchical structure of the models, with vari-
ous compositional strategies applied at each level of the hierarchy, or incorporation
of information about communicating counterparts. The component-oriented tools
for component-interaction verification [11,13] often support verification of a lim-
ited set of predefined properties, or are restricted to either purely state-based or
action-based reasoning about system properties. The combination of state-based
and action-based reasoning is nevertheless very important in software verification [5].

1 Email: {xbenes3,brim,cerna,sochor,xvareko1,zimmerova}@fi.muni.cz
2 The work has been supported by the grants No. 1ET400300504 and No. 1ET408050503.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



The CoIn Tool presented in this paper supports formal modelling of component
interactions in a language designed for this purpose, and verification of a wide
range of linear temporal properties on the model, combining both state-based and
action-based reasoning.

2 The CoIn Tool

The CoIn Tool [7] consists of a modelling platform, which allows users to enter
studied model in a graphical manner, and a verification platform, which verifies the
model against a given property. The verification is fully automatic and proceeds
on the fly, which helps to reduce the space requirements of the verification process,
and hence allows the method to analyse large models. If the property is not valid
on the model, the technique reports the behaviour of the model that violates the
property.

2.1 Modelling Platform

The Modelling Formalism. The model of the studied system is created in
the Component-Interaction automata language [4,15]. Component-Interaction au-
tomata (CI automata) are an automata-based formalism for behavioural modelling
of components, i.e. interplay of their services and consequent calls of services pro-
vided by other components. The behaviour of each component is in the language
represented with a labelled transition system (see Figure 1 on the left), which can
be composed with automata of other components via synchronization on comple-
mentary labels 3 , similarly to CCS.

During the modelling process, only the primitive components (on the lowest
level of the system hierarchy) need to be modelled explicitly, defining their transition
space, initial states and name. Composite components (and all their characteristics)
are determined by the set of direct sub-components, and the composition type (see
Figure 1 on the right). The composite components are kept in this compact form
also during verification, when their transition space is generated and traversed on
the fly.

While keeping the models finite-state, the CI-automata language is able to faith-
fully model component interaction in systems based on various component models,
and to simulate some of the existing modelling formalisms designed for a similar pur-
pose, e.g. [8,12]. The capacity of the formalism has been evaluated on the CoCoME
case study [15], which includes also the guidelines for the usage of the language.

Implementation of the Modelling Platform. The modelling part of the CoIn
Tool is a graphical Java application for visual modelling of component interaction
with CI automata. In the tool, both primitive and composite components can be
modelled and edited visually, which facilitates the creation of the model.

3 The labels are triples which are classified according to their structure to input labels (−, a, 1), saying
that component 1 inputs action a; output labels (2, a,−), saying that component 2 outputs action a; and
internal labels (2, a, 1) resulting from the synchronization of the two. Every input and output label represents
an attempt for communication, whereas internal labels keep information about realized interactions.



The core functionality of the modelling platform includes visual entering of states
and transitions of primitive-component models, including adjustment of their visual
properties, automatically computed characteristics, like the hierarchy of component
names, visual manipulation (zooming) and image export. The tool facilitates the
description of composite-component models by supplying users with the lists of
possible parameters and values, and syntactic checks during modelling.

The final model, structured into descriptions of primitive components and their
compositions, is exported to one file in the CI-automata textual notation, which is
passed to the verification platform.

Fig. 1. Screenshots of the Modelling Platform

2.2 Verification Platform

The verification process has two inputs, the model of the studied system (in the CI-
automata textual notation generated by the modelling platform) and the temporal
property that is to be verified.

The Property-Specification Formalism. The properties can be specified in
two temporal logics defined in [2]. The first is the state/event LTL (SE-LTL for
short), which is a combination of the state-based an action-based linear temporal
logic (LTL), and hence includes both state-based and action-based LTL as its spe-
cial cases. The second is the weak SE-LTL, which allows users to express such
state/event properties about systems that automatically overlook uninteresting ac-
tions/interactions in system models, determined beforehand together with the prop-
erty.

The difference between the two logics can be demonstrated already on the basic
run proposition P(a), which in SE-LTL expresses that action a Proceeds as the first
action of the run, whereas in weak SE-LTL it states that action a Proceeds as the
first interesting action of the run. Thus when interpreted in weak SE-LTL, the
action can be preceded by a number of uninteresting actions. This comes in useful
namely when one aims to verify interactions among specific components, which can
be interleaved with uninteresting behaviour of the rest of the system.

Notice that although LTL is a linear-time logic, the combination of the state-
based and action-based LTL enables the properties to address also one-step branch-



ing of actions [3]. This is because the branching of transitions from a state can
be encoded as a proposition of the state, namely via the set of actions enabled in
the state. The enabledness propositions are currently the only state propositions
we consider, since they do not require any explicit state-labelling of the model.
However, the verification method is ready to handle general atomic propositions.

Implementation of the Verification Platform. The verification part of
the CoIn Tool is realized as a C++ command-line application implementing the
automata-based model checking [6,14], and consisting of two binaries. The first im-
plements the property conversion and the second executes the verification process.

The property-conversion sub-tool converts a supplied temporal-formula property
to an appropriate format (the property automaton) and appends it to the model of
the system. The conversion is parametrized by the employed temporal logic, which
is either SE-LTL (strong SE-LTL) or weak SE-LTL, and in case of weak SE-LTL
also by a list of interesting action labels.

The verification sub-tool checks the model against the property, and reports
a counterexample if the property is not valid on the model. Besides the verification,
the tool can perform simple reachability of the model, reporting the number of
reachable states, transitions and (possibly) deadlock states in the state space of the
model. The reachable state space can be exported in a graphical form.

Fig. 2. Screenshots of the Verification Platform

3 Summary and Future Directions

There are two main aspects that distinguish the presented tool from related work.
First, the model of the system is created with a formalism specially designed for
component-interaction modelling, which allows the tool to analyse the core aspects
of component interaction. Second, the tool is able to verify a wide range of tem-
poral properties, combining both state-based and action-based reasoning, which is
a significant advantage in connection with software verification [5].

Both the capability of the modelling language and application of a state/event
logic to component-interaction verification have been evaluated on extensive case
studies. In [15], we have presented a CI-automata model of a complex component-
based system, designed as a common modelling example comprising a large number
of various component-specific aspects. In [3], we have identified a set of proper-



ties reflecting common correctness issues in component-based systems, formalized
them in terms of a state/event temporal logic, and demonstrated the feasibility and
efficiency of their automatic verification.

The current release of the tool implements basic sequential model checking with
no supplementary optimizations. We currently experiment with a version of the
tool that implements distributed model checking [3], and we implement partial order
reduction for the state/event logic [2]. Besides the release of these two extensions, we
aim at developing a multi-core version of the tool, based on the DiVinE toolset [1,9].

Acknowledgments

We thank the DiVinE development team [9] for the property-to-automaton algo-
rithm, and Milan Křivánek for implementing the modelling platform of the tool.

References

[1] Barnat, J., L. Brim, I. Černá, P. Moravec, P. Ročkai and P. Šimecek, DiVinE – A Tool for Distributed
Verification, in: Proceedings of the Computer Aided Verification conference (CAV’06) (2006), pp. 278–
281.

[2] Beneš, N., L. Brim, I. Černá, J. Sochor, P. Vařeková and B. Zimmerova, Partial Order Reduction for
State/Event LTL, Technical Report FIMU-RS-2008-07, Masaryk University, Faculty of Informatics,
Brno, Czech Republic (2008).

[3] Beneš, N., I. Černá, J. Sochor, P. Vařeková and B. Zimmerova, A Case Study in Parallel Verification
of Component-Based Systems, in: Proceedings of the Workshop on Parallel and Distributed Methods
in verifiCation (PDMC’08), ENTCS (2008), pp. 35–51.

[4] Brim, L., I. Černá, P. Vařeková and B. Zimmerova, Component-Interaction Automata as a Verification-
Oriented Component-Based System Specification, in: Proceedings of the ESEC/FSE Conference on
Specification and Verification of Component-Based Systems (SAVCBS’05) (2005), pp. 31–38.

[5] Chaki, S., E. M. Clarke, J. Ouaknine, N. Sharygina and N. Sinha, State/Event-Based Software Model
Checking, in: Proceedings of the International Conference on Integrated Formal Methods (IFM’04),
LNCS 2999 (2004), pp. 128–147.

[6] Clarke, E. M., O. Grumberg and D. A. Peled, “Model Checking,” The MIT Press, USA, 2000, ISBN
0-262-03270-8.

[7] CoIn Tool – Formal-Verification Tool of Component-Interaction.
URL http://anna.fi.muni.cz/coin/tool

[8] de Alfaro, L. and T. A. Henzinger, Interface-based Design, in: Proceedings of the 2004 Marktoberdorf
Summer School (2005), pp. 1–25.

[9] DiVinE – Distributed Verification Environment.
URL http://anna.fi.muni.cz/divine

[10] Holzmann, G. J., The Model Checker SPIN, IEEE Transactions on Software Engineering 23 (1997),
pp. 279–295.

[11] Mach, M., F. Plášil and J. Kofroň, Behavior Protocols Verification: Fighting State Explosion,
International Journal of Computer and Information Science 6 (2005), pp. 22–30.

[12] Plášil, F. and S. Vǐsňovský, Behavior Protocols for Software Components, IEEE Transactions on
Software Engineering 28 (2002), pp. 1056–1076.

[13] Pľsek, A. and J. Adámek, Carmen: Software Component Model Checker, in: Proceedings of the
International Conference on the Quality of Software-Architectures (QoSA’08) (2008).

[14] Vardi, M. Y. and P. Wolper, An Automata-Theoretic Approach to Automatic Program Verification, in:
Proceedings of the IEEE Symposium on Logic in Computer Science (LICS’86) (1986), pp. 332–344.

[15] Zimmerova, B., P. Vařeková, N. Beneš, I. Černá, L. Brim and J. Sochor, “The Common Component
Modeling Example: Comparing Software Component Models,” LNCS 5153, Springer-Verlag, 2008 pp.
146–176.

http://anna.fi.muni.cz/coin/tool
http://anna.fi.muni.cz/divine

	Introduction and Motivation
	The CoIn Tool
	Modelling Platform
	Verification Platform

	Summary and Future Directions
	References

