
PDMC 2008

A Case Study in Parallel Veri�ationof Component-Based SystemsN. Bene�s, I. �Cern�a, J. Sohor, P. Va�rekov�a and B. Zimmerova1 ;2Faulty of Informatis, Masaryk UniversityBrno, Czeh RepubliAbstratIn large omponent-based systems, the appliability of formal veri�ation tehniques to hek interationorretness among omponents is beoming hallenging due to the onurreny of a large number of om-ponents. In our approah, we employ parallel LTL-like model heking to handle the size of the model.We present the results of the atual appliation of the tehnique to the veri�ation of a omplex model ofa real system reated within the CoCoME Modelling Contest [18℄. In this ase study, we hek the validityof the model and the orretness of the system via heking various temporal properties. We onentrateon the omponent-spei� properties, like loal deadloks of omponents, and orretness of given use-asesenarios.Keywords: Component-based systems, formal veri�ation, parallel model heking.1 IntrodutionDuring the last deade, software industry has seriously started to take advantage ofomponent-based software development as an alternative to existing software devel-opment tehniques. Component-based development proposes to assemble softwaresystems from reusable omponents, possibly in a hierarhial manner. This helpsto signi�antly redue development osts, but brings the issue of orretness of suhsystems, espeially if omponents are delivered by di�erent vendors.In this paper, we present a pratial appliation of parallel veri�ation to a largeomponent-based system designed within the CoCoME Modelling Contest [15℄. Inthe ontest, a number of teams were asked to reate a detailed model of a ommonomponent-based system to make their modelling approahes omparable. Whilein [18℄, we present our model of the CoCoME system, this paper omplements thework by verifying the model. In veri�ation, we onentrate on properties of the �nalmodel like orretness of given use-ase senarios, loal deadloks of omponents,1 Email: fxbenes3,erna,sohor,xvareko1,zimmerovag�fi.muni.z2 The work has been supported by the grants No. 1ET400300504 and No. 1ET408050503.This paper is eletronially published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents



and response properties. Besides these we disuss how the veri�ation helped us tohek the validity of the model during modelling.As a modelling language for omponent-based systems we use Component-Interation automata (or CI automata for short) [6,8℄ whih allow very preise anddetailed desription of ommuniation among system omponents. System proper-ties are spei�ed in an extended version of the ation-based linear time logi LTL,alled CI-LTL. For the veri�ation itself we use the automata-based model hek-ing algorithms implemented in the parallel model heking tool DiVinE [4,10℄. Weadvoate the hoie of a parallel tool by a tremendous size of the model given byonurreny of omponents in the system.A short desription of the CoCoME Modelling Contest is given in Setion 2followed by an outline of the CI automata modelling language and the CI-LTL logiin Setion 3. Setion 4 introdues the model we have reated within the ontest, andSetion 5 lists required properties and use-ase senarios inluding their veri�ation.Finally, Setion 6 disusses the results and experiene gained during the veri�ation.2 CoCoME Modelling ContestIn order to leverage omponent-based system design to build orret and depend-able omponent-based systems, researhers have developed various formal and semi-formal omponent models whih onentrate on di�erent yet related aspets of om-ponent modelling [13,7,5,12,2,11℄. The main goal of the CoCoME (Common Compo-nent Modelling Example) Modelling Contest [15℄ was to evaluate and ompare thepratial appliation of existing omponent modelling approahes and tehniqueson a ommon modelling example, whih was designed to omprise a large numberof various aspets and modelling issues that an be identi�ed in di�erent types ofomponent-based systems.The modelling example, alled Trading System, serves to handle sales in a hainof supermarkets. Its funtionality inludes the interation with the ashier at theash desk, like produt sanning, prie lookup, ash/ard payment, and bill printing,as well as aounting the sale at the inventory, or determining whether an expressash desk is needed in the store. Furthermore, the Trading System deals with order-ing goods from wholesalers, and generating various kinds of reports. The system isan open system, designed to interat with external omponents representing usersof the system (ashiers and managers) and a bank appliation.The Trading System was implemented as a Java appliation where omponentsorrespond to pakages in the soure ode. The Java soure ode (125 Java lassesin total) served as a detailed spei�ation of the system for the modelling teamsto prevent ambiguities in the interpretation of the orresponding high-level spei-�ation. The omponent struture of the appliation up to depth four is depitedin Figure 1. The �gure inludes an id number for eah primitive omponent inthe system. If a omponent is assigned more than one id, it onsists of several sub-omponents with these ids. The ids are used as numerial names of the omponentsin automata labels.



Fig. 1. CoCoME Trading System overview3 Foundations3.1 Modelling languageTo model behaviour of omponent-based systems we use the CI automata lan-guage [6,8℄. The language models eah omponent as a labelled transition systemwith strutured labels and a hierarhy of omponent names. The transition label ar-tiulates whih omponents ommuniate on an ation, and the hierarhy of namesrepresents the arhitetural struture of the omponent.A CI automaton is a 5-tuple C = (Q;At; Æ; I;H) where Q is a �nite set of states,At is a �nite set of ations, � = ((SH[f�g)�At�(SH[f�g))n(f�g�At�f�g)is a set of labels, Æ � Q � � � Q is a �nite set of labelled transitions, I � Q isa nonempty set of initial states, and H is a strutured tuple representing a hierarhyof omponent names where the set of omponent names is denoted SH .Hierarhy: (1) Hierarhy: (2)q/.-,()*+( 1 ;sC;� ) &&MMMMMMMMMMMM ( 1 ;sB;� ) && q/.-,()*+( 2; int; 2 )��C1 : // p/.-,()*+(� ;sA; 1 ) ??~~~~~~~~ r/.-,()*+(� ;sC0; 1 )xxqqqqqqqqqqqqq s/.-,()*+(� ;sB0; 1 )rr C2 : // p/.-,()*+(�; sB; 2 ) 88qqqqqqqqqqqq r/.-,()*+( 2; sB0;� )oot'&%$ !"#( 1 ;sA0;� )__???????? C3 : // p/.-,()*+ (�; sC; 3 ) // q/.-,()*+( 3; sC0;� )oo Hierarhy: (3)Fig. 2. Three examples of CI automataThe labels have semantis of input, output, or internal, based on their struture.In the triple, the middle item represents an ation name, the �rst item representsa name of the omponent that outputs the ation, and the third item represents



a name of the omponent that inputs the ation. Examples of three CI automataare in Figure 2. Eah of them represents a model of behaviour of a basi omponent.For example, (�; sA; 1) in C1 signi�es that the omponent with numerial name 1inputs an ation sA (a request for a servie sA()), and (1; sA0;�) in C1 signi�esthat the omponent 1 outputs an ation sA0 (a response for the servie sA()).To ompose omponents into a higher-level omponent a omposition operator isde�ned. Automata an be omposed together using a parametrizable ompositionoperator 
F , whih omposes a given �nite set of automata with respet to theset of feasible labels F . Given a set of labels F , the operator omposes the setof CI automata into a produt automaton allowing only those transitions fromthe produt that have labels from F . In the produt, the omponents ooperateeither by interleaving of their original transitions, or by simultaneous exeutionof two omplementary transitions (with labels (n1; a;�), (�; a; n2)) whih resultsinto a new internal transition (with label (n1; a; n2)). An example of a ompositeautomaton is in Figure 3. A wider range of omposition operators is de�ned in [6,8℄./. -,() *+(q;p;p) ( 1 ;sC;3 ) ((QQQQQQQQQQQQQ ( 1 ;sB; 2 ) ///. -,() *+(s;q;p)( 2 ;int; 2 )��C : ///. -,() *+(p;p;p)(� ;sA; 1 ) 99tttttttttt /. -,() *+(r;p;q)( 3 ;sC0; 1 )vvmmmmmmmmmmmmm/. -,() *+(t;p;p)( 1 ;sA0;� )eeJJJJJJJJJJ /. -,() *+(s;r;p)( 2 ;sB0; 1 )oo Hierarhy: ((1),(2),(3))Fig. 3. A omposite CI automaton C = 
FfC1;C2;C3g where C1; C2;C3 are in Fig. 2, andF = f(�; sA; 1); (1; sA0;�); (1; sB; 2); (2; sB0; 1); (2; int; 2); (1; sC; 3); (3; sC0; 1)g3.2 Temporal logiFor property spei�ation, we use a slightly modi�ed version of the linear temporallogi LTL [14℄ whih we refer to as CI-LTL. CI-LTL is designed to express propertiesabout ourring omponent interation (i.e. labels in automata), but also aboutpossible omponent interation (i.e. label enabledness).Syntax. For a given set of labels, formulas of CI-LTL are de�ned as(1) P(l) and E(l) are formulas, where l is a label.(2) If � and 	 are formulas, then also � ^	;: �;X � and � U 	 are formulas.(3) Every formula an be obtained by a �nite number of appliations of steps (1)and (2).Other operators an be de�ned as shortuts: � _	 � : (: � ^ :	), �) 	 �: (� ^ :	), F � � true U � (Future), G � � : F : � (Globally).Semantis. Let C = (Q;At; Æ; I;H) be a CI automaton. We de�ne a run of C asan in�nite sequene � = q0; l0; q1; l1; q2; : : :, where qi 2 Q, and 8i : (qi; li; qi+1) 2 Æ.We further de�ne:� �(i) = qi (i-th state of �)



� �i = qi; li; qi+1; li+1; qi+2; : : : (i-th sub-run of �)� L(�; i) = li (i-th label of �)CI formulas are interpreted over runs and the satisfation relation j= is de�ned as� j= E(l) () 9q : �(0) l�! q� j= P(l) () L(�; 0) = l� j= � ^	 () � j= � and � j= 	� j= :� () � 6j= �� j= X � () �1 j= �� j= � U 	 () 9j 2 N0 : �j j= 	 and 8k 2 N0 ; k < j : �k j= �Informally, formula E(l) is true in all states of the system where the interationrepresented by the label l an possibly happen. Formula P(l) is true for a runwhenever the interation represented by the label l is atually happening as thevery �rst transition of the run.3.3 Model heking and veri�ation toolFor model heking CI-LTL properties, the automata-based algorithm [17℄ is slightlymodi�ed in the way a formula is translated into a B�uhi automaton. Automaton hasa speial alphabet formed by doubles (set of labels, label). The items orrespondto the two operators E(l) and P(l). Apart from that, the model heking algorithmremains the same as in the ase of standard LTL (aepting yle detetion) andtherefore it has the same omplexity.The tool DiVinE, whih we use for the veri�ation, provides several LTL modelheking algorithms. In our ase study, the algorithm OWCTY is employed. Thisalgorithm always generates the whole reahable state spae of the model and itstime omplexity is higher than that of simple reahability if it is the ase thatan aepting yle is found. However, it was hosen beause of its eÆieny indistributed setting [3℄.The veri�ations presented in this paper have been performed on a luster of ten2.60 GHz Intel Pentium 4 Linux workstations with 3800 MB of RAM, interonnetedwith a 100Mbps Ethernet and using the Message Passing Interfae (MPI) library.The hosen number of omputers is explained and justi�ed in Setion 6.4 Model of the Trading SystemWithin the CoCoME Modelling Contest [15℄, we have reated a detailed model ofthe Trading System in terms of omponent interation using CI automata [18℄. Themodel in a textual notation is available at [16℄. The model onsists of 140 primitiveautomata (59 in the CashDeskLine part, and 81 in the Inventory part), omposedhierarhially into 34 omposite automata up to 6 levels of depth. The TradingSystem model is omplemented by several models of ashiers and managers, whointerat with the system, and speify various usage pro�les under whih properties



of the system are heked. 3 Eah usage pro�le/senario (all provided within theontest) orresponds to a orret behaviour of a user operating the system.We have experimented with all usage senarios. However, for the larity of thepresentation, we employ only one usage pro�le underlying the properties studied inthe paper. It is the senario desribing one sale assisted by a ashier. This senariorepresents the most omplex usage pro�le desribed in [15℄, and it is onnetedto a large number of omponent-spei� properties that an be heked on thebehaviour of the system that is implied by the senario. In the senario, the ashier�rst starts the sale, then sans items (in a loop), �nishes the sale and reeives thepayment. It an selet ash or ard payment, where the ash payment is followedby entering the reeived amount and returning hange, and the ard payment withsanning the ard and entering PIN.Besides the users, the system interats with a bank appliation to exhange in-formation during ard payments. We suppose that the bank an perform any orretsenario, i.e. it is anytime able to reeive requests and for eah request it returnsa response. We simulate this by leaving the ommuniation with the bank open.State spae of the model. As mentioned above, the Trading System model isomposed out of 140 primitive automata hierarhially assembled into 34 ompositeautomata. Even if the size (number of states) of individual primitive automata ismoderate, the size of the omplete state spae is immense due to the onurreny inomponent behaviour. An attempt to generate the omplete state spae on a lusterof twenty omputers �nished unsuessfully with 322 millions of states demandingfor 60 GB of memory in total. The omputation took 13 400 seonds. Althoughthis might seem slow, it is not surprising beause the state spae generation in-volves omputation of the suessor states. Suh omputation is a omplex task,whih needs to take into aount the hierarhial omposition of omponents andthe feasible labels that an be propagated up in the hierarhy and are part of theomposite automata.Even if the omplete model is unfeasibly large, for the veri�ation of the modelunder the given usage senario, the model is omposed with an automaton repre-senting the user. This restrits possible behaviours and dereases the state spae.The size of the model with the ashier mentioned earlier is 749 340 reahable statesand 3 181 473 reahable transitions.5 Veri�ation of the modelIn this setion, we disuss some of the properties that were heked on the model,and present veri�ation results. We onentrate on the properties that are spei�to omponent-based systems and emerged from the requirements on the TradingSystem and disussions with other teams. A part of the ontribution of this paper isthe identi�ation of suh a set of properties de�ning orretness issues in omponent-based systems, their formalization in terms of temporal logis, and demonstrationof the feasibility and eÆieny of their automati veri�ation in parallel settings.3 Only if we know, for instane, that a sale proeeds orretly inluding the payment, it is meaningful tohek that all purhased goods were orretly taken o� in the inventory.



Moreover, in the CoCoME Modelling Contest, a number of requirements werespei�ed in terms of use-ase senarios. Use-ase senarios de�ne a behaviour ofthe system in response to a given usage pro�le. Veri�ation of use-ase senarios isstudied after the other properties in this setion, and is followed by disussion onthe importane of formal veri�ation, to hek the validity of the model during themodelling proess. The setion onludes with experimental results studying thee�et of parallelization on the veri�ation.5.1 Basi propertiesAs the basi properties, we present two properties demonstrating the apability ofthe CashDeskChannel omponent in the Trading System to broadast events to theomponents that subsribed for them.Property 1 (Unwanted dupliity). When the CashDeskChannel (200) re-eives a request to broadast the SaleSuessEvent via (100; publishSaleSuess-Event; 200), the event is going to be delivered to all subsribers (200; onEventSale-Suess;X) at most one. In the property, as well as in the following properties,ation names are shortened to the sequene of �rst letters of their sub-words, e.g.publishSaleSuessEvent beomes pSSE.(a) G �P(100; pSSE; 200) ) : [: P(100; pSSE; 200) U (P(200; oESS; 142)^X [: P(100; pSSE; 200) U P(200; oESS; 142)℄)℄�(b) G �P(100; pSSE; 200) ) : [: P(100; pSSE; 200) U (P(200; oESS; 162)^X [: P(100; pSSE; 200) U P(200; oESS; 162)℄)℄�property states transitions memory time resultprop1a 749 340 3 181 473 533 MB 67 s holdsprop1b 749 340 3 181 473 535 MB 67 s holdsThe data in the table refer to the model omposed with the appropriate prop-erty automaton. The olumn memory represents the total memory needed by allworkstations in veri�ation of the property. Note that the number of states of themodel omposed with the property is, in this ase, equal to the number of states ofthe original model. This interesting fat is explained in Setion 6.Property 2 (Guaranteed delivery). Whenever the CashDeskChannel (200)reeives a request to broadast the SaleSuessEvent, the event is going to be deliv-ered to all subsribers (200; onEventSaleSuess;X) at least one, or an exeptionours (200; exeptionPublishSaleSuessEvent; 100).G [P(100; pSSE; 200) ) ([BOTH ^ : EXC ℄ _ [NONE ^ EXC ℄)℄whereBOTH = [: P(100; pSSE;200) U P(200; oESS;142)℄ ^ [: P(100; pSSE;200) U P(200; oESS; 162)℄



NONE = (: [: P(100; pSSE;200) U P(200; oESS;142)℄) ^ (: [: P(100; pSSE;200) U P(200; oESS; 162)℄)EXC = : P(100; pSSE;200) U (200; ePSSE;100)property states transitions memory time resultprop2 749 340 3 181 473 533 MB 69 s holds5.2 Loal deadloks of omponentsIn omponent-based systems, many omponents oexist in parallel. Hene deadlokof some of them annot be deteted as halting of the whole system. We understanda loal deadlok of a omponent as a state from whih the omponent annot movefurther. This situation requires the enabledness E operator, otherwise we ouldonly express that it does not move further. The following two properties desribea loal deadlok of a omponent on a partiular servie all, and the third propertyspei�es a loal deadlok with respet to any ation.Property 3 (Loal deadlok on one ation). It annot happen that the Store-Appliation (610) is ready to all getTransationContext() but never an do sobeause its ounterpart Persistene (511) is never ready to aept the all.[F P(610; gTC;�)℄ _ G [E(610; gTC;�) ) F E(610; gTC; 511)℄property states transitions memory time resultprop3 778 100 3 298 237 539 MB 69 s holdsThis property helped us to evaluate one of our modelling deisions. As the ser-vie getTransationContext() ativates a new instane of the omponent Trans-ationContextImpl, where only a limited number of instanes an be ative at anytime, this property allows us to hek that the bound on the number of instanesthat are ready to be ativated is suÆient.Note that this property requires the presene of the (610; getT ransation-Context;�) label, whih symbolizes an attempt of the omponent 610 to ask fora new transation ontext, in the model. However, this is an output label that,aording to the spei�ation, must synhronize with a omplementary input la-bel before the model is omplete, and be restrited from the model. Therefore,for the purpose of veri�ation of this property, we modify the model in a waythat this label is not restrited by the omposition. However, to keep the ver-i�ation faithful, the property is de�ned in a way that the runs with the label(610; getT ransationContext;�) on them are not traversed during veri�ation (asthey have only informative harater). Hene the inrease in the size of the model(via not omitting the label) inuenes neither the state-spae traversed during ver-i�ation, nor the �delity of the model.Property 4 (Loal deadlok on one ation). It annot happen that the



CashDeskAppliation (100) is ready to send a noti�ation to the CashDeskChannel(200) saying that it reeived the SaleStartedEvent, but the CashDeskChannel isnever ready to aept the noti�ation.[F P(100; oESS00 ;�)℄ _ G [E(100; oESS00;�)) F E(100; oESS00; 200)℄property states transitions memory time resultprop4 749 343 3 181 479 532 MB 67 s holdsThe CashDeskChannel (200) in the system is not allowed to aept noti�ationsbefore it delivers events to all subsribers. If some of the subsribers would beonstantly refusing to aept the event, it ould blok other omponents that alreadyaepted the event and want to notify the hannel. As the property is valid, thisannot happen in the system (on the SaleStartedEvent).Property 5 (Loal deadlok on any ation). It annot happen that the Per-sistene (511) for StoreAppliation beomes deadloked (annot make any ation).G F (ENABLED 511)where ENABLED 511 = E(610; gPC; 511)_E(620; gPC; 511)_ : : :_E(511; eIA; 620),that is a disjuntion of formulas of type E(label) for all labels the Persistene (511)partiipates in.property states transitions memory time resultprop5 1 498 679 7 805 074 689 MB 563 s does not holdThe violation of the property means that the system gets into a state from whihthe omponent is no more able to perform any omputation. This an happen forthree reasons: (1) it gets stuk in its internal omputation, (2) the environmentrefuses to aept its alls, or (3) the environment does not wish the omponent toompute anything for it any more. After a further analysis of the model we learnedthat the last ase is true beause in the usage pro�le, we suppose that only onesale is aomplished. Hene the system is not supposed to exeute forever. Thisproperty demonstrates that one needs to be areful when interpreting the resultfrom the loal deadlok veri�ation. More, it allows the reader to see the memoryand time needed to verify a property that does not hold.5.3 Bloking of omponentsA striter version of loal deadloks, whih is very interesting in omponent-basedsettings, is temporary bloking of a omponent beause of the non-readiness of itsounterpart to aept its alls. This property is onsidered the ore issue of orret-



ness of omponent-based systems in several omponent-based models (SOFA [1℄,Interfae automata [9℄).Property 6. It annot happen that the StoreAppliation (610) wants to begin atransation (610; beginTransation;�) alling the TransationContextImpl (511),whih is not right in the urrent state ready to aept it.[F P(610; bT;�)℄ _ G : [E(610; bT;�) ^ : E(610; bT; 511)℄property states transitions memory time resultprop6 749 340 3 181 473 532 MB 67 s holdsNote that we require the existene of the (610; beginTransation;�) label in themodel. For the purpose of this veri�ation, we modify the model in a way similarto the ase with property 3. Even here, the resulting state spae does not hange,due to the nature of the property.Property 7. It annot happen that the CashDeskAppliation (100) is ready to senda noti�ation to the CashDeskChannel (200) saying that it reeived the SaleStart-edEvent, but the CashDeskChannel is not right in the urrent state ready to aeptthe noti�ation.[F P(100; oESS00 ;�)℄ _ G : [E(100; oESS00;�) ^ : E(100; oESS00; 200)℄property states transitions memory time resultprop7 1 498 671 6 362 935 688 MB 534 s does not holdThe property is a more strit version of the property 4. While the property 4shows that the CashDeskChannel (200) always sends all opies of the SaleStartedE-vent and gets into the state where it is ready to start aepting noti�ations, thisproperty shows that it may take a while before the hannel gets ready. However,this is not an error in the system. It orretly reets the nature of the hannel.5.4 Loop issuesIn our model, many yles/loops an be found. Eah loop an omplete a run thatenters it but never exits. In software systems, however, most of the loops in modelsresult from for or while yles that are traversed only �nitely many times. Theproblem is that the number of traversals of the for/while yles in the system isusually not known in advane|it is omputed at run-time. Hene the yles needto be modelled as loops, whih by nature have no bound on the number of traversals.This an ause non-realisti results of properties veri�ation. The properties shouldbe veri�ed only on the runs that follow seleted loops only �nitely many times.



Property 8. Whenever the ProdutDispather (630) all queryStoreById() on theStore for ProdutDispather (523) via (630; queryStoreById; 523), it gets a response(523; queryStoreById0; 630) at some point in the future.G [P(630; qSBI; 523) ) F P(523; qSBI 0; 630)℄property states transitions memory time resultprop8 750 684 3 186 705 533 MB 200 s does not holdIn the ounterexample, one of the omponents gets into a loop (representinga for yle with a �nite but unknown number of iterations possible) that it neverexits. Hene the ounterexample represents a run that is not real in the system.However, as there is no natural way to remove the run from the model for thereasons above, we modify the property in a way that it misses this run, thus foringveri�ation of the original property only on fair runs.Property 9. Whenever the ProdutDispather (630) alls queryStoreById() onthe Store (523) for ProdutDispather, it gets a response at some point in the future,if the progress of the system is fored by transitions of the Store (523), whih annotget into invalid in�nite loop.G [(P(630; qSBI; 523) ^ G F MOVE 523)) F P(523; qSBI 0; 630)℄where MOVE 523 = P(610; qLSI; 523) _ P(620; qASI; 523) _ : : : _ P(630; qSI; 523),that is a disjuntion of formulas of type P(label) for all labels the Store (523)partiipates in.property states transitions memory time resultprop9 750 684 3 186 705 534 MB 67 s holdsNote that although the state-spae size of the model omposed with property 8is the same as that of property 9, the veri�ation time is larger in the �rst ase.This is due to the nature of the veri�ation algorithm, as mentioned in Setion 3.3.5.5 Use-ase senariosIn the veri�ation of use-ase senarios, we are given an assumption on the usagepro�le of the system, and we want to guarantee that a partiular behaviour ispresent in the response of the system. A use-ase senario is de�ned as a sequene ofinterations (labels). It an be either omplete (all labels are listed) or partial (givenlabels an be interleaved with other labels). In omponent-based systems, wherethe searhed behaviour an be interleaved by behaviour of independent omponentsin the system, the partial senarios are of higher interest. This setion presentsresults of veri�ation of the three most omplex (partial) senarios de�ned in [15℄.



In ontrast to the other veri�ed properties, the use-ase senarios do not statethat for all paths, some property holds (as is usual in the LTL model heking),but they state that there is a path, along whih some property holds (namely theproperty representing the sequene of labels). This an be veri�ed with the samemethods, just by negating the property. Note that the properties representing theuse-ase senarios are so large (their desriptions were over 100 lines long) that wedo not give their formal representation here. However, they are a part of the model,whih is available at [16℄.UC senario 1. CashPayment The senario reets ooperation of system om-ponents to suessfully aomplish purhase of goods �nished with ash payment.UC senario 2. Unsuessful CardPayment The senario desribes systemreations to a sale �nished with ard payment that is refused by the bank.UC senario 3. Suessful CardPayment The senario desribes omponentinteration following a suessful sale �nished with ard payment.property states transitions memory time resultu1 19 362 460 81 959 821 4 204 MB 5 141 s senario foundu2 11 670 924 49 165 124 2 694 MB 3 203 s senario foundu3 11 680 736 49 202 320 2 698 MB 3 098 s senario found
5.6 Validity of the modelDuring modelling, we needed to abstrat from aspets of the system that ould makethe size of the model unmanageable, while staying on�dent about the safety of theabstrations. Two types of abstrations were onsidered: simpli�ation of the inter-nal behaviour of primitive omponents, and simpli�ation of the ommuniationalsheme. Regarding the ommuniation among omponents, we evaluated serializa-tion of seleted parallel servie alls and hanging of some asynhronous alls tosynhronous. The serialization was onsidered both on required (alling servies)and provided (serving alls) side. This signi�antly redued the state spae, whileausing no harm when the servie alls were independent and their ordering hadno e�et on further behaviour of the system. Veri�ation helped us to evaluatea number of serialization and synhronisation deisions via heking the validity ofthe model after the modi�ation.When heking the validity of the model, we worked with a set of propertiesbased mainly on the use-ase senarios and test ases de�ned in the CoCoME Mod-elling Contest. We also tested the model for deadloks, beause we experiened thatviolation of the model validity often results in deadlok situations, either global orloal.



prop 1 2 5 10 15 19prop1a 186 MB 225 MB 339 MB 533 MB 736 MB 890 MBprop1b 187 MB 226 MB 339 MB 535 MB 734 MB 896 MBprop2 187 MB 225 MB 340 MB 533 MB 729 MB 888 MBprop3 192 MB 231 MB 345 MB 539 MB 736 MB 898 MBprop4 187 MB 225 MB 341 MB 532 MB 730 MB 890 MBprop5 341 MB 379 MB 494 MB 689 MB 889 MB 1 052 MBprop6 187 MB 225 MB 339 MB 532 MB 730 MB 893 MBprop7 341 MB 379 MB 495 MB 688 MB 885 MB 1 050 MBprop8 187 MB 226 MB 341 MB 533 MB 730 MB 889 MBprop9 186 MB 225 MB 339 MB 534 MB 729 MB 889 MBu1 | 3 844 MB 3 989 MB 4 204 MB 4 411 MB 4 582 MBu2 2 303 MB 2 356 MB 2 491 MB 2 694 MB 2 895 MB 3 057 MBu3 2 305 MB 2 358 MB 2 493 MB 2 698 MB 2 900 MB 3 059 MBTable 1Memory onsumption depending on number of omputers.5.7 E�et of parallelizationThis setion presents two tables summarizing the time and spae onsumption of theveri�ation of presented properties, depending on the number of omputers used inthe omputation. This was done in order to analyse the e�et of the parallelizationof the model heking algorithm and to hoose the best number of workstations fordetailed experiments. Table 1 shows the total memory used by all workstations,while Table 2 presents the time needed for the veri�ation. A dash \|" indiatesthat the omputation did not �nish suessfully (ran out of available memory).6 Experiene and disussionIn this setion, we share our modelling and veri�ation experiene, disussing someof the results and observations we have ahieved.Charateristis of the model. As the number of omponents in the Trading Sys-tem is quite large, and our modelling language expresses omponent onurrenythrough interleaving, the model su�ers from state spae explosion. More, the size ofthe reahable state spae does not grow evenly during the hierarhial ompositionof omponents, but it hanges dramatially. The reason for the irregular hangesof the state spae is that a omposite automaton does not need to be larger thanthe automata it is omposed of. We have observed ases, where the number ofreahable states has been dramatially redued by the omposition. This is due to



prop 1 2 5 10 15 19prop1a 586 s 312 s 130 s 67 s 48 s 41 sprop1b 584 s 309 s 129 s 67 s 47 s 42 sprop2 575 s 311 s 130 s 69 s 48 s 41 sprop3 595 s 324 s 135 s 69 s 49 s 45 sprop4 576 s 312 s 129 s 67 s 49 s 41 sprop5 4 731 s 2 556 s 1 087 s 563 s 375 s 311 sprop6 577 s 311 s 129 s 67 s 48 s 41 sprop7 4 690 s 2 526 s 1 051 s 534 s 366 s 311 sprop8 1 732 s 930 s 387 s 200 s 141 s 114 sprop9 570 s 311 s 129 s 67 s 49 s 39 su1 | 24 581 s 10 035 s 5 141 s 3 624 s 2 896 su2 27 507 s 14 619 s 6 159 s 3 203 s 2 103 s 1 721 su3 27 164 s 14 578 s 6 239 s 3 098 s 2 190 s 1 743 sTable 2Time onsumption depending on number of omputers.the parametrized operator that an delimit possible behaviour in the omposition.This fat an ompliate the estimation of the number of states for a given model.But on the other hand, it an be exploited to produe a smaller model out of a largeone, as was demonstrated in this ase study, where the large Trading System modelhas been restrited by the usage pro�le of the ashier.Deadloks in the model. After deiding on the model for veri�ation, in thevalidation phase, we have heked the model for global and loal deadloks. Wehave learned that the existene of deadlok states often signals a modelling error.A few global deadloks were found. By areful investigation, we found that thesedeadloks orrespond to a behaviour reeting that two omponents deide to re-eive messages from one of the event hannels in an inorret order, thus blokingeah other. As we were not provided with the spei�ation of the event hannels,we an treat this �nding in two ways. Either the deadlok reveals an error in thesystem, or it reets an unrealisti behaviour, i.e. the system guards that the om-ponents reeive messages in the right order. We deided to treat the runs leadingto the deadlok states as unrealisti, and ignore them during veri�ation. This isdone impliitly in our veri�ation method, beause it veri�es in�nite runs only.Loal deadloks and omponent-bloking properties. Interesting observa-tions were made in verifying the loal deadloks and their more strit form, theomponent-bloking properties. We have veri�ed many pairs of suh properties andhave found a strong relation between the two kinds. Mostly, it was either the ase



that both properties were satis�ed, or none of them was. The reasons are similarto those explained after property 5, that is, the environment does not wish theomponents to ompute anything any more. We have, though, found a few ases,when the loal deadlok property holds, but the bloking property does not, and wehave presented one of them. Note that both kinds of properties take advantage ofthe enabledness E operator without whih they ould not have been formulated.Size of the model/property omposition. As may be notied in Setion 5, insome of the presented ases the state-spae size remains (nearly) the same whenthe model is omposed with the property automaton. This interesting fat deservesan explanation. The property automata are generated with the e�ort to make theresulting omposition as small as possible. Then in ase of some properties (suhas safety and request/response properties), for every state of the model in the om-position, there is a unique state in the property automaton. Hene the ompositionwith the property does not inuene the size of the model.Parallelization. We ran experiments to evaluate the e�et of parallelization onthe veri�ation of our model, the results of whih are shown in Setion 5.7. Theexperiments' result an serve as a justi�ation for the number of omputers usedin the main presentation of the veri�ation results, whih is ten. It an be seenthat although smaller number of workstations would suÆe, the veri�ation wouldget substantially slower in the ase of larger property automata (e.g. the use-asesenarios). One of the use ases ould not even be handled with only one worksta-tion. On the other hand, larger number of workstations auses inadequate memoryoverhead in the ase of small property automata, and the time derease is not assubstantial with more than ten workstations. The hoie of ten omputers seemsa reasonable ompromise then.7 Conlusion and future workIn this paper, we give a pratial appliation of the presented CI-LTL veri�a-tion tehnique to a large omponent-based system using a parallel model hekingtool DiVinE. We briey introdue our modelling language as well as the temporallogi CI-LTL, a modi�ation of the ation based LTL. We have veri�ed a multi-tude of properties of the Trading System. Twelve of them that are of partiularinterest within the omponent-oriented software engineering soiety, are presentedhere together with the results of the veri�ation and their disussion. The pre-sented properties inlude two basi properties desribing the broadasting ability ofthe event-hannel omponents, three properties onerning the possibility of a lo-al deadlok, two properties addressing the omponent bloking problem, and twoproperties dealing with the problems aused by yles in the model. The last threeproperties are di�erent from the previous. They are used for heking the orret-ness of the use-ase senarios. Finally, we disuss how the model heking helped usin reation of the model, and we summarize the experiene obtained during veri�a-tion, inluding disussion of some of the results, and the e�et of the parallelization.The study on�rms that the CI automata modelling language suits well both toapture various types of interations among individual omponents in omponent-



based systems, and to formally verify interation properties. This distinguishes ourmodelling approah from others presented in the CoCoME Modelling Contest [15℄and brings a new value to the area of omponent-based software engineering. Asthe very signi�ant feature of omponent-based systems is the onurrent behaviourof individual omponents and onsequently the enormous size of the state spae,distributed and parallel veri�ation tehniques are a need for handling these typeof systems in reasonable time. They allowed us to verify very omplex properties ofthe Trading System when restrited to a usage pro�le. But still, we were not ableto verify the Trading System with no usage pro�le added|this means any usagepossible with any number of users|as our hardware apaity did not suÆe.In future, we aim at extending our veri�ation tehniques with various redutionmethods to allow us to verify even larger systems. Currently, we explore the pos-sibilities of two existing redution tehniques, the partial-order redution and thesymmetry redution. However, their appliation in our framework is not straight-forward, due to the nature of the temporal logi we use. We also try to �nd newredution methods taking advantage of omponent-spei� harateristis of veri�edsystems.Referenes[1℄ Adamek, J. and F. Plasil, Behavior protools apturing errors and updates, in: Proeedings of theETAPS Workshop on Unantiipated Software Evolution (USE'03) (2003), pp. 17{25.[2℄ Allen, R. J., \A Formal Approah to Software Arhiteture," Ph.D. thesis, Carnegie Mellon University,Shool of Computer Siene, USA (1997).[3℄ Barnat, J., L. Brim and I. �Cern�a, Distributed Analysis of Large Systems, in: Pro. of the 4thInternational Symposium on Formal Methods for Components and Objets (FMCO'05), LNCS 2006(2006), pp. 259{279.[4℄ Barnat, J., L. Brim, I. �Cern�a, P. Morave, P. Ro�kai and P. �Simeek, Divine { a tool for distributedveri�ation, in: Proeedings of the Computer Aided Veri�ation onferene (CAV'06) (2006), pp. 278{281.[5℄ Beker, S., H. Koziolek and R. Reussner, Modelbased performane predition with the palladioomponent model, in: Proeedings of the International Workshop on Software and Performane(WOSP'07) (2007), pp. 54{65.[6℄ Brim, L., I. �Cern�a, P. Va�rekov�a and B. Zimmerova, Component-Interation automata as a veri�ation-oriented omponent-based system spei�ation, in: Proeedings of the ESEC/FSE Workshop onSpei�ation and Veri�ation of Component-Based Systems (SAVCBS'05) (2005), pp. 31{38, publishedalso in ACM SIGSOFT Software Engineering Notes, Volume 31, Issue 2 (Marh 2006).[7℄ Bruneton, E., T. Coupaye, M. Lelerq, V. Qu�ema and J.-B. Stefani, The fratal omponent model andits support in java, Software: Pratie and Experiene 36 (2006), pp. 1257{1284.[8℄ �Cern�a, I., P. Va�rekov�a and B. Zimmerova, Component-interation automata modelling language,Tehnial Report FIMU-RS-2006-08, Masaryk University, Faulty of Informatis, Brno, Czeh Republi(2006).[9℄ de Alfaro, L. and T. A. Henzinger, Interfae-based design, in: Proeedings of the 2004 MarktoberdorfSummer Shool (2005), pp. 1 { 25.[10℄ DiVinE projet web page.URL http://anna.fi.muni.z/divine/[11℄ Garlan, D., R. T. Monroe and D. Wile, \Foundations of Component-Based Systems," CambridgeUniversity Press, USA, 2000 ISBN 0-521-77164-1.[12℄ Magee, J., J. Kramer and D. Giannakopoulou, Behaviour analysis of software arhitetures, in:Proeedings of the 1st Working IFIP Conferene on Software Arhiteture (WICSA'99) (1999), pp.35{50.

http://anna.fi.muni.cz/divine/


[13℄ Plasil, F. and S. Visnovsky, Behavior protools for software omponents, IEEE Transations on SoftwareEngineering 28 (2002), pp. 1056{1076.[14℄ Pnueli, A., The temporal logi of programs, in: Proeedings of the 18th IEEE Symposium on theFoundations of Computer Siene (1977), pp. 46{57.[15℄ Raush, A., R. Reussner, R. Mirandola and F. Plasil, editors, \The Common Component ModelingExample: Comparing Software Component Models," To appear in LNCS, 2007.URL http://www.oome.org[16℄ The CoIn Team, The omplete CoIn model of the Trading System (2007).URL http://anna.fi.muni.z/oin/oome/[17℄ Vardi, M. Y., An automata-theoreti approah to linear temporal logi, in: Logis for Conurreny:Struture versus Automata, LNCS 1043 (1996), pp. 238 { 266.[18℄ Zimmerova, B., P. Va�rekov�a, N. Bene�s, I. �Cern�a, L. Brim and J. Sohor, \The CommonComponent Modeling Example: Comparing Software Component Models, hapter Component-Interation Automata Approah (CoIn)," To appear in LNCS, 2007 .

http://www.cocome.org
http://anna.fi.muni.cz/coin/cocome/

	Introduction
	CoCoME Modelling Contest
	Foundations
	Modelling language
	Temporal logic
	Model checking and verification tool

	Model of the Trading System
	Verification of the model
	Basic properties
	Local deadlocks of components
	Blocking of components
	Loop issues
	Use-case scenarios
	Validity of the model
	Effect of parallelization

	Experience and discussion
	Conclusion and future work
	References

