
PDMC 2008

A Case Study in Parallel Veri�
ationof Component-Based SystemsN. Bene�s, I. �Cern�a, J. So
hor, P. Va�rekov�a and B. Zimmerova1 ;2Fa
ulty of Informati
s, Masaryk UniversityBrno, Cze
h Republi
Abstra
tIn large
omponent-based systems, the appli
ability of formal veri�
ation te
hniques to
he
k intera
tion
orre
tness among
omponents is be
oming
hallenging due to the
on
urren
y of a large number of
om-ponents. In our approa
h, we employ parallel LTL-like model
he
king to handle the size of the model.We present the results of the a
tual appli
ation of the te
hnique to the veri�
ation of a
omplex model ofa real system
reated within the CoCoME Modelling Contest [18℄. In this
ase study, we
he
k the validityof the model and the
orre
tness of the system via
he
king various temporal properties. We
on
entrateon the
omponent-spe
i�
 properties, like lo
al deadlo
ks of
omponents, and
orre
tness of given use-
ases
enarios.Keywords: Component-based systems, formal veri�
ation, parallel model
he
king.1 Introdu
tionDuring the last de
ade, software industry has seriously started to take advantage of
omponent-based software development as an alternative to existing software devel-opment te
hniques. Component-based development proposes to assemble softwaresystems from reusable
omponents, possibly in a hierar
hi
al manner. This helpsto signi�
antly redu
e development
osts, but brings the issue of
orre
tness of su
hsystems, espe
ially if
omponents are delivered by di�erent vendors.In this paper, we present a pra
ti
al appli
ation of parallel veri�
ation to a large
omponent-based system designed within the CoCoME Modelling Contest [15℄. Inthe
ontest, a number of teams were asked to
reate a detailed model of a
ommon
omponent-based system to make their modelling approa
hes
omparable. Whilein [18℄, we present our model of the CoCoME system, this paper
omplements thework by verifying the model. In veri�
ation, we
on
entrate on properties of the �nalmodel like
orre
tness of given use-
ase s
enarios, lo
al deadlo
ks of
omponents,1 Email: fxbenes3,
erna,so
hor,xvareko1,zimmerovag�fi.muni.
z2 The work has been supported by the grants No. 1ET400300504 and No. 1ET408050503.This paper is ele
troni
ally published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

and response properties. Besides these we dis
uss how the veri�
ation helped us to
he
k the validity of the model during modelling.As a modelling language for
omponent-based systems we use Component-Intera
tion automata (or CI automata for short) [6,8℄ whi
h allow very pre
ise anddetailed des
ription of
ommuni
ation among system
omponents. System proper-ties are spe
i�ed in an extended version of the a
tion-based linear time logi
 LTL,
alled CI-LTL. For the veri�
ation itself we use the automata-based model
he
k-ing algorithms implemented in the parallel model
he
king tool DiVinE [4,10℄. Weadvo
ate the
hoi
e of a parallel tool by a tremendous size of the model given by
on
urren
y of
omponents in the system.A short des
ription of the CoCoME Modelling Contest is given in Se
tion 2followed by an outline of the CI automata modelling language and the CI-LTL logi
in Se
tion 3. Se
tion 4 introdu
es the model we have
reated within the
ontest, andSe
tion 5 lists required properties and use-
ase s
enarios in
luding their veri�
ation.Finally, Se
tion 6 dis
usses the results and experien
e gained during the veri�
ation.2 CoCoME Modelling ContestIn order to leverage
omponent-based system design to build
orre
t and depend-able
omponent-based systems, resear
hers have developed various formal and semi-formal
omponent models whi
h
on
entrate on di�erent yet related aspe
ts of
om-ponent modelling [13,7,5,12,2,11℄. The main goal of the CoCoME (Common Compo-nent Modelling Example) Modelling Contest [15℄ was to evaluate and
ompare thepra
ti
al appli
ation of existing
omponent modelling approa
hes and te
hniqueson a
ommon modelling example, whi
h was designed to
omprise a large numberof various aspe
ts and modelling issues that
an be identi�ed in di�erent types of
omponent-based systems.The modelling example,
alled Trading System, serves to handle sales in a
hainof supermarkets. Its fun
tionality in
ludes the intera
tion with the
ashier at the
ash desk, like produ
t s
anning, pri
e lookup,
ash/
ard payment, and bill printing,as well as a

ounting the sale at the inventory, or determining whether an express
ash desk is needed in the store. Furthermore, the Trading System deals with order-ing goods from wholesalers, and generating various kinds of reports. The system isan open system, designed to intera
t with external
omponents representing usersof the system (
ashiers and managers) and a bank appli
ation.The Trading System was implemented as a Java appli
ation where
omponents
orrespond to pa
kages in the sour
e
ode. The Java sour
e
ode (125 Java
lassesin total) served as a detailed spe
i�
ation of the system for the modelling teamsto prevent ambiguities in the interpretation of the
orresponding high-level spe
i-�
ation. The
omponent stru
ture of the appli
ation up to depth four is depi
tedin Figure 1. The �gure in
ludes an id number for ea
h primitive
omponent inthe system. If a
omponent is assigned more than one id, it
onsists of several sub-
omponents with these ids. The ids are used as numeri
al names of the
omponentsin automata labels.

Fig. 1. CoCoME Trading System overview3 Foundations3.1 Modelling languageTo model behaviour of
omponent-based systems we use the CI automata lan-guage [6,8℄. The language models ea
h
omponent as a labelled transition systemwith stru
tured labels and a hierar
hy of
omponent names. The transition label ar-ti
ulates whi
h
omponents
ommuni
ate on an a
tion, and the hierar
hy of namesrepresents the ar
hite
tural stru
ture of the
omponent.A CI automaton is a 5-tuple C = (Q;A
t; Æ; I;H) where Q is a �nite set of states,A
t is a �nite set of a
tions, � = ((SH[f�g)�A
t�(SH[f�g))n(f�g�A
t�f�g)is a set of labels, Æ � Q � � � Q is a �nite set of labelled transitions, I � Q isa nonempty set of initial states, and H is a stru
tured tuple representing a hierar
hyof
omponent names where the set of
omponent names is denoted SH .Hierar
hy: (1) Hierar
hy: (2)q/.-,()*+(1 ;sC;�) &&MMMMMMMMMMMM (1 ;sB;�) && q/.-,()*+(2; int; 2)��C1 : // p/.-,()*+(� ;sA; 1) ??~~~~~~~~ r/.-,()*+(� ;sC0; 1)xxqqqqqqqqqqqqq s/.-,()*+(� ;sB0; 1)rr C2 : // p/.-,()*+(�; sB; 2) 88qqqqqqqqqqqq r/.-,()*+(2; sB0;�)oot'&%$!"#(1 ;sA0;�)__???????? C3 : // p/.-,()*+ (�; sC; 3) // q/.-,()*+(3; sC0;�)oo Hierar
hy: (3)Fig. 2. Three examples of CI automataThe labels have semanti
s of input, output, or internal, based on their stru
ture.In the triple, the middle item represents an a
tion name, the �rst item representsa name of the
omponent that outputs the a
tion, and the third item represents

a name of the
omponent that inputs the a
tion. Examples of three CI automataare in Figure 2. Ea
h of them represents a model of behaviour of a basi

omponent.For example, (�; sA; 1) in C1 signi�es that the
omponent with numeri
al name 1inputs an a
tion sA (a request for a servi
e sA()), and (1; sA0;�) in C1 signi�esthat the
omponent 1 outputs an a
tion sA0 (a response for the servi
e sA()).To
ompose
omponents into a higher-level
omponent a
omposition operator isde�ned. Automata
an be
omposed together using a parametrizable
ompositionoperator
F , whi
h
omposes a given �nite set of automata with respe
t to theset of feasible labels F . Given a set of labels F , the operator
omposes the setof CI automata into a produ
t automaton allowing only those transitions fromthe produ
t that have labels from F . In the produ
t, the
omponents
ooperateeither by interleaving of their original transitions, or by simultaneous exe
utionof two
omplementary transitions (with labels (n1; a;�), (�; a; n2)) whi
h resultsinto a new internal transition (with label (n1; a; n2)). An example of a
ompositeautomaton is in Figure 3. A wider range of
omposition operators is de�ned in [6,8℄./. -,() *+(q;p;p) (1 ;sC;3) ((QQQQQQQQQQQQQ (1 ;sB; 2) ///. -,() *+(s;q;p)(2 ;int; 2)��C : ///. -,() *+(p;p;p)(� ;sA; 1) 99tttttttttt /. -,() *+(r;p;q)(3 ;sC0; 1)vvmmmmmmmmmmmmm/. -,() *+(t;p;p)(1 ;sA0;�)eeJJJJJJJJJJ /. -,() *+(s;r;p)(2 ;sB0; 1)oo Hierar
hy: ((1),(2),(3))Fig. 3. A
omposite CI automaton C =
FfC1;C2;C3g where C1; C2;C3 are in Fig. 2, andF = f(�; sA; 1); (1; sA0;�); (1; sB; 2); (2; sB0; 1); (2; int; 2); (1; sC; 3); (3; sC0; 1)g3.2 Temporal logi
For property spe
i�
ation, we use a slightly modi�ed version of the linear temporallogi
 LTL [14℄ whi
h we refer to as CI-LTL. CI-LTL is designed to express propertiesabout o

urring
omponent intera
tion (i.e. labels in automata), but also aboutpossible
omponent intera
tion (i.e. label enabledness).Syntax. For a given set of labels, formulas of CI-LTL are de�ned as(1) P(l) and E(l) are formulas, where l is a label.(2) If � and 	 are formulas, then also � ^	;: �;X � and � U 	 are formulas.(3) Every formula
an be obtained by a �nite number of appli
ations of steps (1)and (2).Other operators
an be de�ned as short
uts: � _	 � : (: � ^ :), �) 	 �: (� ^ :), F � � true U � (Future), G � � : F : � (Globally).Semanti
s. Let C = (Q;A
t; Æ; I;H) be a CI automaton. We de�ne a run of C asan in�nite sequen
e � = q0; l0; q1; l1; q2; : : :, where qi 2 Q, and 8i : (qi; li; qi+1) 2 Æ.We further de�ne:� �(i) = qi (i-th state of �)

� �i = qi; li; qi+1; li+1; qi+2; : : : (i-th sub-run of �)� L(�; i) = li (i-th label of �)CI formulas are interpreted over runs and the satisfa
tion relation j= is de�ned as� j= E(l) () 9q : �(0) l�! q� j= P(l) () L(�; 0) = l� j= � ^	 () � j= � and � j= 	� j= :� () � 6j= �� j= X � () �1 j= �� j= � U 	 () 9j 2 N0 : �j j= 	 and 8k 2 N0 ; k < j : �k j= �Informally, formula E(l) is true in all states of the system where the intera
tionrepresented by the label l
an possibly happen. Formula P(l) is true for a runwhenever the intera
tion represented by the label l is a
tually happening as thevery �rst transition of the run.3.3 Model
he
king and veri�
ation toolFor model
he
king CI-LTL properties, the automata-based algorithm [17℄ is slightlymodi�ed in the way a formula is translated into a B�u
hi automaton. Automaton hasa spe
ial alphabet formed by doubles (set of labels, label). The items
orrespondto the two operators E(l) and P(l). Apart from that, the model
he
king algorithmremains the same as in the
ase of standard LTL (a

epting
y
le dete
tion) andtherefore it has the same
omplexity.The tool DiVinE, whi
h we use for the veri�
ation, provides several LTL model
he
king algorithms. In our
ase study, the algorithm OWCTY is employed. Thisalgorithm always generates the whole rea
hable state spa
e of the model and itstime
omplexity is higher than that of simple rea
hability if it is the
ase thatan a

epting
y
le is found. However, it was
hosen be
ause of its eÆ
ien
y indistributed setting [3℄.The veri�
ations presented in this paper have been performed on a
luster of ten2.60 GHz Intel Pentium 4 Linux workstations with 3800 MB of RAM, inter
onne
tedwith a 100Mbps Ethernet and using the Message Passing Interfa
e (MPI) library.The
hosen number of
omputers is explained and justi�ed in Se
tion 6.4 Model of the Trading SystemWithin the CoCoME Modelling Contest [15℄, we have
reated a detailed model ofthe Trading System in terms of
omponent intera
tion using CI automata [18℄. Themodel in a textual notation is available at [16℄. The model
onsists of 140 primitiveautomata (59 in the CashDeskLine part, and 81 in the Inventory part),
omposedhierar
hi
ally into 34
omposite automata up to 6 levels of depth. The TradingSystem model is
omplemented by several models of
ashiers and managers, whointera
t with the system, and spe
ify various usage pro�les under whi
h properties

of the system are
he
ked. 3 Ea
h usage pro�le/s
enario (all provided within the
ontest)
orresponds to a
orre
t behaviour of a user operating the system.We have experimented with all usage s
enarios. However, for the
larity of thepresentation, we employ only one usage pro�le underlying the properties studied inthe paper. It is the s
enario des
ribing one sale assisted by a
ashier. This s
enariorepresents the most
omplex usage pro�le des
ribed in [15℄, and it is
onne
tedto a large number of
omponent-spe
i�
 properties that
an be
he
ked on thebehaviour of the system that is implied by the s
enario. In the s
enario, the
ashier�rst starts the sale, then s
ans items (in a loop), �nishes the sale and re
eives thepayment. It
an sele
t
ash or
ard payment, where the
ash payment is followedby entering the re
eived amount and returning
hange, and the
ard payment withs
anning the
ard and entering PIN.Besides the users, the system intera
ts with a bank appli
ation to ex
hange in-formation during
ard payments. We suppose that the bank
an perform any
orre
ts
enario, i.e. it is anytime able to re
eive requests and for ea
h request it returnsa response. We simulate this by leaving the
ommuni
ation with the bank open.State spa
e of the model. As mentioned above, the Trading System model is
omposed out of 140 primitive automata hierar
hi
ally assembled into 34
ompositeautomata. Even if the size (number of states) of individual primitive automata ismoderate, the size of the
omplete state spa
e is immense due to the
on
urren
y in
omponent behaviour. An attempt to generate the
omplete state spa
e on a
lusterof twenty
omputers �nished unsu

essfully with 322 millions of states demandingfor 60 GB of memory in total. The
omputation took 13 400 se
onds. Althoughthis might seem slow, it is not surprising be
ause the state spa
e generation in-volves
omputation of the su

essor states. Su
h
omputation is a
omplex task,whi
h needs to take into a

ount the hierar
hi
al
omposition of
omponents andthe feasible labels that
an be propagated up in the hierar
hy and are part of the
omposite automata.Even if the
omplete model is unfeasibly large, for the veri�
ation of the modelunder the given usage s
enario, the model is
omposed with an automaton repre-senting the user. This restri
ts possible behaviours and de
reases the state spa
e.The size of the model with the
ashier mentioned earlier is 749 340 rea
hable statesand 3 181 473 rea
hable transitions.5 Veri�
ation of the modelIn this se
tion, we dis
uss some of the properties that were
he
ked on the model,and present veri�
ation results. We
on
entrate on the properties that are spe
i�
to
omponent-based systems and emerged from the requirements on the TradingSystem and dis
ussions with other teams. A part of the
ontribution of this paper isthe identi�
ation of su
h a set of properties de�ning
orre
tness issues in
omponent-based systems, their formalization in terms of temporal logi
s, and demonstrationof the feasibility and eÆ
ien
y of their automati
 veri�
ation in parallel settings.3 Only if we know, for instan
e, that a sale pro
eeds
orre
tly in
luding the payment, it is meaningful to
he
k that all pur
hased goods were
orre
tly taken o� in the inventory.

Moreover, in the CoCoME Modelling Contest, a number of requirements werespe
i�ed in terms of use-
ase s
enarios. Use-
ase s
enarios de�ne a behaviour ofthe system in response to a given usage pro�le. Veri�
ation of use-
ase s
enarios isstudied after the other properties in this se
tion, and is followed by dis
ussion onthe importan
e of formal veri�
ation, to
he
k the validity of the model during themodelling pro
ess. The se
tion
on
ludes with experimental results studying thee�e
t of parallelization on the veri�
ation.5.1 Basi
 propertiesAs the basi
 properties, we present two properties demonstrating the
apability ofthe CashDeskChannel
omponent in the Trading System to broad
ast events to the
omponents that subs
ribed for them.Property 1 (Unwanted dupli
ity). When the CashDeskChannel (200) re-
eives a request to broad
ast the SaleSu

essEvent via (100; publishSaleSu

ess-Event; 200), the event is going to be delivered to all subs
ribers (200; onEventSale-Su

ess;X) at most on
e. In the property, as well as in the following properties,a
tion names are shortened to the sequen
e of �rst letters of their sub-words, e.g.publishSaleSu

essEvent be
omes pSSE.(a) G �P(100; pSSE; 200)) : [: P(100; pSSE; 200) U (P(200; oESS; 142)^X [: P(100; pSSE; 200) U P(200; oESS; 142)℄)℄�(b) G �P(100; pSSE; 200)) : [: P(100; pSSE; 200) U (P(200; oESS; 162)^X [: P(100; pSSE; 200) U P(200; oESS; 162)℄)℄�property states transitions memory time resultprop1a 749 340 3 181 473 533 MB 67 s holdsprop1b 749 340 3 181 473 535 MB 67 s holdsThe data in the table refer to the model
omposed with the appropriate prop-erty automaton. The
olumn memory represents the total memory needed by allworkstations in veri�
ation of the property. Note that the number of states of themodel
omposed with the property is, in this
ase, equal to the number of states ofthe original model. This interesting fa
t is explained in Se
tion 6.Property 2 (Guaranteed delivery). Whenever the CashDeskChannel (200)re
eives a request to broad
ast the SaleSu

essEvent, the event is going to be deliv-ered to all subs
ribers (200; onEventSaleSu

ess;X) at least on
e, or an ex
eptiono

urs (200; ex
eptionPublishSaleSu

essEvent; 100).G [P(100; pSSE; 200)) ([BOTH ^ : EXC ℄ _ [NONE ^ EXC ℄)℄whereBOTH = [: P(100; pSSE;200) U P(200; oESS;142)℄ ^ [: P(100; pSSE;200) U P(200; oESS; 162)℄

NONE = (: [: P(100; pSSE;200) U P(200; oESS;142)℄) ^ (: [: P(100; pSSE;200) U P(200; oESS; 162)℄)EXC = : P(100; pSSE;200) U (200; ePSSE;100)property states transitions memory time resultprop2 749 340 3 181 473 533 MB 69 s holds5.2 Lo
al deadlo
ks of
omponentsIn
omponent-based systems, many
omponents
oexist in parallel. Hen
e deadlo
kof some of them
annot be dete
ted as halting of the whole system. We understanda lo
al deadlo
k of a
omponent as a state from whi
h the
omponent
annot movefurther. This situation requires the enabledness E operator, otherwise we
ouldonly express that it does not move further. The following two properties des
ribea lo
al deadlo
k of a
omponent on a parti
ular servi
e
all, and the third propertyspe
i�es a lo
al deadlo
k with respe
t to any a
tion.Property 3 (Lo
al deadlo
k on one a
tion). It
annot happen that the Store-Appli
ation (610) is ready to
all getTransa
tionContext() but never
an do sobe
ause its
ounterpart Persisten
e (511) is never ready to a

ept the
all.[F P(610; gTC;�)℄ _ G [E(610; gTC;�)) F E(610; gTC; 511)℄property states transitions memory time resultprop3 778 100 3 298 237 539 MB 69 s holdsThis property helped us to evaluate one of our modelling de
isions. As the ser-vi
e getTransa
tionContext() a
tivates a new instan
e of the
omponent Trans-a
tionContextImpl, where only a limited number of instan
es
an be a
tive at anytime, this property allows us to
he
k that the bound on the number of instan
esthat are ready to be a
tivated is suÆ
ient.Note that this property requires the presen
e of the (610; getT ransa
tion-Context;�) label, whi
h symbolizes an attempt of the
omponent 610 to ask fora new transa
tion
ontext, in the model. However, this is an output label that,a

ording to the spe
i�
ation, must syn
hronize with a
omplementary input la-bel before the model is
omplete, and be restri
ted from the model. Therefore,for the purpose of veri�
ation of this property, we modify the model in a waythat this label is not restri
ted by the
omposition. However, to keep the ver-i�
ation faithful, the property is de�ned in a way that the runs with the label(610; getT ransa
tionContext;�) on them are not traversed during veri�
ation (asthey have only informative
hara
ter). Hen
e the in
rease in the size of the model(via not omitting the label) in
uen
es neither the state-spa
e traversed during ver-i�
ation, nor the �delity of the model.Property 4 (Lo
al deadlo
k on one a
tion). It
annot happen that the

CashDeskAppli
ation (100) is ready to send a noti�
ation to the CashDeskChannel(200) saying that it re
eived the SaleStartedEvent, but the CashDeskChannel isnever ready to a

ept the noti�
ation.[F P(100; oESS00 ;�)℄ _ G [E(100; oESS00;�)) F E(100; oESS00; 200)℄property states transitions memory time resultprop4 749 343 3 181 479 532 MB 67 s holdsThe CashDeskChannel (200) in the system is not allowed to a

ept noti�
ationsbefore it delivers events to all subs
ribers. If some of the subs
ribers would be
onstantly refusing to a

ept the event, it
ould blo
k other
omponents that alreadya

epted the event and want to notify the
hannel. As the property is valid, this
annot happen in the system (on the SaleStartedEvent).Property 5 (Lo
al deadlo
k on any a
tion). It
annot happen that the Per-sisten
e (511) for StoreAppli
ation be
omes deadlo
ked (
annot make any a
tion).G F (ENABLED 511)where ENABLED 511 = E(610; gPC; 511)_E(620; gPC; 511)_ : : :_E(511; eIA; 620),that is a disjun
tion of formulas of type E(label) for all labels the Persisten
e (511)parti
ipates in.property states transitions memory time resultprop5 1 498 679 7 805 074 689 MB 563 s does not holdThe violation of the property means that the system gets into a state from whi
hthe
omponent is no more able to perform any
omputation. This
an happen forthree reasons: (1) it gets stu
k in its internal
omputation, (2) the environmentrefuses to a

ept its
alls, or (3) the environment does not wish the
omponent to
ompute anything for it any more. After a further analysis of the model we learnedthat the last
ase is true be
ause in the usage pro�le, we suppose that only onesale is a

omplished. Hen
e the system is not supposed to exe
ute forever. Thisproperty demonstrates that one needs to be
areful when interpreting the resultfrom the lo
al deadlo
k veri�
ation. More, it allows the reader to see the memoryand time needed to verify a property that does not hold.5.3 Blo
king of
omponentsA stri
ter version of lo
al deadlo
ks, whi
h is very interesting in
omponent-basedsettings, is temporary blo
king of a
omponent be
ause of the non-readiness of its
ounterpart to a

ept its
alls. This property is
onsidered the
ore issue of
orre
t-

ness of
omponent-based systems in several
omponent-based models (SOFA [1℄,Interfa
e automata [9℄).Property 6. It
annot happen that the StoreAppli
ation (610) wants to begin atransa
tion (610; beginTransa
tion;�)
alling the Transa
tionContextImpl (511),whi
h is not right in the
urrent state ready to a

ept it.[F P(610; bT;�)℄ _ G : [E(610; bT;�) ^ : E(610; bT; 511)℄property states transitions memory time resultprop6 749 340 3 181 473 532 MB 67 s holdsNote that we require the existen
e of the (610; beginTransa
tion;�) label in themodel. For the purpose of this veri�
ation, we modify the model in a way similarto the
ase with property 3. Even here, the resulting state spa
e does not
hange,due to the nature of the property.Property 7. It
annot happen that the CashDeskAppli
ation (100) is ready to senda noti�
ation to the CashDeskChannel (200) saying that it re
eived the SaleStart-edEvent, but the CashDeskChannel is not right in the
urrent state ready to a

eptthe noti�
ation.[F P(100; oESS00 ;�)℄ _ G : [E(100; oESS00;�) ^ : E(100; oESS00; 200)℄property states transitions memory time resultprop7 1 498 671 6 362 935 688 MB 534 s does not holdThe property is a more stri
t version of the property 4. While the property 4shows that the CashDeskChannel (200) always sends all
opies of the SaleStartedE-vent and gets into the state where it is ready to start a

epting noti�
ations, thisproperty shows that it may take a while before the
hannel gets ready. However,this is not an error in the system. It
orre
tly re
e
ts the nature of the
hannel.5.4 Loop issuesIn our model, many
y
les/loops
an be found. Ea
h loop
an
omplete a run thatenters it but never exits. In software systems, however, most of the loops in modelsresult from for or while
y
les that are traversed only �nitely many times. Theproblem is that the number of traversals of the for/while
y
les in the system isusually not known in advan
e|it is
omputed at run-time. Hen
e the
y
les needto be modelled as loops, whi
h by nature have no bound on the number of traversals.This
an
ause non-realisti
 results of properties veri�
ation. The properties shouldbe veri�ed only on the runs that follow sele
ted loops only �nitely many times.

Property 8. Whenever the Produ
tDispat
her (630)
all queryStoreById() on theStore for Produ
tDispat
her (523) via (630; queryStoreById; 523), it gets a response(523; queryStoreById0; 630) at some point in the future.G [P(630; qSBI; 523)) F P(523; qSBI 0; 630)℄property states transitions memory time resultprop8 750 684 3 186 705 533 MB 200 s does not holdIn the
ounterexample, one of the
omponents gets into a loop (representinga for
y
le with a �nite but unknown number of iterations possible) that it neverexits. Hen
e the
ounterexample represents a run that is not real in the system.However, as there is no natural way to remove the run from the model for thereasons above, we modify the property in a way that it misses this run, thus for
ingveri�
ation of the original property only on fair runs.Property 9. Whenever the Produ
tDispat
her (630)
alls queryStoreById() onthe Store (523) for Produ
tDispat
her, it gets a response at some point in the future,if the progress of the system is for
ed by transitions of the Store (523), whi
h
annotget into invalid in�nite loop.G [(P(630; qSBI; 523) ^ G F MOVE 523)) F P(523; qSBI 0; 630)℄where MOVE 523 = P(610; qLSI; 523) _ P(620; qASI; 523) _ : : : _ P(630; qSI; 523),that is a disjun
tion of formulas of type P(label) for all labels the Store (523)parti
ipates in.property states transitions memory time resultprop9 750 684 3 186 705 534 MB 67 s holdsNote that although the state-spa
e size of the model
omposed with property 8is the same as that of property 9, the veri�
ation time is larger in the �rst
ase.This is due to the nature of the veri�
ation algorithm, as mentioned in Se
tion 3.3.5.5 Use-
ase s
enariosIn the veri�
ation of use-
ase s
enarios, we are given an assumption on the usagepro�le of the system, and we want to guarantee that a parti
ular behaviour ispresent in the response of the system. A use-
ase s
enario is de�ned as a sequen
e ofintera
tions (labels). It
an be either
omplete (all labels are listed) or partial (givenlabels
an be interleaved with other labels). In
omponent-based systems, wherethe sear
hed behaviour
an be interleaved by behaviour of independent
omponentsin the system, the partial s
enarios are of higher interest. This se
tion presentsresults of veri�
ation of the three most
omplex (partial) s
enarios de�ned in [15℄.

In
ontrast to the other veri�ed properties, the use-
ase s
enarios do not statethat for all paths, some property holds (as is usual in the LTL model
he
king),but they state that there is a path, along whi
h some property holds (namely theproperty representing the sequen
e of labels). This
an be veri�ed with the samemethods, just by negating the property. Note that the properties representing theuse-
ase s
enarios are so large (their des
riptions were over 100 lines long) that wedo not give their formal representation here. However, they are a part of the model,whi
h is available at [16℄.UC s
enario 1. CashPayment The s
enario re
e
ts
ooperation of system
om-ponents to su

essfully a

omplish pur
hase of goods �nished with
ash payment.UC s
enario 2. Unsu

essful CardPayment The s
enario des
ribes systemrea
tions to a sale �nished with
ard payment that is refused by the bank.UC s
enario 3. Su

essful CardPayment The s
enario des
ribes
omponentintera
tion following a su

essful sale �nished with
ard payment.property states transitions memory time resultu
1 19 362 460 81 959 821 4 204 MB 5 141 s s
enario foundu
2 11 670 924 49 165 124 2 694 MB 3 203 s s
enario foundu
3 11 680 736 49 202 320 2 698 MB 3 098 s s
enario found
5.6 Validity of the modelDuring modelling, we needed to abstra
t from aspe
ts of the system that
ould makethe size of the model unmanageable, while staying
on�dent about the safety of theabstra
tions. Two types of abstra
tions were
onsidered: simpli�
ation of the inter-nal behaviour of primitive
omponents, and simpli�
ation of the
ommuni
ationals
heme. Regarding the
ommuni
ation among
omponents, we evaluated serializa-tion of sele
ted parallel servi
e
alls and
hanging of some asyn
hronous
alls tosyn
hronous. The serialization was
onsidered both on required (
alling servi
es)and provided (serving
alls) side. This signi�
antly redu
ed the state spa
e, while
ausing no harm when the servi
e
alls were independent and their ordering hadno e�e
t on further behaviour of the system. Veri�
ation helped us to evaluatea number of serialization and syn
hronisation de
isions via
he
king the validity ofthe model after the modi�
ation.When
he
king the validity of the model, we worked with a set of propertiesbased mainly on the use-
ase s
enarios and test
ases de�ned in the CoCoME Mod-elling Contest. We also tested the model for deadlo
ks, be
ause we experien
ed thatviolation of the model validity often results in deadlo
k situations, either global orlo
al.

prop 1 2 5 10 15 19prop1a 186 MB 225 MB 339 MB 533 MB 736 MB 890 MBprop1b 187 MB 226 MB 339 MB 535 MB 734 MB 896 MBprop2 187 MB 225 MB 340 MB 533 MB 729 MB 888 MBprop3 192 MB 231 MB 345 MB 539 MB 736 MB 898 MBprop4 187 MB 225 MB 341 MB 532 MB 730 MB 890 MBprop5 341 MB 379 MB 494 MB 689 MB 889 MB 1 052 MBprop6 187 MB 225 MB 339 MB 532 MB 730 MB 893 MBprop7 341 MB 379 MB 495 MB 688 MB 885 MB 1 050 MBprop8 187 MB 226 MB 341 MB 533 MB 730 MB 889 MBprop9 186 MB 225 MB 339 MB 534 MB 729 MB 889 MBu
1 | 3 844 MB 3 989 MB 4 204 MB 4 411 MB 4 582 MBu
2 2 303 MB 2 356 MB 2 491 MB 2 694 MB 2 895 MB 3 057 MBu
3 2 305 MB 2 358 MB 2 493 MB 2 698 MB 2 900 MB 3 059 MBTable 1Memory
onsumption depending on number of
omputers.5.7 E�e
t of parallelizationThis se
tion presents two tables summarizing the time and spa
e
onsumption of theveri�
ation of presented properties, depending on the number of
omputers used inthe
omputation. This was done in order to analyse the e�e
t of the parallelizationof the model
he
king algorithm and to
hoose the best number of workstations fordetailed experiments. Table 1 shows the total memory used by all workstations,while Table 2 presents the time needed for the veri�
ation. A dash \|" indi
atesthat the
omputation did not �nish su

essfully (ran out of available memory).6 Experien
e and dis
ussionIn this se
tion, we share our modelling and veri�
ation experien
e, dis
ussing someof the results and observations we have a
hieved.Chara
teristi
s of the model. As the number of
omponents in the Trading Sys-tem is quite large, and our modelling language expresses
omponent
on
urren
ythrough interleaving, the model su�ers from state spa
e explosion. More, the size ofthe rea
hable state spa
e does not grow evenly during the hierar
hi
al
ompositionof
omponents, but it
hanges dramati
ally. The reason for the irregular
hangesof the state spa
e is that a
omposite automaton does not need to be larger thanthe automata it is
omposed of. We have observed
ases, where the number ofrea
hable states has been dramati
ally redu
ed by the
omposition. This is due to

prop 1 2 5 10 15 19prop1a 586 s 312 s 130 s 67 s 48 s 41 sprop1b 584 s 309 s 129 s 67 s 47 s 42 sprop2 575 s 311 s 130 s 69 s 48 s 41 sprop3 595 s 324 s 135 s 69 s 49 s 45 sprop4 576 s 312 s 129 s 67 s 49 s 41 sprop5 4 731 s 2 556 s 1 087 s 563 s 375 s 311 sprop6 577 s 311 s 129 s 67 s 48 s 41 sprop7 4 690 s 2 526 s 1 051 s 534 s 366 s 311 sprop8 1 732 s 930 s 387 s 200 s 141 s 114 sprop9 570 s 311 s 129 s 67 s 49 s 39 su
1 | 24 581 s 10 035 s 5 141 s 3 624 s 2 896 su
2 27 507 s 14 619 s 6 159 s 3 203 s 2 103 s 1 721 su
3 27 164 s 14 578 s 6 239 s 3 098 s 2 190 s 1 743 sTable 2Time
onsumption depending on number of
omputers.the parametrized operator that
an delimit possible behaviour in the
omposition.This fa
t
an
ompli
ate the estimation of the number of states for a given model.But on the other hand, it
an be exploited to produ
e a smaller model out of a largeone, as was demonstrated in this
ase study, where the large Trading System modelhas been restri
ted by the usage pro�le of the
ashier.Deadlo
ks in the model. After de
iding on the model for veri�
ation, in thevalidation phase, we have
he
ked the model for global and lo
al deadlo
ks. Wehave learned that the existen
e of deadlo
k states often signals a modelling error.A few global deadlo
ks were found. By
areful investigation, we found that thesedeadlo
ks
orrespond to a behaviour re
e
ting that two
omponents de
ide to re-
eive messages from one of the event
hannels in an in
orre
t order, thus blo
kingea
h other. As we were not provided with the spe
i�
ation of the event
hannels,we
an treat this �nding in two ways. Either the deadlo
k reveals an error in thesystem, or it re
e
ts an unrealisti
 behaviour, i.e. the system guards that the
om-ponents re
eive messages in the right order. We de
ided to treat the runs leadingto the deadlo
k states as unrealisti
, and ignore them during veri�
ation. This isdone impli
itly in our veri�
ation method, be
ause it veri�es in�nite runs only.Lo
al deadlo
ks and
omponent-blo
king properties. Interesting observa-tions were made in verifying the lo
al deadlo
ks and their more stri
t form, the
omponent-blo
king properties. We have veri�ed many pairs of su
h properties andhave found a strong relation between the two kinds. Mostly, it was either the
ase

that both properties were satis�ed, or none of them was. The reasons are similarto those explained after property 5, that is, the environment does not wish the
omponents to
ompute anything any more. We have, though, found a few
ases,when the lo
al deadlo
k property holds, but the blo
king property does not, and wehave presented one of them. Note that both kinds of properties take advantage ofthe enabledness E operator without whi
h they
ould not have been formulated.Size of the model/property
omposition. As may be noti
ed in Se
tion 5, insome of the presented
ases the state-spa
e size remains (nearly) the same whenthe model is
omposed with the property automaton. This interesting fa
t deservesan explanation. The property automata are generated with the e�ort to make theresulting
omposition as small as possible. Then in
ase of some properties (su
has safety and request/response properties), for every state of the model in the
om-position, there is a unique state in the property automaton. Hen
e the
ompositionwith the property does not in
uen
e the size of the model.Parallelization. We ran experiments to evaluate the e�e
t of parallelization onthe veri�
ation of our model, the results of whi
h are shown in Se
tion 5.7. Theexperiments' result
an serve as a justi�
ation for the number of
omputers usedin the main presentation of the veri�
ation results, whi
h is ten. It
an be seenthat although smaller number of workstations would suÆ
e, the veri�
ation wouldget substantially slower in the
ase of larger property automata (e.g. the use-
ases
enarios). One of the use
ases
ould not even be handled with only one worksta-tion. On the other hand, larger number of workstations
auses inadequate memoryoverhead in the
ase of small property automata, and the time de
rease is not assubstantial with more than ten workstations. The
hoi
e of ten
omputers seemsa reasonable
ompromise then.7 Con
lusion and future workIn this paper, we give a pra
ti
al appli
ation of the presented CI-LTL veri�
a-tion te
hnique to a large
omponent-based system using a parallel model
he
kingtool DiVinE. We brie
y introdu
e our modelling language as well as the temporallogi
 CI-LTL, a modi�
ation of the a
tion based LTL. We have veri�ed a multi-tude of properties of the Trading System. Twelve of them that are of parti
ularinterest within the
omponent-oriented software engineering so
iety, are presentedhere together with the results of the veri�
ation and their dis
ussion. The pre-sented properties in
lude two basi
 properties des
ribing the broad
asting ability ofthe event-
hannel
omponents, three properties
on
erning the possibility of a lo-
al deadlo
k, two properties addressing the
omponent blo
king problem, and twoproperties dealing with the problems
aused by
y
les in the model. The last threeproperties are di�erent from the previous. They are used for
he
king the
orre
t-ness of the use-
ase s
enarios. Finally, we dis
uss how the model
he
king helped usin
reation of the model, and we summarize the experien
e obtained during veri�
a-tion, in
luding dis
ussion of some of the results, and the e�e
t of the parallelization.The study
on�rms that the CI automata modelling language suits well both to
apture various types of intera
tions among individual
omponents in
omponent-

based systems, and to formally verify intera
tion properties. This distinguishes ourmodelling approa
h from others presented in the CoCoME Modelling Contest [15℄and brings a new value to the area of
omponent-based software engineering. Asthe very signi�
ant feature of
omponent-based systems is the
on
urrent behaviourof individual
omponents and
onsequently the enormous size of the state spa
e,distributed and parallel veri�
ation te
hniques are a need for handling these typeof systems in reasonable time. They allowed us to verify very
omplex properties ofthe Trading System when restri
ted to a usage pro�le. But still, we were not ableto verify the Trading System with no usage pro�le added|this means any usagepossible with any number of users|as our hardware
apa
ity did not suÆ
e.In future, we aim at extending our veri�
ation te
hniques with various redu
tionmethods to allow us to verify even larger systems. Currently, we explore the pos-sibilities of two existing redu
tion te
hniques, the partial-order redu
tion and thesymmetry redu
tion. However, their appli
ation in our framework is not straight-forward, due to the nature of the temporal logi
 we use. We also try to �nd newredu
tion methods taking advantage of
omponent-spe
i�

hara
teristi
s of veri�edsystems.Referen
es[1℄ Adamek, J. and F. Plasil, Behavior proto
ols
apturing errors and updates, in: Pro
eedings of theETAPS Workshop on Unanti
ipated Software Evolution (USE'03) (2003), pp. 17{25.[2℄ Allen, R. J., \A Formal Approa
h to Software Ar
hite
ture," Ph.D. thesis, Carnegie Mellon University,S
hool of Computer S
ien
e, USA (1997).[3℄ Barnat, J., L. Brim and I. �Cern�a, Distributed Analysis of Large Systems, in: Pro
. of the 4thInternational Symposium on Formal Methods for Components and Obje
ts (FMCO'05), LNCS 2006(2006), pp. 259{279.[4℄ Barnat, J., L. Brim, I. �Cern�a, P. Morave
, P. Ro�
kai and P. �Sime
ek, Divine { a tool for distributedveri�
ation, in: Pro
eedings of the Computer Aided Veri�
ation
onferen
e (CAV'06) (2006), pp. 278{281.[5℄ Be
ker, S., H. Koziolek and R. Reussner, Modelbased performan
e predi
tion with the palladio
omponent model, in: Pro
eedings of the International Workshop on Software and Performan
e(WOSP'07) (2007), pp. 54{65.[6℄ Brim, L., I. �Cern�a, P. Va�rekov�a and B. Zimmerova, Component-Intera
tion automata as a veri�
ation-oriented
omponent-based system spe
i�
ation, in: Pro
eedings of the ESEC/FSE Workshop onSpe
i�
ation and Veri�
ation of Component-Based Systems (SAVCBS'05) (2005), pp. 31{38, publishedalso in ACM SIGSOFT Software Engineering Notes, Volume 31, Issue 2 (Mar
h 2006).[7℄ Bruneton, E., T. Coupaye, M. Le
ler
q, V. Qu�ema and J.-B. Stefani, The fra
tal
omponent model andits support in java, Software: Pra
ti
e and Experien
e 36 (2006), pp. 1257{1284.[8℄ �Cern�a, I., P. Va�rekov�a and B. Zimmerova, Component-intera
tion automata modelling language,Te
hni
al Report FIMU-RS-2006-08, Masaryk University, Fa
ulty of Informati
s, Brno, Cze
h Republi
(2006).[9℄ de Alfaro, L. and T. A. Henzinger, Interfa
e-based design, in: Pro
eedings of the 2004 MarktoberdorfSummer S
hool (2005), pp. 1 { 25.[10℄ DiVinE proje
t web page.URL http://anna.fi.muni.
z/divine/[11℄ Garlan, D., R. T. Monroe and D. Wile, \Foundations of Component-Based Systems," CambridgeUniversity Press, USA, 2000 ISBN 0-521-77164-1.[12℄ Magee, J., J. Kramer and D. Giannakopoulou, Behaviour analysis of software ar
hite
tures, in:Pro
eedings of the 1st Working IFIP Conferen
e on Software Ar
hite
ture (WICSA'99) (1999), pp.35{50.

http://anna.fi.muni.cz/divine/

[13℄ Plasil, F. and S. Visnovsky, Behavior proto
ols for software
omponents, IEEE Transa
tions on SoftwareEngineering 28 (2002), pp. 1056{1076.[14℄ Pnueli, A., The temporal logi
 of programs, in: Pro
eedings of the 18th IEEE Symposium on theFoundations of Computer S
ien
e (1977), pp. 46{57.[15℄ Raus
h, A., R. Reussner, R. Mirandola and F. Plasil, editors, \The Common Component ModelingExample: Comparing Software Component Models," To appear in LNCS, 2007.URL http://www.
o
ome.org[16℄ The CoIn Team, The
omplete CoIn model of the Trading System (2007).URL http://anna.fi.muni.
z/
oin/
o
ome/[17℄ Vardi, M. Y., An automata-theoreti
 approa
h to linear temporal logi
, in: Logi
s for Con
urren
y:Stru
ture versus Automata, LNCS 1043 (1996), pp. 238 { 266.[18℄ Zimmerova, B., P. Va�rekov�a, N. Bene�s, I. �Cern�a, L. Brim and J. So
hor, \The CommonComponent Modeling Example: Comparing Software Component Models,
hapter Component-Intera
tion Automata Approa
h (CoIn)," To appear in LNCS, 2007 .

http://www.cocome.org
http://anna.fi.muni.cz/coin/cocome/

	Introduction
	CoCoME Modelling Contest
	Foundations
	Modelling language
	Temporal logic
	Model checking and verification tool

	Model of the Trading System
	Verification of the model
	Basic properties
	Local deadlocks of components
	Blocking of components
	Loop issues
	Use-case scenarios
	Validity of the model
	Effect of parallelization

	Experience and discussion
	Conclusion and future work
	References

