
DCCL: Verification of Component Systems with Ensembles∗

Jiří Barnat Nikola Beneš Ivana Černá Zuzana Petruchová
Faculty of Informatics, Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic
{barnat,xbenes3,cerna,petruchova}@fi.muni.cz

ABSTRACT
Current trends in computing include building distributed
systems out of autonomous adaptive components. Commu-
nication between the components may be local and com-
munication channels may change over time. This emer-
gent behaviour of communication may be seen as the cre-
ation and dissolution of component ensembles. Clearly, cor-
rectness of such systems is an important issue. We pro-
vide a verification-oriented modelling language for describ-
ing these component-ensemble systems as well as a verifi-
cation tool. The processes of the components as well as
the ensemble communication are described in a C++-like
fashion. The tool is an extension of the parallel and dis-
tributed verification environment DiVinE. We also describe
several demonstrative examples and use them to experimen-
tally evaluate our approach.

Categories and Subject Descriptors
D.2.1 [Requirements/Specification]: Languages; D.2.4
[Software/Program Verification]: Model Checking

General Terms
Languages, Verification, Design

Keywords
component-based development, ensemble, adaptation, spec-
ification language, formal verification

1. INTRODUCTION
As software systems get larger, their development increas-

ingly shifts from monolithic to component-based [6, 13]. The
component-based systems are often built in a distributed
fashion, where components are autonomous and even adap-
tive, if it is desirable for the system to work in changing

∗This work has been supported by the Czech Science Foun-
dation, grant no. GAP202/11/0312.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’13, June 17–21, 2013, Vancouver, BC, Canada.
Copyright 2013 ACM 978-1-4503-2122-8/13/06 ...$15.00.

environment. In such environments, communication chan-
nels may also change over time. This leads to the emergence
of component ensembles, implicit groups of interacting com-
ponents.

Let us consider, for example, autonomous cars moving
in an environment with traffic rules. Each of these cars is
supposed to repeatedly visit some designated places and it
can communicate with other cars nearby. The design of the
autonomous cars has to ensure that they follow the traffic
rules, pass through crossroads without crashing into another
car, etc. For efficiency it might also be desired that the
cars form convoys whenever possible. The ensembles in this
example might be the groups of nearby cars.

The concept of ensembles was introduced through projects
InterLink [10] and ASCENS [1] to capture software-intensive
systems with massive numbers of nodes, operating in open
and non-deterministic environments, in which they have to
interact and dynamically adapt to new requirements and
conditions [7]. A mathematical model of ensembles and their
composition has been introduced in [8] while an operational
model of ensembles and a formal language SCEL that allows
the description of ensembles in a compact and formal way
was introduced in [4].

SCEL brings together various programming abstractions
that permit to directly represent knowledge, behaviours and
aggregations according to specific policies. The two central
ingredients of SCEL are the notions of autonomous compo-
nent and of ensemble. Ensembles are aggregations of compo-
nents characterised by means of suitable predicates associ-
ated to the attributes ensemble and membership. Ensembles
synthesise dynamically by exploiting the values of the com-
ponents attributes and avoid the resorting to rigid syntactic
constructs. Different dialects can be defined by appropri-
ately instantiating the features of the language. One of the
approaches that deal with the design of ensemble systems
lead to the creation of the DEECo component model [11].
In their methodology, the authors propose separation of con-
cerns by managing the ensembles as first-class entities, view-
ing the component interaction as data exchange that is not
explicitly requested by the components themselves.

Our aim lies in the area of verification. Correctness of dis-
tributed component-based systems, while very important,
may be hard to establish. The changing environment as
well as the results of communication are non-deterministic
in nature, which makes subtle errors such as race conditions
both likely to happen and hard to find. Traditional meth-
ods of verification such as testing and simulation might not
be enough and their coverage of the system’s behaviour in-

sufficient. There thus rises a need for formal verification
methods such as model checking. To be able to perform
these methods, we need a concrete modelling language with
precisely specified syntax and semantics. At the same time,
the desired modelling language should be close to real-world
programming concepts.

In this paper, we present the Dynamically Communicat-
ing Components Language (DCCL), a verification-oriented
modelling language that implements the concepts found in
the SCEL language [4] and in the DEECo component model
of [11]. This formalism gives precise formal semantics to the
concepts of components and ensembles. The system con-
sists of components, which can perform some computation
independently. Each of these components has some local
knowledge representing its state. This knowledge can be
read by the component and used in its computations.

The components do not communicate directly by send-
ing and receiving messages. Instead, they form ensembles.
Every ensemble contains a membership predicate that de-
cides whether a particular component at a particular point
in time belongs to that ensemble or not. Once a set of com-
ponents form an ensemble, this ensemble ensures implicit
communication between them.

The computation of the system is divided into two al-
ternating phases: the component phase, where components
are performing their computation, and the ensemble phase,
where ensemble predicates are evaluated and implicit com-
munication is performed. In the component phase, all com-
ponent computations are performed independently.

As for the ensemble phase, we present three different kinds
of semantics. Each of the semantics represents different view
of the relative speed of communication and component com-
putation. The first one is the fixpoint semantics, in which
ensemble communication steps are performed until a fixpoint
of all components’ knowledge is achieved. The second one
is the time-unit semantics, in which the number of ensem-
ble steps that are performed between successive component
phases is limited by a predefined number. The third one is
the time-unit semantics with broadcasting, which differs from
the previous one by allowing the existence of broadcast en-
sembles, whose communication is treated slightly differently
with respect to the time-unit limit.

For the specification of the properties we want to ver-
ify on a DCCL model, we use the Linear Temporal Logic
(LTL, [12]). This logic allows to write statements about all
possible runs of a system, using temporal operators such
as always, eventually, until, and their combinations. The
DiVinE environment [2, 5] we base our verification tool on
then uses the standard automata-based approach to LTL
verification [14].

The rest of the paper is organised as follows. In Sections 2
and 3 we describe the syntax and semantics of DCCL, re-
spectively. Section 4 then describes the verification process
in detail. In Section 5 we present some demonstrative exam-
ples and show experimental results. The paper’s conclusion
and an overview of future work is then given in Section 6.

2. DCCL SYNTAX
We present the syntax of DCCL on two levels: abstract

syntax, which is the mathematical formalism behind DCCL,
and concrete syntax, which is the C++-like language used
to write the models. The main difference is that the abstract
syntax operates with notions such as functions without ex-

plicitly defining how a function is to be described, while the
concrete syntax works with actual C++-like code. Separat-
ing these two levels has the advantage of abstract syntax
reusability. If we wanted to implement DCCL on top of
a language other than C++, we would only need to modify
the concrete syntax.

On the abstract level, a DCCL model consists of three
parts: the semantics specification, the components’ descrip-
tion, and the ensembles’ description. The semantics spec-
ification is either fixpoint or time-unit(t) where t is a nat-
ural number parameter. The meaning of this specification
is going to be explained in the next section. In the con-
crete DCCL syntax, the model consists of the three parts
mentioned above plus a part consisting of auxiliary defi-
nitions that introduce user-defined types and functions as
well as some primitives used for verification. The seman-
tics specification is given at the beginning of the model file
using either semantics fixpoint; or semantics timeunit

t;, where t is a positive number literal. Alternatively, the
semantics specification may be omitted from the input file—
the semantics is then specified when invoking the tool, see
Section 4.

2.1 Component
The central notion is that of component type. A com-

ponent type consists of its knowledge type and its process.
On the abstract level, the knowledge type is a finite set of
all possible states of the component, or its knowledge. The
knowledge can be changed either by running the process of
the component, or by the ensemble communication. We de-
note by KC the knowledge type corresponding to component
type C.

In the concrete DCCL syntax, the knowledge type is rep-
resented by a set of fixed-size C++ variables, of built-in
or user-defined struct types. The definition of each of the
component types comes first, the actual components of that
type are later instantiated by stating the initial knowledge
of each component, see Fig. 1.

component car {

int posx, posy;

int direction;

int move;

}

car {

posx = 3; posy = 2;

direction = 2;

move = 1;

}

Figure 1: A component type and its instantiation.

The process of a component is a periodically repeating
computation that modifies the component’s knowledge. The
process corresponding to component type C, denoted by PC

may be thus seen, on the abstract level, as a function PC :
KC → KC .

In the concrete DCCL syntax, the process is defined as
a C++-like function that can access and modify all elements
of its component’s knowledge. The function is supposed to
be side effect free. For an illustration, see Fig. 2.

2.2 Ensemble
An ensemble description consists of a membership pred-

icate p and a mapping function m. An ensemble instance
then is a set of components with one coordinator c and ar-
bitrarily many members such that p(c, d) holds for every

process car {

if (move)

switch (direction) {

case 1: posx++; break;

case 2: posy++; break;

case 3: posx--; break;

case 4: posy--; break;

}

}

Figure 2: The process of a component.

member d. Whenever an ensemble is formed, knowledge be-
tween its coordinator and its members is exchanged using
the mapping function. This function operates on each pair
(coordinator, member) separately. We may thus write (us-
ing C to denote the set of all components and K to denote
the set of all possible knowledge):

E := 〈p,m〉
p : C × C → {true, false}
m : K ×K → K×K

In the concrete DCCL syntax, the ensemble is defined by
stating a set of component types which can be the coordina-
tor, a set of component types which can be the member and
writing the predicate and mapping. The membership pred-
icate is written as the contents of a C++ if-condition and
the mapping function is the code executed if this condition
holds. The code may assume the existence of two pointers
c and m that point to the knowledge of the coordinator and
the member, respectively. It is possible to use user-defined
functions (see the following subsection) in both the predicate
and the mapping.

It is also possible to write several disjoint if-conditions
since this is equivalent to encapsulating the whole code in
one if-condition that is a disjunction of the original condi-
tions. For an example, see Fig. 3.

ensemble Cross {

crossing;

car;

if (is_in_path(c->posx, c->posy,

m->posx, m->posy, m->direction)

&& c->blocked && m->move) {

m->move = 0;

}

if (c->posx == m->posx

&& c->posy == m->posy && !m->move) {

c->blocked = 1;

}

}

Figure 3: An ensemble description.

Apart from the general ensemble description, we also have
broadcast ensembles, whose function is explained in the next
section. The broadcast ensemble is also defined by a mem-
bership predicate p and a mapping function m. The role

of p and m is similar to previous, only here, the mapping
function may only modify the knowledge of the ensemble’s
members and not its coordinator’s. We may thus write:

EB := 〈p,mB〉
p : C × C → {true, false}
mB : K ×K → K

In the concrete syntax, the definition of a broadcast en-
semble is similar to the general ensemble member ensemble.
We specify an ensemble it to be of the broadcast kind by
including the word broadcast as a substring of the ensemble
name. Obviously, as a broadcast ensemble may not modify
the knowledge of its coordinator, the data pointed at by the
pointer c is read-only.

2.3 Auxiliary DCCL Constructs
Apart from the description of component types, ensem-

bles, and the component instances, the concrete DCCL syn-
tax also allows several auxiliary constructs. These syntactic
elements have no direct impact on the dynamic semantics
of the model, but they simplify the modelling task and/or
provide helpful functions that are used in the phase of model
validation and verification.

First of all, it is possible to define custom struct types
that work the same way as in C++. As already mentioned,
these can then be used as a part of the definition of knowl-
edge type. The user-defined types are also used to define
static global data. This is done by specifying one of the
structs as the type of this global data and by writing an
initialisation function. Once the data is initialised at the
beginning of the system’s run, it may be accessed by both
components and ensembles (they may assume the existence
of a pointer to the global data called global), but may never
be modified.

struct world {

int map[2][7];

}

global world;

init {

int tmp[2][7] = { {0,1,1,0,1,0,1},

{1,0,1,1,0,1,0} };

for (int i = 0; i < 7; i++){

global->map[0][i] = tmp[0][i];

global->map[1][i] = tmp[1][i];

}

}

Figure 4: Declaration and initialisation of static
global data.

Auxiliary functions that can be then used in the com-
ponent’s processes, in the ensemble descriptions and in the
initialisation of the global data can be defined in a C++-
like way, prepending the function header with the keyword
global.

In order to perform the LTL verification task, it is needed
to specify the atomic propositions. In DCCL this is done by
writing a function which uses both the state and the global

variable, the global phase and round, and returns true or
false. An example of such function is given in Fig. 5. The
function is defined using the keyword prop and the name
of the atomic proposition. The function may assume the
existence of a pointer in to the actual state of the system.
The state of the system consists of the following: a positive
integer round, a Boolean value phase, and an array called
things for every component type thing that contains the
knowledge of every component (ordered by their appearance
in the DCCL source code) plus a positive integer timeunit.
The role of round, phase, and timeunit is explained in the
next section.

prop crash {

for (int i=0;i<3;i++)

for (int j=i+1;j<3;j++)

if (in->cars[i].posx == in->cars[j].posx

&& in->cars[i].posy == in->cars[j].posy)

return true;

return false;

}

Figure 5: Atomic property specification.

For the purpose of using DiVinE to draw the trace of the
generated state graph or a counterexample, it is possible
to specify which parts of component’s knowledge are to be
displayed by writing the print function, which consists of
either a single printf call or an arbitrary C++ code that
uses a stringstream object called output. The code can re-
fer to the component knowledge, its timeunit or the global

variable. See Fig. 6.

print car {

printf("x: %d y: %d dir: %d time: %d",

posx, posy, direction, timeunit);

}

Figure 6: Component knowledge output format.

3. DCCL SEMANTICS
The computation of the system works in two alternating

phases, the component phase and the ensemble phase. In
the component phase, components perform their computa-
tion as prescribed by their process description. After the
component phase, the system switches to ensemble phase,
where ensemble communication is performed. Every en-
semble communication step is atomic. The way of forming
ensembles and performing ensemble communication steps
varies slightly in the three types of semantics presented.

Formally, we define a labelled transition system (Σ,L,→),
where Σ is a set of states, L is a set of labels and →⊆
Σ× L× Σ is a labelled transition relation.

The definition of states depends on the semantics we want
to use. In the fixpoint semantics, a state simply consists
of the knowledge of every component. That is, if we have
components c1, c2, . . . , cn where the component type of ci

is Ci, then the set of states is:

Σf = KC1 × · · · ×KCn × {C,E}

That is, the state of the system consists of the knowledge
of all components and a specification of the current phase
(C for component phase, E for ensemble phase).

In the time-unit semantics, we add to each component
a time counter whose maximal value t is given by the se-
mantics specification. The set of states can be then written
as follows:

Σt = KC1 × · · · ×KCn × {0, . . . , t}
n × {C,E}

In the description of the semantics, we use the following
notation. Whenever we have a state σ ∈ Σf , we use σi to
denote the knowledge of the ith component and σ[i 7→ k′]
to denote the state that is created from σ by changing the
knowledge of the ith component to k′. For a state σ ∈ Σt,
we have similar notation: σi is the pair (ki, ti) of knowledge
and remaining time units of the ith component; further,
σ[i 7→ (k′, t′)] is the state that is created from σ by changing
the knowledge of the ith component to k′ and its remaining
time units to t′. We also use σ[C] and σ[E] to denote the
state that is created from σ by changing the phase indicator
to C or E.

3.1 Component Phase
In the component phase all components perform their pro-

cesses. These processes are independent—communication
only happens in the ensemble phase and the global data are
read-only. We can thus safely assume that all the compo-
nents’ processes happen at the same time, all at once. Let
now k′i = Pi(σi) be the effect (the modified knowledge) of
the ith component process. In the fixpoint semantics, let
σ′ = σ[1 7→ k′1, . . . , n 7→ k′n]; in the time-unit semantics, let
σ′ = σ[1 7→ (k′1, t), . . . , n 7→ (k′n, t)], where t is the maximal
time limit. The only transition of the component phase is

then: σ
comp−−−→ σ′[E].

3.2 Ensemble Phase
The basic unit of the ensemble phase is that of ensem-

ble step in which two components satisfying the component
predicate of an ensemble get their knowledge modified by
the mapping function of the ensemble.

3.2.1 Fixpoint Semantics
In the first semantics, the ensemble phase runs until a fix-

point is reached, where no more possible ensemble steps can
be performed. In that state, every component has all the
knowledge it can gain about the system through ensemble
communication, and another component phase starts.

Let E = 〈p,m〉 be an arbitrary ensemble description. Let
further ci and cj be two components such that the member-
ship predicate p(ci, cj) holds. This means that ci is a coor-
dinator of an ensemble and that cj is one of its members.
Let now ki, kj be the knowledge of ci, cj , respectively, and
let m(ki, kj) = (k′i, k

′
j) be the result of the application of

the mapping function. The transition corresponding to this
mapping may be written as follows:

σ′ = σ[i 7→ k′i, j 7→ k′j] p(ci, cj) m(σi, σj) = (k′i, k
′
j)

σ
ens(E,ci,cj)−−−−−−−−→ σ′

If no more ensemble communication steps can be performed
(either because there are no components satisfying the pred-

icate of any ensemble, or the application of the mapping
function results in no change in the knowledge), the ensem-
ble phase ends.

6 ∃E, ci, cj : σ
ens(E,ci,cj)−−−−−−−−→ σ′

σ
end−−→ σ[C]

3.2.2 Time-Unit Semantics
In this semantics, the number of steps of the ensemble

phase is limited. We do this by dividing the ensemble phase
into several rounds. In each round, multiple ensemble map-
pings may occur but with the limitation that each compo-
nent can participate in at most one of such mappings. We
enforce this behaviour using time units that are assigned to
each component. At the beginning of the ensemble phase,
each component has t time units, as specified by the seman-
tics specification.

The rounds are numbered t, t − 1, t − 2, . . . , 1. In each
round `, ensemble communication may occur, similarly to
previous, if both participating components still have ` time
units. The ensemble mapping transition for the ensemble
description E, components ci, cj and round ` is given as
follows:

σi = (ki, `) σj = (kj , `) m(ki, kj) = (k′i, k
′
j)

p(ci, cj) σ′ = σ[i 7→ (k′i, `− 1), j 7→ (k′j , `− 1)]

σ
ens`(E,ci,cj)−−−−−−−−→ σ′

Once there are no ensemble communication steps to be
performed in round `, the round ends. If ` > 1, the next
round begins and every component’s time unit counter is
reduced to `− 1.

6 ∃E, ci, cj : σ
ens`(E,ci,cj)−−−−−−−−→ σ′

σ
round−−−→ σ[∀x : x 7→ (σx, `− 1)]

If ` = 1, the ensemble phase ends. Every component’s time
unit counter is reset to t.

6 ∃E, ci, cj : σ
ens1(E,ci,cj)−−−−−−−−→ σ′

σ
end−−→ σ[C, ∀x : x 7→ (σx, t)]

3.2.3 Time-Unit Semantics with Broadcasting
This semantics extends the previously mentioned one with

the possibility to use broadcast ensembles and treat them in
a distinct way. Intuitively, the difference is that whereas
in the time-unit semantics, the coordinator of an ensem-
ble has spent one time unit per each knowledge exchange
with its member, the coordinator of a broadcast ensemble
only spends one time unit per each broadcasting step. The
broadcasting step modifies the knowledge of all members of
the ensemble that still posses an unused time unit.

Formally, let E = 〈p,m〉 be a broadcast ensemble, let
ci be the coordinator component and let cj1 , . . . , cjs be the
member components, i.e. p(ci, cj) for every j ∈ {j1, . . . , js}
and it is the maximal set satisfying this condition. Let fur-
ther m(ki, kj) = k′j where kj is the knowledge of cj . The
broadcasting transition can be then written as follows (∀j is
qualified over {j1, . . . , js}):

σi = (ki, `) ∀j : σj = (kj , `) ∀j : m(ki, kj) = k′j
∀j : p(ci, cj) σ′ = σ[i 7→ (ki, `− 1),∀j : j 7→ (k′j , `− 1)]

σ
bcast(E,ci)−−−−−−−→ σ′

4. VERIFICATION PROCEDURE
For the new language described in the previous section we

also deliver simulation and verification tools to help software
engineers create faithful and reliable models of complex real
software solutions. Our tool builds on top of the parallel
and distributed-memory explicit-state model checking tool
DiVinE [2, 5].

Model checking [3] is a formal verification procedure that
takes two inputs – model of a distributed (component-based)
system and one particular property the system should meet.
For these inputs, the model checking procedure decides au-
tomatically whether the given model satisfies the given prop-
erty or not. For the purpose of model checking the proper-
ties to be checked for must be formalised using temporal
logic formulae. In our case, we use Linear Temporal Logic
(LTL) formulae and employ automata-based approach to
LTL model checking [14].

Our newly implemented tooling solution employs the so
called Common Explicit-State Model Interface (CESMI) of
the DiVinE model checker that allows for tool chaining of
the model checker with third-party language interpreters.
CESMI prescribes a simple binary interface between the ver-
ification core of the model checker and a model to be ver-
ified. By binary interface we mean that to access a model
via CESMI a set of accessor functions must be implemented
and provided to DiVinE in a form of dynamic (shared) li-
brary, the so called CESMI module. For a CESMI compli-
ant module DiVinE offers various services, primarily formal
verification by means of automata-based LTL model check-
ing. Other services include discrete step-by-step simulation
of the system under investigation and/or visualisation of the
underlying reachable state space graph.

The workflow to use DiVinE on top of DCCL models is as
follows. First, a DCCL model is taken from a text file and
processed with our dccl2cesmi tool (available at [9]) into a
C++ source file of the corresponding CESMI module.

$ dccl2cesmi model.dccl

Optionally, the semantics specification may be also provided
(either fixpoint or a positive integer). This specification
overrides the one given in the input file.

$ dccl2cesmi model.dccl 10

The resulting C++ file is then compiled with DiVinE into
a dynamically loaded library using DiVinE’s compile com-
mand. Any LTL properties to be verified for the model must
be provided in a separate text file and passed to the compile
command as an additional parameter at this time.

$ divine compile -cesmi model.cpp model.ltl

The compilation creates a new model.so file that can be
used by DiVinE as the primary input file. Useful DiVinE
commands to work with such a model are the following:

• info – List properties of a given model that can be
checked by DiVinE. These properties include individ-
ual LTL formulas as given to the compile command in
the previous step.

• verify – Perform verification of a given property. Note
that the type of verification task is automatically cho-
sen accordingly with respect to the property type. If

$ divine verify model.so

property deadlock: deadlock freedom

---------------- Reachability ---------------

searching...

125302 states, 151042 edges, DEADLOCK

===

The property DOES NOT hold

===

$ divine verify -r model.so 2>&1|grep CE-Init

CE-Init: 1,1,2,2,1,2

$ divine simulate -trace=1,1,2,2,1,2 model.so

Figure 7: Example of DiVinE invocation.

an LTL formula is specified as a property, DiVinE per-
forms LTL model checking; if a test for deadlock free-
dom is selected, DiVinE performs search for deadlock
states.

• simulate – Runs a text-based simulator that allows
to either interactively guide the simulator through the
state space of a given model, or to execute and print a
predefined run (sequence of actions) in the state space
graph of the model.

• draw – Visualise (part of) the state space of a given
model.

An example of particular invocation of DiVinE verify com-
mand is given in Figure 7. First, verify command is exe-
cuted for a system given as CESMI module model.so. Di-
VinE informs user that it is about to verify deadlock freedom
property for the system, and starts the verification process
(search for a deadlock). When it detects a deadlock, it re-
ports the number of states and transitions that have been
explored, and informs user about the invalidity of the veri-
fied property.

Since the property is violated, user might get interested in
the reasons why it is so. To that end, the model checker is
capable of generating the so called counterexample – a run of
the system that witnesses the property violation. Therefore,
the example in Figure 7 proceeds with a new execution of
DiVinE, this time with parameter −r instructing DiVinE to
produce a detailed report on the verification process. Among
others, the report includes the counterexample described as
a sequence of numbers. These numbers refer internally to
actual transitions in the system that must be fired in order to
get the system from an initial state to a deadlock state. For
inspecting the counterexample in a human readable form,
simulate command of DiVinE may be used. Figure 7 shows
a particular invocation of DiVinE to do so.

5. EXAMPLES & EXPERIMENTS
To demonstrate the modelling and verification capabil-

ities of our language and our verification tool we present
two toy examples. The first, more elaborated, example con-
cerns autonomous cars moving around in an environment
with traffic rules, as mentioned in the introductory section.
The second, simpler example then shows how the verification

Figure 8: Autonomous cars example illustration.

task can also be used to solve a different kind of problem,
namely that of finding a strategy for control synthesis. After
describing the examples and discussing the resulting models
and their variants, we provide some experimental evaluation
of the tool, showing the verification results.

5.1 Autonomous Cars Example
Let us now imagine a closed traffic environment with roads

and crossroads. There are several autonomous cars that
move around in this environment. Each has a predefined
set of waypoints it is supposed to visit in a repeated fash-
ion. While doing so, the cars are also supposed to respect
the traffic rules, avoid crashing into another cars, and form
convoys whenever possible. To achieve this, the cars are
equipped with a short-range communication device that can
be used to communicate with other nearby cars.

In order to model this system in DCCL, we need to decide
on the kinds of components and ensembles we are going to
use. Instead of having just the autonomous car components,
we also introduce crossroads components that are going to
help coordinate the car movement. These components are
going to keeps track of cars that are waiting on each of the
crossroads’ incoming roads. They are then going to allow
cars to cross in a FIFO manner. The crossroads only takes
the first car in each direction into account, so if there are
cars waiting at the crossroads on each of the roads, it lets
them cross in a round-robin fashion, ignoring the number of
waiting cars.

As for the ensembles, we have two ensemble types—the
crossroads ensemble that facilitates the communication be-
tween a crossroads component and the components corre-
sponding to adjacent cars; and the convoy ensemble that is
going to form whenever there are several cars in a straight
line wishing to move in the same direction.

Our modelling and verification approach only deals with
finite-state systems. We thus view the traffic environment
in a discrete manner as a square grid plan. The movement
of the cars is then modelled as a discrete position change
that is performed in each of the car components’ processes.

In more detail, the global data and the components’ knowl-
edge is as follows:

• Global data includes the map of the traffic environment
and the travel plan of each autonomous car. Although
keeping the travel plan of each car in that car’s knowl-

edge would be more realistic, we do this to decrease
the size of the model’s states, which only depends on
the size of the components’ knowledge. This decision
does not lead to any incorrect behaviour, as we assume
that the cars’ travels plan do not change throughout
the run of the system.

The map and the plans are precomputed in the init

function from a set of crossroads descriptions and a set
of waypoints for each car. This information is currently
hard-wired into the model; however, the model could
be easily extended with the possibility to read such
data from an external file.

• The car component’s knowledge includes the follow-
ing information: The position of the car (posx, posy),
its direction (dir) and a flag whether the car is cur-
rently moving (move). The car’s process moves the car,
i.e. changes its position, if move is set to true, other-
wise it remains in the same place. Then, regardless of
whether it moved or not, it resets move to true again
to try to go forward in the next component phase.

• The crossroads component’s knowledge consists of its
position (posx, posy), a flag indicating whether the
crossroads is currently blocked by a car (blocked), the
next direction from which the crossroads component is
going to allow a car to cross (freeDirection), and two
arrays representing whether cars are waiting in each
incoming direction and the time they have been wait-
ing (waiting[4], timeWaiting[4]). The crossroads’
process keeps track of the waiting time and clears the
blocked flag—if a car is still blocking the crossroads,
the flag will be set again in the next ensemble phase.

process crossroads {

for (int i=0;i<4;i++)

if (waiting[i]) timeWaiting[i]++;

blocked = false; freeDirection = 0;

}

We may now turn our focus towards the two kinds of en-
sembles.

5.1.1 Crossroads Ensemble
The Cross ensemble serves to ensure that no two cars

enter given crossroads at the same time. The coordinator
of this ensemble is always a crossroads component, while
its members are the components corresponding to the cars
waiting at or currently moving through the crossroads. This
implies that at any point of time, there can be at most as
many crossroads ensembles as there are actual crossroads in
the environment.

The mapping function of this ensemble works as follows:

• If a member car is currently standing directly on the
crossroads and has its move flag cleared, i.e. it is not
going to move in the next component step, the cross-
roads becomes blocked.

• If one or more cars are waiting on the crossroads and
the crossroads is not blocked, the ensemble lets one of
these cars pass, marking the direction as free. The cho-
sen direction is the one with the longest waiting time.
If more directions have the same waiting time one of

them is chosen nondeterministically. After marking
one direction as free, the ensemble resets its waiting
time.

Since the nature of ensemble communication is nonde-
terministic, it can happen that a crossroads realises it
is blocked after it decided to let one car pass. There-
fore, to avoid resetting the waiting time for the longest
waiting direction (and thus starvation), the crossroads
saves the longest time for this purpose.

• If a car comes to the crossroads or is standing near, and
either the crossroads is blocked, or the car’s incoming
direction has not been chosen as described above, the
car is stopped, i.e. its move flag is cleared.

• If a car comes to the crossroads and no other car is
waiting there, blocking the crossroads or has been al-
ready chosen to be able to cross, let this car pass. (This
is a special case of the second bullet point.)

• If the crossroads became blocked and a car was already
chosen to pass, set back the waiting time to the value
mentioned above and stop the car.

The ensemble works by only stopping the cars, but after
a car is marked to not move, it is never set back to move
with this ensemble, therefore the computation stops after a
finite number of moves.

5.1.2 Convoy Ensemble
Adding the possibility to form convoys serves to improve

the movement efficiency of the autonomous cars in the fol-
lowing situation. Consider a car that has another car di-
rectly in front of it. As we want to avoid collisions, the only
safe behaviour in such situation is to stop and wait until the
position in front of the car becomes empty. Such solutions
may, in a situation with many cars moving in a straight line,
result in unnecessary stopping of cars.

We thus use the convoy to allow the cars to share the
information about their moving intents thus allowing a car
to move to an occupied position if it is sure that the oc-
cupied position will simultaneously become available during
the next component step. The convoy ensemble also has to
ensure that once one of the cars in the convoy decides to
stop, all subsequent cars are also going to stop.

Instead of just one ensemble that would encompass all
cars moving in a straight line, we employ several smaller
ensembles, each containing only two cars moving behind one
another. All this ensembles are going to be of one ensemble
type, Behind. This ensemble forces a car to stop whenever
there is a car in front of it that does not want to move in
the next component step, i.e. it has its move flag cleared.
Clearly, in the case of a convoy bigger than just two cars,
the information about the first car stopping has to use some
time to propagate using the ensemble communication from
the first car to the last. This serves us as a demonstration
of the effect of the time-unit limit on the correctness of the
system, as will be seen in the Experiments section.

5.1.3 Adding Nondeterministic Components
Although the component processes in DCCL are deter-

ministic, the knowledge exchange during the ensemble phase
is inherently nondeterministic. We may thus exploit this
fact to demonstrate the possibility of adding components

with nondeterministic behaviour. Such components may be
useful for the modelling of unpredictable environmental con-
straints.

In our autonomous cars model, the role of an unpredictable
entity is going to be played by a pedestrian component. This
component is going to represent a nondeterministically mov-
ing obstacle running over which is forbidden. The knowledge
of pedestrian contains its position and direction. Its pro-
cess moves the pedestrian by one step in the chosen direc-
tion. The choice of the direction, however, happens in the
ensemble phase. In order to do that, we define a helper com-
ponent and four ensembles, one for each of the directions.
These ensembles use the helper as the coordinator and the
pedestrian as the member. The helper can be used only once
each ensemble phase. One of the ensembles is nondetermin-
istically chosen and the pedestrian’s direction is set to this
direction.

We further include a broadcast ensemble, of which the
pedestrian is a coordinator. The ensemble’s members are the
cars standing on the same part of the road as the pedestrian
and the broadcasting function causes them to stop.

5.1.4 Verification
To demonstrate the verification capabilities of our tool,

we have chosen two important properties of the autonomous
cars model. The first one is a safety property that ensures
that the cars do not crash or run over the pedestrian. The
property is written using LTL in DiVinE’s property nota-
tion as G !crash, where G represents the always operator,
! represents negation, and crash is the atomic proposition
that holds whenever two cars share a position or a car shares
its position with the pedestrian.

The second property is a liveness property: we would like
to ensure that a car reaches some of its waypoints then it
eventually reaches its next waypoint. This could be done
straightforward by stating a a conjunction of several formu-
lae of the form G(car1wp1 -> F car1wp1), where F is the
eventually operator, -> represents implication, and car1wp1

is the atomic proposition that holds whenever car no. 1
stands on its first waypoint, with similar propositions de-
fined for other cars and waypoints. However, the movement
of the cars in our system is cyclic, therefore the property
GF(car1wp1), checking whether the car no. 1 can always
reach its first waypoint in the future, is equivalent to the
above conjunction of formulae, therefore we chose to use the
simpler version.

5.2 Burglar Example
With this simple model we demonstrate the possibility

to use model-checking and the counterexample for strategy
synthesis.

The model is a square map with a treasure in the mid-
dle. There are guards, which circle around this treasure on
square paths. There is also one burglar, who can nondeter-
ministically move in four directions or not move at all if she
chooses to. The goal of the burglar is to reach the centre of
the map without being seen by any of the guards.

We model the burglar as a component whose knowledge
contains the burglar’s position and the desired direction of
her next movement. As in the case of the pedestrian compo-
nent in the previous example, the process of this component
only ensures the movement while the changing of direction
happens nondeterministically in the ensemble phase, using

Figure 9: Burglar example illustration.

helper component and five kinds of ensembles, one for each
direction and one for the choice of no movement.

The guard is a component whose knowledge contains its
position, direction and distance from the treasure. Its pro-
cess moves the guard in the direction it is headed and then
rotates the guard, if it is in the corner of its path. The guard
does not take part in any ensemble.

We define three atomic propositions. The first atomic
proposition seen, true if the burglar is seen by one of the
guards. The burglar is seen, if the guard is looking at her,
i.e. when the burglar is at the same line as the guard and the
guard is heading towards the burglar. The other proposition,
centre is true if the burglar is in the centre of the map (at
the treasure’s location).

The formula we want to verify is F(seen) || G(!centre),
representing the property that no run of the system should
be such that the burglar is never seen and yet is able to move
to the treasure’s location. If this formula holds, the burglar
may not steal the treasure unnoticed. However, if the for-
mula does not hold, we are even given a counterexample,
i.e. detailed instructions for the burglar about the way she
should move in order to achieve her goals.

5.3 Experimental Results
We summarise the performance of DCCL on the three

models described above. We focus on the first two models
first with the results for the Burglar model stated separately.

• Carplan is the square grid map with cars moving on it.
The cars follow a plan of visiting waypoints computed
at the start of the run and form ensembles in convoys
and on crossings along their paths if they meet.

• Pedestrian is the Carplan model with an added pedes-
trian. This pedestrian moves each round in a random
direction and stops cars at her actual position from
moving by forming a broadcast ensemble with them.

• Burglar is the model of the burglar trying to pass the
guards to reach the treasure at the centre of the map.

We measured the state space of each model—see the rows
of Table 1 with no property formula. As explained in Sec-
tion 3, the only branching in DCCL occurs in the ensemble
phase. In the Carplan model, most of the time there is some
branching in one ensemble phase, which ends in only a few
different outcomes by the end of the ensemble phase. This
is especially true, if there are enough time units to ensure
the cars not crashing.

By adding the pedestrian into Carplan to get the Pedes-
trian model, the size of the state space get increased a lot,
since the pedestrian blocking a car causes all mutual (non-
crashing) positions of the cars along their paths to be possi-
ble, in addition to enlarging the state space by all the pos-
sible pedestrian positions.

For these two models, we checked the following two prop-
erties:

• G(!crash)—a safety property stating that the cars do
not crash according to the rules mentioned in the pre-
vious section; and

• GF(car1wp1)—a liveness property stating that car 1
visits its first waypoint infinitely often. Since the cars
move in a cycle, this checks whether the car always
moves forward eventually.

We used the cutoff values of time or car numbers for the
tests. We also used the fixpoint model for the verification to
show that with enough time units and no broadcast the same
properties hold both for the fixpoint and timeunit semantics.

As for the G(!crash) property, at least 7 time units are
needed with the 4-car variant of the model for it to hold.
With 6 time units, the cars will crash, if they are positions
[3,2], [2,2], [1,2] and [2,1] heading north, south, south and
east, respectively. In one of the possible runs, the cars get
blocked by each other in the order car3, car1, car2 and car4.
However, since some operations of the crossing ensemble
take more than one turn, in 6 rounds the information to
stop doesn’t propagate to the last car, which in the next
component phase crashes into the second car.

As for the GF(car1wp1) property, if there are 4 cars mov-
ing in the Carplan model, they can get stuck on positions
[2,1], [2,2], [3,2] and [3,3] heading east, south, north and
west, respectively. If the crossing at [3,2] first chooses car 4
to pass, car 2 becomes blocked by this, since it cannot move
to the same crossing. This, however, blocks the crossing at
[2,2] and in turn blocks the third car. With both crossings
blocked with unmovable cars, no car can move anymore and
a deadlock occurs.

With 3 cars present, this could also be an issue, since the
first car doesn’t have to take part in the deadlock situation.
However, with less cars, there are less reachable combina-
tions of car positions, therefore this situation never occurs.

In the People model, two cars suffice for the liveness prop-
erty to not hold. Again at crossings [2,2] and [3,2], if the first
car stands on the north crossing and wants to go south, while
the second car stands on the south crossing and wants to go
north, the pedestrian standing on either of these two places
blocks both cars from moving in the next component phase.
Since the pedestrian can switch between these two positions,
she can block the two cars indefinitely.

The results are summarised in Table 1.
For the Burglar model, we ran the experiments on maps

of two sizes, with two guard placements for the smaller map

size. On the smaller map with 9 guards, they are initially
placed as illustrated in Figure 9, with arrows pointing from
marked spots representing the guards and their initial di-
rection. For the second model we added one guard, so that
it is not possible for the burglar to reach the centre unseen
anymore. The model on the bigger map serves to display
the state space increase.

On the 8x8 map with 9 guards, by verifying the formula
F(seen) || G(!centre) we obtain the result that the prop-
erty doesn’t hold, along with the counterexample run which
represents the strategy for the burglar. Clearly, the one
guard missing in the middle circle means there is almost al-
ways the possibility to cross the guards in this circle and the
other two guards cannot compensate this.

By adding the last guard to the middle circle, there is
always a guard looking on [2,2] and west from this point,
and the same holds for the north direction. This means,
that the burglar starting at [0,0] cannot move anywhere than
on the four places nearest to him without being seen. The
verification results indeed correspond.

On the bigger map, the guards are in such positions that
the burglar is again able to reach the centre.

To verify the formula or to obtain a counterexample we
do not need to search the whole state space. This can be
seen on the 8x8 map with 9 guards, where number the states
searched on the product automaton is almost the same as
the number of states of the system, meaning only a portion
of the system states had to be used. This is even more visible
on the 10x10 map, where it is easier for the burglar to reach
the centre due to the initial position of the guards, and in
the 8x8 model with 10 guards, where the burglar can move
only within four positions.

This model does not use broadcast, therefore it is possible
to run with fixpoint semantics instead of timeunit, further
reducing the state space. The results of the verification are
the same in fixpoint semantics and in the timeunit. They
are summarised in Table 2.

All of the models used in the experiments presented in
this section are available at the DCCL web page [9].

6. CONCLUSION & FUTURE WORK
In this paper, we have presented DCCL, a concrete veri-

fication-oriented language with precise formal syntax and se-
mantics suitable for modelling and verification of component-
based systems with ensembles. The syntax of DCCL has
been given on two levels—abstract syntax that formally de-
scribes the entities that interact in a model, and a concrete
syntax that is modelling language describing these entities
in a C++-like fashion. We have further presented our verifi-
cation tool that takes DCCL models as inputs together with
LTL property specifications and provides answers about the
validity of the properties as well as counterexamples. The
tool is based on the DiVinE model-checking environment
that uses automata-based LTL model checking algorithms.
The interoperation with DiVinE is made possible using a bi-
nary interface called CESMI. Finally, we have demonstrated
some of the language’s and the tool’s capabilities on two toy
examples. We have discussed the modelling choices that
have been made and presented the verification results that
have been achieved using our tool.

As for future development of DCCL and the tool, we want
to focus on two areas. One is that of further enhancing the
language. One idea might be to only allow some parts of

Table 1: Autonomous cars example results.
model # cars t.u. property result # states # transitions time

Carplan 4 fix — — 2 693 382 3 547 940 16.36 s
Carplan 4 fix G(!crash) yes 2 693 382 3 547 940 19.96 s
Carplan 4 fix GF(car1wp1) no 5 246 825 10 259 194 129.65 s
Carplan 4 7 — — 6 100 499 6 707 969 20.64 s
Carplan 4 7 G(!crash) yes 6 100 499 6 707 969 22.36 s
Carplan 4 7 GF(car1wp1) no 11 867 633 19 370 605 163.89 s
Carplan 4 6 — — 5 600 911 6 212 034 30.50 s
Carplan 4 6 G(!crash) no 11 145 385 12 360 755 63.41 s
Carplan 3 6 — — 167 204 175 529 0.97 s
Carplan 3 6 G(!crash) yes 167 204 175 529 1.24 s
Carplan 3 6 GF(car1wp1) yes 325 059 506 316 6.39 s
Pedestrian 2 4 — — 677 620 824 747 3.97 s
Pedestrian 2 4 G(!crash) yes 677 620 824 747 5.04 s
Pedestrian 2 4 GF(car1wp1) no 1 317 330 2 378 705 32.58 s

Table 2: Burglar example results.
size # guards t.u. property result # states # transitions time

8x8 9 fix — — 53 136 117 456 0.45 s
8x8 9 1 — — 70 848 135 168 0.55 s
8x8 9 1 F(seen) || G(!centre) no 72 712 109 876 1.76 s
8x8 10 1 F(seen) || G(!centre) yes 7 364 11 134 0.04 s

10x10 14 fix — — 807 840 1 804 320 7.51 s
10x10 14 1 — — 1 077 120 2 073 600 8.52 s
10x10 14 1 F(seen) || G(!centre) no 400 749 581 388 16.31 s

the knowledge to be changed by the ensemble communica-
tion, leaving others (such as the position of a car in the
autonomous cars example) protected. Other ideas include
extending the language with time constrains and stochastic
behaviour, allowing the user to express probabilities.

The other area is that of extending the verification tool.
In order to reduce the state space that has to be explored in
the verification phase, we plan to include some of the well
known reduction techniques such as symmetry reduction,
partial order reduction, etc.

7. REFERENCES
[1] ASCENS. http://www.ascens-ist.eu/.

[2] J. Barnat, L. Brim, M. Češka, and P. Ročkai. DiVinE:
Parallel Distributed Model Checker (Tool paper). In
HiBi/PDMC 2010, pages 4–7. IEEE, 2010.

[3] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT press, 1999.

[4] Rocco De Nicola, Gian Luigi Ferrari, Michele Loreti,
and Rosario Pugliese. A language-based approach to
autonomic computing. In Bernhard Beckert, Ferruccio
Damiani, Frank S. de Boer, and Marcello M.
Bonsangue, editors, FMCO, volume 7542 of Lecture
Notes in Computer Science, pages 25–48. Springer,
2011.

[5] DiVinE. http://divine.fi.muni.cz/.

[6] George T. Heineman and William T. Councill, editors.
Component-based software engineering: putting the
pieces together. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[7] Matthias M. Hölzl, Axel Rauschmayer, and Martin
Wirsing. Software engineering for ensembles. In
Martin Wirsing, Jean-Pierre Banâtre, Matthias M.
Hölzl, and Axel Rauschmayer, editors,
Software-Intensive Systems and New Computing
Paradigms, volume 5380 of Lecture Notes in Computer
Science, pages 45–63. Springer, 2008.

[8] Matthias M. Hölzl and Martin Wirsing. Towards a
system model for ensembles. In Gul Agha, Olivier
Danvy, and José Meseguer, editors, Formal Modeling:
Actors, Open Systems, Biological Systems, volume
7000 of Lecture Notes in Computer Science, pages
241–261. Springer, 2011.

[9] DCCL Homepage. http://paradise.fi.muni.cz/dccl/.

[10] InterLink. http://interlink.ics.forth.gr/.

[11] Jaroslav Keznikl, Tomás Bures, Frantisek Plášil, and
Michal Kit. Towards Dependable Emergent Ensembles
of Components: The DEECo Component Model. In
WICSA/ECSA 2012, pages 249–252. IEEE, 2012.

[12] A. Pnueli. The temporal logic of programs. In FOCS,
pages 46–57. IEEE, 1977.

[13] Clemens Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd
edition, 2002.

[14] M. Vardi and P. Wolper. An automata-theoretic
approach to automatic program verification
(preliminary report). In Proceedings, Symposium on
Logic in Computer Science (LICS’86), pages 332–344.
IEEE Computer Society, 1986.

