
Approximate Searching in
Large Collections of Text Data

Vlastislav Dohnal1, Claudio Gennaro2, and Pavel Zezula1

1 Masaryk University, Brno, Czech Republic,
xdohnal/zezula@fi.muni.cz,

2 IEI-CNR Pisa, Italy,
gennaro@iei.pi.cnr.it

Abstract. Text collections of data need not only search support for
identical objects, but the approximate matching is even more important.
A suitable metric to such task is the edit distance measure. However, its
quadratic computational complexity prevents from applying naive stor-
age organizations, such as the sequential search, and more sophisticated
search structures must be used. We have investigated the properties of
the D-index to approximate searching in text databases. The experiments
confirm very good performance for retrieving close objects and sub-linear
scalability to process large files.

1 Introduction

At present, digital collections of text data are probably the most important
sources of information and their sizes are growing at enormous speed. Text col-
lections are not strictly structured and individual text parts, such as words,
sentences, paragraphs, etc. can have different significance for different individu-
als. Text collections are also becoming more heterogeneous and the same content
can be expressed in different languages. Unfortunately, text collections are also
becoming more error prone.

The search operation is the most prominent in any kind of databases, and
the text databases are not exceptions. Since text is typically represented as a
character string, pairs of strings can be compared and the exact match decided.
However, the longer the strings are, the less significant the exact match is: the
text strings can contain errors of any kind and even the correct strings may
have small differences. This gives a motivation to a search allowing errors, which
requires a definition of the concept of similarity, as well as specification of algo-
rithms to compute it.

The problem of correcting misspelled words in written text is rather old, and
the experience reveals that 80% of these errors are corrected allowing just one
insertion, deletion, or transposition. But the problem is not only grammatical,
because an incorrect word that is entered in the database cannot be retrieved
anymore on the exact match bases. According to [4], text typically contain about
2% of typing and spelling errors. Moreover, text collections digitalized via optical

character recognition (OCR) contain a non negligible percentage of errors (7 −
16%). Such numbers are even higher for text obtained through conversion from
a voice.

There are many application areas for which the approximate matching is
a relevant problem. Nowadays, virtually all text retrieval (or filtering) systems
allow some extended facilities to recover from errors in text or patterns. Other
text processing applications are spelling checkers, natural language interfaces,
computer tutoring, and language learning, to name only a few of them.

But there are also applications that consider longer text units than words.
Consider a database of sentences for which translations to other languages are
known. When a sentence is to be translated, such database can suggest a possible
translation provided the sentence or its close approximation already exists in the
database. Another application is the copy detection where the unit of comparison
is the whole document.

The development of Internet services often requires the integration of het-
erogeneous sources of data. Such sources are typically unstructured whereas the
intended services often require structured data. Once again, the main challenge
is to provide consistent and error-free data, which implies the data cleaning. In
order to perform such tasks, similarity rules are specified to determine whether
specific pieces of data may actually be the same thing or not. However, when
the database is large, data cleaning can take a long time, so the processing time
or the performance is the most critical factor that can only be reduced by means
of a similarity search index.

In this article, we use the Levenshtein or the edit distance to measure similar-
ity of text strings and we apply the D-index to perform the similarity search fast.
In Section 2, we define principles of the similarity search in metric spaces. Per-
formance evaluation for large collections of Czech language sentences is reported
in Section 3.

2 Metric Space Searching

A convenient way to assess similarity between two objects is to apply metric
functions to decide the closeness of the objects as a distance, that is the objects’
dis-similarity. A metric space M = (D, d) is defined by a domain of objects
(elements, points) D and a total (distance) function d – a non negative and
symmetric function which satisfies the triangle inequality d(x, y) ≤ d(x, z) +
d(z, y), ∀x, y, z ∈ D. We assume that the maximum distance never exceeds d+,
thus we consider a bounded metric space. In general, we study the following
problem: Given a set X ⊆ D in the metric space M, pre-process or structure
the elements of X so that similarity queries can be answered efficiently.

For a query object q ∈ D, two fundamental similarity queries can be defined.
A range query retrieves all elements within distance r to q, that is the set {x ∈
X, d(q, x) ≤ r}. A nearest neighbor query retrieves the k closest elements to q,
that is a set A ⊆ X such that | A |= k and ∀x ∈ A, y ∈ X −A, d(q, x) ≤ d(q, y).

In the following, we define the edit distance as a convenient metric function
for comparing text strings. We also outline the principles of the D-index, which
supports indexing of metric data.

2.1 Edit distance

The edit distance computes the minimum number of atomic edit operations (i.e.
the insertion, deletion, and substitution of one symbol) needed to transform a
string into another. If all atomic operations have the same costs we talk about
unweighted edit distance. On the other hand, the weighted modification assigns
to each operation its own cost.

Definition 1. Let Σ be a finite set of symbols, called an alphabet, Σ∗ denotes
the set of all finite strings over Σ, let ε be an empty symbol (not included in
the alphabet). The edit transformation from the string X to the string Y is a
sequence S = S1S2. . .Sn of atomic edit operations, i.e. Si = Ai → Bi, where
Ai, Bi ∈ Σ ∪ {ε}. A weight function δ assigns a non-negative cost (δ(A → B) ≥
0) to each operation A → B. The total cost of an edit transformation S is the
sum of costs for all Si, δ(S) =

∑n
i=1 δ(Si). The weighted edit distance is defined:

dedit[δ](X,Y) = min{δ(S)|S is an edit transformation from X to Y }.

The edit distance is a metric function regardless of the specific weight func-
tion. The time and space complexity of algorithms implementing the edit dis-
tance dedit(X, Y) is O(len(X)× len(Y)), that is evaluations of the edit distance
are high CPU consuming operations. For more details, see for example the recent
survey by Navaro [5].

In the rest of this article, we only use the unweighted edit distance. For
illustration, consider the following examples:

• d(’lenght’,’length’) = 2 – two substitutions of the two last letters, h→t
and t→h,

• d(’sting’,’string’) = 1 – one insertion of r,
• d(’application’,’applet’) = 6 – one substitution of the 5th letter, i→e,

two deletions of the 6th and 7th letters, three deletions of the three last letters
(i, o, n).

2.2 D-Index

According to the survey [1], existing approaches to search general metric spaces
can be classified in two basic categories:

Clustering algorithms: divide (recursively) the search space into partitions
(clusters) characterized by some representative information.

Pivot-based algorithms: choose a certain number of distinguished elements
from the data set and use pre-computed distances to these elements to speed
up the retrieval.

(a)
2ρ

x
v

x
0

x
1

d
m

x
2

1)(
1

=xbps

−=)(
2

xbps

0)(
0

=xbps

d
m 2ρ

Partition 4

Partition 1

Partition 2

Partition 3

Exclusion

Set

(b)

Fig. 1. The bps split function (a) and the combination of two bps functions (b).

Though the number of existing search algorithms is impressive, see [1], the search
costs are still high, and there is no algorithm that is able to outperform the others
in all situations. Furthermore, most of the algorithms are implemented as main
memory structures, thus do not scale up well to deal with large data files.

The D-Index structure [2, 3] synergistically combines more principles into
a single system to minimize the amount of accessed data and the number of
distance computations. In general, it is a new technique which recursively clusters
data in separable partitions and also applies the pivot-based strategy to decrease
search costs.

The partition principle is based on the concept of ρ-split function. In order to
illustrate, we show an example of the ball partitioning function bps. This function
uses one object xv and the medium distance dm to partition the data set into
three subsets – the result of the following function gives the index of the set to
which the object x belongs. The subset associated to the symbol ’−’ is called
exclusion set (see Figure 1a).

bps(x) =





0 if d(x, xv) ≤ dm − ρ
1 if d(x, xv) > dm + ρ
− otherwise

Since the bps function divides the objects in just three subsets, we can combine
more functions with the purpose of generating ρ-split functions of higher order
(see Figure 1b). Moreover, several of these ρ-split functions can be used in order
to obtain the multilevel access structure of D-Index. In particular, on the first
level, the D-index divides the whole data set into buckets using a “combined”
ρ-split function. For any other level, objects mapped to the exclusion set of the
previous level are the candidates for storage in separable buckets of this level.
Finally, the exclusion set of the last level forms the exclusion bucket of the whole
D-index structure. The ρ-split functions of individual levels use the same ρ.

Each bucket of the D-index is implemented as a list of fixed size blocks (pages)
of capacity being able to accommodate any object of the processed data set.

3 Performance Evaluation

We have evaluated the D-index performance on metric data sets consisting of
sentences form the Czech language corpus compared by the edit distance mea-

sure. For illustration, see Figure 2 for the edit distance density of our data set.
Observe that the most frequent distance was around 100 and the longest distance
was 500, equal to the length of the longest sentence.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 100 200 300 400 500

Distance

Frequency

Fig. 2. Distance density for the data set

In all experiments, the search costs are measured in terms of block reads
and the number of distance computations. All presented cost values are averages
obtained by execution of queries for 50 different query objects (sentences) and
the constant search radius, that is the maximum edit distance to the query
object. The basic structure of D-index was fixed for all tests and consisted of
9 levels and 39 buckets. However, due to the elastic implementation of buckets
with a variable number of blocks, we could easily manage data files of different
sizes.

In this short article, we only present results for the range queries. The ob-
jective of the first group of experiments was to study the relationship between
the search radius (or the selectivity) and the search costs considering a data set
of constant size. In the second group, we concentrated on small query radii and
by significantly changing the cardinality of data sets, we studied the scalability
of our approach.

Selectivity-cost ratio. In order to test the basic properties of the D-index
to search text data, we have considered a set of 50.000 sentences. Though we
have tested all possible query radii, we have mainly focused on small radii, that
corresponds to the semantically most relevant query specifications – objects that
are very close to a given reference can be interesting. Recall that a range query
returns all objects whose distances from the query object are within the query
radius.

Figure 3 shows global trends of costs spent by evaluating range queries sep-
arately for the number of distance computations and the block reads. As a ref-
erence, the figures also include the costs of the sequential approach (SEQ) using
the exhaustive scan. This does not depend on query radii so the search costs
are constant. The search costs of the D-index are very low for small query radii,
but for very large radii, the number of distance computations can become as

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500

Radius

 Distance Computations

D-index
Seq

0

200

400

600

800

1000

1200

0 100 200 300 400 500

Radius

 Page Reads

D-index
Seq

Fig. 3. Range queries.

high as the number that is needed for the SEQ – all objects must be tested to
solve the query. Notice that the number of disk reads can even become higher
than the number of disk reads of SEQ, because the average block utilization of
the D-index is lower than the average block utilization of the SEQ. As Figure
3 illustrates, D-index requires less page reads than SEQ up to the radius 190
where such queries return about 80% of the whole database, which is typically to
much to be interesting from the search point of view. Due to the computational
complexity of the edit distance, the page reads are not so significant because
one page read from a disk takes milliseconds while the distance computations
between a query object and objects in only one block can take nearly one second.

Searching for typing errors or duplicates results in range queries with small
radii and the D-index solves these types of queries very efficiently. The following
table shows the average numbers of page reads and distance computations needed
by the D-index structure to evaluate queries of small radii.

Radius #pages #dist
1 2.74 29.08
2 6.34 83.34
3 14.88 201.38
4 30.64 411.60

Searching for objects within the distance 1 to a query object takes less than 3
page reads and 29 distance computations – such queries are solved in 0.25 second.
A range query with radius r = 4 is solved using 411 distance computations, which
is less than 1% of the sequential scan (it needs 50.000 computations), and 30
page reads, which is about 2.5% of all pages – all objects are stored in 1192
pages. But even queries with radii 4 take at average less than 1 second. This is
in a sharp contrast with 5 minutes of the SEQ access method.

We have also compared the costs for the execution of the successful and
unsuccessful exact match queries, i.e. executing queries with radius 0 separately
for query objects present and not present in the database. The following table
shows the average results for 50 different queries of both types.

Exact match #pages #dist
succ 1.14 12.42

unsucc 0.46 11.38

On average, the D-index needs 0.46 page reads for answering the unsuccessful
exact match query and 1.14 page reads for successful query. This means that the
D-index typically needs only 1 (rarely 2) block access to evaluate the exact match
queries. Due to the construction of D-index, the absence of the searched object
can even be inferred from the D-index structure, so in many cases no block access
is needed for the unsuccessful search. The distance computations are mostly due
to the evaluation of split functions, i.e. strictly related to the D-index structure.

Scalability. To analyze the scalability of D-index, we have considered collec-
tions of sentences ranging from 50,000 up to 300,000 elements. We have con-
ducted tests to see how the costs for range queries (from r = 1 to r = 4) grow
with the size of the data set. The obtained results are reported in graphs in
Figure 4, where individual curves correspond to different query radii.

0

500

1000

1500

2000

2500

1 2 3 4 5 6

Data Set Size (x 50.000)

 Distance Computations

r=1
r=2
r=3
r=4

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6

Data Set Size (x 50.000)

 Page Reads

r=1
r=2
r=3
r=4

Fig. 4. Range search scalability.

From the figure we can see that the search costs scale up with slightly sub-
linear trends. This is a very desirable feature that guarantees the applicability
of the D-index not only on small data sets but also on large files.

As the following table demonstrates, the search scale up for exact match
queries, both successful and unsuccessful, is more or less constant, i.e. the D-
index needs nearly the same number of distance computations and page reads
for different data set sizes.

Data Size #pages #dist
50.000 1.14 12.42
100.000 1.22 13.04
150.000 1.30 13.58
200.000 1.38 13.90
250.000 1.58 14.58
300.000 1.60 14.78

This is an important property, because an efficient exact match is needed in
dynamic files where new objects are inserted and old objects deleted – specific
object instances are usually located through exact match queries.

4 Conclusions

Approximate string matching in text databases is an important search operation
and the edit distance is a convenient way how such approximation can be speci-
fied. However, due to its quadratic computational complexity, the edit distance
is an expensive operation and a sequential search is prohibitive on large files.
We have observed by experiments that a sequential search on 50,000 sentences
takes about 5 minutes, which would result in a half an hour for a 6 times larger
file of 300,000 sentences.

We have applied the D-index, a metric index structure, and we have per-
formed numerous experiments to analyze its search properties. We can conclude
that D-index is strictly sub-linear for all meaningful search requests, that is
search queries retrieving relatively small subsets of the searched data sets. The
D-index is extremely efficient for small query radii where practically on-line re-
sponse time is guaranteed. The important feature is that the D-index scales up
well to processing large files and experiments reveal even slightly sub-linear scale
up.

Due to the lack of space, we do not present results for the similarity nearest
neighbor queries. These queries are suitable when the users are interested in
a specific number of closest objects. For example, find six sentences with the
shortest edit distance to a given reference. Our experiments also confirm high
efficiency of the D-index for this type of queries, and we will report these results
in some other publication in a short time.

Finally, we have conducted our experiments on sentences. However, it is easy
to imagine that also text units of different granularity, such as individual words
or paragraphs with words as string symbols, can be handled in a similar way.

References

1. E. Chavez, G. Navarro, R. Baeza-Yates, and J. Marroquin. Proximity Searching
in Metric Spaces. To appear in ACM Computing Surveys. A preliminary version
available as: Technical Report TR/DCC-99-3, Dept. of Computer Science, Univ. of
Chile, 1999. ftp://ftp.dcc.uchile.cl/pub/users/-gnavarro/survmetric.ps.gz.

2. V. Dohnal, C. Gennaro, P. Savino, P. Zezula: D-Index: Distance Searching Index
for Metric Data Sets. Submitted for publication.

3. C. Gennaro, P. Savino, and P. Zezula: Similarity Search in Metric Databases through
Hashing. Proceedings of ACM Multimedia 2001 Workshops, October 2001,Ottawa,
Canada, pp. 1-5.

4. K. Kukich: Techniques for automatically correcting words in text. ACM Computing
Surveys, 1992, 24(4):377-439.

5. G. Navaro: A guided tour to approximate string matching. ACM Computing Sur-
veys, 2001, 33(1):31-88.

