Abstract. In natural languages, a semantically completely independent
entity, settled word combination, often arises from combination of several
words (e.g. a multi-word name of a municipal community or chemical
compounds). Such entity is than called collocation.

In this work, we concentrate on description of a system for saving in-
dividual collocations that would be able to detect even the changes of
inflection by means of rules. For our system we further use the term
database of collocations.

We shall analyse the properties of the kinds of collocations described by
us for Czech and suggest a formalism for the database of collocations.
We shall describe algorithm by means of which it is possible to search
the collocations with low time demands. By means of implementation
the database of collocations and the described algorithm, a module shall
arise that enables to improve the quality of written text, for example to
identify the collocations in corpora. We have devised and implemented
the database of collocations by a tool for interactive edition.

1 Kinds of collocations

As mentioned above, by a collocation we understand a combination of two or
more independent lexical items (words). The entity created in this way, a new
lexical unit, also often bares a new meaning, for example: ”§iry svét” (the entire
world), "hodny kus cesty” (rather a long journey), ... In literature, collocations
are often defined as multi-word lexical units. Although specialised conferences
are being held on collocations!, collocation has never been entirely rigorously
defined.

A very good linguistic enumeration of types of collocations in Czech language
could be find in v [Cer01], the author uses ”steady state” as a basic criterion for
the classification of collocations.

For the construction of the formalism to description of individual types of
collocations the mentioned criterion does not have an essential meaning. Our
focus is above all the heterogenity from the point of view of composition and
variation of collocations. For further information see [Cer00].

As a collocation we will consider:

— idioms — expressions in the usage of a language that is peculiar to itself
having a meaning that cannot be derived from the conjoined meanings of its
elements: "neklame-li mne zrak” (if my eyes do not deceive).

— multi-word units used for:

e names, pertinently including academical degrees: ”prof. Tomas Garrique
Masaryk”, ...

e toponyms, the place-names of a region: ”Karlovy Vary” (Carlsbad), " Bilé
Labe” (White Elbe, Czech river), ...

e terms (technical, linguistics, . ..): ”fotoelekricky ¢lanek” (electric eye), ...

e chrematonyms (proper names of human figments and institutions) ” Mat-
ice ceskd” (Czech Fellowship)

— synsematics: "to co” (this, what), ”az na to” (except that), ...

— (authorial) metaforic word’s units: ”mrzlo, az prastélo” (it was freezing cold),

— grammar-semantics word units: "letn{ dovolend” (summery holiday), ” pionyrsky
tébor” (youth camp), ...

— analytical forms: "Sel by” (he would go), byl stanoven” (it was set), ...

— practice words units: ”nastoupit do tramvaje” (get on tram), "nakréjet
nadrobno” (cat up to small pieces), ...

— multi-word time entries: ”véera vecer” (in the yesterday evening), ”17.¢erven
1979”7 (17-th july 1979), ?Prvni M4j” (First of May), ...

Some formalisms used for collocations description and storage are described
in [And95,Eli,AAAT]. A system using a relational database designed for the par-
ticular needs of representing lexical collocation can be find [Kre00Oa,Kre98,Kre00b].
Some info is contained in the works about (extracting collocations from text cor-
pora), see [Hei99,Uni,ISU96,Fra96].

! for example Computational Approaches to Collocations, July 22-23. 2002 Vienna

2 Properties of collocations

One of our aims is to devise and implement a tool for creating and correcting
the database of collocations?.
For additional work with the database of collocations it is essential to realise

several basic properties of collocations:

— collocations are lexical units containing more than two components

— some collocations are inflecting ”(bez) Karlovych Vart” ((without) Carls-
bad), ”vésela mu buliky na nos” (she was foll him), k ”(k) Mont Blanku”
((to) Mount Blanck), ” (po¢inaje)17.¢ervnem 1979” (starting from the 17-th
July 1979), ...

e there are component in some collocations
e flection of one element can be dependent on others

— sometimes elements can be abbreviated using one or more initial letters
followed by tittle : ?T.G.M.”, "K. Vary”, ”ox. sifi¢ity” (sulphur dioxide),
(717.6.1979” will be considered as abbreviated form too), ...

— the meaning cannot be always derived from the conjoined meanings of its
elements

— collocation corresponds to self-reliant semantic entity, so there is a need to
to carry analogous attributes as other (one word) lexical units:

e type: proper name, geographical unit, term, ...
e domain: chemistry, medicine, linguistics, ...
e sometimes semantic denotation, word class, grammatical unit, ...

— collocation elements can be variables, for example: Brdt néco na lehkou
vdhu (make light of sth.), replacement of variables is restricted by valency
constraints (rules)

— order of elements cannot by strictly fixed, included variable elements can be
complicated structures

3 Database of collocations

Let us try than, for describing the database of collocations, to create a system
of rules that would be possible to combine with the morphological database
and that would cover the kinds of collocations described above (see Chapter 1).
Our requirement to the constructed system, which would search the collocations
saved in the database, is to provide a simple partial analysis of a text.

We define collocation as:

1. ordered set of nodes, where nodes are defined by following attributes:

— morf_id — then number, unambiguously corresponding to the base form
(lemma), extended by identification of it’s semantic sense and determin-
ing pattern for the inflectional process

— fixed part of the morphological tag — set of tuples attribute + value

2 a term dictionary of collocations is also used

— attributes
e var — extension enabling definition of the variable elements
e short — says if this element can/cannot be abbreviated
2. set of restricting rules (relations among the elements):
— juice or some other relation among attributes of the morphological tags
— relationship among positions (giving their physical ordering) in a anal-
ysed text
3. pertinently pointer (reference) to new sense (of whole collocation)
— designed for connecting with external lexikons, glossaries, encyclopedias,

— the attributes (see chapter 2) are placed at the referenced place
— such a reference enables usage of this entity (in the next collocation)

We assume that the devised system can by with slight changes used also
for the word formation process compounding of words. To do so, it is essential
to extend the system of a tag indicating the fact whether there is/is not a
word hyphen (gap). It is also necessary to introduce the system of nonterminals
which would provide, in combination with regular grammar, recursive chaining of
individual units of the entity. As an example of usage of the formalism extended
of nonterminals, it is possible to cite the formation of compound numerals.

4 Algorithm for detection of collocations

If a suitable searching algorithm is added to the database of collocations, we will
be able to search collocations in the presented entry (in the documents of corpora,
eventually in any written text). The mentioned searching of collocations than
facilitates a computer analysis of a written text or computer assisted translation.

We decided to use the following method for effective searching so generally
described collocations in machine-readable texts:

1. divide input into tokens (tokenize) by patterns based on regular expressions:
— the token can be:
e a continuous chain of alphanumeric characters from the alphabet of
given language
e repetition of one arbitrary non alphanumeric character , for example:
— any chain composed from so called ”white chars”? are omitted and divi-
sion into tokens is enforced in those places
— between tokens, which was not created by division from the input text
in the places of omitted ”white chars”, we insert special structure tag
<g> (glue)*

2. we try to find all possible base forms (lemmas) and applicative morpho-
logical tags for any token using morphological analysis (for example pro-
gramme ajka or library alib, see [Sed99]); we determine corresponding val-
ues morf_id (see Chapter 3)

3 space, tabulator, new line, carriage return
4 see example at the end of the chapter 4.1

3. we lookup candidates for collocations in given interval of tokens, we have
to search all possible combinations of tokens containing relevant values of
morf_id desiderative in some collocation stored in the database (it is possible
to do that effectively using structures and algorithm described in chapter 4.1)

4. from the set of found candidates we must skip collocations, which do not
match restricting rules (see chapter 3)

5. we determine the resultant morphological tag (determination of the appro-
priate result lemma will be good idea in the case of collocation with variable
elements)

4.1 Finding the candidates for collocations

This algorithm requires unique numeration of all basic forms (lemmas) including
the paradigm used for inflection and the meaning, which is obvious from the
example: jerdb popelavy (grus grus), where jerdb is a bird not a machine (crane)
or a tree (mountain ash).

Creating the searching structures We shall perform the searching sepa-
rately for continuous collocations with fixed succession of units and separately
for the others. In both cases, we shall create a tree structure trie (see [Knu73])
S1 a S, where separate edges in these structures are composed of morf_id num-
bers which unequivocally correspond to the lemmas (extended by appropriate
paradigm of inflection, respectively by identification of the meaning). Into the
node corresponding to the end of such chain (endpoint node of the path from
the tree root in the relevant structure), we add a reference to the corresponding

collocation.

Example:

Lko = [2]

ﬁkl i%g’]6] The chain Ly, of
kz ; [1a2]v 4, numbers morf_id

)

corresponds to
list of elements of
collocation k;.

For all collocations ki, ks, ...

— for the first type of collocation, we insert chain
Ly, = [morf_id;, morf_idy, ...]| into the structure S;
— for the second type
1. sort elements of the collocation by morf_id
2. we insert chain
sort(Lg,) = [morf_id,, < morf_idss < ...] into the structure Sp

Searching Input for the searching algorithm are:

— pre-built structures Sy, S
— ordered set of tokens (FIFO) created from an input text P = [p1,p2, ...

— and ordered set of pointers to results of morphological analysis M = [mq, ma, .. .].

Token p; is represented by structure with following attributes:

— w — text of token (word form)
— 11 — set of values [; ; of the morf_str type (see below) acquired by mor-
phological analysis of the word form p;.w

We will use following structure morf _str for the representation of the morpho-
logical analysis results. The attributes of morf_str are:

— morf_id — identification of the base form (lemma, pattern, sense)
— father — pointer to the associated® token
— tt — list of applicative morphological tags

The set of pointers M is sorted owning to the attribute morf_id (m; .morf_id <
mp.morf_id < ...)
We can use three operations during the analysing process:

1. adding of the next token p,4+1 at the end of the list P — this operation
among others accomplish morphological analysis of the word form p,1.w
and fill the list p,11.ll (it was empty till the time), at the end the pointers
to the members of p,11.ll are added into the list L

2. relaxation of the first token from P — moreover the pointers to the members
of the list p,,41.ll are released from the list L

3. analysis

(a) we trace (gradually) the paths in S; corresponding to chains
H = [hili € {0...n} : h; € pj4,.1] ; if we reach the endpoint node, we
have found a candidate for collocations (applicative to given to endpoint
node), the candidate is formed with positions [p;, ..., Djtn]

(b) we trace (gradually) the paths in Sy corresponding to chains
H = [hili € {0...n} : h; = mj4; € M] ; if we reach the endpoint node,
we have found a candidate for collocations (applicative to given to end-

point node), the candidate is formed with positions [hg.father, ..., h,.father]

When implementing the structures of the trie, it is good to realise that the
number of successions to the root will probably be sharply higher than the
number of successions to the other nodes. In any case, this value is limited by
the maximum degree of the morf_id values.

5 this object was created by analysis of referenced ed token

Abbreviated units of collocations Searching in accordance to the given al-
gorithm is heavily complicated by the fact that the units of some collocations
might have abbreviated forms. One of the possible solutions to this problem is
to create a dictionary of all possible forms of abbreviations occurring in collo-
cations, and than to each abbreviation (in the entry) assign a set of accessible
forms of abbreviations. With the mentioned process, we would gain, though,
too vast number of possible forms, especially for one-letter abbreviations, which
would disproportionally increase the time demandingness of the entire searching.
That is why we shall create another structure of the trie (lets inscribe it S3) in
the similar way to the structure Sy (see Chapter 4.1). In the endpoint nodes ¢
of structure S5 shall not only be references to the particular collocations, but
also other trees of the t¢rie Ss; (edges are composed of the letters of alphabet,
endpoint dots correspond to the possible abbreviated forms).
For adding the chain into Sj:

1. we sort the elements of collocations ascendent according to morf_id
2. we insert into the structure S5 the chain

sort(Lg,) = [morf_id,, < morf_idss < ...|morf_id,, .short # 1]

3. endpoint node ¢t we add to Ss3; gradually all lemmas corresponding to indi-
vidual member of the list [morf_id,, morf_idse < ...| morf_id,, .short
=1]

The searching of candidates including the tags we accomplish this way

1. while reading the input we gradually keep the list of abbreviated forms X

2. if X is not empty: we accomplish searching in the list L according to the
structure Ss; in all found endpoint nodes ¢ we continue searching of mem-
bers from the list X in the structures Ss; we mark the applicable positions
including the abbreviations X by means of lemmas found in S3; (replenish-
ment of the abbreviations is given by the chains contained in the subtree of
Ss ¢, the subtree determined by worded part of the abbreviation)

3. we search the positions (with new marked abbreviated forms) by means of
structures S1 a Ss

4. we check the rules for found candidates

5. we determine resultant tagging

In other words: in the first passage we can find candidates for collocations that
might contain abbreviations; we shall develop these abbreviations and continue
in accordance with the original process.

From the formal point of view it is necessary to add that an abbreviation is
formed with three® positions:

1. with the initial letters of the paced word
2. with the structural <g> to mark the coherence

5 respective with two positions and one structural tag

3. with the character ”.” (dot) marking that is probably an abbreviation, but
it could be an ending of the sentence also

When marking the abbreviations it is essential that the system for dividing the
entering text to positions (tokenize) is rather reorganised. We shall add virtual
positions; in the place of an abbreviation two variants shall arise and instead of
linear chain, it is necessary to browse a directed graph.

Example:

Vstup: P. Veliky pfijel do Karlovych Varu.

Tokens | P | <g> | .| Veliky | prijel | do | Karlovych | Varu | <g> | . |
P

Veliky veliky k2eAgMnSc[15]d1, k2eAgInSc[145]d1
piijel piijet k5eAp[MI]nStMmPaP
Morf. anal. do do k7c2
Karlovych Karluv k2eAg [MINF]nPc [26]
do do k7c2
Vart Vary kigInPc2

Determinatith.”, ” Vary.” are candidates
of X
Abbreviatiofor ” Veliky” found ”P.” which could be shortening of the word ” Petr”
Correction a triplet of positions | P | <g> | .| — | P. |
could be an abbreviation of: "P.” and its lemma could be” Petr”

Searching collocations found ”Petr Veliky”, ”"Karlovy Vary”
of candi-
dates

5 Conclusion

In the direct consequence to the morphological analysis, we have created the
formalism that enables maintaining the database (dictionary) of collocations.
The described formalism has been introduced with reference to the Czech lan-
guage but can be easily applied even to other languages. We have outlined the
algorithm for effective searching of collocations in the corpora or in the analysed
texts. The low time complexity is preserved in spite of the possible shortening of
individual units by abbreviations, also those collocations that are not contigu-
ous in the text (collocations with nested elements) are permitted. The system
selected can be applied also to generating; furthermore, we can inflect particu-
lar collocational entities by virtue of constraint rules. For the Czech language,
an already functioning testing database has been developed that can be easily
extended by means of interactive editor.

References

[AAAT] I. Aduriz, J. Aldezabal, X. Artola, N. Ezeiza, and R. Urizar. Multiword lexical
units in euslem, a lemmatisertagger for basque.

[And95]
[El]
[Cer00]
[Cer01]
[Fra96]
[Hei99]
[1SU96]

[Knu73]

[Kre9g]

Fr’ed’erique Segond And. Using a finite-state based formalism to identify and
generate multiword expressions, 1995.

Fr’ed’erique Segond Elisabeth. Idarex: Formal description of german and
french multi-word expressions with finite state technology.

F. Cermsk. Combination, collocation and multi-word units. In Proceedings
of the Ninth Euralex International Congress 2000, pages 489-495, Inst. fuer
maschinelle Sprachverarbeitung, Universitaet Stuttgart, 2000.

F. Cermék. Syntagmatika slovniku, typy lexikélnich kombinaci. In P. Karlik
7. Hladk4, editor, Cestina - univerzdlia a specifika, volume 3, pages 223-232,
Brno, Czech Republic, 2001. Masarykova univerzita v Brné.

K. Frantzi. Extracting nested collocations, 1996.

U. Heid. Extracting terminologically relevant collocations from german tech-
nical texts, 1999.

S. Ikehara, S. Shirai, and H. Uchino. A statistical method for extracting
uniterrupted and interrupted collocations from very large corpora, 1996.
Donald E. Knuth. The Art of Computer Programming: Sorting and Searching.
Addison-Wesley, 1973.

Brigitte Krenn. A Representation Scheme and Database for German Support-
Verb Constructions. In Proceedings of KONVENS ’98, Bonn, Germany, 1998.

[Kre00a] B. Krenn. CDB — a database of lexical collocations. In Proceedings of the

2nd International Conference on Language Resources & FEwvaluation, Athens,
Greece, 2000.

[KreOOb] B. Krenn. Collocation mining: Exploiting corpora for collocation identifica-

[Sed99]

[Uni]

tion and representation, 2000.

Radek Sedlacek. Morfologicky analyzator cestiny. Master’s thesis, Fakulta
informatiky Masarykovy university, Brno, 1999.

Brigitte Krenn Universitat. Acquisition of phraseological units from linguis-
tically interpreted corpora a case study on german pp-verb collocations.

