
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Complexity Issues of the Pattern Equations in
Idempotent Semigroups

by

Ondřej Klíma
Jiří Srba

FI MU Report Series FIMU-RS-99-02

Copyright c© 1999, FI MU August 1999

Complexity Issues of the Pattern Equations in
Idempotent Semigroups?

Ondřej Klı́ma1 and Jiřı́ Srba2

1 Faculty of Science MU, Dept. of Mathematics, Janáčkovo nám. 2a, 662 95 Brno, Czech
Republic, klima@math.muni.cz

2 Faculty of Informatics MU, Botanická 68a, 602 00 Brno, Czech Republic,
srba@fi.muni.cz

Abstract. A pattern equation is a word equation of the form X = A
where X is a sequence of variables and A is a sequence of constants. The
problem whether X = A has a solution in a free idempotent semigroup
(free band) is shown to be NP–complete.

1 Introduction

The main topic of interest in several fields of computer science is solving equa-
tions. Many areas such as logic programming, automated theorem proving and
pattern matching exploit solving equations, and unification is a typical exam-
ple of it. An important role is played also by semantic unification, which is in
fact solving word equations in some variety. Makanin (see [10]) shows that the
question whether an equation in a free monoid has a solution is decidable. It
can be even generalized in the way that existential first-order theory of equa-
tions over free monoid is decidable including additional regular constraints on
the variables [13].

In this paper we focus on a certain subclass of equations which we call pat-
tern equations. Pattern equation is a word equation where we have on the left-
hand side just variables and on the righthand side only constants. Many prac-
tical problems such as pattern matching and speech recognition/synthesis lead
to this kind of equations. This work has been inspired by the papers [5] and [6]
where the basic approach – syllable-based speech synthesis – is in assigning
prosody attributes to a given text and segmentation into syllable segments. We
examine the solvability of word equations in the variety of idempotent semi-
groups (bands) which we call stuttering equations. Their name comes from
practical motivation. For example in speech recognition the speaker sometimes
stutters some words and we would like to eliminate this effect and enable the
correct variables assignation even in the case of stuttering. Therefore we allow
to eliminate multiple occurrences of the same constant into only one occur-
rence, which can be modelled by the identity x2 = x. The decidability of the

? The paper is supported by the Grant Agency of the Czech Republic, grant No.
201/97/0456 and by grant FRVŠ 409/1999

satisfiability problem (even in the general case) is a consequence of the local
finiteness of the free idempotent semigroup and an exponential upper bound
on the length of a minimal solution can be given [3]. We can also establish a
polynomial time decision procedure for the word problem in a free idempotent
semigroup.

In this paper we prove that there is a polynomial bound on the length of
a minimal solution in the case of stuttering pattern equations and thus show
that the satisfiability problem is in NP. The proof exploits the confluent and ter-
minating word rewriting system for bands by Siekmann and Szabo (see [14]).
This means that the identity p = q holds in a free idempotent semigroup if and
only if the words p and q have the same normal form w.r.t. the rewriting system
fxx! x j c(x) 6= ;g [fuvw! uw j ; 6= c(v) � c(u) = c(w)g.

Moreover using the reduction from 3–SAT to our problem, we get its NP–
completeness. This shows that the problem is unfortunately intractable. One
of the ways how to solve the problem is to use heuristic algorithms. They are
the current field of interest in speech recognition. Another approach that could
be used for solving the problem is Concurrent Constraint Programming. For the
background see [2].

2 Basic definitions

An idempotent semigroup (also called a band) is a semigroup where the iden-
tity x2 = x is satisfied. Let C be a finite set and we define a binary relation
!� C� � C� such that uvvw ! uvw for u, v, w 2 C� and let � be its symmetric
and transitive closure, i.e. � := (! [!�1)�. Then the identity p = q holds in a
free band over C if and only if p � q (completeness of the equational logic).

Let C be a finite set of constants and V be a finite set of variables such that
C \V = ;. A word equation L = R is a pair (L,R) 2 (C [V)�� (C [V)�. A system
of word equations is a finite set of equations of the form fL1 = R1, . . . , Ln =
Rng for n > 0. A solution (in a free idempotent semigroup) of such a system is a
homomorphism α : (C [V)� ! C� which behaves as an identity on the letters
from C and equates all the equations of the system, i.e. α(Li) � α(Ri) for all 1 �
i � n. Such a homomorphism is then fully established by a mapping α : V !
C�. A solution is called non-singular, if α(x) 6= ε for all x 2 V . Otherwise we will
call it singular. We say that the system of word equations (in a free idempotent
semigroup) is satisfiable whenever it has a solution. For the introduction into
word equations and combinatorics on words we refer to [7], [8] and [12].

In what follows we will use a uniform notation. The set C = fa, b, c, . . .g
denotes the alphabet of constants and V = fx, y, z, . . .g stands for variables
(unknowns) with the assumption that C \ V = ;. We will use the same symbol
α for the mapping α : V ! C� and its unique extension to a homomorphism
α : (C [V)� ! C�. The empty word will be denoted as ε and the length of a
word w as jw j.

2

We exploit the fact that the word problem in a free band is decidable (see [4]
and its generalization [9]), which is a consequence of the next lemma. Let w 2
C�. We define

c(w) – the set of all letters that occur in w,
0(w) – the longest prefix of w in card(c(w))� 1 letters,
1(w) – the longest suffix of w in card(c(w))� 1 letters.

Let also 0(w) resp. 1(w) be the letter that immediately succeeds 0(w) resp. pre-
cedes 1(w).

Lemma 1 ([4]). Let p, q 2 C�. Then p � q if and only if c(p) = c(q), 0(p) � 0(q) and
1(p) � 1(q).

It is obvious that if a stuttering equation system has a solution then it has
always infinitely many solutions, which we show in the following lemma.

Lemma 2. Let fL1 = R1, . . . , Ln = Rng be a stuttering equation system and α its
solution. Then also any β that satisfies α(x) � β(x) for all x 2 V (we simply write
α � β) is a solution.

Proof. Immediate. ut

This gives an idea that we should look just for the solutions where α(x)
is the shortest word in the � class for each variable x. We introduce the size
of the solution α as size(α) := maxx2V j α(x) j and say that α is minimal iff
for any solution β of the system we have size(α) � size(β). Given a stuttering
equation system it is decidable whether the system is satisfiable because of the
local finiteness of free idempotent semigroups. The following lemma just gives
a precise exponential upper bound on the size of a minimal solution.

Lemma 3 ([3]). Let k = card(C) � 2 and let fL1 = R1, . . . , Ln = Rng be a stutter-
ing equation system. If the system is satisfiable then there exists a solution α such that
size(α) � 2k + 2k�2 � 2.

In general it can be shown that there are stuttering equation systems such that
all their solutions are at least exponentially large w.r.t. the cardinality of the set
C . Consider the following sequence of equations: x1 = a1 and xi+1 = xiai+1xi
for a sequence of pairwise different constants a1, a2, For any solution α of
the system we have that jα(xi) j� 2i � 1.

In this paper we focus on a special kind of word equations which we call
pattern equations.

Definition 1. A pattern equation system is a set fX1 = A1, . . . , Xn = Ang where
Xi 2 V� and Ai 2 C� for all 1 � i � n. The solution of the pattern equation system
is defined as in the general case.

Two natural decidability problems (PATTERN-EQUATION and NON-SINGULAR-
PATTERN-EQUATION problem) appear in this context and are defined bellow.

3

Definition 2. Given a pattern equation system fX1 = A1, . . . , Xn = Ang as an
instance of the PATTERN-EQUATION problem, the task is to decide whether this system
has a solution. If we require the solution to be non-singular we call the problem NON-
SINGULAR-PATTERN-EQUATION .

The PATTERN-EQUATION problem for a single stuttering pattern equation X =
A is trivial since it is always solvable: α(x) = A for all x 2 V . On the other hand
a system is not always solvable: e.g. fx = a, x = bg has no solution.

We give an example of a pattern equation system and demonstrate its solu-
tions.

Example 1. Let us have the following system where C = fa, bg, V = fx, y, zg
and the pattern equations are fyxy = aba, yz = ag. A singular solution exists
α(x) = aba, α(y) = ε, α(z) = a, however, there is also a non-singular solution
β(x) = bab, β(y) = a, β(z) = a since ababa � aba and aa � a. We have also
another non-singular solution γ(x) = ab, γ(y) = a, γ(z) = a.

Our goal is to show that a minimal solution of a stuttering pattern equation
system is of a polynomial length. This implies that the problem of deciding
whether a stuttering pattern equation system is satisfiable is in NP.

3 Rewriting system for idempotent semigroups

In this section we summarize several properties of the rewriting system by Siek-
mann and Szabo in [14] and prove some technical lemmas. First of all we have
to give some definitions and results concerning rewriting systems as it can be
found e.g. in [1].

A rewriting system R over C is a subset of C� � C�. The elements of R will be
called rules. Having such a system R we can define a rewrite relation!� C��C�

in the following way:

8p, q 2 C� : p! q iff 9(u, v) 2 R, s, t 2 C� : p = sut, q = svt.

The elements (u, v) of R will be often written as u ! v. For a word q 2 C� we
write q 6! iff there is no q0 such that q ! q0 and we say that q is in a normal
form. We define the set of normal forms of p 2 C� as hpi = fq j p !� q 6!g. We
say that R (resp. the relation !) is terminating iff there is no infinite sequence
p1, p2, p3 . . . 2 C� such that p1 ! p2 ! p3 ! The system R (resp. the
relation !) is confluent iff

8p, p1, p2 2 C
�9q 2 C� : if (p!� p1 and p!� p2) then (p1 !

� q and p2 !
� q).

The system R (resp. the relation !) is locally confluent iff

8p, p1, p2 2 C
�9q 2 C� : if (p! p1 and p! p2) then (p1 !

� q and p2 !
� q).

Following lemma shows the relationship between confluence and local conflu-
ence.

4

Lemma 4 ([1]). Let R be a terminating rewriting system. Then R is confluent if and
only if R is locally confluent.

It is easy to see that if R is confluent and terminating rewriting system, then a
word p 2 C� has exactly one normal form, i.e. hpi = fqg for some q, and in such
a case we simply write hpi = q.

Example 2. Let fxx ! x j x 2 C�, c(x) 6= ;g be a rewriting system over C. Then
this system is terminating but it is not confluent. For p = ababcbabc we have
p = (ab)(ab)cbabc ! abcbabc and p = a(babc)(babc) ! (ab)(ab)c ! abc where
abcbabc and abc are in normal forms. It is easy to see that hpi = fabc, abcbabcg.

In this paper we will exploit the rewriting system by Siekmann and Szabo
in [14].

Lemma 5 ([14]). The rewriting system fxx ! x j x 2 C�, c(x) 6= ;g [fuvw !
uw j u, v, w 2 C�, ; 6= c(v) � c(u) = c(w)g is confluent and terminating. Moreover
for p, q 2 C� we have p � q if and only if p and q have the same normal form w.r.t the
system.

We will refer the rewriting system fxx ! x j c(x) 6= ;g [fuvw ! uw j ; 6=
c(v) � c(u) = c(w)g as RS. Since RS contains two different types of rewriting
rules we denote RS1 the rewriting system fxx ! x j c(x) 6= ;g and RS2 the
rewriting system fuvw ! uw j ; 6= c(v) � c(u) = c(w)g. The corresponding
rewrite relations are denoted !, !1 resp. !2 and for a word p 2 C� the set of
its normal forms is denoted as hpi, hpi1 resp. hpi2.

If we want to investigate the complexity issues for stuttering equations, the
first question we have to answer is the complexity of checking whether some
identity holds in a free band. We will show that the word problem (i.e. the prob-
lem whether p � q) can be decided in a polynomial time by using the rewriting
system RS. If we note that a string of the length k contains O(k2) substrings
(each substring is identified by its beginning and its length) we get that each
reduction of RS can be done in a polynomial time. Since every reduction de-
creases the length of the word, we have a polynomial time decision algorithm
for the word problem in a free band.

We know that RS is confluent and terminating. Our goal in this section is
to show that RS2 is also confluent and terminating rewriting system and that
hpi = hhpi2i1.

We define a rewrite relation !2l�!2 such that suvwt !2l suwt if and
only if j v j= 1 and c(v) � c(u) = c(w). It is easy to see that !2�!

�
2l and

hence !�
2l=!

�
2. The last relation we will use is !2m�!2, consisting of all

rules that leave out the maximal number of letters in the following sense. Let
head(w) resp. tail(w) mean the first resp. the last letter of the word w. We write
suvwt!2m suwt if and only if ; 6= c(v) � c(u) = c(w) and for any suffix s1 of s
and any prefix t1 of t (including empty s1 or t1) the following conditions hold:

(i) c(s1u) 6= c(wt1)
(ii) c(u)� c(tail(u)) 6= c(u)

5

(iii) c(w)� c(head(w)) 6= c(w)

Note that if suvwt!2m suwt then u = 0(u)0(u), w = 1(w)1(w) and the last
letter of s and the first letter of t (if they exist) are new and different letters1.
We show that hpi2m = hpi2. The inclusion hpi2m � hpi2 is obvious and the
rest is the content of the following lemmas. For more transparent proofs we
use the notation suvwt !2 suwt in the sense that suvwt !2 suwt where ; 6=
c(v) � c(u) = c(w) (and the same for !2l, !2m). In the following, whenever
we say that u is a subword of sut, we always refer to the concrete (and obvious)
occurrence of the subword u in sut.

Lemma 6. The relation !2m is confluent and terminating.

Proof. The termination is obvious. Let p be a word and suppose that we can
apply two different rules of !2m on p, say p = s1u1v1w1t1 !2m s1u1w1t1 and
p = s2u2v2w2t2 !2m s2u2w2t2.

Let us suppose that u1 is a subword of u2v2w2. Then the whole u1v1w1 is
a subword of u2v2w2, because u2v2w2 is followed by a new letter (if it exists),
which is not contained in u1. If u1v1w1 is a subword of u2 resp. w2 then our two
rules commute. In the other case we will show that v1 is a subword of v2, which
is a contradiction with the maximality of the rule s1u1v1w1t1 !2m s1u1w1t1.
Suppose that the occurrence of 0(u2) (the last letter of u2) is in u1v1w1, then it
is surely in u1. Similarly if the occurrence of 1(w2) is in u1v1w1, then it is in w1.
This constraints that v1 is a subword of v2.

If u1 resp. w1 is not a subword of u2v2w2, and u2 resp. w2 is not a subword
of u1v1w1, then our two rules commute. ut

Remark 1. From the previous proof we can see that arbitrary two applications
of !2m, say p = s1u1v1w1t1 !2m s1u1w1t1 and p = s2u2v2w2t2 !2m s2u2w2t2,
commute and they can be nested exactly in one of the following ways (up to
symmetry):

1. w1 = w0
1q, u2 = qu02 and p = s1u1v1w

0
1qu

0
2v2w2t2

2. u1v1w1 is a subword of u2

Lemma 7. RS2 is a confluent and terminating rewriting system and hpi2m = hpi2
for any p 2 C�.

Proof. The termination is clear. If we have u !2 v, u !2 w then there is v1

and w1 such that v !2 v1, w !2 w1, u !2m v1 and u !2m w1. Since !2m is
confluent, we have the confluence of RS2. The equality hpi2m = hpi2 is a trivial
consequence. ut

Lemma 8. For any p, q 2 C� such that p = hpi2 and p !1 q it holds that hqi2 = q.
In particular for a word p 2 C� we have hhpi2i1 = hpi.

1 Observe that it doesn’t hold that if p!2m q then spt!2m sqt for s, t 2 C�. This means
that!2m is not a rewriting relation in the previously introduced sense.

6

Proof. Assume for the moment that hqi2 6= q, which means that q = suawt
where s, u, w, t 2 C�, a 2 C, a 2 c(u) = c(w), i.e. q = suawt !2l suwt. Then
(w.l.o.g.) p = su1xu2awt where u1, x, u2 2 C�, u1u2 = u and su1 has a suffix x
or u2awt has a prefix x. We discuss four different cases.

1) x is a suffix of u1

2) x is a suffix of su1 and jx j>ju1 j
3) x is a prefix of u2aw
4) x is a prefix of u2awt and jx j>ju2aw j

In the case 1) we get c(x) � c(u) = c(w) and we could also use the reduction p =
su1xu2awt !2l su1xu2wt since a 2 c(u1xu2) = c(u) = c(w). In the case 2) we
may write x = x1u1 and then p = su1x1u1u2awt = su1x1uawt !2l su1x1uwt.
Cases 3) and 4) are similar and all the four cases lead to a contradiction. ut

4 Upper bound for the size of the solution

This section aims to prove that the PATTERN-EQUATION problem is in NP by
giving a polynomial upper bound on the size of a minimal solution. In the fol-
lowing we assume implicitly that A,B 2 C�. Realise that each reduction of RS
just leaves out some subword, the case uvw ! uw is clear, and in the case
xx! x we leave out the right occurrence of x in the square. If we have a word
uAv, we can speak about the residual of A in the sense that the residual con-
sists of all letter occurrences of A that were not left out during the sequence of
reductions. Moreover if we use two different sequences of reductions by !2m,
which give normal form w.r.t.!2, then the residuals are the same after the both
reduction sequences, since any two applications of !2m commute by the Re-
mark 1.

Lemma 9. Let A and B be in normal forms and AB !2m AB0 6!2m where B0 is
the residual of B. Then the word B0 contains at most one square x2 which arises from
xvx where v is the word left out by the reduction rule uvw !2m uw, and x is both a
suffix of u and a prefix of w. Moreover in the case when B0 contains a square we have
B0 !1 hB

0i.

Proof. Assume that we have used AB = suvwt !2m suwt = AB0 and B0 con-
tains a square x2. Since B is in normal form, x2 contains ”the space” of the
cancelled v, i.e. xx = u1w1 where u1 is a suffix of u (u starts in A) and w1 is a
prefix of wt.

We show that w1 is a prefix of w. In the case when j w1 j>j w j we can de-
duce that occurrences of tail(u1) and head(t) must lie in the left x since they
are the first occurrences of the constants tail(u1) and head(t) in B (from the
maximality of !2m). It means that x = u1wz where z is a prefix of t. Since
c(u1) � c(u) = c(w) � c(wz), we can reduce xx = u1wzu1wz !2 u1wzwz and
this is a contradiction with B0 6!2.

So, w1 is a prefix of w. The last letter of u1 is in the left x and the first letter
of w1 is in the right x and we see that x2 arises from xvx and x is a suffix of u
and a prefix of w (i.e. u = u0x, w = xw0).

7

We have uwt = u0xxw0t !1 u0xw0t. It is enough to show that the word
u0xw0t does not contain a square and in such a case we get B0 !1 hB

0i1. As-
sume that u0xw0t contains a square y2. Recall xw0t = wt is a suffix of B. Thus
y2 is a subword of u0xw0 since head(t) 62 c(u0xw0) and because of the simi-
lar arguments as in the second paragraph. Now u0x = u and xw0 = w imply
that y2 contains both tail(u0) and head(w0). However, tail(x) = tail(u) is the
first occurrence of this letter in u0xw0 and it must be in the left y and from the
same reason head(x) = head(w) is in the right y. This is impossible. So u0xw0t
contains no square.

The case when B0 contains two or more squares is a contradiction with
B0 !1 hB

0i1. ut

Remark 2. The same arguments as in the proof of the Lemma 9 give the follow-
ing analogue.

If A1, B, A2 are in normal forms and A1BA2 !2m A1B
0A2 6!2m and if the

residual B0 of B contain a square x2, then B0 !1 hB0i1 and x has the same
properties as in the Lemma 9.

Proposition 1. Let A and B be in normal forms such that hABi2 = AB0 where B0 is
the residual of B, then jB0 j�jhB0i j2.

Proof. By the Lemma 7 we have hABi2 = hABi2m and we can use the maximal
reductions. W.l.o.g. assume that the reductions !2m did not leave out some
prefixB1 of the wordB, otherwise we can start with the words A andB2 where
B = B1B2. The Remark 1 shows how two applications of !2m can be nested.
Since A and B are in normal forms, we can see that any reduction !2m uses
some letters from bothA andB. This means that we can writeA = sn+1sn . . . s1,
B = u1v1w1 . . . unvnwnun+1 where si, ui, vi, wi 2 C� for all possible i and we
have n reductions of the form

sn+1 . . . si . . . s1u1w1 . . . uiviwi . . . un+1 !2m sn+1 . . . s1u1w1 . . . uiwi . . . un+1

where c(vi) � c(si . . . s1u1w1 . . . ui) = c(wi) and B0 = u1w1 . . . unwnun+1.
Since each step of the maximal reduction needs a new letter (the letter that

immediately succeeds wi), we get an upper bound for n (the number of steps
in !�

2m), n + 1 � card(c(B)). Let us denote B00 = hB0i1 = hB0i and w0 =
ε. By induction (where i = 1 . . . n) and by the Lemma 9 applied on A and
hw0u1 . . . wi�1uiiviwiui+1 we can see that jB00 j� maxn+1

i=1 fjwi�1ui jg since after
every application xx! x we can found each wi�1ui as a subword in the resid-
ual of B. Hence we get that jB00 j� maxn+1

i=1 fjwi�1ui jg �
1

n+1

Pn+1
i=1 jwi�1ui j=

jB0j

n+1 and from the fact n + 1 � card(c(B)) = card(c(B00)) we can deduce that

j hB0i j2=jB00 j2� card(c(B00))� jB00 j� (n+ 1) jB0j

n+1 =jB0 j. ut

The previous proposition can be generalized in the following way.

Corollary 1. Let A1, B and A2 be in normal forms and hA1BA2i2 = A0
1B

0A0
2 where

A0
1, B0, A0

2 are the residuals of A1, B, A2. Then jB0 j� 2� j hB0i j2.

8

Proof. We prove the assertion for A0
1 = A1 and A0

2 = A2, because in the case
when we leave out some occurrences of letters in A1 and A2, we can reduce
A0
i !

�
1 hA

0
ii and start with these new surroundings hA0

1i and hA0
2i of the word

B, since hhA0
1iBhA

0
2ii2 = hA0

1iB
0hA0

2i. So, hA1BA2i2 = A1B
0A2 where B0 is the

residual of B.
We will use the maximal reduction again and for an arbitrary word Bi 2 C�

we denote B0
i its residual (after the applications of !2m). Three different cases

must be discussed.

1) There is a reduction !2m using letters from both A1 and A2.
2) There is a letter in B which is not involved any reduction !2m.
3) Otherwise.

In the case 1) we can write B = B1vB2, A1 = su1 and A2 = w2t where
su1B1vB2w2t!2m A1B1B2A2. We apply twice the Proposition 1 on the words
A1B

0
1 and B0

2A2. We can deduce j B0 j = j B0
1B

0
2 j = j B0

1 j + j B0
2 j � j hB0

1i j
2

+ j hB0
2i j

2 � 2� j hB0
1B

0
2i j

2 = 2� j hB0i j2 where the last inequality holds, be-
cause by the Remark 2 we have hB0

1ihB
0
2i !1 hB

0i (in the case when hB0
1ihB

0
2i

contain a square) and so j hB0
1B

0
2i j� maxfj hB0

1i j, j hB
0
2i jg, which implies that

2� j hB0
1B

0
2i j

2�jhB0
1i j

2 + j hB0
2i j

2.
In the case 2) we can write B = B1B2B3 where B2 is not involved in any re-

duction by !2m. Then we have hB0i = hB0
1iB2hB

0
3i and so by the Proposition 1

we get jB0 j = jB0
1B2B

0
3 j = jB0

1 j + jB2 j + jB0
3 j � j hB0

1i j
2 + jB2 j + j hB0

3i j
2 �

jhB0
1iB2hB

0
3i j

2 = j hB0i j2.
In the case 3) we can write B = B1v1B2B3B4v2B5, A1 = su1, A2 = w2t

where

A1BA2 = su1B1v1B2B3B4v2B5w2t!2m A1B1B2B3B4v2B5A2,

A1BA2 = su1B1v1B2B3B4v2B5w2t!2m A1B1v1B2B3B4B5A2

are the unique overlaping reductions. We have B0 = B0
1B2B3B4B

0
5 and B0 =

hB0
1B2B3i is a prefix of hB0i = hB0B4B

0
5i, and so jB0 j�j hB

0i j. We can see that
jB0 j = jB0

1B2B3B4B
0
5 j = jB0

1B2B3 j + jB4B
0
5 j � j hB0

1B2B3i j
2 + jB0B4B

0
5 j �

jB0 j
2 + j hB0B4B

0
5i j

2 � 2� j hB0i j2. ut

Lemma 10. Let sxxt be a word such that hsxxti2 = sxxt and sxxt contains another
square y2 (jy j�jx j) such that one of these occurrences of y lies inside the x2. Then one
of the following conditions holds:

1. y is a suffix of s and a prefix of x
2. y is a prefix of t and a suffix of x
3. y2 is a subword of x

Proof. Since y is a subword of x2, we have c(y) � c(x) and let us suppose that
conditions 1. and 2. do not hold. If jx j=jy j then we get c(x) = c(y) and we can
apply !2 (w.l.o.g. xvy !2 xy where v is both a prefix of x and a suffix of y),
which is a contradiction. Assume that jy j<jx j. Notice that the first and the last

9

letter of x are unique occurrences of these constants in the word x because in
another case we can apply !2l on x2. This implies that y2 does not contain the
first letter of the right x and y2 also does not contain the last letter of the left x,
constraining that y2 is a subword of x. ut

Remark 3. The previous lemma shows that for two applications of the rules
xx !1 x and yy !1 y on a word p in a normal form w.r.t. !2, one of the
following conditions holds (up to symmetry):

1. xx and yy do not overlap
2. yy is a subword of x
3. x = x0z, y = zy0 and xx0zy0y is a subword of p

Lemma 11. If hsxxti2 = sxxt and sxt contains a square y2 which is not in sxxt then
y = s1xt1 where js1 j, j t1 j� 1.

Proof. Since y2 is not in sxxt, we have y2 = s0xt0 where s0 is a suffix of s and t0
is a prefix of t. If x is not a subword of y then y = s0x1, y = x2t0 where x = x1x2.
Hence s0xxt0 = s0x1x2x1x2t0 !2 s0x1x2t0 since c(x2x1) � c(y) = c(s0x1) =
c(x2t0). The case when x1 or x2 is an empty word (i.e. x is a prefix or a suffix of
y) is also included and we can conclude that y = s1xt1 and js1 j, j t1 j� 1. ut

Proposition 2. Let A and B be in normal forms, card(c(AB)) � 2 and hABi2 =
AB. Then jAB j�jhABi j2.

Proof. We denote k the length of hABi1 = hABi. The case k = 2 is trivial. Now
we assume that k � 3.

At first we have a look at the squares in AB. Since A and B are in normal
forms, each square has got some letters from A and some from B. By the Re-
mark 3 we have that AB contains at most two squares because the cases 1. and
2. of the Remark 3 are impossible.

By the Lemma 8, anytime during any reduction sequence by !1 the residu-
als of A andB remain in normal forms and their concatenations are in a normal
form w.r.t. !2. So by the previous arguments there are at most two squares and
by the Lemma 11, if the reduction !1 introduces a new square then it is larger
at least by two letters than the previous one. We use the sequence of reductions
which in each step reduces the smallest square. Then the last reduction in this
sequence reduces a square x2 with the property jx j� k. The previous reduction
reduces a square y2 with the property jy j� k� 1 (the case jy j=jx j= k =j hABi j
is a contradiction with AB is in normal form w.r.t.!2). Thus we can see that for
the length ofAB we have an upper bound k+k+(k�1)+(k�2)+. . . � k2. ut

Proposition 3. There is a polynomial p : IN ! IN, such that for an arbitrary A1, B,
A2 2 C� in normal forms and hA1BA2i2 = A0

1B
0A0

2 where A0
i, 1 � i � 2, is the

residual of Ai and B0 is the residual of B, we have jB0 j� p(j hA1BA2i j).

Proof. We may assume that card(c(B)) � 2. By the Corollary 1 we know that
j B0 j� 2� j hB0i j2, which is of course less or equal to 2� j hA0

1ihB
0i j2. Since

10

hhA0
1ihB

0ii2 = hA0
1ihB

0i by the Lemma 8, we can use the Proposition 2 and
we get that 2� j hA0

1ihB
0i j2� 2� j hA0

1B
0i j4, which is again less or equal to

2� j hA0
1B

0ihA0
2i j

4. Analogously we have that 2� j hA0
1B

0ihA0
2i j

4� 2� j hA0
1B

0A0
2i j

8.
Thus we have jB0 j� p(j hA1BA2i j) for the polynomial p(n) = 2 � n8. ut

Proposition 4. Let p be a polynomial that satisfies the condition from the Proposi-
tion 3. If a stuttering pattern equation system fX1 = A1, . . . , Xn = Ang is satisfiable
then there exists a solution α with size(α) �

Pn
i=1 jXi j �p(jAi j).

Proof. Of course, we can assume that all Ai’s are in normal forms. Let α be a
solution of the stuttering pattern equation system fX1 = A1, . . . , Xn = Ang
which minimizes both size(α) and the number of variables x such that jα(x) j=
size(α). Assume for the moment that there is some x such that size(α) =jα(x) j>Pn
i=1 jXi j p(jAi j). We may assume that α(x) is in normal form, otherwise we

have a smaller solution.
We now reduce α(Xi) !�

2m hα(Xi)i2. If we look at an arbitrary residual
B0 of an occurrence of α(x) in hα(Xi)i2, we see that j B0 j� p(j Ai j) by the
Proposition 3. This means that there are at most

Pn
i=1 j Xi j p(j Ai j) letter’s

occurrences in the residuals of all occurrences of α(x) in all hα(Xi)2i. By the
assumption j α(x) j>

Pn
i=1 jXi j p(jAi j) we get that there is an occurrence of

a letter a in α(x) that has been left out from all the occurrences of α(x) by the
rule !2m. We can erase this occurrence of the letter a from α(x) and we get a
smaller solution, which is a contradiction. ut

The previous considerations lead to the following corollary.

Corollary 2. The PATTERN-EQUATION problem is in NP.

Proof. We can guess the solution α and by the Proposition 4, if the system is
satisfiable then there is a solution of a polynomial length. Checking whether α
solves all the equations takes also a polynomial time and so the problem is in
NP. ut

5 NP–hardness of the PATTERN-EQUATION problem

In this section we show that the PATTERN-EQUATION problem in a free idempo-
tent semigroup is NP–hard. We use a reduction from the NP–complete problem
3–SAT (see [11]).

Proposition 5. The PATTERN-EQUATION problem is NP–hard.

Proof. Suppose we have an instance of 3–SAT, i.e.

C � C1 ^ C2 ^ . . . ^ Cn

is a conjunction of clauses and each clause Ci, 1 � i � n, is of the form

l1 _ l2 _ l3

11

where lj , 1 � j � 3, is a literal (lj is a variable from the set Var, eventually
negated – we call it positive resp. negative literal). A valuation is a mapping
v : Var ! fT, Fg. This valuation extends naturally to C and we say that C is
satisfiable if and only if there exists a valuation v such that v(C) = T .

We construct a stuttering pattern equation system such that the system is
satisfiable if and only if C is satisfiable. The system will consist of the following
equations (1) – (6) and C = fa, b, cg, V = fx, sx1 , t

x
1 , s

x
2 , t

x
2 j x 2 Var [Varg [

fya, yb, ycg where Var = fx j x 2 Varg is a disjunct copy of Var .

ya = a, yb = b, yc = c (1)

We define ex = x if x is a positive literal, f:x = x if :x is a negative literal and
for all clauses Ci � l1 _ l2 _ l3 we have the equation

yael1el2el3ya = aba (2)

for each x 2 Var we add the equations

ybxxyb = bab (3)

yaxxya = aba (4)

and finally for each x 2 Var [Var we have the following equations.

sx1xt
x
1 = acb, sx1yc = ac (5)

sx2xt
x
2 = bca, sx2yc = bc (6)

The intuition behind the construction is following. If a variable x is true then
x = b and if x is false then x = a.

Suppose that C is satisfiable, i.e. there is a valuation v such that v(C) = T .
Then we show that α defined bellow is a solution of our system. Let us state

α(ya) = a, α(yb) = b, α(yc) = c

and for all x 2 Var such that v(x) = T let

α(x) = b, α(x) = a

α(sx1) = ac, α(tx1) = b, α(sx1) = a, α(tx1) = cb

α(sx2) = b, α(tx2) = ca, α(sx2) = bc, α(tx2) = a

and if v(x) = F then
α(x) = a, α(x) = b

α(sx1) = a, α(tx1) = cb, α(sx1) = ac, α(tx1) = b

α(sx2) = bc, α(tx2) = a, α(sx2) = b, α(tx2) = ca.

12

Checking that α is a solution (even non-singular) is a routine. The only inter-
esting equation is (2). This equation is also satisfied by α since we have the
assumption that under the valuation v there is at least one true literal in each
clause.

Let us suppose that α is an arbitrary solution of our system and we find a
valuation that satisfies C. The equation (3) constraints that c(α(x)) � fa, bg for
all x 2 Var [Var. We will conclude that it is not possible that c(α(x)) = fa, bg.

Suppose that it is the case and using the equations (5) we get that α(x) does
not begin with the constant a. For the moment assume that α(x) begins with a.
We have ac = 0(acb) � 0(α(sx1xt

x
1)). If c(α(sx1)) = fag then c(0(α(sx1xt

x
1))) =

fa, bg whereas c(0(acb)) = fa, cg, which is a contradiction. Otherwise we have
c(α(sx1)) = fa, cg (thanks to the equation sx1yc = ac) and we get 0(α(sx1xt

x
1)) �

aca 6� ac � 0(acb).
By the similar arguments and using the equations (6) we get that α(x) does

not begin with the constant b. This yields that there are just three possibilities
for α(x), namely α(x) = a, α(x) = b or α(x) = ε.

By the equations (3) and (1) we know that for all x 2 Var at least α(x) = a or
α(x) = a. The equation (4) constraints that either α(x) = b or α(x) = b. Similarly
for each clause, the equation (2) with (1) gives that there is j, 1 � j � 3, such
that α(elj) = b. Let us finally define the valuation v as v(x) = T if α(x) = b and
v(x) = F if α(x) = a for each x 2 Var. The valuation is consistent and it holds
that v(C) = T .

This is enough to demonstrate that the PATTERN-EQUATION problem is NP–
hard since the reduction can be done in a polynomial time and is effectively
constructable. ut

It is not difficult to see that the same reduction as above would also work
for the NON-SINGULAR-PATTERN-EQUATION problem, which is consequently
also NP–hard. We can now formulate the main result of this paper.

Theorem 1. The PATTERN-EQUATION problem and NON-SINGULAR-PATTERN-
EQUATION problem are NP–complete.

Acknowledgements We would like to thank Ivana Černá and Michal Kunc for
their comments and suggestions.

References

[1] Book R., Otto F.: String-Rewriting Systems (1993) Springer-Verlag
[2] Brim L., Gilbert D.R., Jacquet J-M, Křetı́nský M.: A Process Algebra for Synchronous

Concurrent Constraint Programming, Proceedings of ALP96: Fifth International
Conference on Algebraic and Logic Programming, Springer LNCS volume 1139
(1996) 165–178, Springer-Verlag.

[3] Černá I., Klı́ma O., Srba J.: Pattern Equations and Equations with Stuttering, To ap-
pear in Proceedings of SOFSEM’99, the 26th Seminar on Current Trends in Theory
and Practice of Informatics (1999) Springer-Verlag.

13

[4] Green J.A., Rees D.: On semigroups in which xr = x, Proc. Camb. Phil. Soc. 48 (1952)
35–40.

[5] Kopeček I.: Automatic Segmentation into Syllable Segments, Proceedings of First
International Conference on Language Resources and Evaluation (1998) 1275–1279.

[6] Kopeček I., Pala K.: Prosody Modelling for Syllable-Based Speech Synthesis, Pro-
ceedings of the IASTED International Conference on Artificial Intelligence and Soft
Computing, Cancun (1998) 134–137.

[7] Lothaire M.: Algebraic Combinatorics on Words, Preliminary version available at
http://www-igm.univ-mlv.fr/ �berstel/Lothaire/index.html

[8] Lothaire, M.: Combinatorics on Words, Volume 17 of Encyclopedia of Mathematics
and its Applications (1983) Addison-Wesley.

[9] Kaďourek J., Polák L.: On free semigroups satisfying xr = x , Simon Stevin 64, No.1
(1990) 3–19.

[10] Makanin, G. S.: The Problem of Solvability of Equations in a Free Semigroup,
Mat. Sbornik. 103(2) (1977) 147–236. (In Russian) English translation in: Math. USSR
Sbornik 32 (1977) 129–198.

[11] Papadimitriou, C.H.: Computational Complexity, Addison-Wesley Publishing
Company (1994), Reading, Mass.

[12] Perrin D.: Equations in Words, In H. Ait-Kaci and M. Nivat, editors, Resolution of
Equations in Algebraic Structures, Vol. 2 (1989) 275–298, Academic Press.

[13] Schulz, K. U.: Makanin’s Algorithm for Word Equations: Two Improvements and a
Generalization, In Schulz, K.–U. (Ed.), Proceedings of Word Equations and Related
Topics, 1st International Workshop, IWW-ERT’90, Tübingen, Germany, Vol. 572 of
LNCS (1992) 85–150, Berlin-Heidelberg-New York, Springer Verlag.

[14] Siekmann J., Szabó P.: A Noetherian and Confluent Rewrite System for Idempotent
Semigroups, Semigroup Forum 25 (1982)

14

Copyright c© 1999, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

