
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

WiM: A Study on the Top-Down ILP Program

by

Luboš Popelínský
Olga Štěpánková

FI MU Report Series FIMU-RS-95-03

Copyright c© 1995, FI MU August 1995

WiM : A Study On The Top-Down ILP Program

Luboš Popelínský, Olga Štěpánková

Abstract

In the area of the inductive synthesis of logic programs it is the small
number of examples which is crucial. We show that the classical MIS-
like architecture can be adapted using techniques described in ILP
literature so that we reach very good results if to compare with other
ILP systems. We describe the top-down ILP program WiM and the
results obtained through it. WiM needs from 2 to 4 examples for most
of the ILP benchmark predicates. Even though it is interactive, not
more that one membership query is enough to receive the correct target
program. WiM has higher efficiency of learning as well as smaller
dependency on the quality of the example set in comparison to some
of ILP programs. The quality of learning has been tested both on good
examples and on randomly chosen example sets.

1 Top-down learners

Considering interactive generate-and-test top-down learners in the context of
automatic logic programming [5], four main drawbacks are being observed:

1. Too many positive examples are needed

2. The usefulness of the negative examples depends on the particular
learning strategy

3. Generate (a hypothesis) and test (on the example set) strategy is too
unefficient

4. Too many queries to the user are asked

We will show that even with a very small example set (less or equal to 4
positive examples) MIS-like [13] top-down learners are capable to learn most
of the predicates which have been mentioned in ILP literature.

Neccessary negative examples are always dependent on the particular learn-
ing strategy and that is why it is difficult for the user to find the most

1

appropriate ones. Our approach tries to find negative examples itself. A
near-miss to one of the positive examples is considered as a candidate for
that purpose. Such a negative example is found usefull if after adding that
example to the current learning set, the learner is able to suggest a new
definition of the target predicate. Only in such a case the user is asked for
a confirmation of that particular candidate for the negative example.

In the generate-and-test strategy,it is actually the test phase – verifying the
target predicate on the example set – which is too time-consuming. How-
ever, the number of hypotheses can be limited by a declaration of argument
modes and by exploitation of programmer’s knowledge. This knowledge can
specify e.g. maximal complexity of terms, maximal number of free variables
allowed in the new clause as well as maximal number of literals in a clause
body. By this way we succeed to lower a cardinality of the example set, and
this ’brute force’ top-down learning is becoming quite efficient. The effi-
ciency is increasing by emploing 2nd order schema for guiding the synthesis.

It is true that the query to the user is neccessary to confirm the negative
example generated by the system. However, the number of queries, in gen-
eral, is smaller – not more than 1 membership query is allowed – comparing
to the other interactive systems [3], [13].

The organisation of the paper is as follows. In Section 2., we show one
way how to decrease a cardinality of the search space in top-down learn-
ing algorithms. In Section 3. we revoke the assumption-based scenario as
introduced in [6, 12] and than we describe WiM program. In Section 4.,
we review experimental results reached by WiM on good examples. We
conclude by exhibiting WiM behaviour on randomly chosen examples.

In the folowing section, we try to estimate cardinality of the search space
as a function of the size of the background knowledge and of the maximal
length of clause bodies.

2 Cardinality of the search space for given settings

2.1 Upper estimate

Let BK mean the number of background knowledge predicates + 1 (for the
target predicate), A the highest arity among the predicates in background
knowledge and the target predicate, L the maximal length of a clause body,
i.e. the maximal number of predicates in a clause body.

2

The number of positions of variables in a clause for a given length l is equal
to a sum of the positions in the head and in the body, its upper bound is
(1 + l) ∗A. E.g. for member/2 predicate, maximal length of the clause body
for l = L = 2 and background knowledge which contains only list(List,
HeadOfList, BodyOdList) we have

member(X1,X2) :- P1(X3,X4,X5),P2(X6,X7,X8)

i.e. 8 positions

Now we find the number NC(n) of clauses for a given number n of variable
positions. Having a set of variables { X1, X2, X3, X4, X5, X6, X7, X8
}, as in the example above, we can find all different clauses for fixed P1,
P2. The number of those clauses is less than 88 because some of them are
equivalent (e.g. member(X,Y) :- member(X,Z) is the same as member(U,V)
:- member(U,W)). See appendix for detailed treatment of this subject. In
the table bellow the values of NC(n) for small values of n are displayed.

Variable
positions Clauses

1 1
2 2
3 5
4 15
5 52
6 203
7 878
8 4140
9 21147
10 115975

Table1: NC(n) for small values of variable positions

As each combination of background predicates as well as the target predicate
can appear in the body, we have to multiply NC(n) by the number of all
allowed combinations of predicate symbols. E.g. for member/2 predicate

member(X1,X2) :- P1(X3,X4,X5),P2(X6,X7,X8)

we have 2 positions for predicates. If the maximal length of the clause body
is L = 2 and the maximal arity A = 3, the number of all clauses in the search
space is the sum of number of clauses of the lentgh 0 (body == true), of
the length 1 and 2

3

NC(A)+2∗NC(2A)+3∗NC(3A) = 2+2∗52+3∗21147 = 63547

The coefficients 2 and 3 are equal to the number of combinations with rep-
etition of possible predicates in the clause body for a clause with its body
length 1 and 2 respectively.

The general formula for the number of all clauses for given BK,L,A is

NCA =
∑L
l=0

(
BK + l − 1

l

)
∗NC((1 + l) ∗A),

This formula inherits its exponential character from the function NC (see
Appendix). That is why we need more information to decrease the search
space. Declaration of types and a limit on the number of free variables al-
lowed during learning the target predicate can help. It was shown elsewhere
[4], that we can focus on linked clauses only. It limits the number of distinct
variables significantly. We will show the way of narrowing search space in
the next paragraph.

2.2 How to narrow the search space

We will demonstrate a way of narrowing search space on a simple example.
Let us learn the base clause of the predicate member/2. The list(List,
HeadOfList, BodyOfList) predicate is the only background knowledge pred-
icate. Suppose we know that the maximal length of the body of the clause
is 1. Then two skeletons have to be considered as candidates

(1) member(_,_)
(2) member(_,_) :- list(_,_,_)

For (1) and (2), there are NC(2) = 2 and NC(5) = 52 instances respec-
tively, in total 54 clauses in the search space.

Let us assume that only 1 free variable may appear in the body of the clause.
For the case (2) it implies introduction of 1 new variable by predicate list/3
so that no more than 3 distinct variables are allowed. The number of clauses
is than h(1, 5) + h(2, 5) + h(3, 5) = 41.

If we know types of arguments, in our example member(nom, list), list(list,
nom, list), the search space is further narrowing. In the case (1), member(X,X)
cannot appear. The remaining member(X,Y) is not taken in account as it is
the most general clause and it could not be consistent - any negative would
be covered by this clause. Using the type limitation the case (2) may be
split into

4

(2a) member(X,Y) :- list(L1,X,L2)
(2b) member(X,Y) :- list(L1,U,L2)

where U 6= X. In (2a), as at most 1 free variable can be introduced, one of
L1,L2 must be equal to Y or L1=L2. It means that only following 4 clauses
remain

member(X,Y) :- list(Y,X,L1)
member(X,Y) :- list(L1,X,L1)
member(X,Y) :- list(L1,X,Y)
member(X,Y) :- list(Y,X,Y)

For (2b), as U 6= X is a free variable, both L1 and L2 have to be identical
to Y, and just the single clause member(X,Y) :- list(Y,U,Y) remains. 1

To summarize, the search space shrinks considerably when we do exploit
knowledge about the maximal length of a body of the clause, the maximal
number of free variables allowed and type declarations of arguments. In
the considered example of the predicate member, the search space consists
of 5 clauses only - this compares well to the number 54 estimated in the
beginning. We will show later that this way of narrowing search space is
sufficient enough for a class of list processing predicates including qsort/2.

In the next section, we describe the WiM program, an offspring of the
MIS-like Markus system [9, 10], which uses the approach described above.

3 WiM

3.1 Assumption-Based Learning

Ideas on an assumption-based framework underlying our methodology may
be found in [2, 11]. Intuitively, in the case that a synthesizer has failed,
we are looking for such a minimal extension of the given learning set which
raises the chance to find a solution. The solution has to be correct and
consistent with the extended example set. An assumption, if any needed,
must be confirmed by a teacher.

A generic scenario consists of three parts, inductive synthesizer, generator
of assumptions which generates extensions of the learning set, and truth
maintenance system which evaluates an acceptability of both the solution
found and assumptions, and which is allowed to ask teacher queries.

1Knowing more about the list/3 predicate we can delete this clause, too.

5

3.2 Inductive synthesizer

As an inductive synthesizer, Markus+ [6] has been employed, based on
Markus system [9, 10]. Markus+ is MIS-like [13] non-interactive top-down
synthesizer applying iterative deepening search in a refinement graph and
controlling a search space with different parameters. It allows shifting of
bias and the definition of a second-order schema which the learned program
has to match.

Three parameters are used for shifting bias — the maximal number of free
variables in a clause, the maximal number of goals in the body of a clause,
and the maximal head argument depth (X, [X|Y], [X,Y |Z], etc. are of
depths 0, 1, 2, etc., respectively). Markus+ starts with the minimal values
of these parameters. If no acceptable result has been found, a value of one
of the parameters is increased by 1 so that all variations are being tried
gradually.

3.3 Generator of assumptions and truth maintenance

For each assumption which has lead to a new predicate definition, truth
maintenance system is asking user for a confirmation/rejection of the as-
sumption. An assumption is generated in the moment when the current
example set is not complete enough so that the inductive synthesizer is not
capable to find a definition of the target predicate.

As an assumption, a near miss to a chosen positive example is gener-
ated [6]. A near-missed example is a negative example that differs from
a positive example of the intended predicate “as little as possible”. A
preference relation on the set of examples is defined to generate nearmisses
of less complex examples first. WiM program allows to learn predicates in
two domains - lists and integers. For each of those domains the particular
generator of assumptions (based of course on the same methodology) is im-
plemented. For list processing predicates, a sum of argument lengths has
been found suitable as a measure of example’s complexity. For the domain
of integers we use a sum of arguments. E.g. if learned last/2 predicate
from {last(a,[a]), last(b,[c,b])} , last(a,[a]) is chosen.

The following syntactic approach is used for computing near misses: ex-
tend a set of constants of the chosen simpliest (preferable) example by a
new constant of the correct type. Then take the preferable example and
modify it by adding/deleting a list element, or by replacing an atom, using
the extended constant set. In the case of integer domain arguments of the

6

preferable example are being replaced by elements of the extended example
set, by their predcessors as well as ancestors.

In our example, the constant new has been added so that the set of constants
contains two constants, {new, a} and the nearmisses

not last(new,[a]), not last(a,[]), not last(a,[new,a]),
not last(a,[a,new])

are generated one-by-one. Whenever a new nearmiss has been built, it is
added into the example set as the negative example and learning algorithm
is called. If no solution is found that nearmiss is replaced by another one.

3.4 Basic WiM algorithm

The basic WiM algorithm is as follows:

Given

• Specification of the target predicate P (types and modes of its ar-
guments, names and arity of background knowledge predicates to be
called)

• Definitions of background knowledge predicates

• 2nd order schema of the target predicate P . P must be a specialization
of the schema.

• constraints: maximal length of clauses, maximal number of free vari-
ables in the target predicate, maximal depth of arguments in a clause
head

• Example set E

Algorithm:

(1)
Init bias.
loop

Learn predicate P using the example set E.
if suceeded then

Simplify terms in the heads of clauses of P .
Call for truth maintenance system to accept/reject
the suggested definition P .
if accepted then exit(P).

7

else shift bias.
if no more shift of bias then exit(false) .

pool

(2)
if (1) exited with false
loop

Generate assumption A.
if no more assumptions then exit false.
Add the assumption A to the learning set.
Call (1) with the extended example set E ∪A.
if (1) suceeded then exit(P).
else delete the assumption A from the learning set.

pool

3.5 Term simplification in heads of clauses

WiM needs at least one uncovered positive example to introduce a new
clause. It may happen that the clause is not the simpliest one. E.g. for
delete/3 predicate and the example delete(1,[2,1],[2]) we have got the
base clause in the form

delete(X, [Y,X|Z], [Y |Z]) : −true

In this postlearning phase, all terms in all heads of clauses are being replaced
by all terms which are not more complex that the original term. Only the
existing variable names are allowed. For this particular clause, WiM tries to
replace the term [Y,X|Z] by terms of the form of [, |], [|], and the term
[Y |Z] by [|], so that variables which appear in the new terms are of correct
types. It means that [Y,X|Z] can be replaced by [X,Y |Z], [Y |Z], [X|Z], Z
and the term [Y |Z] can be replaced by [X|Z], Z. New candidate version of
the considered clause is accepted as an adequate simplification of the original
clause if after replacing the original clause by the new candidate version the
target predicate definition is correct and consistent with the whole example
set. If so, the more complex term is replaced and the algorithm continues
until there is no term to simplify. In our example we receive

delete(X, [X|Z], Z) : −true

8

3.6 Minimal description length principle

The minimal description length principle can be formulated as follows [8].

The best theory to explain a set of data is the one which mini-
mizes the sum of

• the length, in bits, of the description of the theory; and

• the length, in bits, of data when encoded with the help of
the theory.

If we consider only calls of the background knowledge predicates but not
their source code, it can be easily shown that for the predicates in Sec-
tion 4. WiM will find a correct and complete solution of the min-
imal description length in the given search space if a solution exists. It
is still an open question whether each predicate definition reached by WiM

matches the minimal description length.

4 Experimental results

WiM was examined on the following predicates:

• member(E,L) iff the element E appears in the list L;

• concat(L1, E, L2) iff the list L2 is equal to the list L1 appended by
the element E;

• append(L1, L2, L3) iff the list L3 is equal to the list L1 appended by
the list L3;

• delete(E,L1, L2) iff the list L2 is the non-empty list L1 without its
first (existing) occurrence of E;

• reverseConcat(L1, L2) iff the list L2 has the same elements as the list
L1 but in the reverse order. It uses concat(L1, E, L2) predicate which
appends the element E to the list L1;

• reverseAppend(L1, L2) is the same as reverseConcat(L1, L2) but us-
ing
append(L1, L2, L3);

• last(E,L) iff the element E is the last element of the list L;

9

• split(L1, L2, L3) iff the lists L2 and L3 contain only odd and even
elements, respectively, of the list L1.

• sublist(L1, L2) iff the list L1 is a compact subsequence of the list L2;

• union(S1, S2, S3) iff the set S3 is a union of sets S1, S2;

• plus(I1, I2, I3) iff for integers I1, I2, I3 I3 = I1 + I2 holds;

• lessOrEqual(I1, I2) iff for integers I1, I2 I1 is less or equal I2;

• length(N,L) iff N is the length of the list L;

• extractNth(N,L,E) iff E is the Nth element of the list L

• quicksort(List, SortedList) iff the list Sorted is has been sorted by the
quicksort algorithm with partition/4, append/3 background knowl-
edge.

4.1 Carefully chosen example sets

Good examples were used in the experiments described in the following two
paragraphs. See Appendix B. for the used example sets.

4.1.1 Learning without assumptions

In the table bellow, we summarize the results of WiM if no assumption
was needed. The first column contains the number of the needed positive
examples. In the second column, there is the number of potential solutions
which were tested on the example set.

Number of Number of
positive examples hypotheses tested

member 2 3
concat 2 6
append 3 6
reverseConcat 2 5
reverseAppend 3 14
split 2 7
sublist 4 15
union 4 15
quicksort 7 2307

Table 1: WiM results if no assumption was needed

10

For all predicates but quicksort/2 we used only positive examples. CPU
time was less than 5 seconds on SUN Sparc. In the case of quicksort/2, the
example set consists of 4 positive and 3 negative examples and the learning
session lasted 5 min CPU time.

4.1.2 Learning with one assumption

The following table contains the results of WiM if an assumption was gen-
erated. The contents of the table is the same as above, the final example
sets consist of 2 or 3 positive examples and 1 negative example generated
by the system as the assumption and afterwards verified by the user. For
the complete example sets see Appendix B.

Number of Number of
positive examples hypotheses tested

append 2 171
delete 2 21
last 2 99
plus 3 54
lessOrEqual 3 66
length 3 20
extractNth 3 27

Table 2: WiM results with 1 membership query

If generating assumptions, CPU time varied from 6 seconds - for last/2
predicate - to 46 seconds for append/3.

4.1.3 Discusion of results

For predicates like last/2, delete/2 WiM is not capable to learn the
correct target definitions from positive examples only. For all predicates
above, we need at worst as many positive examples as CRUSTACEAN
and less then FILP [3] (see [5] for the comparison) with no need of negative
examples. The number of queries to the user is less than for FILP (see [3]
for more information). MIS is not able to learn from only positive examples.
FOIL needs much more positive examples to succeed. Also the close world
assumption employed by FOIL is not appropiate for learning from a small
example set.

11

4.2 Randomly chosen example set

In [1] a method for testing learners using randomly chosen examples has
been introduced. Terms of types of lists and integers were generated ran-
domly from a uniform distribution on structure depth 0..4. As there is a
dependency betwen arguments, some of them have been derived (e.g. the
first argument of member/2, the first argument of sublist/2 etc.). In op-
posite to [1], we don’t use negative examples at all. No assumptions were
generated and no interaction with user was allowed.

Following that method, we receive for WiM the following results. All cou-
ples and all triples of examples from the domain defined above were taken
in account. The numbers in the table bellow means on how many couples or
triples of positive examples WiM succeeds to find the correct target predi-
cate.

CRUSTACEAN needs more positive examples than WiM and generate,
as a rule, more than one solution. It needs to have negative examples.

2 positive examples 3 positive examples
member
delete 64% 90%
extractNth
concat
reverse
last 78% 92%
split
length
append
plus - 93%
lessOrEqual

Table 3: WiM results on randomly chosen examples

The bottom-left part of the table is empty because WiM is not capable to
learn those predicates from only 2 positive examples.

If we take into account that it is a human who is a source of examples,
it is unlikely that s/he defines two examples of the same structure, e.g.
for member/2 predicate member(a,[a]), member(b,[b]) . Applying that
assumption, the accuracy in the upper-left field will increase to 81%. A
slight accuracy increase can be seen for the rest of table, too.

12

5 Conclusion

In the area of the inductive synthesis of logic programs it is the small num-
ber of examples which is crucial. We have shown that the classical MIS-like
architecture can be adapted using techniques described in ILP literature so
that we reach very good results if to compare with other ILP systems. We
described the top-down ILP programWiM and the results obtained through
it. Even though it is in principal interactive, not more that one member-
ship query is enough to receive the correct target program. For many of
predicate definitions no interaction with user is needed at all. WiM has
higher efficiency of learning as well as smaller dependency on quality of the
example set in comparison to several well-known ILP programs.

It would be interesting to compare WiM with the BMWk methodology
[7]. WiM doesn’t need to have examples on the same computational chain.
WiM , too, needs less examples for simple list processing predicates. How-
ever, for predicates more complex than those used as ILP benchmarks it has
not been verified. Comparison with other popular ILP programs should be
done, too.

We see the direction for future work mainly in weakening bias, learning mul-
tiple predicates and exploiting large background knowledge. In the current
version it is the definition of argument modes which plays the significant
role. However, there are some areas where it is unrealistic to ask user for
mode definitions. Even the mode definitions for member/2 predicate are litle
unexpected, aren’t they? Learning multiple predicates is a very challenge.
Actually the ancient MIS could that. Background knowledge(BK) predi-
cates , as for most (if not all) ILP programs are always well-chosen, i.e. BK
consists of almost only the needed predicates. In real-world applications it
looks little different.
It is still an open question whether and under what condition each predicate
definition reached by WiM matches the minimal description length.

Acknowledgments

We would like to thank Pierre Flener, Norbert Fuchs, Alípio Jorge and Guil-
laume LeBlanc for stimulating discussions and the anonymous referee for his
suggestions. Thanks for comments on the early version of this paper are due
to Pavel Brázdil. The significant part of this work was done during a stay
of the first author in Porto, thanks to TEMPUS IM grant.

13

References

[1] Aha D.W., Lapointe S., Ling C.X., and Matwin S.: Inverting implica-
tion with small training sets. In Bergadano F., De Raedt L. (Eds.) Proc.
of ECML’94, Catania, LNCS 784, pp. 31–48, Springer Verlag 1994.

[2] Bondarenko A., Toni F., and Kowalski R.A.: An assumption-based
framework for non-monotonic reasoning. In Perreira L.M., Nerode A.
(Eds.) Proc. of the 2nd Int’l Workshop on Logic Programming and Non-
Monotonic Reasoning, Lisbon, 1993, pp. 171–189, MIT Press, 1993.

[3] Bergadano F. and Gunetti D.: An interactive system to learn functional
logic programs. Proc. of IJCAI’93, Chambéry, pp. 1044–1049.

[4] De Raedt, L.: Interactive Concept-Learning. PhD Thesis, Catholic Uni-
versity Leuven, Belgium 1991.

[5] Flener P., Popelínský L.: On the use of inductive reasoning in program
synthesis: Prejudice and prospects. Proc. of the 4th Int’l Workshop
on Logic Program Synthesis and Transformation (LOPSTR’94), Pisa,
Italy, 1994.

[6] Flener P., Popelínský L. Štěpánková O.: ILP nad Automatic Program-
ming: Towards three approaches. Proc. of 4th Workshop on Inductive
Logic Programming (ILP’94), Bad Honeff, Germany, 1994.

[7] Le Blanc G.: BMWk Revisited. In Bergadano F., De Raedt L. (eds):
Proc. of ECML’94, Catania, pages 183-197. LNCS 784, Springer Verlag,
1994.

[8] Li M., Vitanyi P.: An Introduction to Kolmogorov Complexity And Its
Applications. Springer Verlag New York 1993.

[9] Grobelnik M.: Induction of Prolog programs with Markus. In Deville
Y.(ed.) Proceedings of LOPSTR’93. Workshops in Computing Series,
pages 57-63,Springer-Verlag, 1994.

[10] Grobelnik M.: Declarative Bias in Markus ILP system. Working notes
of the ECML’94 Workshop on Declarative Bias, Catania, 1994. (chair-
person Rouveirol C.)

[11] Kakas A.C., Kowalski R.A., and Toni F.: Abductive logic programming.
Journal of Logic and Computation 2, 6, pp. 719-770, 1992.

14

[12] Popelínský L.: Towards Program Synthesis From A Small Example
Set. In: Proceedings of 10th Workhop on Logic Programming WLP’94,
Zurich, Switzerland, 1994.

[13] Shapiro Y.: Algorithmic Program Debugging. MIT Press, 1983.

Appendix A: Number of admissible sequences of variables

A sequence of variables {X1, ...,Xi} is admissible if no variable Xj+1 can
appear before all variables {X1, ...,Xj} have been used.

In order to count the number of admissible sequences of variables of a given
length, it is useful to introduce a function h(P,N). This function specifies
the exact number of those admissible sequences of variables of the length N
in which just P variables appear. Obviously, this function is defined only
for P ≤ N (all P variables have to be present in the considered sequence).
This function is easy to evaluate for distinguished values of its arguments,
namely

h(1, N) = 1
h(P,P) = 1

Number of admissible seguences of the length N with just 2 variables is
given as a sum of cardinalities of those sets of admissible sequences which
differ by the positions of the first occurence of X2. Variable X2 can appear
first on the position 2, and then on all higher positions, i.e.

h(2, N) = 2N−2 + 2N−3 + ...+ 1 = 2N−1 − 1

For other values of its arguments the function h can be defined recursively
as follows

h(P,N) = P ∗ h(P,N − 1) + h(P − 1, N − 1).

The number NC(N) of all admissible sequences of variables of the length
N is then given as a sum

NC(N) = h(1, N) + h(2, N) + h(3, N) + + h(N − 1, N) +
h(N,N).

and the number of all sequences of K variables of the length N is given as
a sum

NC(K,N) = h(1, N) + h(2, N) + ...+ h(K,N).

15

Obviously, for N > 1 there holds

NC(N) > h(2, N) + 1 = 2N−1

The function NC(N) has clearly an exponential character.

Appendix B: Example sets

Definitions of predicates in the form of

pred_def(Predicate/Arity, <arguments types and modes>,
<background knowledge predicate to use> , []).

and examples of the given predicate follows.

pred_def(member/2, [-x, +xl], [member/2], []).
ex(member(a,[a]),true).
ex(member(c,[b,c]),true).

pred_def(concat/3, [+xl, +x, -xl], [concat/3], []).
ex(conc([],a,[a]), true).
ex(conc([b],c,[b,c]), true).
ex(conc([b,c],d,[b,c,d]), true).

pred_def(append/3, [+xl, +xl, -xl], [append/3], []).
ex(append([], [a], [a]), true).
ex(append([b , c], [d , e], [b, c, d, e]), true).
ex(append([f], [g , h], [f ,g, h]), true).

pred_def(delete/3, [+x, +xl, -xl], [delete/3], []).
ex(delete(1,[2,1],[2]),true).
ex(delete(3,[4,5,3,6],[4,5,6]),true).
Assumption: delete(2,[2,1],[2]),false

pred_def(reverseConcat/2, [+xl, -xl], [cconc/3, reverseConcat/2],
[]).
ex(reverseConcat([], []), true).
ex(reverseConcat([a, b, c], [c, b, a]), true).

pred_def(reverseAppend/2, [+xl, -xl],
[ssingleton/2, append/3, reverseAppend/2], []).

16

ex(reverseAppend([1,3,4],[4,3,1]), true).
ex(reverseAppend([2,0],[0,2]),true).
ex(reverseAppend([], []), true).

pred_def(last/2, [-x, +xl], [last/2], []).
ex(last(a,[a]),true).
ex(last(b,[a,b]),true).
Assumption: last(a,[a,b]),false

pred_def(split/3, [+xl, -xl, -xl], [split/3], []).
ex(split([x,y], [x], [y]), true).
ex(split([1,2,3,4], [1,3], [2,4]), true).

pred_def(sublist/2, [-xl, +xl], [sublist/2], []).
ex(sublist([],[]),true).
ex(sublist([c, d], [b, c, d, a]), true).
ex(sublist([c, d], [c, d, b, a]), true).
ex(sublist([a], [b, a]), true).

pred_def(union/3, [+xl, +xl, -xl], [member/2, union/3], []).
ex(union([],[1,2,3],[1,2,3]), true).
ex(union([1,3],[2,3,4],[1,2,3,4]), true).
ex(union([1,2,3,4],[2,3,5],[1,4,2,3,5]), true).
ex(union([1,2,3],[3,4,5],[1,2,3,4,5]), true).

pred_def(plus/3, [+int, +int, -int], [plus/3], []).
ex(plus(0,s(0),s(0)), true).
ex(plus(s(s(0)),s(s(0)),s(s(s(s(0))))), true).
ex(plus(s(0),s(s(0)),s(s(s(0)))), true).
Assumption: plus(0,0,s(0)), false

pred_def(leq/2, [+int, +int], [leq/2], []).
ex(leq(0,s(0)), true).
ex(leq(s(s(s(0))),s(s(s(s(0))))), true).
ex(leq(s(s(0)),s(s(s(0)))), true).
Assumption: leq(s(s(s(s(0)))),s(0)) , false

pred_def(length/2, [+xl, -int], [length/2, is0/1, ppl/3], []).
ex(length([], 0), true).
ex(length([b, c], s(s(0))), true).
ex(length([f], s(0)), true).

17

Assumption: length([0],0) , false

pred_def(extractNth/3, [-int, +xl, -xl], [extractNth/3], []).
ex(extractNth(s(0), [s(s(s(0)))], []), true).
ex(extractNth(s(0), [s(s(0)), s(0), (s(s(0)))], [s(0), (s(s(0)))]),

true).
ex(extractNth(s(s(0)), [s(s(0)), s(0), (s(s(0)))],

[s(s(0)), (s(s(0)))]), true).

Assumption: extractNth(s(s(s(0))),[s(s(s(0)))],[]) , false

18

Copyright c© 1995, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

