
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

On Biases in Inductive Data Engineering

by

Jana Kuklová
Luboš Popelínský

FI MU Report Series FIMU-RS-95-01

Copyright c© 1995, FI MU March 1995



On Biases in Inductive Data Engineering

Jana Kuklová, Luboš Popelínský
Faculty of Informatics

Masaryk University, Brno
E-mail: {jana,popel}@fi.muni.cz

1 Introduction

An utilization of inductive reasoning [Flene94] in the database area looks
promising [Agar93], [DeRae92], [DeRae93], [Flach93], [Kivi92], [Savnik93],
[Manni93]. Inductive data engineering, as introduced in [Flach93], means a
process of restructuring database by means of induction.

In our work we focus on exploitation of inductive logic programming for
database schema design [Roll92]. We propose modifications of INDEX, de-
scribed in [Flach93], namely new biases for narrowing search space, as well
as stopping criterion.

In this article the case of a single relation is described.

2 Example

Let we have a relation building/6 with attributes

Address, FlatNumber, Rent, NumRooms, Garden, Style

described by examples

building(a1,1,100,3,n,s1)
building(a1,2,100,2,n,s1)
building(a1,3,200,5,n,s1)
building(a2,1,100,4,n,s2)

1



building(a2,2,200,5,n,s2)
building(a2,3,200,2,n,s2)
building(a2,4,100,2,n,s2)
building(a3,1,200,4,n,s1)
building(a3,2,200,3,n,s1)
building(a3,3,300,5,n,s1)
building(a4,1,400,5,y,s3)
building(a5,1,200,6,y,s4)
building(a6,1,700,5,y,s3)
building(a7,1,600,7,y,s5)
building(a8,1,400,4,y,s4)
building(a9,1,400,5,n,s1)
building(a9,2,500,5,n,s1)
building(a9,3,500,5,n,s1)
building(a9,4,600,5,n,s1)
building(a10,1,400,7,y,s5)

The intended decomposition is

building(Address, FlatNumber, Rent, NumRooms, Garden, Style):-
house(Address, Garden, Style),
flat(Address, FlatNumber, Rent, NumRooms).

i.e. there are attributes related only to houses and flats respectively. More-
over, house/3 relation can be decomposed as follows

house(Address, Garden, Style) :-
houseStyl(Address,Style),
houseGarden(Style, Garden).

3 INDEX

INDEX, a program for inducing attribute dependencies and an interactive
decomposition of database relations, is described elsewhere [Flach93]. Here
we only describe some topics which are important for our task.

Definition: Given a relation R, attribute Attr2 is functionaly dependent
on attribute Attr1 (written as [Attr1]–>[Attr2]) iff whenever two tuples of R

2



agree on their Attr1-value, they also agree on their Attr2-value.

That is, at any instant in time each value of Attr1 has exactly one value of
Attr2 associated with it. The left side is called antecedent, the right one
consequent.

Definition: Given a relation R(Attr1, Attr2, Attr3), the multivalued de-
pendency [Attr1]->->[Attr2] holds in R iff the set of Attr2-values matching
a given (Attr1-value, Attr3-value) pair in R depends only on the Attr1-value
and is independent of the Attr3-value.

Both kinds of dependencies can be defined analogicaly for more than one
attributes in antecedent.

INDEX finds all both functional and multivalued dependencies which hold
on examples of the given relation. Then, user is asked to choose one of de-
pendencies which is most suitable for decomposition of the relation.

3.1 Biases in INDEX

Search space of INDEX may be limited by declaration of attributes which
may occur in consequents of dependencies.

Use of heuristics built in INDEX is another possibility. However it seems not
to be easy for a database designer to set the appropriate parameters of those
heuristics. We will not discuss it here more.

The main problem of INDEX is that, as a rule, too much dependencies is
found, and user has to know which of them to choose for building database
schema.

The solution for making database schema design easier is described in the
following sections.

4 New biases for INDEX

4.1 Restriction of the initial set of candidates

switch fd, switch mvd

3



For our purposes it was useful to propose two new switches, fd and mvd,
switching on/off the induction of functional and multivalued dependencies.
For all computation the switch mvd was off, i.e. only functional dependencies
were generated.

attributes in antecedent

As sometimes it has no sense to generate combinations of all attributes in
antecedents, we suggest to declare those attributes which are not relevant for
a given task.

However, the principal improvement of INDEX is described in the following
section.

4.2 Stopping criterion

The idea of decreasing the number of dependencies being induced is based on
the fact that the occurence of many dependencies follows from the existence
of the relation key.

The relation may contain a lot of keys, one of them is chosen as the primary
key. It is a task of designer to choose the appropriate primary key. The
system can only propose a candidate key, that is a set of attributes which
forms a key of relation.

If we know the primary key, then

• every dependence which antecendent part is a subset of primary key
corrupt the correct design of relation

• every dependence which antecendent attributes contains the primary
key is correct

More, every dependence containing a subset of the primary key on its con-
sequent part is probably correct. It implies that if we knew the primary key
we could minimize the number of generated dependencies.

Consider relation R(A1,...,An), let K is a subset of A1,...,An. K is a candidate
key of R when K satisfy following two condition: [Hugh91].

1. The value of K uniquely identifies each tuple in R.
2. No attribute in K can be discarded without destroying 1.

4



Let us formulate these conditions, actually a stopping criterion, using func-
tional dependencies. All non-key attributes of R must be functionally de-
pendent on K. INDEX generates dependencies with increasing number of
attributes in antecedents. As the next trivial statement is holds

If there is a set of attributes A, B such that [A]–>[B] then for all
sets of attributes C, [A,C]–>[B] holds.

a computation can be stopped in the moment when all attributes have ap-
peared in dependencies having been induced. The candidate key is formed
by a set of all attributes appearing in antecedents. A confirmation that the
candidate key found is a primary key is up to designer.

5 Example - 2nd part

Let us consider the relation building/6 mentioned above. INDEX finds 77
dependencies for this relation. For finding key it is enough to generate only
first 5 dependencies. (switch mvd off).

* building:[adr]–>[garden]
building:[styl]–>[garden]

* building:[adr]–>[styl]
* building:[adr,f_num]–>[rent]
* building:[adr,f_num]–>[rooms]

Dependencies signed by asterics imply that attributes [adr, f_num] form a
candidate key. Once a designer confirmed the primary key, we are looking
for dependencies which corrupt the correct design of relation. Attributes
Garden and Style depend only on a prime attribute Address, i.e. for a given
Address and for all values of FlatNumber we have just one value of Garden
and just one value of Style. It means that a redundance has appeared in
this relation. So we have to decompose the building/6 into two parts using

[adr]–>[styl,garden]

and we have

building(Address, FlatNumber, Rent, NumRooms, Garden, Style):-
house(Address, Garden, Style),
flat(Address, FlatNumber, Rent, NumRooms).

5



For house/3 relation INDEX finds the following dependencies:

* house:[adr]–>[styl]
* house:[adr]–>[garden]
house:[styl]–>[garden]

At this moment the candidate for next spliting is the dependence between
non prime attributes

[styl]–>[garden]

and the decomposition is

house(Address, Garden, Style) :-
houseStyl(Address,Style),
houseGarden(Style, Garden).

6 Conclusion

We have proposed new biases for INDEX which when used makes a database
schema design easier. At present the case of more than one relation/object is
examined for object-oriented database schema design. The future work will
concern in improving dialog between designer and system. Information about
intended database schema not included (difficult to express) in extensional
data should be exploited. Modelling interaction in some kind of modal logics
should leads to interesting results.

Acknowledgements
We would like to thank Peter Flach who enabled us to make experiments
with INDEX, as well as Pavel Brazdil who has motivated us to this work.

References

[Agar93] Agarwal R., Imielinski T, Swami A.: Mining association rules be-
tween sets of items in large databases. In Proceedings of the 1993
Int. Conf. on Management of Data SIGMOD’93, pp.207-216, 1993

6



[DeRae92] De Raedt L., Bruynooghe M.: Belief updating from integrity con-
straints and queries. Artificial Intelligence 53(2-3):291-307, Febru-
ary 1992.

[DeRae93] De Raedt L., Bruynooghe M.: A theory of clausal discovery. Pro-
ceedings of ILP’93, pages 25-40.

[Flach93] Flach P.: Predicate invention in inductive data engineering. Pro-
ceedings of ECML’93, LNAI 667, Springer-Verlag, 1993.

[Flener94] Flener P., Popelínský L.: On the Use of Inductive Reasoning in
Program Synthesis: Prejudice and Prospects. LOPSTR’94, Pisa,
Italy.

[Hugh91] Hughes J. G.: Object-Oriented Databases. Prentice Hall Interna-
tional (UK) Ltd, 1991.

[Kivi92] Kivinen J., Mannila H.: Approximate Dependency Inference from
Relations. 4th Int. Conf. on Database Theory ICDT’92, Berlin
1992, 86-98, Lecture Notes in Comp.Sci. 646, Springer-Verlag
1992.

[Manni94] Mannila H., Toivonen H., Verkamo A.I.: Improved Methods for
Finding Association Rules. Dept. of Comp. Sci. University of
Helsinki TR C-1993-65, 1993

[Roll92] Rolland C., Cauvet C.: Trends and Perspectives in Conceptual
Modeling. In: Loucopoulos P., Zicari R.(eds.): Conceptual Mod-
eling, Databases and CASE: an integrated view of information
systems development. John Wiley & Sons, 1992.

[Savnik93] Savnik I., Flach P.: Bottom-up Induction of Functi- onal De-
pendencies from Relations. In: AAAI-93 Workshop "Knowledge
Discovery in Databases", 1993.

7



Copyright c© 1995, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic


