
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

High Performance Computing in JAVA – Fact or
Fiction?

by

Václav Dvořák
Lubomír Markovič

FI MU Report Series FIMU-RS-2000-11

Copyright c© 2000, FI MU December 2000

High Performance Computing
in JAVA – Fact or Fiction ?

Václav Dvořák Lubomı́r Markovič1

Brno University of Technology Masaryk University
Faculty of Electrical Engineering Faculty of Informatics

and Computer Science Brno, Czech Republic
Brno, Czech Republic

The intent of this article is to give an overview of possibilities for build-
ing distributed/parallel applications in the JAVA language and to judge the
suitability of some of them for high performance computing. In the first part
different approaches and libraries are presented and in the second part of this
article, RMI, HORB and CORBA libraries are compared to direct commu-
nication over sockets. Gauss–Jordan algorithm for computation a system of
linear equations was used to test these libraries.

Overview of basic approaches

Different approaches for building parallel/distributed applications in JAVA
are described in next sections.

Threaded Approach

Java has the build-in support for threads. There are usual constructs for
manipulating threads (fork, join, suspend, . . .) too. The threaded ap-
proach is used mainly to improve the latency of programs. Dividing the high

1Supported by Czech Grant Agency, contract no. GAČR 201/98/0532.

1

performance-computing problem into several threads has the sense only for
multi-processor machines, because on single-processor machine the threads
must share the one processor with some additional overhead for thread’s
alternation.

Networks of Workstations Approach

There is a natural attempt to have the development of distributed applica-
tions as easy as possible on one side and use the power of all computers in
clusters (or some net) on the other side. There exist libraries that try to join
these two attempts. Shortly speaking, if you have a thread-based applica-
tion and transform it in some ,,easy” way this systems (NoW) are able to run
some threads on different computers in predefined parallel virtual machine.
Typically this system and its libraries must simulate the shared memory over
the computers in virtual machine and there must be also some new language
keywords for specifying the remote-able threads, so some special preprocessor
must be included in these systems. We can name two libraries: JavaParty
and JavaNOW. JavaParty is publicly available on the internet [6], JavaNOW
can be obtained by contacting the author [7].

Socket Based Communication Approach

There is a support for a basic communication over sockets in the standard
Java’s package. The communication may be realized through TCP (Trans-
mission Control Protocol) or UDP (User Datagram Protocol). TCP offers
reliable environment, where we are sure that data will be send correctly, but
its overhead is bigger. UDP doesn’t guarantee the correct transport of data,
but its overhead is minimal. In our example (described below) we have used
the UDP, but there is a strong suggestion of a well-balanced system, where
each server is listening when someone is sending some data, otherwise data
will be lost.

MPI Approach

MPI (Message Passing Interface) is a standard of MPIF (Message Passing
Interface Forum) for communication between applications based on message
passing approach. MPI standardizes the interfaces of libraries for message
passing. There are implementations of this standard in C, C++ and there

2

Figure 1: Basic RMI application structure

is also a natural attempt to translate it to the JAVA as well. There are
three main approaches how to do it. The first way tries to implement this
standard in the pure JAVA, but the libraries’ performance is very small. The
second way tries to wrap existing C or C++ libraries by JAVA code using
NMI (Native Method Invocation) but these JAVA libraries are portable as
well as the underlying native library. The last approach extends the JAVA
Virtual Machine Specification so special JAVA compilers and interpreters are
needed. The performance is, thanks to special JAVA instructions (and new
language keywords) better but the portability is disputatious.

RMI Approach

RMI (Remote Method Invocation) is the JAVA standard for executing meth-
ods of remote objects. Sometime it’s called as a JAVA version of RPC (Re-
mote Procedure Call). RMI enables any application (client) to call the meth-
ods of a remote server, this server is in fact a remote object and the client can
work with it as it’s a local object. It’s achieved by proxy objects that hide the
needed communication to the client. The client can gain information needed
to contact the server by asking the special name-service (rmiregistry) pro-
gram that must run on every computer where some RMI server runs. The
typical application’s structure is shown in the picture 1. Details of RMI stan-
dard are behind the scope of this article and can be acquired in the sources
listened in the references (especially [5]).

3

HORB Approach

HORB is the JAVA library that provides the same things as RMI does and
something more. This library is developed and maintained by Dr. Hira-
no Satoshi, Electrotechnical Laboratory and NJK Corporation. The role of
rmiregistry plays the horb (HORB daemon) here. In this approach we can
call methods of a remote object that is not just running. The HORB daemon
can create a new instance of this remote object (this approach is called ”gene-
ration model” in opposite to ”connection model” in RMI).2 HORB provides
the connection model as well. Shortly speaking we can say that implemen-
tation of distributed applications in HORB is more straightforward than in
RMI. More details can be found for example in [4].

CORBA Approach

CORBA (Common Object Request Broker Architecture) is the standard of
OMG (Object Management Group) for heterogeneous distributed applica-
tions based on object-oriented paradigm. It’s very complex standard and a
detailed description is beyond the scope of this article (specifications can be
found for example in [8]). For our purposes it’s important that the archi-
tecture of the program is very similar to RMI or HORB version. The only
significant difference is that there is no rmiregistry or horb demon on each
computer where some server resists but there is only one nameserver that
provides for all servers nearly the same things as the previous ones. The
typical application structure is shown in the picture 2.

EJB Approach

We must mention another approach yet to have a complete picture. Sun’s
Enterprise Java Beans (EJB) component framework provides services for
transactions, security, persistence, The core of this approach is based
on creating objects that are incorporated into EJB environment. This envi-
ronment provides standardized interfaces to many services so the developer
needn’t to self-develop many often-used important services but can just use
them. This approach provides robust environment for distributing computing
maximally simplifying creating new enterprise objects (remote servers).

2This feature is also included in RMI since 1.2 version

4

Figure 2: Basic CORBA application structure

Measurement of Performance

The main purpose of this article is to judge the suitability of RMI, HORB
and CORBA approaches for high performance computing, because they are
the most commonly used for distributed applications and provides good pro-
gramming environment. A demonstrating application was created for this
approaches and their efficiency was compared to each other and mainly to
the application based only upon UDP sockets. The motivation is to show
whether these libraries can substitute, sometimes hardly to program, di-
rect communication over the sockets. The programmer needn’t to deal with
direct-net communication using these libraries and can concentrate them-
selves to a problem he solves.

Computation Environment Used

All computers used in this experiment had the following configuration:

Hardware: 10 Sun Ultra 5, UltraSparc IIi 270 MHz, 64 MB RAM

Software: Solaris 2.6

Router: Extreme Networks Summit 48/L3, 2x1000BASE-SX, 48x10/100
BASE-T

JAVA: version 1.2.2

5

HORB: version 2.0

ORBacus: version 3.3

Algorithm for Solving a System of Linear Equations

An application used to measure the performance was the implementation of
algorithm for solving a system of linear equations. We describe the parallel
version of this algorithm at first.

Let’s have a squared matrix A(n × n) with elements aij and a vector
v(n) of right sides. Our goal is to transform the matrix to have nonzero
values only on the diagonal. We can use the Gauss-Jordan algorithm that is
implemented by the following code:

for i:=1 to n do
for j:=1 to n, (j 6= i) do

vj:=vj-viaji/aii
for k:=1 to n do

ajk:=ajk-aikaji/aii

This algorithm can be parallelized by dividing the matrix (and vector as
well) into several (equally big) pieces. Each of these pieces will be maintained
and computed by different server (thread, process). The only thing this
servers need to inform each other is the pivot row. So always the only one
server is the owner of the pivot row at every moment during this program’s
run and this server (we will call it ”owner”) must send the pivot row to the
other ones (figure 3). It’s also useful to realize that it’s not needed to send
the whole row all the time, because some number of first elements in the
pivot row will have to have the value of zero. It enables us to optimize the
communication.

Applications’ Structure

In RMI, HORB and CORBA version there are separate servers for each part
of the matrix. Each server supports the following interface:

module Equations {

6

Figure 3: Parallelization of the algorithm

typedef sequence<string> stringSeq;

typedef sequence<float> floatSeq;

interface EqSolver {

void setParams(in long Id, in stringSeq Addresses,

in long MatrixDim);

void start();

void putPivot(in long PivotId, in floatSeq Row);

};

};

setParams method serves to inform the server about the dimension of the
matrix being solved and about the locality of other cooperating servers by
specifying their names in Addresses parameter). Parameter Id says what’s
,,my” index. When this method is called, the server initializes the adequate
part of matrix (by random values) and prepares communication channels to
other servers (by contacting appropriate name-server to gain references to
them).

start method starts the computation itself.

7

Figure 4: RMI application structure

When the owner (server that has the pivot row) wants to send the pivot
to others, it uses the putPivot method to do it (PivotId says who is sending
and Row is the pivot).

We need also another program (Starter) that is responsible for setting
all servers by calling the setParams method and for starting the computa-
tion by calling the start method for all servers. The Starter is needed
only for initial synchronization of servers (we must assure that all servers are
registered in name-server when others are asking for them). The starter can
be omitted if it’s done in some other way (for example by some adequate
lag). The whole application structures for RMI and CORBA are shown in
figures 4 and 5. In socket version we have a separate server for each part
of the matrix as well, but there is no explicit interface. Two threads run in
each server, one for computation (as well as in previous ones) and one for
listening the communication channel (it’s created automatically for each com-
munication in previous approaches). There must be the first synchronization
communication step before the computation can begin to assure that every
server is properly instantiated. The Starter plays this role. The UDP (User
Datagram Protocol) was used. The basic structure is shown in figure 6).

8

Figure 5: CORBA application structure

Figure 6: Socket application structure

9

Way of Measurement

All remote calls are synchronous (except the socket version), it means, the
caller need to wait until the receiver receives the message (pivot here). All
versions were implemented as non-blocking, it means, in all servers there is
a buffer to store incoming messages, so the caller needn’t to wait until the
receiver is in the stage of computing when it needs the message (pivot row).

The measurement was done by calling System.currentTimeMillis()

function of Java package. It returns the system time with the precision
in milliseconds. This function was called at the beginning and the end of
the computation (call of the start method), so the time of instantiating the
matrix (or the appropriate piece of matrix) and communication channels was
not included. Of course it’s not very precise way to do some measurement,
because it’s hardly dependant on well-balanced system, where only a few
other processes are running to influent the time minimally.

The measurement was done on matrixes (400x400), (800x800), (1600x-
1600) that were computed by 1, 2, 4, 8 servers.

Way of Computing The Performance

The speedup was computed by the next equation:

Sp = Ts/Tp

Where Ts is the time of one-process version (it’s the sequential time) and
Tp is the time of p-process version. The Ts should be the time of the best
known sequential algorithm, but for our purposes it’s not so important.

The efficiency was computed by this equation:

E = Sp/p

The efficiency shows us the average process(or) utilization.

Socket Version

The communication over the protocol UDP was used in this version. I repeat
again that there is a strong suggestion of the same computation speed of
clients in UDP version. Every non-owner client must listen when the owner
is sending the data, otherwise the data will be lost and synchronization of

10

Figure 7: Socket version – Time

clients will fail. The results are in the next graphs: figure 7, 8 and 9 (times
are in miliseconds).

RMI Version

Results for this version are in the next graphs: figure 10, 11 and 12 .

HORB Version

Results for this version are in the next graphs: figure 13, 14 and 15 .

CORBA Version – ORBacus

The implementation of CORBA named ORBacus from O.O.C. Inc. was used.
Results for this version are in the next graphs: figure 16, 17 and 18 .

11

Figure 8: Socket version – Speedup

Figure 9: Socket version – Efficiency

12

Figure 10: RMI version – Time

Figure 11: RMI version – Speedup

13

Figure 12: RMI version – Efficiency

Figure 13: HORB version – Time

14

Figure 14: HORB version – Speedup

Figure 15: HORB version – Efficiency

15

Figure 16: CORBA version – Time

Figure 17: CORBA version – Speedup

16

Figure 18: CORBA version – Efficiency

Interpreting Results

I note that there is a logarithmical scale on y-axe in some graphs. In all
versions also the time of computation of one process was measured. In this
situations the communication’s or library’s overhead shouldn’t influence the
time and really the corresponding times are nearly the same in all tested
libraries, so the results can be used to compare libraries to each other.

In socket version we can see a tendency of the time to decrease (except 4-
server version — it’s quite interesting, but it’s difficult to estimate a reason).
The consequence is that the speedup tends to grow but the efficiency decline.
The efficiency doesn’t depend on the dimension of matrixes but only on the
processes’ count.

In RMI version we can see different graphs for different dimensions of
matrixes. There is no speedup for matrix 400x400. Parallelization of the
algorithm has a little effect for matrixes 800x800, but we can see stronger
speedup for matrixes 1600x1600. The graph of efficiency shows the same
situation as in socket version — using two processes is the most effective.

The HORB and CORBA versions are very similar to RMI, the times differ
less or more but the general tendencies are very similar.

We can see now that all tested libraries has bigger communication over-
head than communication just over sockets. The bigger matrixes we calculate

17

the less impact this overhead has on the performance, so for bigger matrixes
we can see a speedup. This speedup is not big enough so the efficiency of a
parallelization is much smaller than in socket version.

There is also another aspect we must know to understand these libraries in
detail. The thing is how these libraries (all ones do it in the same way) handle
the incoming message (call of remote method). When an incoming message
arises a new thread is automatically created to handle it. So it’s possible
to handle more than one message in one time. In our situation only two
threads should be presented on the servers – computation and communication
thread (as in socket version), since there can’t be two remote calls on one
server in one time in our scenario. But I have found out there are often
more than two threads on the servers. Since all calls of remote methods
in these libraries are synchronous it means that a garbage collector doesn’t
clean old communication threads quick enough and so they could affect the
performance of computation.

I have found out another interesting result during testing the libraries. In
first implementations I have wrapped the access to the buffer by the critical
sections since both threads (communication and computation) can access it.
So the computation thread needed to go through the critical section when
it wanted to gain any value of pivot rows. The times of computations were
very different from presented ones, for example the computation of eight-
processes version on 1600− 1600 matrix took 755 seconds. Than I realized
that communication thread access the row of the buffer only once (when
it puts the pivot in the buffer) so the computation thread needn’t to go
through the critical section every time it needs some value. When I rewrite
the program a bit the times improved significantly. It means that critical
sections are very expensive expressions in Java and the programmer should
use them carefully when he wants to gain the best performance.

Conclusion

As we could see the Java language has support for creating distributed/-
parallel applications. If we use only socket-based communication we can
gain some speedup but efficiency is decreasing. The main focus of this ar-
ticle was to discover the ability of some standards for creating distributed
applications to be used for high performance computing. We have shown that
these libraries are suitable for these purposes only for problems where their

18

bigger communication overhead is ”melted” in the time of computation. But
the speedup and also the efficiency of these libraries is much smaller against
the socket version. The main domain of these standards is already in dis-
tributed applications for which the speed of response of servers is sufficient.
They provide sophisticated environment that enables to create well designed
applications and don’t force the programmer to deal with a direct commu-
nication (that is shade off by these libraries) and so enable to create huge
distributed applications.

19

Bibliography

[1] Doug Lea; Concurrent programming in JAVA : design principles and
patterns; Addison–Wesley Logman, Inc.; 1997

[2] Sun Microsystems, Inc.; www.sun.com; java.sun.com; 2000

[3] Object Oriented Concepts, Inc.; www.ooc.com; 2000

[4] HORB specification; www.horb.org; 2000

[5] JAVA specification; java.sun.com; 2000

[6] JavaParty specification; wwwipd.ira.uka.de/JavaParty; 2000

[7] JavaNoW specification; www.plexobject.com/software/javanow/java-
now.html; 2000

[8] CORBA specification; www.omg.org; 2000

20

Copyright c© 2000, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

