
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Distributed LTL Model-Checking in SPIN

by

Jiři Barnat
Luboš Brim

Jitka Stříbrná

FI MU Report Series FIMU-RS-2000-10

Copyright c© 2000, FI MU December 2000

Distributed LTL Model-Checking in SPIN∗

J. Barnat, L. Brim and J. Střı́brná

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic

Abstract

Distributed version of the SPIN model checker has not been extended
to allow distributed model-checking of LTL formulas. This paper ex-
plores the possibility of performing nested depth first search algo-
rithm in distributed SPIN. A distributed version of the algorithm is
presented, and its complexity is discussed.

1 Introduction

Verification of complex concurrent systems requires techniques to avoid
the state-explosion problem. Several methods to overcome this barrier
have been proposed and successfully implemented in automatic verifica-
tion tools. As a matter of fact, in application of such tools to practical ver-
ification problems the computational power available (memory and time)
is the main limiting factor. Recently, some attempts to use multiprocessors
and networks of workstations have been undertaken.

In [UD97] the authors described a parallel version of the verifier Murϕ.
The table of all reached states is partitioned over the nodes of the parallel
machine thus allowing the table to be larger than on a single node and per-
form the explicit state enumeration in parallel. A similar approach to par-
allel/distributed version of reachability analysis has been taken in [LS99].
The distributed version of SPIN [Hol97] uses different ways to partition the
state space than Parallel Murϕ. Yet another distributed reachability algo-
rithm has been proposed in [AAC87], but has not been implemented.
∗This work has been partially supported by the Grant Agency of Czech Republic grant

No. 201/00/1023. J. Střı́brná has also been supported by GA CR grant No. 201/99/D026.

1

The authors of the distributed version of SPIN have not considered the
implementation of LTL model-checking based on nested depth first search
because their algorithm performs a non-nested depth first visit of the state
space. In this paper, we present a distributed algorithm which uses nested
depth first visits to check LTL formulas. The basic idea is as follows. The al-
gorithm starts to explore the state space in the same way as the distributed
SPIN does, that is it uses (non-nested) distributed depth first visits. When a
nested DFS procedure should be started for an accepting state of the Büchi
automaton, called here a seed, the seed is remembered in a special data
structure (dependence structure), nested DFS procedure is not started and
the algorithm continues its distributed search. Nested DFS procedures for
seeds are started separately in appropriate order given by the dependency
structure and only one nested DFS procedure can be started at a time. The
algorithm thus performs a limited nested depth first search and requires
some synchronisations during its execution. Our aim was to experimen-
tally explore how much will the synchronisation influence the overall be-
haviour of the tool. To our surprise, even using this very simple method
one is able to deal with verification problems larger that those that can be
analysed with a single workstation running the standard (non-distributed)
version of SPIN.

The experimental version of the algorithm has been implemented and a
series of preliminary experiments has been performed on a cluster of nine
PC based Linux workstations interconnected with a 100Mbps Ethernet and
using MPI library. We intent to report on the experimental work separately.

The rest of the paper is organised as follows. We start with a section
which briefly describes the distributed version of SPIN. The following sec-
tion explores in more detail the main reasons why it is difficult to extend
directly the distributed SPIN to check LTL formulas and also suggests some
possible solution. Then we describe the additional data structures required
by our algorithm and present the pseudo-code of the algorithm. Finally,
complexity and effectiveness of the algorithm are discussed.

2 Distributed SPIN

In this section we briefly summarise the main idea of the distributed ver-
sion of SPIN as presented in [LS99]. The algorithm partitions the state space
into subsets according to the number of network nodes (computers). Each
node is responsible for its own part of the state space. When a node com-
putes a new state, first it checks (using the procedure Partition(s)) if

2

the state belongs to its own state subset or to the subset of another node. If
the state is local, the node continues locally, otherwise a message contain-
ing the state is sent to the owner of the state. Local computations proceed
in the depth first search manner using the procedure DFV (a slight mod-
ification of the SPINs DFS procedure). However, due to the distribution
of work, the global searching does not follow the depth first order. This is
also one of the reasons why this algorithm cannot be used for LTL model-
checking. The algorithm uses a new data structure U[i] holding the infor-
mation about pending requests on the node i . The distributed algorithm
terminates when all the U[i] queues are empty and all nodes are idle. To
detect termination a manager process is used. Each node sends to the man-
ager a message when it becomes idle and a different one when it becomes
busy. Correct termination requires the re-confirmation from each node and
the overall number of messages sent and received must be equal.

The pseudo-code bellow illustrates the original algorithm used in the
distributed version of SPIN.

procedure START(i, start_state);
begin

V[i] := {}; { already visited states }
U[i] := {}; { pending queue }
j := Partition(start_state);
if i = j then
begin

U[i] := U[i] + start_state;
end;
VISIT(i);

end;

procedure VISIT(i);
begin

while true do
begin

while U[i] = {} do begin
end;

S := extract(U[i]);
DFV(i,S);

end;
end;

3

procedure DFV(i, state);
begin

if not state in V then
begin

V[i] := V[i] + state;
for each sequential process P do
begin

nxt = all transitions of P enabled in state;
for each t in nxt do
begin

j = Partition(st);
if j = i then
begin

DFV(i, st);
end
else
begin

U[j] := U[j] + st;
end;

end;
end;

end;
end;

3 Problems with Extending the Distributed SPIN

When we want to adopt directly the technique of nested DFS approach
to distributed computing we encounter two main problems. By simply
allowing more nested DFS procedures for different seeds we may obtain
an incorrect result, which can be demonstrated by the following example:

G F E D@ A B C? > = <8 9 : ;B 2 // G F E D@ A B CC
3 // G F E D@ A B CD

4

xx

G F E D@ A B C? > = <8 9 : ;A

1
99ssssssss

If two nested DFS procedures were run simultaneously on both seeds A
and B then the cycle through the state B might not be detected. The out-
come depends on the relative speeds of both nested DFS procedures. In
case that the nested DFS procedure originating from A visits the state C
first, the nested DFS procedure starting in B will not be allowed to con-
tinue through C and, as a result, the cycle B,C,D,B will not get detected.

4

In general, whenever the subgraphs generated by two different seeds
do not have an empty intersection there is a possibility that some cycle
may not be detected. A simple criterion to determine whether it is possible
to run two or more nested DFS procedures in parallel is to find out whether
the corresponding intersections are empty or not. However, verifying this
condition could result in searching the entire state space which may be too
ineffective.

An obvious solution to this problem is to store for each state the infor-
mation in which nested DFS procedure the state was visited. This would
mean to store a nontrivial amount of information because each state might
be a seed, in which case the space complexity of the additional storage may
turn out to be quadratic with respect to the number of states. This is the
reason why we do not allow to run more nested DFS procedures simulta-
neously.

Another problem is the following. The original distributed version of
SPIN from [LS99] does not preserve the depth-first-search order of visited
nodes. This is not a problem in the case of reachability analysis because
the only relevant information is whether a given state was visited or not.
However, this may pose a threat to the correctness of the full model check-
ing procedure which is shown on the following example:

G F E D@ A B C? > = <8 9 : ;A
1 // G F E D@ A B CB

2 // G F E D@ A B C? > = <8 9 : ;C 3 // G F E D@ A B CD

4

yy

A correct run through this graph (when DFS procedure goes back we use a
dashed edge, runs of nested DFS are put into brackets), in which the cycle
through C is detected, is:

1, 2, 3, 4, 4, 3, [3, 4, 2, ◦]C

An incorrect run, in which the correct order of seeds is not preserved, is for
instance

1, 2, 3, 4, 4, 3, 2, 1, [1, 2, 3, 4, 4, 3, 2, 1]A, [3.3]C

A possible solution to this problem was proposed in [LS99]. It is based
on the original distributed SPIN procedure for reachability analysis and
consists of adding synchronisation to the distributed algorithm. The syn-
chronisation is done by sending suitable acknowledgements that will ex-
clude the possibility of a seed being processed before another seed that is
“below” avoiding thus incorrect runs where cycles may not be detected.

5

This solution cuts off any parallelism and so in fact does not perform better
than the plain sequential algorithm.

What we propose here is an attempt to provide a more subtle solution
that makes it possible to effectively tackle larger tasks than standard SPIN
within reasonable space limits. The idea is to reduce the necessary syn-
chronisation by using additional data structures with limited space require-
ments.

Yet another important issue that must be taken into consideration is
that a distributed version of SPIN and hence our extension is based on the
original (sequential) SPIN and it should not exclude the use of the other
main memory and complexity reduction techniques available in SPIN, such
as state compression, partial order reduction, and bit state hashing. The
approach we consider here is compatible with such mechanisms as much
as possible.

4 Distributed Model-Checking Algorithm

From the discussion in the previous section it is clear that it is crucial to
take care about the order in which individual nested DFS procedures are
performed. We need to make sure that the following invariant will always
hold for each distributed computation:

A nested DFS procedure is allowed to begin from a seed S if and only
if all seeds below S have already been tested for cycle detection.

Different states, hence also seeds, of the state space are processed on differ-
ent nodes in accordance with the partition function. Hence, it may occur
that for a seed S, a computation of the subgraph generated by S is inter-
rupted and continues on a different node. We need to keep track of such
situations.

In order to represent dependencies between states (corresponding to
computations transferred to other nodes) we shall build a dynamic struc-
ture that will keep this necessary information. We need to remember the
states which caused the computation to be transferred to other nodes and
we call them boarder states (see Figure 1). We shall also include all the seeds
that appear during the computation in order to ensure the correct order of
performed nested DFS procedures. Each node maintains its own structure
and we call it DepS (Dependency Structure).

6

4.1 Dependency Structure

Dependency structure (DepS) for a node n is a graph whose vertices are either
seeds of the local state space of the node n or the border states for the node n
indexed by a set of node names. A border state of node n is a state belonging
to the node n whose incoming or outcoming edge crosses to another node.
A border state for a node n is either the border state of node n whose pre-
decessor is a border state of another node or a border state of another node
whose successor is the border state of node n (see Figure 1 for a graphical
explanation). The starting state of the entire state space is also a vertex in
the DepS for the node running manager process. Note that a seed (or the
starting state) can be a border state. In this case it will occur only once in
the structure (as a seed and and a border state at the same time). Indexes in
vertices corresponding to border states represent the nodes from which the
computation was transferred to the border state.

N M L K K J I H G
F
E
D
C
B
A

? > = <8 9 : ;S
 AA

AA

��~ ~
~ ~
~ ~
~ ~
~ ~
~

Starting Stateoo G F E D@ A B CX

''PP
PPPP

PP Border State forNodeIIoo? > = <8 9 : ;7 6 5 40 1 2 3A
!!C

CC
CC

CC
CC

C
G F E D@ A B C? > = <8 9 : ;B

xxq q q
q q q

q q q
q q q

q q q
Seedoo

Node I

Node II G F E D@ A B CC

II������������

Figure 1: Border States and Seeds

The edges in the DepS for a node n represent the reachability relation
between states (and provide the crucial information to perform nested DFS
procedures in a “correct order”). The dependency structure is a forest-like
structure and is built dynamically during the computation of DFS proce-
dure. All vertices in the structure are the states actually visited by the algo-
rithm during depth-first search. For each vertex its immediate successors
contain the states (seeds or border states) which the vertex is “waiting for”
in the sense that the states must be processed (checked for nested DFS in
case of seeds) before the state corresponding to the vertex can be processed.

The structure DepS is changing dynamically as the computation contin-
ues. Whenever DFS procedure comes to a not yet visited seed or a border
state a new vertex corresponding to the state is added to the structure as the

7

immediate successor of the last visited state which is present in the struc-
ture. Moreover, in the case of a border state a request to continue with DFS
procedure is sent to the node of the border state (if not already sent before).

During the computation each node receives requests from other nodes
to continue a walk through the state space. These requests are remembered
in a local queue of pending requests and the queue is processed in the stan-
dard FIFO manner. For each request it is first checked whether the state is
in the set of visited states. If it is, then it is checked whether there is any
vertex in the (local) DepS structure containing the same state. If yes, then
the “name” of the node who sent the request is added to its index. If the
request is not in the DepS structure and it is in the set of visited states, then
an acknowledgement of the request is sent back. If the request is not in the
set of visited states (hence not in DepS) a new root vertex is added to DepS
with the “name” of sending node as its index.

A
>

;
8
6
4
2

? > = <8 9 : ;S
!!B

BB
B

~~} } }
}

I I : S //

''NN
NNNN X

•

}}| | |
|

•

��

B{II,III} // V

II G F E D@ A B CX

��� � �
�

��

•
��

Y{III}

•

��0
00
00
00
0 G F E D@ A B C? > = <8 9 : ;B

��

G F E D@ A B CY II : X{I} // B

• // •

66nnnnnnnnn g d b _ \ Z W
}

z
v

sqnl

Z{III}

77pppppp

? > = <8 9 : ;ZOO •

��~ ~
~ ~

FF G F E D@ A B CVoo // •

OO

III : V{I}

��?
??

??
??

??
//

&&NN
NNNN

N YG F E D@ A B C? > = <8 9 : ;C``A A A A
III C // Z

B

Figure 2: Example of dependency structures

Removing a vertex from the dependency structure is possible only when
DFS procedure went up through the state already. The removing procedure
first checks whether the state associated with the vertex is a seed, in which
case the state is added to the global queue of seeds waiting for nested DFS
procedure. For any state all acknowledgements are generated according
to the (vertex’s) index. Then the vertex is removed from the structure. Re-
moving any vertex may make its parent’s successor list empty and so cause

8

also removing of the parent and parent’s parent and so on.
Whenever the DFS procedure goes up through a state with a vertex in

DepS, it is checked whether the vertex is a leaf of the tree. If it is the case the
removing procedure is initiated. Removing procedure can also be initiated
by incoming acknowledgements.

In the Figure 2 the dependency structures for nodes I, II and III are
shown before removing any vertex.

4.2 Manager process

Distributed SPIN uses a manager process that is in charge of starting the
verification program in a predetermined set of network nodes, and of stop-
ping it after having detected termination and collects the results. In our
version of distributed SPIN we will in addition require that the manager
process is in charge of initiating the nested DFS procedures in accordance
with the method described in previous sections.

All nodes involved in the computation communicate with the manager
process by sending information about their status. The status of each node
is determined by: DFS status, nDFS status, numbers of sent and received re-
quests (DFS and nDFS packets). The DFS status can be busy, idle-empty-DepS
and idle-nonempty-DepS. The nDFS status can be only busy or idle. In this
way, the manager process has a local representation of the current state of
all the nodes.

Nested DFS procedures

As we have mentioned before, our approach relies on the requirement that
only one nested DFS procedure is allowed at a time. This is the reason
for sending the seed to the manager process instead of starting the nested
DFS procedure immediately during the DFS procedure. The manager pro-
cess maintenance global queue of seeds waiting for their nested DFS proce-
dures. It starts the nested DFS procedures for the first seed in the queue if
and only if no other nested DFS procedure is running. The seed is removed
from the queue after the manager process has started the nested DFS pro-
cedure for it. The information necessary to decide on starting a new nested
DFS procedure can be obtained in the same way as described in [LS99], that
is by checking the nDFS status of all nodes to be equal to idle and checking
that the global number of all nDFS packets sent equals the global number
of all nDFS packets received.

9

Termination detection

The distributed algorithm must terminate when there is no waiting seed in
the global queue, no nested DFS procedure is running, the global numbers
of sent and received DFS packets equals and all nodes have an idle-empty-
DepS DFS status.

Termination detection can be handled in similar way as it is done by the
distributed SPIN. The only exception is the situation when the global num-
bers of sent and received DFS packets equals, no computer has the busy
DFS status, but some node has the idle-nonempty-DepS DFS status. In this
case the manager process asks all the nodes with the idle-nonempty-DepS
DFS status for some information about their DepS structures. The nodes
reply by sending the following elements of their DepS structure: XZ

u
→ Y ,

where X is a node from the DepS structure which has a nonempty index
Z, Y is the node according to the boarder state which is the X waiting for.
The edge has a label u which is a flag whether there is a seed between X

and Y including X and excluding Y in the original DepS structure. So u
can be either 1 = with a seed or 0 = without a seed. After receiving all the
elements, the manager process builds a temporary graph from incoming
elements. After that it finds the maximal strongly connected component
in the graph which has no outgoing edges using standard Tarjan’s algo-
rithm [Tar72]. Note, that such a strongly connected component must exist.
The manager process checks for the presence of an edge with label 1 in the
strongly connected component. If there is no such edge then an acknowl-
edgement is generated for arbitrary node from the found component. After
the acknowledgement is sent out to the appropriate node the whole graph
is forgotten and the distributed computation continues in standard way.
In the other case, i.e. when there is a cycle labelled by 1 in the tempo-
rary graph, it is clear that a cycle through an accepting state must exist in
the original state space and therefore the verified property does not hold.
In this case the algorithm terminates immediately. The whole situation is
shown in the Figure 3.

4.3 The Algorithm

Our algorithm extends the distributed algorithm from [LS99] and it uses
the same distributed method for reachability analysis. This ensures that
we do not exclude the use of the main memory and complexity reduction
techniques available in SPIN.

The main idea of the entire distributed model-checking algorithm is the

10

A
@
?
>
<
;
:
9
8
7
6
5
4
3
2

? > = <8 9 : ;S
��� �
� �
� �
� �
� �
�

��9
99

99
99

99
99

I I : S //

##HH
HHH

H A

B{II} // C? > = <8 9 : ;7 6 5 40 1 2 3A
��9

99
99

99
99

99
G F E D@ A B C? > = <8 9 : ;B

��

II : A{I} // B

C{I}

;;vvvvv

II G F E D@ A B CC

KK

Elements sent to manager process are: B{II}
1
→ C,A{I}

1
→ B,C{I}

0
→ B

Constructed graph is: A{I}
1 // B{II}

1 ++
C{I}

0
ll

The strongly connected component without outcoming edges is:

B{II}
1 ++

C{I}
0

ll

A cycle through an accepting state has been found.

Figure 3: Example

following. The whole reachable graph is partitioned into as many regions
as the number of network nodes. Each node does the computation on the
states belonging to its own region. When a successor belonging to other re-
gion is generated the message containing the new state is sent to its owner.
Received messages are stored in the (remote) queue and processed in se-
quence. Only those states are explored which have not been visited yet.
This is true for both the DFS and the nested DFS procedures. In contrast
with the original algorithm, not all visited states are permanently stored in
the set of visited states but only the boarder states and the seeds are. Each
node holds the set of permanently visited states in the array PV[i] . To
prevent cycling through not permanently stored states the algorithm holds
the set of all visited states within the processing of one of the received re-
quest. This temporally set is hold in the array V[i] end is initialised to
∅ before processing another request (state) from the queue of pending re-
quests U[i] .

To ensure the right order of nested DFS procedure calls an additional
data structure DepS is maintained (see subsection 4.1). This structure is

11

being built, using one temporary pointer Last visited , by the proce-
dures CREATEIN DepS(s) and ADDTO DepS(s1,s2) . A new root ver-
tex in the dependency structure which corresponds to the state s is created
by the procedure CREATEIN DepS(s) . Procedure ADDTO DepS(s1,s2)
creates a vertex corresponding to the state s2 , if it does not exist yet, and
adds an edge between the vertices corresponding to the states s1 and s2 .
Vertex corresponding to the state s , in the pseudo-code written as 〈s in
DepS〉, is composed from several components (fields): parent, successors,
state, DFS gone and index. The field parent points to the vertex for which
this vertex has been created as a successor. The field index is a set of names
of nodes. The DFS gone field is a flag indicating whether the DFS proce-
dure has already walked through the state up. The meanings of the fields
successors and state are obvious.

Some additional local variables are used in the algorithm. The mean-
ings of Seed, state , came from and tmp is obvious. The variable top-
level is used to differ whether the procedure DFVwas called recursively
from DFVor if it was called from the VISIT procedure. The variable Seed -
queue is a global variable which is maintained by the MANAGERPROCESS.
It represents the queue of waiting seeds for their nested DFS procedure to
be started.

All nodes execute the same code. For simplicity reasons we assume
that the master node runs the manager process only. The DFS procedure
is started by calling procedure START(i,starting state) . The value
of i is the name of the node (integer). The procedure puts the start-
ing state into the queue of pending request U[i] at the proper node i .
The procedure VISIT(i) is called for all nodes except the master one at
the end. The MANAGERPROCESSprocedure is called at the master node.
The task of the MANAGERPROCESSprocedure has been explained in the
subsection 4.2.

The PROCESSINCOMINGPACKETSprocedure is actually a boolean func-
tion which returns false if the computation should be stopped for some
reason and returns true otherwise. This function plays the role of the
client side of the manager process. It updates the numbers of locally re-
ceived and sent packets and sends this numbers and the information about
the node status to the manager process. It also processes all incoming pack-
ets. The requests are stored to the U[i] queue, the acknowledgements are
collected and the REMOVEprocedure is called for them. Also all control
packets are handled by it.

Procedure VISIT waits for the queue U[i] to be nonempty. It collects
the request from the queue, resets the variables toplevel and V[i] . In the

12

case that the request is a new one (it is not in the PV[i] set) the procedure
DFVis called appropriately. It is necessary to make difference between the
first DFS procedure and the nested DFS procedure. In the case of nested
DFS procedure the variable Seed must be set, on the other hand in the case
of DFS procedure appropriate actions on the DepSstructure are performed.
The states already processed, which are requested again, are checked for
presence in DepS structure. If the corresponding vertex exists its index is
updated only, the acknowledgement is generated otherwise.

The DFVprocedure checks whether the state belongs to the same node.
If no, the message containing the state is sent to the node owning the state
and the DepS structure is updated. (Note: In the case of nested DFS pro-
cedure the seed, which is the nested search running for, is included in the
message as well.) When the DFVprocedure is called from the VISIT proce-
dure a new root vertex to the DepS structure must be added and the state
must be stored in the set of permanently visited states PV[i] . Also in the
case that the state is a seed it is necessary to update the DepS structure.
Note that the DepS structure is maintained only for the first DFS procedure
and not for the nested DFS procedure. Conversely the check whether the
reached state is the Seed is done only in the nested DFS procedure. The
CYCLEFOUNDprocedure informs the manager process about the fact that
a cycle has been found. Before all the successors of the state are gener-
ated the state is added to the set of actually visited states (V[i]). Not
visited successors are handled by recursive calling of procedure DFV. If the
successor is a seed or a border state which is in the DepS structure already
(so it must be in PV[i]) , the appropriate edge is added to the DepS struc-
ture. After all successors of the state have been processed and the state
is a seed, the check whether there are any more successors of the corre-
sponding vertex in the DepS structure is performed. In the case there are
no successors the vertex is removed from DepS by the procedure REMOVE.

Procedure REMOVE(vertex) is crucial with respect to maintaining the
DepS structure. It is responsible not only for freeing the vertices from the
memory but also for sending the seeds to the global queue (Seed queue)
and for sending all appropriate acknowledgements (this is done by proce-
dure ACK(vertex)) . Also, it is responsible for the recursive removing of
vertices. See the pseudo–code for details.

Note that the same state can be visited twice. In the DFS procedure and
in the nested DFS procedure. To store the information about the fact that
the state has or has not been visited in one or both DFS procedures only one
additional bit is required (see [Hol91]). We suppose that this one additional
bit is included in the bit vector representing the state . That’s why the bit

13

vectors representing the same state differ in the case of DFS procedure and
nested DFS procedure.

The Partition function is used for partitioning of state space. The
choice of “good” partition function is crucial in the distributed algorithm
because a “bad” partition of states among the nodes may cause communi-
cation overhead. This was explained in [LS99] where also a few partition
function has been proposed and tested.

The pseudo-code of the new algorithm follows:

procedure START(i,start_state)
begin

DepS := {};
U[i] := {};
PV[i] := {};
Last_visited := nil;
Seed := nil;
if (i = Partition(start_state)) then
begin

U[i] := U[i] + {start_state};
end;
if (i = 0) then
begin

MANAGER_PROCESS();
end
else
begin

VISIT(i);
end;

end.

procedure VISIT(i)
begin

while (PROCESS_INCOMING_PACKETS()) do
begin

if (U[i] <> {}) then
begin

get (state, came_from) from U[i];
toplevel := true;
V[i] := {};
if (state not in PV[i])) then
begin

if (Nested(state)) then
begin

14

Seed := state.seed;
DFV(i,state);

end
else
begin

DFV(i,state);
if (<state in DepS>.successors = {}) then
begin

REMOVE(<state in DepS>);
end;

end;
end
else
begin

if (state in DepS) then
begin

<state in DepS>.index := <state in DepS>.index
+ {came_from};

end
else
begin

ACK(<state in DepS>);
end;

end;
end;

end;
end.

procedure REMOVE(vertex)
begin

if Accepting(vertex.state) then
begin

Seed_queue := Seed_queue + {vertex.state};
end;
ACK(vertex);
tmp:=vertex.parent;
tmp.successors := tmp.successors - {vertex};
free(vertex);
if ((tmp.successors = {}) and (tmp <> nil)

and (tmp.DFS_gone)) then
begin

REMOVE(tmp);
end;

end.

15

procedure DFV(i,state)
begin

if (PARTITION(state) <> i) then
begin

U[PARTITION(state)] := U[PARTITION(state)] + {state};
if (not Nested(state)) then
begin

ADD_TO_DepS (Last_visited, state);
end;
return;

end;
if (toplevel) then
begin

toplevel := false;
PV[i] := PV[i] + state;
if (not Nested(state)) then
begin

CREATE_IN_DepS(state);
Last_visited := state;

end;
end;
if (Accepting(state)) then
begin

if (not(toplevel) and (not Nested(state))) then
begin

ADD_TO_DepS(Last_visited,state);
Last_visited := state;
PV[i] := PV[i] + state;

end;
end;
V[i] := V[i] + {state};
for (newstate in successors of state) do
begin

if (Nested(state) and (Seed=newstate)) then
begin

CYCLE_FOUND();
end;
if (newstate not in (V + DepS + PV[i])) then
begin

DFV(i,newstate);
end
else
begin

if (newstate in DepS) then
begin

16

ADD_TO_DepS (Last_visited,newstate);
end;

end;
if (Accepting(state) and (not Nested(state))) then
begin

Last_visited := <Last_visited in DepS>.parent;
<state in DepS>.DFS_gone := true;
if (<state in DepS>.successors = {}) then
begin

REMOVE(<state in DepS>);
end;

end;
end;

end.

5 Complexity and effectiveness

We shall try to estimate the overall size of the dependency structures con-
structed during the distributed computations. For any node, there are two
kinds of states stored in the structure – all seeds that are visited by this node,
and all states that arise in the computation but are transferred to another
node in accordance with the partition function (border states). The number
of the latter is crucial because this can be in the worst case square wrt the
overall number of states.

The partition function we employ was originally proposed in [LS99]
where it was also shown that with this function, the fraction of border states
in the global state space is at most 2

P , where P is the number of processes.
The number of border states T is bounded by the expression S ×R, where
S is the number of states and R is the maximum of out-going degrees over
all states. R is at most P × ND, where ND is the maximal number of
nondeterministic choices of a process. Thus we get that T ≤ (S ×P ×ND)
and the average number of border states is 2

P × S × P ×ND = 2S ×ND.
Hence, the number of states stored in the dynamic structure is on average
S + 2(2S ×ND) which works out to be O(S ×ND). In most real systems
the amount of non-determinism (represented by ND) is limited and small.
We may conclude that the memory complexity of the distributed algorithm
is on average linear in the size of the state space and the factor given by
non-determinism.

We will compare our approach with the simple method of synchro-
nisation proposed in [LS99]. We will look in detail at how the first and
nested depth-first-search procedures work. The first DFS searches through

17

the state space and marks accepting states (seeds) with a particular kind of
flag. The computation of first DFS is completely asynchronous and is never
halted before the whole state space is searched. The nested DFS searches
in a similar, i.e. distributed, way the subgraph rooted in the currently pro-
cessed seed. If there are seeds ready to be processed the nested DFS is
running in parallel with the first DFS. Therefore this method allows paral-
lel computations which are almost disabled in the simple synchronisation
technique.

6 Conclusions and Future Research

We have proposed an extension to the existing distributed algorithm used
in the verification checker SPIN which allows to model-check LTL formu-
las. This problem was suggested in [LS99] and left unsolved. The method
used is very simple and requires some synchronisation between nodes. The
resulting algorithm has been implemented and we have performed several
experiments on a cluster on workstations. We have used artificial verifica-
tion problems to test the performance of the algorithm. Our results show,
that it is possible to increase the capability of SPIN to check LTL formulas.

There are several problems we intent to consider in the future. First, we
have used MPI library to get a fast prototype implementation. However,
the overhead caused by this communication infrastructure is quite high
and using another communication infrastructure (like TCP/IP) will cer-
tainly lead to better performance. Second, we have used the partition func-
tion from SPIN. Partition function plays crucial role and techniques par-
ticularly suited for model-checking LTL formulas should be investigated.
The main open problem is to find a general strategy for distributed nested
depth first search algorithm.

References

[AAC87] S. Aggarwal, R. Alonso, and C. Courcoubetis. Distributed
reachability analysis for protocol verification environments. In
P. Varaiya and H. Kurzhanski, editors, Discrete Event Systems:
Models and Application, volume 103 of LNCIS, pages 40–56, Berlin,
Germany, August 1987. Springer-Verlag.

18

[Dil96] David L. Dill. The murφ verification system. In Conference on
Computer-Aided Verification (CAV ’96), Lecture Notes in Computer
Science, pages 390–393. Springer-Verlag, July 1996.

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering, 23(5):279–295, May 1997. Special Issue:
Formal Methods in Software Practice.

[LS99] F. Lerda and R. Sisto. Distributed-memory model checking with
spin. In SPIN workshop, number 1680 in LNCS, Berlin, 1999.
Springer.

[Tar72] Robert Tarjan. Depth first search and linear graph algorithms.
SIAM journal on computing, pages 146–160, Januar 1972.

[UD97] U.Stern and D. L. Dill. Parallelizing the murϕ verifier. In
O. Grumberg, editor, Proceedings of Computer Aided Verification
(CAV ’97), volume 1254 of LNCS, pages 256–267, Berlin, Ger-
many, 1997. Springer.

[WL93] P. Wopler and D. Leroy. Reliable hashing without collision detec-
tion. In Conference on Computer-Aided Verification (CAV ’93), Lec-
ture Notes in Computer Science, pages 59–70. Springer-Verlag,
1993.

19

Copyright c© 2000, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

