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1 Introduction

The purpose of this work is to examine the decidability problem of weak
bisimilarity for BPA-processes. It has been known that strong bisimilar-
ity, which may be considered a special case of weak bisimilarity, where the
internal (silent) action τ is treated equally to observable actions, is decid-
able for BPA-processes. For strong bisimilarity, these processes are finitely
branching and so for two non-bisimilar processes there exists a level n
that distinguishes the two processes. Additionally, from the decidability
of whether two processes are equivalent at a given level n, semidecidabil-
ity of strong non-bisimilarity directly follows. We examine the following
two closely related approaches to semidecidability of strong equivalence:

1. construction of a (finite) bisimulation or expansion tree,

2. construction of a finite Caucal base.

We have attempted to find out if any of the above mentioned approaches
could be generalized to (semi)decide weak bisimilarity. Our findings indi-
cate that a direct generalization is not sufficient and an efficient (semi)decision
procedure cannot be obtained in this way.

The technique of bisimulation trees was proposed by Hirshfeld in [6].
In the most general concept, bisimulation trees contain all possible deriva-
tive pairs of some initial pair. Hence the trees are complete and correct-
ness is obviously maintained, however it may not be feasible to search such
trees. Also when we discuss feasibility, for weak bisimulation we need to
consider separately semidecidability of bisimilarity and semidecidability of
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non-bisimilarity. To be more precise, in case of strong bisimulation the lat-
ter is guaranteed by the finite-image property which for weak equivalence
fails to hold. Therefore, in the following we will only consider semidecid-
ability of weak bisimulation equivalence.

In order to reach algorithmic feasibility it appears necessary to intro-
duce some modification into the construction of bisimulation trees. There
are two kinds of rules summarized by Jančar and Moller in [8]: omission
and replacement. We can omit a pair from a reached node if it is in some
sense implied by already visited pairs. We can replace one pair by a set
of pairs in a newly constructed sibling node if we do not introduce “false”
bisimulation witnesses in this process. It now has to be proved that com-
pleteness and correctness are maintained which is done by introducing an
inductive invariant. The method has to be further modified for weak bisi-
mulation and (general) BPA. More precisely, the criteria for omission and
replacement need to be modified to comply with properties of weak bisi-
mulation.

Remark: Here we shall not employ the notion of Caucal base (i.e. a
set of pairs that would generate the maximal bisimulation by congruence
closure - for more detail consult [3, 4]), which is used to semidecide strong
bisimulation by enumeration of finite sets for which the Caucal condition
is tested. In this way, in the positive case a finite bisimulation (Caucal) base
is eventually constructed. The notion of Caucal base can be modified into
weak Caucal base which serves as generation base for the maximal weak
bisimulation equivalence. However, we can construct a pair of two weakly
bisimilar processes for which there does not exist a finite weak (Caucal)
bisimulation base, which indicates that it cannot always be used efficiently
for weak bisimilarity.

2 Background

2.1 Basic Process Algebras

In order to define Basic Process Algebras we presuppose a finite set of ac-
tions Act that contains a special action τ , and a finite set of process variables
or atoms Σ. A Basic Process Algebra (BPA) is then a pair (Σ∗,∆), where Σ∗ is
the free monoid generated by Σ, and ∆ = {X

a
−→ α | X ∈ Σ, α ∈ Σ∗, a ∈

Act} is a finite set of transitions. BPA-processes are identified with words
from Σ∗. The empty word ε denotes the empty process that cannot perform
any action. The transition rules of ∆ determine a transition relation on gen-
eral BPA-processes in this way:

Xβ
a
−→ αβ if there is a rule X

a
−→ α in ∆.
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We will use capital letters X,Y to range over process variables, α, β, γ, δ to
range over BPA-processes and a, b, c to range over process actions.

If α is a process then the norm of α, denoted by |α|, is the minimum of
lengths of derivation sequences leading from α to the empty process ε. We
say that a process is normed if it has a finite norm, otherwise it is unnormed.
We also call this notion strong norm to distinguish it from weak norm which
does not count the τ -moves on the way to ε, and is denoted by ‖α‖. When
weak norm is considered, a process is called normed if it has a finite norm,
totally normed if the norm is finite and positive, and unnormed otherwise.

2.2 Bisimulation equivalences

Each process α of a BPA (Σ∗,∆) generates a labeled transition system (LTS)
with α labeling the root, processes derivable from α labeling the nodes and
the action leading from α to α′ labeling the arc that leads from α to α′.

Example 1 Here we present a simple BPA. The set of variables Σ is {X,Y } and
the transition rules of ∆ are given below:

Y
a
−→ ε X

τ
−→ XY X

b
−→ ε.

The labeled transition system determined by the variable X is sketched in figure 1.

X

b

��

τ // XY

b

��

τ // XY 2

b
��

// XY n

b

��

τ // XY n+1

b
��

//

ε Y
aoo Y 2aoo Y noo Y n+1aoo oo

Figure 1: LTS determined by the process X

The process X can with a sequence of n transitions τ
−→ generate n copies of Y thus

becoming XY n. For XY n to perform any move of Y the process has to dispose of

the X in front with an X b
−→ ε move. Only then can an a action of Y be done

as it is always the leftmost variable in a BPA-process that is allowed to carry out a
transition. �

If two processes give rise to labeled transition systems that are isomorphic
up to different names at the nodes then the processes are considered iden-
tical. Usually we want to identify a broader class of processes, namely
processes which exhibit the same observable behavior. We will investigate
two of the major equivalences: strong and weak bisimulations. Following
Milner ([10]), we define the notion of a bisimulation as a binary relation on
processes.



2 BACKGROUND 4

Strong bisimulation

Definition 2 Let (Σ∗,∆) be a BPA. A binary relation R over Σ∗ is a strong
bisimulation if for every pair (α, β) from R and and every action a from Act the
following holds:

• for every α a
−→ α′ there exists β a

−→ β′ so that (α′, β′) ∈ R;

• for every β a
−→ β′ there exists α a

−→ α′ so that (α′, β′) ∈ R.

Processes α and β are strongly bisimilar, written α ∼ β, if they are related
by some strong bisimulation.

It was shown in [10] that the union of all strong bisimulations is also a
strong bisimulation. It is the largest strong bisimulation, denoted by∼, and
it is an equivalence relation. We will also call it strong bisimulation equiva-
lence. Moreover, strong bisimulation is a congruence on every BPA, i.e. if
α ∼ β and γ ∼ δ then αγ ∼ βδ.

Weak bisimulation

The notion of strong bisimilarity requires a process to be capable of match-
ing each transition that an equivalent process may perform. However,
sometimes we want to distinguish between observable (external) and inter-
nal behavior of processes and we wish to regard two processes equivalent
if they exhibit the same observable behavior, irrespective of any intermedi-
ate internal behavior that may occur. To this end we employ a special silent
action τ which represents internal behavior.

In order to incorporate the notion of internal behavior we consider com-
posite actions a

=⇒, where a
=⇒ is an abbreviation of (

τ
−→)∗

a
−→ (

τ
−→)∗ in

case a 6= τ , and (
τ
−→)∗ in case a = τ . The process X from Example 1 gives

rise to an infinitely branching tree that is shown in Figure 2.
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Figure 2: X as an infinitely branching tree

Definition 3 Let (Σ∗,∆) be a BPA. A binary relation R over Σ∗ is a weak bi-
simulation if for every pair (α, β) from R and and every action a from Act the
following holds:
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• for every α a
−→ α′ there exists β a

=⇒ β′ so that (α′, β′) ∈ R;

• for every β a
−→ β′ there exists α a

=⇒ α′ so that (α′, β′) ∈ R.

Processes α and β are weakly bisimilar, written α ≈ β, if they are related
by some weak bisimulation. The union of all weak bisimulations gives rise
to the maximal weak bisimulation which is denoted by ≈. An equivalent
definition of weak bisimulation is phrased in terms of composed transition
in the premise followed by composite transition. Both definitions yield
identical maximal weak bisimulations (see [10]).

The requirement on matching transitions is relaxed in comparison with
strong bisimulation and so this definition yields a weaker notion of bisimu-
lation. It is easy to convince oneself that for all pairs of processes α and β,
if α ∼ β then also α ≈ β. However, the converse does not always hold.

As opposed to strong bisimulation, a maximal weak bisimulation rela-
tion is not always necessarily a congruence — see [13] for counterexample.
In order to ensure that this desirable property holds it is enough to require
for a BPA (Σ∗,∆) that for all variables X ∈ Σ, if X ≈ ε then X

τ
=⇒ ε (see

[13]). Another trivial assumption is formulated in [7]. Here, in order to
obtain congruence and simplify proofs, we will make a slightly stronger
assumption throughout the rest of the paper that P ≈ ε implies P ≡ ε, i.e.
the only process with no observable behavior is the empty process.

Bisimulation game

A useful way to understand both strong and weak bisimulation relation is
to consider it as a bisimulation game between two players Alice and Bob (for
detailed description see i.e. [8]). For a given LTS and its two vertices α0 and
β0, the two players try to achieve opposite goals: Alice wants to show that
α0 and β0 are different while Bob tries to show their sameness. A play of the
game is a sequence of pairs (α0, β0), (α1, β1), . . . , where each consecutive
pair arises in this way: Alice chooses an action a and a transition αi

a
−→

αi+1, resp. βi
a
−→ βi+1. Bob then needs to produce a matching reply βi

a
−→

βi+1, resp. αi
a
−→ αi+1 (in the case of weak bisimulation composite actions

need to be considered). Alice wins the play if Bob cannot respond to a move
by Alice, otherwise the winner is Bob. Processes α0 and β0 are bisimilar iff
Bob is able to win every play of the game regardless of the moves made by
Alice.

2.3 Approximation of bisimulations

In the previous sections, the strong, resp. weak, maximal bisimulations
were obtained as the union of smaller strong, resp. weak, bisimulation
relations. There exists an alternative approach (see [10]) where the maximal
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equivalences are obtained as the limits of respective non-increasing chains
of bisimulation approximants. These are binary relations on processes defined
inductively in terms of ordinal numbers.

For the sake of simplicity, in this paper we shall view ordinals as gener-
alization of (the well-ordered nature of) natural numbers. Ordinal numbers
form a class, denoted by On, and are well-ordered by the element-of rela-
tion <. The initial segment of On containing natural numbers and ω is
0, 1, 2, . . . , n, . . . , ω, after which follow ω + 1, ω + 2, . . . , ω + n, . . . , ω + ω,

etc. The ordinals 0, ω, ω + ω, are limit ordinals which means they have no
predecessor, whereas ordinals such as 1, 2, and ω + 1, ω + 2, are successor
ordinals. We will be using the principle of ordinal or transfinite induction,
the induction principle generalized to the class of all ordinal numbers. For
a detailed instruction on ordinal numbers the reader should consult stan-
dard textbooks on set theory, such as [9].

Now we can define weak bisimulation approximants ≈κ for a fixed BPA
(Σ∗,∆) inductively on the class On:

• α ≈0 β for all α and β from Σ∗;

• α ≈κ+1 β if for all actions a,

– whenever α a
=⇒ α′ then there exists β a

=⇒ β′ so that α′ ≈κ β′;

– whenever β a
=⇒ β′ then there exists α a

=⇒ α′ so that α′ ≈κ β′;

• α ≈λ β if α ≈κ β for every κ < λ, for a limit ordinal λ.

Strong bisimulation approximants ∼κ are defined analogously, with compos-
ite transition a

=⇒ being replaced by single transition a
−→, in both premise

and conclusion.
It can be easily verified that binary relations ≈α are equivalences for

every ordinal α. The following lemma sums up the structure of the chain of
approximants and the relationship between individual approximants and
the maximal bisimulation. A proof can be found in [10], [13].

Lemma 4

1. for every κ, µ ∈ On, κ < µ =⇒ ≈µ ⊆ ≈κ;

2. for every κ ∈ On, ≈ ⊆ ≈κ;

3. if there is an κ such that ≈κ = ≈κ+1 then for all µ ≥ κ, ≈κ = ≈µ = ≈;

4. ≈ =
⋂
κ∈On ≈κ.
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1 says that approximants form a non-increasing sequence. 2 says that the
maximal equivalence is contained in every approximant. 3 and 4 state that
the sequence converges and the limit is ≈.

An analogous lemma holds also for strong bisimulation approximants, i.e.
the sequence of strong bisimulation approximants converges with the limit
being ∼. For BPA-processes, owing to their finite-branching structure, the
convergence occurs at level ω, that is ∼ = ∼ω =

⋂
n∈ω ∼n. Proof of

this claim can be found in [5]. Additionally, this finite-branching property
guarantees that each approximant ∼n is decidable. Therefore we obtain a
straightforward semidecision procedure for non-bisimilarity by successive
enumeration of all natural numbers n and testing equivalence at∼n. How-
ever, this approach cannot be used for weak bisimulation approximants be-
cause infinite branching of BPA w.r.t. weak bisimilarity produces algebras
where ≈ ( ≈ω (consult e.g. [13], [14] for more details).

When we deal with the whole class of ordinals the common induction prin-
ciple for natural numbers becomes too weak for proving theorems. We
need a more powerful proof method than that and, fortunately, the well-
ordered structure of ordinal numbers enables us to formulate a statement
which is a generalization of the induction principle. It is called transfinite
or ordinal induction.

The Principle of Transfinite Induction: Let P (κ) be a statement for each ordi-
nal κ. Assume that

1. P (0);

2. P (κ)⇒ P (κ+ 1) for every κ;

3. if λ is a limit ordinal then (∀κ < λ. P (κ))⇒ P (λ).

Then for every κ ∈ On, P (κ).

Now if we want to verify that some property P holds for the class On
we only have to test three cases: the base case P (0), the successor case
P (κ) ⇒ P (κ + 1) and the limit case (∀κ < λ. P (κ)) ⇒ P (λ). If we manage
to prove all three cases we can be confident that all ordinals possess the
desired property P .

3 Decompositions

All known algorithms for deciding bisimilarity between two BPA-processes
([4], [7]) are strongly dependent on the notion of decomposability. De-
composition allows to transform the task of deciding bisimilarity between
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given pairs of processes to a (finite) number of tasks of deciding bisimilar-
ity between smaller pairs (for some suitably formulated criterion of process
size).

Let α1α2 and β1β2 be two BPA-processes. Let us consider one particular
bisimulation play, i.e. a sequence of pairs starting with (α1α2, β1β2). This
sequence can be divided into two subsequences: the first one beginning
with (α1α2, β1β2) and the second one with the (uniquely determined) pair
(γα2, δβ2), such that in the next step of the play an action is emitted for the
first time from α2 or from β2. Both subsequences may be empty, finite or
infinite.

The strategy for deciding bisimilarity between α1α2 and β1β2 based on
this concept is the following. Let A be a suitably chosen set of pairs of
processes. Then α1α2 ∼ β1β2 if

1. for every bisimulation play starting from α1α2 and β1β2,
either Bob has a winning strategy leading to his victory without emit-
ting any action neither from α2 nor from β2,
or the first pair such that in the next step an action is emitted from α2

or β2 has the form (γα2, δβ2), where (γ, δ) ∈ A, and

2. γα2 ∼ δβ2 for every (γ, δ) ∈ A.

The procedure sketched above can be recursively applied to newly created
pairs and is efficient under the assumption that the new pairs are “sim-
pler”. In order to implement this procedure we need a generalized notion
of bisimulation relation that takes into account the sets of termination pairs
that occur within a bisimulation play when the first halves of the original
pair are removed. That gives rise to the notion of bisimulation up to, origi-
nally proposed by Hirshfeld in [7].

3.1 Bisimulation up to

Definition 5 Given an arbitrary set of pairs A, we say that a binary relation
R is a weak bisimulation up to A if every pair from R satisfies the following
conditions:

• either (α, β) ∈ A,

• or for every action a, if α a
=⇒ α′ then there exists β a

=⇒ β′ with (α′, β′) ∈
R, and symmetrically.

Furthermore we require that if α ≡ ε or β ≡ ε, then (α, β) ∈ A.

The processes α and β are weakly bisimilar up to A, denoted by α ≈A β, if
there exists a weak bisimulation up to A that contains them. The union of
all weak bisimulations up to A is a maximal weak bisimulation up to A,



3 DECOMPOSITIONS 9

denoted also ≈A. The last condition that we place on a pair (α, β) from a
bisimulation up toA, is there to guarantee correctness of the decomposition
approach described in the previous section.

The relationship between “classical” bisimulation and bisimulation up
to can be characterized in this way: ≈ = ≈A if and only if, for every pair
(γ, δ) ∈ A, γ ≈ ε and δ ≈ ε.

We can follow the alternative approach towards obtaining the maximal
weak bisimulation that was sketched in Section 2.3 and define weak bisi-
mulation approximants up to in an analogous way.

Definition 6 For a BPA (Σ∗,∆), and a set up to A, weak bisimulation appro-
ximants up to A are binary relations denoted by ≈κ,A, defined by

• α ≈0,A β for all α and β ∈ Σ∗,

• α ≈κ+1,A β if (α, β) ∈ A or, for all actions a,

– whenever α a
=⇒ α′ then there exists β a

=⇒ β′ so that α′ ≈κ,A β′, and

– whenever β a
=⇒ β′ then there exists α a

=⇒ α′ so that α′ ≈κ,A β′;

• α ≈λ,A β if α ≈κ,A β for every κ < λ, for a limit ordinal λ.

Furthermore we require that if α ≡ ε or β ≡ ε then (α, β) ∈ A.

For any set up to A, the respective approximants form a non-increasing
chain that approximates the maximal bisimulation up toA from above. The
correctness of the two statements can be easily verified. Regarding the for-
mer, for every pair (α, β) from ≈κ+1,A there are two possibilities: either
(α, β) belongs to the set A in which case it is also included in ≈κ,A by defi-
nition, or there must exist pairs of matching derivatives (α′, β′) that appear
in ≈κ,A and, by inductive reasoning, in all the approximants below. From
this we can conclude that (α, β) must belong to ≈κ,A as well. The approxi-
mant labeled by 0 contains all pairs therefore this sequence indeed forms
a non-increasing chain. The correctness of the latter claim is expressed by
the proposition below:

Proposition 7 ≈A =
⋂
κ∈ω1

≈κ,A.

Proof: The first direction consists in proving that for any two BPA α and β,
if α ≈A β then for every ordinal κ, α ≈κ,A β. This needs to be done by
transfinite induction on κ.

1. α ≈0,A β is trivially true from the definition of approximants.
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2. α ≈κ+1,A β has to be proved from the premises that α ≈A β, and for
any pair (α′, β′), α′ ≈A β′ implies that α′ ≈κ,A β′. In the case that
(α, β) ∈ A we are done as then, by definition, α ≈κ+1,A β. We assume
the contrary and consider any transition α

a
=⇒ α′. As α ≈A β, and

(α, β) /∈ A, there exists a matching move β a
=⇒ β′ such that α′ ≈A β′.

By the other assumption, α′ ≈κ,A β′ and therefore we may conclude
that α ≈κ+1,A β.

3. α ≈λ,A β, for a limit ordinal λ, is a straightforward consequence of
the induction hypothesis that α ≈κ,A β for every κ < λ.

The other direction falls into two cases. Firstly we need to realize that
the chain will converge before reaching ≈ω1,A, for the simple reason that
we deal with countable algebras. Convergence will occur when we reach a
level such that ≈κ,A = ≈κ+1,A, in which case ≈A = ≈κ,A = ≈µ,A, for every
κ < µ. Hence we assume that for some pair (α, β), α ≈κ,A β for every κ ∈
ω1, and we will show that α ≈A β. In case (α, β) ∈ A we are done as then,
by definition, α ≈A β. We assume that (α, β) /∈ A, and consider any move
α

a
=⇒ α′. For every κ ∈ ω1 there exists a matching transition β a

=⇒ β′κ with
α′ ≈κ,A β′κ. However, as β is a process in a countable algebra, there may be
only countably many distinct derivatives β′κ, and hence one β′ must occur
among these derivatives uncountably often. Since approximants form a
non-increasing chain, this β′ then satisfies the condition that α′ ≈κ,A β′

for every κ ∈ ω1. So we can conclude that ≈ω1,A is in fact closed under
expansion and hence included in ≈A. �

3.2 Properties of bisimulation up to

The largest strong (weak) bisimulation is (under the described assump-
tions) an equivalence relation and both ∼ and ≈ are congruences. This
is the key property which allowed to build known algorithms for deciding
bisimilarity as recursive algorithms. Unfortunately bisimulation up to is
no longer an equivalence relation. Namely it is the property of transitivity
that fails. Nevertheless some special form of transitivity and composition
holds even in this case.

Lemma 8 (Transitivity) If α ≈A β and β ≈ β′, then there exists a set A′ such
that α ≈A′ β′, and all pairs in A and A′ are mutually bisimilar, i.e. for every
(γ, δ) ∈ A there exists (γ′, δ′) ∈ A′ with γ ≈ γ′ and δ ≈ δ′, and symmetrically
for A′.

Proof: From any R, weak bisimulation up to A, relating α and β, and any
weak bisimulation S relating β and β′, we will construct a set up to A′ and
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R′, a weak bisimulation up to A′, that will contain the pair (α, β′). Addi-
tionally, the two sets A and A′ will consist of mutually bisimilar couples, as
described in the statement of the lemma. The two relations R′ and A′ are
defined as follows:

A′ = {(γ, δ) | ∃(γ, δ′) ∈ A ∧ (δ′, δ) ∈ S}

R′ = {(γ, δ) | ∃(γ, δ′) ∈ R ∧ (δ′, δ) ∈ S}

First we shall verify that A′ satisfies the required conditions. Any pair
(γ, δ) from A′ has its pre-image in some pair (γ, δ′) from A, where (δ′, δ) ∈
S. Since S is a bisimulation relation, every pair contained within it must be
weakly bisimilar, therefore δ′ ≈ δ. Obviously, γ ≈ γ and so we can conclude
that every pair from A′ has a bisimilar pre-image inA. Obviously, the other
implication is also true.

It remains to check that R′ is indeed a weak bisimulation up to A′. We
shall express the expansion condition by means of the diagram below:

δ′

a

��

(γ, δ′) ∈ R γ

a

��

(γ, δ) ∈ R′ δ

a

��

(δ′, δ) ∈ S δ′

a

��

II I III

δ̄′ (γ̄, δ̄′) ∈ R γ̄ (γ̄, δ̄)
?
∈ R′ δ̄ (δ̄′, δ̄) ∈ S δ̄′

The starting point is the pair (γ, δ) from R′ at the top of square I, for
which there must exist some (γ, δ′) inR (top of square II) satisfying (δ′, δ) ∈
S (top of square III). Either (γ, δ) is contained in A′ or we need to verify the
expansion condition for the pair. We will assume the latter, i.e. (γ, δ) /∈ A′,
from which also follows that (γ, δ′) does not belong toA, and we will check
the transitions.

If γ does an a
=⇒ and evolves into γ̄, then in diagram II we have a match-

ing move from δ′ into δ̄′ where (γ̄, δ̄′) ∈ R. The a
=⇒ transition of δ′ (in

diagram III) evokes a matching transition of δ owing to δ′ and δ being in
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S, with the resulting pair (δ̄′, δ̄) also in S. Therefore, the pair of matching
derivatives (γ̄, δ̄) belongs to R′.

If δ does a
=⇒ into some δ̄ then, in diagram III, there must be a match-

ing transition of δ′ resulting in some δ̄′, where (δ̄, δ̄′) ∈ S. The transition
δ′

a
=⇒ δ̄′ also appears as the left-most transition in diagram II, where from

the assumption that (γ, δ′) /∈ A follows that γ has a matching transition into
some γ̄. The pair (γ̄, δ̄′) is in R and (δ̄′, δ̄) belongs to S hence, from the defi-
nition of R′, we can conclude that (γ̄, δ̄) is included in R′. We have verified
that the expansion condition holds and therefore R′ is a bisimulation up to
A′.

Lastly, we need to verify that if γ ≡ ε or δ ≡ ε then (γ, δ) ∈ A′, which
readily follows from the assumptions that we have made. �

Unfortunately, it seems impossible to say anything more precise about the
exact correspondence of cardinalities of A and A′, because the size of the
(minimal w.r.t. inclusion) set up to depends on the size of branching of the
two processes that we want to relate.

We need to be able to compose pairs of processes in a more general way:

Lemma 9 (Composition) Whenever α1 ≈B β1 and γα2 ≈A δβ2, for every
(γ, δ) ∈ B, then α1α2 ≈A β1β2.

Proof: From the assumption that α1 ≈B β1 we can assume the existence of
a bisimulation relation R up to B, and a set of bisimulation relations up to
A for every pair (γ, δ) from B, that we denote R(γ,δ). We define a relation
S = {(γα2, δβ2) | (γ, δ) ∈ R}∪

⋃
(γ,δ)∈B R(γ,δ), and verify that this relation is

a bisimulation up toA. We need to check only those pairs (γα2, δβ2), where
(γ, δ) ∈ R.

If (γ, δ) belongs directly to B then from our assumptions, (γα2, δβ2)
belongs toR(γ,δ) and so we are done. In the other case we need to verify the
expansion condition for (γα2, δβ2) w.r.t. A. A schema of the proof is drawn
in Figure 3. An initial move γα2

a
=⇒may lead to some γ′α2 (diagram I) or

it may dispose of γ and end up in some α′2 (diagram II). In the first case we
have a matching move δβ2

a
=⇒ δ′β2 which belongs to S by definition.

In the latter case, if γ reduces to ε, the process δ will evolve into δ′ such
that (ε, δ′) ∈ B. Then we can use the assumption that εα2 ≈A δ′β2 and
hence, to the transition α2

τ
=⇒ α′2 there must be an equivalent move β2

τ
=⇒

β′2 leading to (α′2, β
′
2) ∈ R(ε,δ′).

Initial moves of δ and the combination γα2
τ

=⇒ εα2
a

=⇒ α′2 would be
solved analogously. The ε-condition on A is also easy to verify. �

Now we are ready to define the notion of decomposability we were seek-
ing.
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γα2

a

��

))δβ2

a

��

γ

a

��

(γ, δ) ∈ R δ

a

��

I

γ′α2 (γ′α2, δ
′β2) ∈ S δ′β2 γ′ (γ′, δ′) ∈ R δ′hh

γα2

a

��

))δβ2

a

��

γ

a

��

(γ, δ) ∈ R δ

a

��

II

εα2

τ

��

δ′β2

τ

��

ε (ε, δ′) ∈ B δ′

α′2 (α′2, β
′
2) ∈ R(ε,δ′) β′2

Figure 3: Case analysis

Definition 10 Let α, β be two processes bisimilar up to A. We say that processes
α1, α2, β1, β2 and a set B form a decomposition of (α, β)A up to B if

1. α ≡ α1α2 and β ≡ β1β2,

2. α1 ≈B β1,

3. γα2 ≈A δβ2, for every (γ, δ) ∈ B.

Intuitively, if we play a bisimulation game for any pair of bisimilar pro-
cesses, we can always split the original processes into two pairs that will be
“almost” bisimilar, up to some termination conditions. That is expressed in
the following:

Fact 11 Every pair (α, β) bisimilar up to A has some decomposition.
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4 Expansion trees

The notion of expansion tree is due to Hirshfeld [6] who put forward this
idea in order to construct (semi)decision procedure for strong bisimulation
on BPP and BPA-processes. The idea was then developed further, namely
by Jančar and Moller in [8], and Hirshfeld in [7] . We first summarize this
method for strong bisimulation on BPA processes.

Definition 12 Let V 6= ∅ and U be two sets of pairs (α, β). U is called a strong
expansion of V if it is a minimal set (w.r.t. inclusion) satisfying the following
property: for every pair (α, β) ∈ V , for every action a,

• if α a
−→ α′ then β a

−→ β′ with (α′, β′) ∈ U ;

• if β a
−→ β′ then α a

−→ α′with (α′, β′) ∈ U .

A binary relation R is a strong bisimulation iff it is a strong expansion of
itself. A nonempty set V does not have any expansion if it contains a pair
(α, β) such that α 6∼1 β, that is either α is able to emit an action β is not
able to emit or vice versa. The set V = {(ε, ε)} has an empty expansion
∅ as neither of processes is able to emit any action. Moreover, for finitely
branching processes, if a set V is finite then every strong expansion of V is
finite and the number of different expansions of V is finite, too.

The above mentioned properties give a hint how to decide bisimilarity:
starting with a singleton containing the given pair expand it until a set
which is an expansion of itself is achieved. This process is embodied into
an expansion tree.

An expansion tree is a (generally infinite) tree whose nodes are labeled
by sets of pairs of vertices, in which the children of a node are precisely the
expansions of that node. A leaf of a tree is successful if it is empty; other
leaves are unsuccessful. A branch is successful if it is infinite or finishes with
a successful node. We may observe that the union of all nodes along a
successful branch forms a bisimulation. The correctness of the expansion
tree construction is spelled out in the following lemma:

Lemma 13 α ∼ β iff the expansion tree rooted at {(α, β)} has a successful
branch.

As we are dealing with strong bisimulation on BPA the finiteness of an ex-
pansion as well as finite branching of an expansion tree are guaranteed.
However, there may still occur branches of infinite length. To overcome
this obstacle one has to introduce modification rules into the construction
of expansion trees. In their paper [8], Jančar and Moller introduce the fol-
lowing rules:
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Rule 1 (Congruence rule) Omit from any node U the pair (α, β) if it be-
longs to the least congruence containing U⇑, where U⇑ denotes the
union of all predecessors on the way from the root to U .

Rule 2 (Decomposition rule) If (Xα,Y β) is in U where X and Y are
normed, then create a new sibling node U′ = U \ {(Xα,Y β)} ∪
{(X,Y γ), (γα, β)}, where |X|=|Y γ| (and symmetrically).

Rule 3 (Replacement rule) If (Xα,Y β) is in U and some (Xα′, Y β′) is in
U⇑, then create a new sibling nodeU′ = U\{(Xα,Y β)} ∪ {(α,α′), (β, β′)}.

Obviously, when these rules are applied to the construction we need to ver-
ify that correctness is preserved. That boils down to checking that no false
bisimulation witness is created, i.e. no pairs that would imply bisimilarity
of two originally non-bisimilar processes are added. This is guaranteed by
the following correctness criterion for (modified) expansion trees.

Fact 14 For any node V 6= ∅ and for any n ∈ N, V ⊆ ∼n+1 iff V has a child
U ⊆ ∼n. As a consequence, V ⊆ ∼ iff V has a child U ⊆ ∼.

Rule 1 ensures that a pair is not considered if it can be composed from pairs
that occurred previously (we use the fact that bisimilarity is a congruence).
Rule 2 allows us to replace pairs by their decompositions which are strictly
smaller in size (here the strong norm is taken as size criterion). However,
one can easily find a pair which is not decomposable in the sense of Rule 2.
Then Rule 3 will eventually be applied. Efficiency of the modification rules
is asserted by a theorem from [4] that states that the number of undecom-
posable pairs is in some sense finite and therefore the modified expansion
tree with bisimilar pair in its root always contains a finite successful branch.
Hence the strong bisimilarity on BPA is semidecidable.

When dealing with weak bisimulation, we have to consider weak expan-
sions and weak expansion trees that are obtained by replacing single transi-
tions by composite ones. As in the case of the strong bisimulation, in order
to cope with infiniteness we will introduce some modification rules that
will employ decomposition and bisimulation up to. To this end, we need
to define a generalized notion of expansion tree, expansion tree up to.

Definition 15 Let V 6= ∅ and U be two sets of elements (α, β)A. U is called a
weak expansion up to of V if it is a minimal set (w.r.t. inclusion) satisfying the
following property: for every pair (α, β)A ∈ V ,

• either (α, β) ∈ A,

• or, for every action a,

– if α a
=⇒ α′ then β a

=⇒ β′ with (α′, β′)A ∈ U ;
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– if β a
=⇒ β′ then α a

=⇒ α′with (α′, β′)A ∈ U .

The notion of successful leaf, resp. successful branch, generalizes to expansion
trees up to in the obvious sense (in particular, an unsuccessful leaf contains
an element (α, β)A with α 6≈1,A β). Hirshfeld in [7] introduces the modifi-
cation rules, for totally normed BPA-processes, which can be summarized
as follows:

Rule 4 (Omitting rule) Omit (α, β)A from a node U if it belongs to U⇑, or
if (α, β) ∈ A.

Rule 5 (Decomposition rule) If (αα′, ββ′)A belongs to U , then construct
a sibling node U ′ by replacing (αα′, ββ′)A by the set {(α, β)B} ∪
{(γα′, δβ′)A | (γ, δ) ∈ B}, where B is a new set up to (plus some
conditions on norms of α and β and the norms of processes in B).

We are proposing the following generalization of the modification rules of
[8], in the spirit of [7], for weak bisimulation and general BPA. The new
modification rules are formulated below:

Rule 6 (Omitting rule) Omit (α, β)A from a node U if any of the following
occurs:

1. (α, β)A appears in U⇑;

2. (α, β) belongs to A;

3. α ≡ β and (ε, ε) ∈ A;

4. α ≡ β, and they are unnormed processes.

Rule 7 (Decomposition rule) If (Xα,Y β)A belongs to U , then construct
a sibling node U ′ by replacing (Xα,Y β)A by the set {(X,Y )B} ∪
{(γα, δβ)A | (γ, δ) ∈ B}, where B is a new set up to.

Rule 8 (Replacement rule) If (Xα,Y β)A is in U and some (Xα′, Y β′)A′ is
in U⇑, then create a sibling node U′ by replacing (Xα,Y β)A with the
set {(α,α′)(ε, ε), (β, β′)(ε, ε)} ∪ {(γ, f(γ))(ε, ε), (δ, f(δ)(ε, ε) | (γ, δ) ∈
A} ∪ {(g(γ), γ)(ε, ε), (g(δ), δ)(ε, ε) | (γ, δ) ∈ A′}, where f : A −→ A′,
and g : A′ −→ A are arbitrary functions.

Rule 6 describes pairs whose presence in the tree is superfluous. Rule 7
is an analog of Decomposition Rules 2 and 5, and Rule 8 is a weak bisi-
mulation analog of Replacement Rule 3. Obviously, as well as with strong
bisimulation expansion trees, we need to check that the correctness of the
construction has not been affected, in particular that no false witness can
be added in this way. The correctness criterion needs to reflect the fact
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that for weak bisimulation approximants, convergence (to the maximal re-
lation) may occur at any ordinal less than ω1. Furthermore, we are dealing
with pairs bisimilar up to. Both facts are taken into account in the criterion
below.

Fact 16 For any node V 6= ∅ and for any µ < ω1, there exists(α, β)A in V such
that (α, β) /∈≈µ,A iff for every child U , there exist κ < µ and (α′, β′)A′ in U such
that (α′, β′) /∈≈κ,A′ .

As a consequence of Fact 16 together with the convergence criterion (≈A =⋂
κ∈ω1

≈κ,A) we arrive at Fact 17:

Fact 17 For any node V 6= ∅, {(α, β) | (α, β)A ∈ V } ⊆ ≈A, for every A, iff
there exists a child U with {(α, β) | (α, β)A ∈ U} ⊆ ≈A, for every A.

Clearly, if we start with a tree rooted at (α, β)(ε, ε) for a bisimilar pair then
the root satisfies condition of Fact 17 and so it has a child also satisfying
the condition, and so on. The sequence of such nodes forms a successful
branch, finite or infinite. On the other hand, if the initial pair is not equiv-
alent at some ≈µ, then every branch determines a sequence of inequiva-
lent elements (α, β) /∈≈κ,Aκ where κ is decreasing. Since every decreasing
sequence of ordinals is finite every branch will eventually reach a node
containing some2 (α, β) /∈≈1,A1 which denotes failure. This argument is
reflected in the theorem that follows.

Theorem 18 If a (modified) expansion tree T rooted at (α, β)(ε, ε) satisfies Fact
16, then α ≈ β iff there exists a successful branch in T .

This theorem states that every rule respecting Fact 16 maintains safe-
ness. The next step is therefore to prove that Rules 6,7, and 8 satisfy Fact
16. The way of doing so is to assume that, given some node and its succes-
sors satisfying the condition of Fact 16, any new child arising by application
of the rules will also respect it.

Rule 6 specifies when checking a pair (α, β)A would be superfluous, ei-
ther because it has been considered previously (case 1), or its bisimilarity
up to A can be proved by some simple argument (cases 2,3,4). The correct-
ness of Rule 7 comes as a consequence of the following lemma:

Lemma 19 If (α1, β1) ∈ ≈κ,B and (γα2, δβ2) ∈ ≈κ,A for every (γ, δ) ∈ B, then
(α1α2, β1β2) ∈ ≈κ,A.

Proof: Would be formally done by transfinite induction. First we need to
consider the case when κ = 0; that holds trivially as by definition, all pairs
are equivalent at ≈0.

The successor case (P (κ)⇒ P (κ+ 1)) is spelt out as follows:
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[(α1, β1) ∈ ≈κ,B ∧∀(γ, δ) ∈ B.(γα2, δβ2) ∈ ≈κ,A⇒ (α1α2, β1β2) ∈ ≈κ,A]︸ ︷︷ ︸
P (κ)

=⇒

[(α1, β1) ∈ ≈κ+1,B ∧∀(γ, δ) ∈ B.(γα2, δβ2) ∈ ≈κ+1,A⇒ (α1α2, β1β2) ∈ ≈κ+1,A]︸ ︷︷ ︸
P (κ+1)

The goal therefore is to prove that, from the induction hypothesis P (κ)
and assumptions (α1, β1) ∈ ≈κ+1,B and (γα2, δβ2) ∈ ≈κ+1,A, for every
(γ, δ) ∈ B, we can conclude that (α1α2, β1β2) ∈ ≈κ+1,A. We will again
make use of graphical description of the situation (Fig. 4). We assume
an initial move of α1α2 which may either end up in some γα2 (see dia-
gram I), or lead to some α′2 with α1 removed along the way (diagram II).
In the first case we have a matching equivalent move of β1

a
=⇒ β′1 with

α′1 ≈κ,B β′1. By applying induction hypothesis to the pair (α′1, β
′
1) we

obtain that (α′1α2, β
′
1, β2) ∈ ≈κ,A, which then validates the desired claim

α1α2 ≈κ+1,A β1β2.
In the second case we need to use the fact that if we reach ε from α1,

a matching equivalent move of β1 leads to some δ where (ε, δ) ∈ B. Then
we can use the induction hypothesis to conclude that (α2, δβ2) ∈ ≈κ+1,A

from which the equivalence of α1α2 and β1β2 at ≈κ+1,A follows. Moves
initiating in β1 and the combination α1α2

τ
=⇒ εα2

a
=⇒ α′2 would be solved

analogously.
The limit case would consist in proving that ∀κ < λ.P (κ) ⇒ P (λ), and

it would proceed analogously to the successor case. The ε-condition on
≈κ,A is also straightforward to verify.

�

As a consequence of the previous lemma we obtain that if there is a node
V containing some (α, β) /∈ ≈µ,A, then there must be some (α′, β′) /∈ ≈κ,A′
in a new successor node U′, for some κ < µ.

In order to prove safeness of Rule 8 we need to build a sequence of auxiliary
results concerning restricted transitivity for approximants up to. In order
to make our notation more concise we shall write A ≈ A′ whenever for
every (γ, δ) ∈ A there exists (γ′, δ′) ∈ A′ with γ ≈ γ′ and δ ≈ δ′, and
symmetrically for A′.

Lemma 20 If α ≈κ,A β and β ≈ β′, then there exists a set A′ such that α ≈κ,A′
β′ and A ≈ A′.

Proof: The flavor of the proof is similar to the analogous lemma for bi-
simulation, however here we need to employ the principle of transfinite
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ε ≈κ,B δ

α′2 ≈κ,A β′2

Figure 4: Case analysis

induction. For a fixed α, β, β′, and A, the set A′ is defined using A and S,
some fixed weak bisimulation relating β and β′:

A′ = {(γ, δ) | ∃(γ, δ′) ∈ A ∧ (δ′, δ) ∈ S}

As in the proof of Lemma 9, it is not difficult to verify that indeed, A ≈
A′, hence it remains to test the expansion condition. The case for κ = 0 is
clear, and so we continue with the successor step. The induction hypothesis
P (κ) is the statement α ≈κ,A β ∧ β ≈ β′ ⇒ α ≈κ,A′ β

′. We are going to
assume that α ≈κ+1,A β and β ≈ β′ and prove that α ≈κ+1,A′ β

′.
From the definition of A′ we can conclude that (α, β) ∈ A if and only if,

(α, β′) ∈ A′. Therefore we can assume that if there is a move α a
=⇒ ᾱ, then
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β

a

��

≈κ+1,A α

a

��

?
≈κ+1,A′

β′

a

��

(β, β′) ∈ S β

a

��

II I III

β̄ ≈κ,A ᾱ ≈κ,A′ β̄′ (β̄, β̄′) ∈ S β̄

there exists β a
=⇒ β̄, where ᾱ ≈κ,A β̄ (square II). Then we have a matching

bisimilar transition β′ a
=⇒ β̄′ (square III). Now we can apply the induction

hypothesis on the pairs (ᾱ, β̄) ∈ ≈κ,A and β̄ ≈ β̄′. Here we need to realize
that (β̄, β̄′) is a different pair than the original (β, β′), however as the former
is a derivative of the latter, we may use the bisimulation S to define the new
set up to and thus we obtain the same set A′ with ᾱ ≈κ,A′ β̄′. Therefore we
may conclude that indeed, α ≈κ+1,A′ β

′.
If we start from a transition β′

a
=⇒ β̄′, we make use of a matching bi-

similar move β a
=⇒ β̄ (diagram III). Then in square II we have a move

α
a

=⇒ ᾱ with ᾱ ≈κ,A β̄, and using an analogous argument, we can con-
clude that α ≈κ+1,A′ β

′.

For a limit ordinal λ, the proof relies on the fact that, α ≈λ,A β if and
only if, α ≈κ,A β, for every ordinal κ < λ. The argument is analogous to
the successor case. �

As a corollary of this lemma we obtain the following:

Lemma 21 If Xα ≈κ,A Y β, α ≈ α′ and β ≈ β′, then there exists a set A′ such
that Xα′ ≈κ,A′ Y β′ and A ≈ A′.

However, note that in order to obtain the lemma we need to employ a sym-
metric variant of Lemma 20 where we substitute a bisimilar pair on the left
hand side. The reason for that is that in general, approximants up to (and
also bisimulation up to) are not symmetric relations.
As a consequence of the previous lemma we obtain that if there is a node
V containing some (α, β) /∈ ≈µ,A, then there must be some (α′, β′) /∈ ≈κ,A′
in a new successor node U′, for some κ < µ.
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5 Applications

In the previous section we have sketched the way of building up the (mod-
ified) expansion tree for a given pair of processes. Now we shall discuss
applicability of this approach to deciding weak bisimilarity.

Necessary conditions for a (modified) expansion tree to be an algorithm
are following

1. the tree is finitely branching

2. every vertex is labeled by a finite set

3. if the root is labeled by a (weakly) bisimilar pair then the tree has a
finite successful branch.

The first condition is not valid as a finite set can have infinite number of
different weak expansions due to the composite transitions. Nevertheless
its invalidity is not critical. Searching the tree by dove-tailing technique
results in semidecision procedure (if there is a finite successful branch than
it is found otherwise the search never halts).

The second condition also need not be true. There are two sources of
infinity. Firstly, while expanding a finite set we can come to an infinite
one owing to composite transition on the attacker side. An example of
such a process is given in Example 1. Secondly, infiniteness can arise while
decomposing a pair of processes, namely in the set up to. A simple example
is given below:

X
a
−→ ε Y

a
−→ ε B

b
−→ ε U

b
−→ U

X
a
−→ XB Y

a
−→ Y

Although XU ∼ Y U we cannot decompose the pair as X 6∼ Y , moreover,
at a closer look we find out that any set A with the property that X is bisi-
milar to Y up to A is infinite and must contain {(Bi, ε) | i ∈ N}. However,
(finiteness of) the decision procedure is based on the fact that any two non-
bisimilar variables have only finitely many nonbisimilar completions.

In case of weak bisimulation, one can avoid problems 1. and 2. by consid-
ering the variant of weak bisimulation in which attacker is allowed to do
only simple transitions (for the first type of infinity) or by allowing com-
pact finite representation of the sets up to (i.e. via a finite or pushdown
automaton). But there is still the third condition we have to cope with. As
the following example shows this obstacle is the most serious one.
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Example 22 This simple BPA represents an algebra where violation of con-
dition 3 appears, i.e. there exists a bisimilar pair for which the modified
expansion tree has no finite successful branch.

X
τ
−→ ZY X

a
−→ XW Z

τ
−→ ZW Y

c
−→ Y

X
τ
−→ ε Z

τ
−→ ε W

b
−→ ε

All relevant (in)equivalence relationships are summarized below:

1. Y ≈ Y α, for any process α;

2. XW iY ≈ XW jY , for every i, j;

3. XW i 6≈ XW j , for every i 6= j;

4. W iY 6≈W jY , for every i 6= j.

As Y is an unnormed variable, the first equivalence is easy to observe. To
verify item 3., we assume that i < j, and observe that after XWi disposes
of X it will do exactly bi to reach ε, however XW j can in any case do at
least bi+1 as i < j. Similarly in case 4., if i < j then W iY can do c after bi

which cannot be matched by WjY . In order to test equivalence 2. we first
analyze all possible (composite) moves of X . They are

X
τ

=⇒ ZW kY X
a

=⇒ ZW kY X
b

=⇒W kY

X
τ

=⇒W kY X
a

=⇒W kY X
c

=⇒ Y

X
τ

=⇒ ε

We will check weak bisimilarity ofXW iY andXW jY , for arbitrary i and j,
with the help of Figure 5. We will only analyze the moves of XWiY as the
other process behaves analogously. Firstly, XW iY may dispose of the X
in front, then the other process XWjY evolves into W iYW jY by means

of the sequence XWjY
τ
−→ ZYW jY

τ i
−→ ZW iYW jY

τ
−→ W iYW jY ,

which is equivalent to W iY by equivalence 1. The other interesting move
is XW iY

a
−→ XW i+1Y that is matched by XW jY

a
−→ XW j+1Y . The re-

maining possibilities consist in X generating ZWkY or W kY to which the
other side responds by creating an exact copy (hence we obtain two bisimi-
lar processes ZeW kYW iY and ZeW kYW jY , where e ∈ {0, 1}).

Before we present the construction of a modified expansion tree we will
make some observations about decomposability of bisimilar pairs in this
algebra. From 3. and 4. above follows that for distinct i and j the pair
(XW iY,XW jY ) has no classical decomposition, i.e. there is no way of
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Figure 5: Bisimulation diagram

splitting XW iY and XW jY into two pairs of bisimilar processes. Further-
more, every bisimulation relating the pair is infinite and has no finite base
as it must contain the set {(XW i+kY,XW j+kY | k ∈ N}, which is not
finitely generated.

At a closer look we may note that in any bisimulation play leading from
the pair (XW iY,XW jY ), X on either side may evolve into an unnormed
process by choosing to perform X

τ
−→ ZY , or it may disappear by doing

X
τ
−→ ε. To the latter move the only correct response (of the other X) is

X
τ

=⇒ W kY , where k depends on i or j and the current depth of the play.
Hence we may conclude that in general, X ≈A X for any set A containing
(ε,W lY ), (WmY, ε), where l,m ∈ N.

Figure 6 represents a sketch of a construction of modified expansion
tree for the pair (XWY,XW2Y ), that only contains correct expansions and
correct applications of modification rules. We will make use of equiva-
lence 1. above and only consider those processes that contain at most one
Y , as the final variable. We make the following conventions: in order to
save space the set up to {(ε, ε)} is denoted by ε; pairs that are not un-
derlined are those omitted in further construction by application of Rule
6. We either omit identical pairs if the set up to contains (ε, ε) (such as
(W iY,W iY )ε), or identical pairs of unnormed processes. The other appli-
cation of omitting rule is whenever a pair belongs to the respective set up
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to (e.g. (ε,W 2Y )A, where A = {(ε,W2Y ), (W 3Y, ε)}). The original root is
labeled by {(XWY,XW 2Y )ε}, however a new root labeled by ∅ is added
as a result of application of Rule 7 to the original one. The rightmost branch
actually after a few steps becomes identical to the branch on the left which
is denoted by an arrow in the picture.

The correct choices of sets up to when applying Rule 7 are influenced
by the only correct response to the transition X

τ
−→ ε. When we de-

compose the original pair (XWY,XW2Y ), the only correct set up to is
B = {(ε,WY ), (W 2Y, ε)} as X ≈B X and also WY ≈ WY , and W 2Y ≈
W 2Y . When we move to (XW2Y,XW 3Y ) we need to consider B′ = A =
{(ε,W 2Y ), (W 3Y, ε)}. Then, as X keeps generating further copies of W ,
also the exponents of W in the consecutive sets up to grow. The sets are fi-
nite but unbounded in size of its elements. As the sets are all distinct (w.r.t.
weak bisimilarity), any infinite branch cannot be terminated as a successful
finite branch by the presented rules.

6 Conclusions

In this paper we have attempted to generalize the method of expansion
trees for semideciding weak bisimilarity of BPA-processes. The main idea
was to split a given problem (of deciding whether a given pair is weakly
bisimilar) to a number a smaller tasks of the same type which would lead to
a recursive procedure. In the Application section we have demonstrated an
example of BPA-processes where even after application of the modification
rules suggested in this paper we obtain larger and larger processes which
results in non-termination of the proposed procedure.

The example presented in the previous section is an example of a pro-
cess algebra where the maximal weak bisimulation does not have a fi-
nite Caucal base, moreover every weak bisimulation relating e.g. the pair
(XW 2Y,XW 3Y ) also fails to have a finite base. However, we are able to
provide a finite description of a Caucal base of any such bisimulation (for
instance by means of a pushdown automaton). In general, any recursive
description of a Caucal base suffices to semidecide weak bisimilarity. The
existence of a recursive Caucal base of the maximal weak bisimulation and
its efficient construction remain open questions. This would be one possi-
ble way of attacking the (semi)decidability problem for weak bisimilarity
on BPA.
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