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Abstract

We consider the problem of constructing of binary space partitions (BSP)
for a set S of n hyperrectangles in arbitrary dimensional space. If the set
S fulfills the low directional density condition defined in this paper then the
resultant BSP has O(n) size and it can be constructed in O(n log2 n) time
in R3. The low directional density condition defines a new class of objects
which we are able to construct a linear BSP for. The method is quite simple
and it should be appropriate for practical implementation.

keywords: BSP, rectangle, tree, partitioning

1 Introduction

Many of computer graphics and computational geometry problems con-
cern processing of object sets in two and three-dimensional space. Such tasks
can be usually solved successfully and effectively, if a scene is simplified by a
suitable partitioning of the space into subspaces.

A scene can be divided in many ways. We have to decide which informa-
tion will be important for us and that’s why we will require its maintenance
or highlighting. A natural way to perform the partitioning is to make a linear
cut of the space with a hyperplane splitting the space (and possibly some of
the objects) into two parts.

1Support was provided by the grant 201/98/K041
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Informally: Binary Space Partition, or BSP (initially introduced by Schu-
macker [18]) is a recursive partitioning of the space with objects by suitable
hyperplane. The partitioning process is repeated for new arising subspaces
until only one fragment of any object occurs in detached subspace. We sup-
pose objects do not intersect each other, otherwise we would not be able to
ensure finishing of the splitting.

The BSP for a set of objects can be naturally expressed as a tree structure.
The splitting hyperplanes and objects lying within them are stored in nodes
of BSP tree. Each node of BSP tree is associated with a convex region which
is a part of the original space. This convex region is created by splitting
the space by hyperplanes associated with ancestors of given node. We can
observe that convex regions associated with nodes of the same level generate
a resolution of the original space.

The BSP trees have a wide usage in many areas of computer science. They
are used, for example, in hidden surface removal using painters algorithm
[11], visibility solution [19], shadow generation [7], objects modeling [14, 20],
surface approximation [3], or robot motion planning [5].

When we split the space by a hyperplane then some objects can be un-
willingly divided into two or more parts. In such way, the original scene
will be divided into a lot of fragments. However, the efficiency of algorithms
benefiting from BSP depends on the size of consequential BSP. This is the
reason for necessity to select the split hyperplanes carefully.

In the past, a lot of attention was dedicated to the development of algo-
rithms which construct BSP trees of a small size. Initially, several heuristic
methods were developed (for example [4, 11, 10, 19, 20]), which however can
create an excessive size tree for unpropitious cases (Ω(n2) in the plane and
Ω(n3) in the space). The first provable bounds were obtained by Paterson
and Yao [15, 16]. They showed [15], that the optimal size of BSP in the
space in the worst case is Θ(n2) and in the plane is O(n logn). The next
result of these authors [16] was the optimal size BSP algorithm for the set of
orthogonal objects in the space in the worst case Θ(n3/2) and in the plane in
the worst case Θ(n).

However, most of randomly created BSP trees have reasonable behav-
ior for practical scenes. Their sizes are considerably smaller than the worst
case determined boundary. Modern algorithms try to use these properties
to construct nearly linear BSP trees. Pankaj K. Agarwal et al. [1] solved
the problem of a construction of BSP tree for a set of fat orthogonal rectan-
gles (the fat objects are intuitive objects without extremely skinny and long
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parts). Their algorithm creates BSP trees of n2O(
√

logn) size for scene of n fat
rectangles and of n

√
m2O(

√
log n) size for scene of (n−m) fat rectangles. The

running time is linear to output BSP tree size. In the next paper [2] they
compared implementation of this algorithm with other BSP algorithms. It
was shown that their algorithm is really applicable in practice.

Mark de Berg et al. have extensively studied the problem of BSP in
the plane [8]. They showed existence of a linear size BSP for sets of line
segments where the ratio between the lengths of the longest and the shortest
segment is bounded by a constant, for sets of fat objects and for homothetic
objects. They also proposed effective algorithms to construct it (in the time
O(n log logn), O(n logn) and O(n log2 n)).

In [9], de Berg was engaged in moving of the problem of BSP for sets of
fat objects into higher dimensional spaces. His algorithm offers linear BSP
trees also with only a little worse running time (O(n log2 n)). Nevertheless,
it is simple and more convenient for practical implementation.

Nguyen Viet Hai [12] published an algorithm creating linear BSP trees for
set of r-bounded hyperrectangles in Rd. The advantage of this algorithm is
that it ensures balance of resultant BSP tree. Moreover, the algorithm works
in optimal O(n logn) time. We will compare the algorithms of Nguyen Viet
Hai [12], Mark de Berg [9] and our proposed method in the last part of this
paper.

The algorithm proposed in this paper extends our previous work [21]
dedicated to BSP trees for sets of segments in the plane. We proposed an al-
gorithm creating linear BSP for set of segments with so-called low directional
density in O(n log3 n) time. Here we extend this method into higher dimen-
sional spaces. Over against this generalisation we have lost the advantage of
arbitrary orientation of objects and we work with axes oriented hyperrect-
angles only. This quite simple method can provide BSP trees of linear size
under condition of so-called low directional density of hyperrectangles.

This paper is organized as follows: Section 2 presents same basic notions
and definitions. In section 3, we prove existence of a linear BSP for a set
of axes oriented rectangles with low directional density in R3 and describe
main ideas of our algorithm. Section 4 extends our considerations for sets of
hyperrectangles in R3 and in section 5 we describe an efficient algorithm to
construct the linear BSP tree. The comparison with other algorithms and
conclusion follows in section 6.
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2 Preliminary

We start with formal definition of the binary space partition:

Definition 2.1: A binary space partition tree B for a set S of pairwise
disjoint, (d − 1)-dimensional, polyhedral objects in Rd is a tree recursively
defined as follows2:

Each node v in B represents a convex region Rv and a set of objects
Sv = {s ∩ Rv|s ∈ S}, that intersect Rv. The region associated with the
root is Rd itself. If Sv is empty, then node v is a leaf of B. Otherwise, we
partition v′s region Rv into two convex regions by a cutting hyperplane Hv.
At v, we store {s ∩ Hv|s ∈ Sv}, the set of objects in Sv, that lie in Hv. If
we let H+

v be the positive halfspace and H−v the negative halfspace bounded by
Hv, the regions associated with the left and right children of v are Rv ∩H−v
and Rv ∩H+

v , respectively. The left subtree of v is a BSP for set of objects
S−v = {s ∩H−v |s ∈ S} and the right subtree of v is a BSP for set of objects
S− + v = {s ∩H− + v|s ∈ S}. The size of B is the number of nodes in B.

Both the Mark de Berg’s unclutteredness [9] and the Nguyen Viet Hai’s
r-boundednes [12] are based on properties of scene objects and the dimension
of that one corresponds to the dimension of the original space. The first idea
of our algorithm comes out from the observation that the dimension of the
splitting hyperplane is less by one than the split space. Since we can aim
our attention to the space and objects contained in the splitting hyperplane
only.

The second idea follows from the free cuts. We show an example of the free
cut in two-dimensional space with set of segments but it can be generalized
for arbitrary dimension. If a segment is split into three or more parts, then
we can bring a splitting hyperplane containing the median segment without
additional splitting of another segment. In such way, this segment can be
excluded from further consideration (see figure 1).

We generalize this idea and define so-called ε-free cuts, which can cut only
constant number (ε) of other segments in our algorithm. For algorithm’s
intentions, we suppose that any object (hyperrectangle) has extended low
directional density defined in the next part of this paper. We believe, that
many realistic scenes fit to this condition.

2We take up the definition of Agarwal [1]
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free cut

l

s1

s

l2

ε = 1 (ε, δ)-free cut

l1

s’
l ∗ δ

l ∗ δ

Figure 1: Free cut

Definition 2.2: Let r be a rectangle in the space with vertices r[Xj]; j ∈
{1, ..., 4} and side vectors ~ru = X2−X1 and ~rv = X3−X2, as you can see on
the figure 2. Point C be center of the rectangle r. W.l.o.g. we can suppose
that |~ru| > |~rv|. Then (δ, fu, fv, r

{u,v}
{1,−1})-directional neighbourhood of rectangle

r (we will mark it Ω(δ, fu, fv, r
{u,v}
{1,−1})) is a union of set of points defined as

follows:

• Ω(δ, fu, fv, r
u
1 ) = {C ± c1~r

v
i + c2~r

u
i }

• Ω(δ, fu, fv, r
u
−1) = {C ± c1~r

v
i − c2~r

u
i }

• Ω(δ, fu, fv, r
v
1) = {C ± c3~r

u
i + c4~r

v
i }

• Ω(δ, fu, fv, r
v
−1) = {C ± c3~r

u
i − c4~r

v
i }

where c1 ∈ 〈0, ..., fv〉, c2 ∈ 〈
1
2
, ..., 1

2
+ fu〉, c3 ∈ 〈0, ..., fu〉, c4 ∈ 〈

1
2
, ..., 1

2
+ fv〉.

f{u,v} = f{u,v}(δ, r) is non-negative above unlimited function increasing with
δ. The (δ, fu, fv, r)-directional neighbourhood of rectangle r (we will mark it
Ω(δ, fu, fv, r)) is a union ∪Ω(δ, fu, fv, r

{u,v}
{1,−1}).
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Let fu = δ, fv = δ. In this case, the definition is intuitively extension of
the definition for set of segments in the plane [21]. We call the Ω(δ, fu, fv, r)
neighbourhood simple directional neighbourhood and sign Ωs(δ, r).

r
C

(d, f1, f2, r
u
1 ) - directional vicinity

of the rectangle r

ru

rv

of the rectangle r

(d, f1, f2, r
v
−1) - directional vicinity

of the rectangle r

(d, f1, f2, r
v
1) - directional vicinity

of the rectangle r
(d, f1, f2, r

u
−1) - directional vicinity

Figure 2: Directional neighbourhood of rectangle r

Definition 2.3: Let R be a set of rectangles in the space, ri ∈ R and ε
be an integer constant. We say, that rectangle ri is:

• free if Ω(∞, fu, fv, ri) ∩ R = ∅

• ε-free, if |Ω(∞, fu, fv, ri) ∩ R| < ε

Definition 2.4: We say, that a rectangle ri ∈ R has (ε, δ, fu, fv) -low
directional density, iff |Ω(δ, fu, fv, ri) ∩ R| ≤ ε, whereas ε is a integer
constant and δ > 0 is a real constant.

We say, that a set of rectangles R has (ε, δ, fu, fv)-low directional den-
sity, iff any rectangle r ∈ R has (ε, δ, fu, fv)-low directional density.

Let us define the simple low directional density of r and R for the
Ωs(δ, r) neighbourhood.
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3 BSP of rectangles in the space

Lemma 3.1: There is a set R of axes aligned rectangles with simple low
directional density that no linear BSP exists.

Proof: Obviously, any hyperrectangle in R3 is bounded by six rectangles
from R2. A BSP for the set of bounding rectangles is implicitly BSP for the
set of hyperrectangles.

Paterson and Yao [16] showed, that the BSP lower bound of hyperrect-
angles in the space is Ω(n3/2). The worst case (three-dimensional grid) is
shown in the figure 3.

Figure 3: The worst case of hyperrectangles in the space.

Let us shrink the two shorter sides of any hyperrectangle into third of
the original size. In this way, a free space around the hyperrectangles arises.
The lower bound of BSP is preserved, but the Ωs(1, rb) neighbourhood of any
bounding rectangle rb is crossed by no other rectangle because the size of the
neighbourhood conforms the size of the original hyperrectangle. Therefore,
any bounding rectangle has (0, 1, δ, δ)-low directional density and the whole
set of bounding rectangles has simple low directional density. 2
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Definition 3.2: Let fu = (1 + 2δ), fv = |~ru|
|~rv |(1 + 2δ). We call the

Ω(δ, fu, fv, r) neighbourhood of r extended directional neighbourhood
and sign Ωe(δ, r). We call the set of rectangles R with (ε, δ, fu, fv)-low direc-
tional density the set with extended low directional density.

ε = 2

δ = 1/2

ru

rrv

a

b

r

rv

ru

ε = 3

a = b = |u|(1 + 2δ) = 2|u|

Figure 4: Simple low directional density (on the left) and Extended low di-
rectional density (on the right) of rectangle r parallel with xy plane.

In the consecutive text, we use the following Lemma proved in [21].

Lemma 3.3: Let S, B be non-empty sets of segments in the plane which
fulfil the following conditions:

1. n = |S| ≤ |B| = n+ k

2. There is such injective mapping σ : I → J ; I = {1, ..., n}, J = {1, ..., n+
k} and real constant α, that the following claim holds for all i ∈ I:
(|si| ≤ α|bσ(i)|) ∧ (si ‖ bσ(i)), where |si| means the length of segment
si ∈ S and |bσ(i)| means the length of segment bσ(i) ∈ B.

Furthermore, let v be an arbitrary non-zero vector such that ∃(si) : si ∦ u
and p be a line parallel with v. Then the following statement holds: ∃(p) :
|p ∩ S| ≤ α|p ∩B|.

Lemma 3.4: Let R be a set of axes parallel rectangles with extended low
directional density. Then a linear BSP for the set R exists.
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Proof: We use both the notions of simple and extended low directional
density during this proof. Most of cuts are going through the simple di-
rectional neighbourhood. Nevertheless, it is not possible to use only such
cuts as follows from Lemma 3.1. Hence, we are forced to use the extended
directional neighbourhood in the adverse cases.

At first, we build up three pairs of auxiliary sets of segments B1, S1, B2,
S2 and B3, S3 in the following way:

Let us project the set {r|r ∈ R} of original rectangles onto the x axis.
The set of segments S1 contains the projected rectangles S1 = {s|s =
Projx(r), r ∈ R}. For the sake of simplicity, we will suppose, that the
endpoints are in general position (i.e. no two endpoints have the same x-
coordinate).

The degenerate cases could be simply solved by lexicographical ordering
on the points of original rectangles. Each endpoint of s ∈ S1 can be consid-
ered as projection of an unique point pmax (pmin) ∈ r maximal (minimal) in
the standard lexicographical ordering.

The simple directional neighbourhood Ωs(δ, r) belonging to r is a part of
rectangle enclosing r. Let us project the set {Ωs(δ, r)|r ∈ R} onto the axis
x. We get a set of segments. Let us split each segment Projx(Ωs(δ, r)) into
two parts by subtraction of the Projx(r) from the one. We get two resultant
segments: b1 with lower x coordinates and b2 with higher x coordinates
associated with the segment s, as you can see in figure 5. It follows from the
definition of Ωs(δ, r) that |b1| = |b2| = δ|s|. The set B1 is an unification of all
segments b1 and b2 generated by the set of {Ωs(δ, r)|r ∈ R}. Note, that the
degenerate cases are treated by lexicographical ordering as well and we get
two zero length segments b1 and b2 associated with the zero length segment
s.

The sets S2, B2, S3 and B3 are created in the same way by projection onto
the y and z axes. Considerations about sets S2,B2 and S3, B3 are symmetric
as about S1 and B1 and will be omitted in the next text.

Observation: Let p be a plane parallel to plane yz and r be a rectangle
parallel to plane xy. Then the next cases can occur (see figure 6):

1. The plane p miss both of the rectangle r and its directional neighbour-
hood Ωs(δ, r).

2. The plane p intersect the rectangle r and the neighbourhoods Ωs(δ, r
i
{1,−1})|(i =

u) ∨ (i = v).
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Neighbourhoods

B1 S1

R
y

x

Figure 5: The sets S1 and B1

3. The plane p intersect the neighbourhoods Ωs(δ, r
i
{1,−1})|(i = u)∨(i = v)

and Ωs(δ, r
j
1)|j 6= i

4. The plane p intersect the neighbourhoods Ωs(δ, r
i
{1,−1})|(i = u)∨(i = v)

and Ωs(δ, r
j
2)|j 6= i

When the cut (3) or the cut (4) is used, then the boundaries between
adjacent directional neighbourhoods are intersected (figure 6). Hence, the
plane rp containing the rectangle r intersects only constant number of origi-
nal rectangles contained in Ωs(δ, r

j
1) (case 3) or Ωs(δ, r

j
2) (case 4) and unknown

number of original rectangles contained in other neighbourhoods after using
such cut. We call such cut (3) or (4) effective cut and the rectangle r 1-side
free after using both such cuts. If we use four effective cuts through all neigh-
bourhoods Ω(δ, r

{i,j}
{1,−1}), then we can use auto-partition onto the rectangle r

cutting only constant number of original rectangles.
In addition, let Proj(p) be the projection of the plane p onto the plane xy

(i.e. a line). Then the case (1) occurs iff Proj(p) miss segments s ∈ S1 and
b1, b2 ∈ B1 associated with r and its neighbourhoods. The case (2) occurs iff
Proj(p) crosses a segment s ∈ S1 associated with r. The cases (3) (or (4))
occurs iff Proj(p) crosses a segment b1 (or b2)|b1, b2 ∈ B1.

The simple low directional density of a set R results from the extended
low directional density. Hence, ∀b{1,2} ∈ B1 : |s| ≤ 1/δ|b{1,2}|, where 1/δ is a
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R

2)4) 3) 1)

Constant number of
original rectangles

Figure 6: Intersections of r by a plane parallel with the yz plane.

constant. It follows from definition, that n = |S1| ≤ |B1| = 2n and s ‖ b{1,2}.
The assumptions of Lemma 3.3 are satisfied for the sets S1 and B1 and thus
we can find such line l = Proj(p), that |l ∩ S1| ≤ 1/δ|l ∩B1|.

The BSP construction algorithm proceeds with loops consisting of two
sections. In the first section, we process all ε-free rectangles and dispose
them from Si. In the second section, we split the original set R by a plane
p and associated sets Si and Bi by a line l = Proj(p) into two portions
according to Lemma 3.3, provided that Si is not empty. The algorithm
starts with i = 1.

Section 1:
while There are any ε-free rectangles in R do

begin
(1) Pick an arbitrary ε-free rectangle r ∈ R up;
(2) Determine the plane p containing r;
(3) Eliminate all segments b ∈ Bj|b ∩ p 6= ∅ from the sets Bj|j ∈ {1, ..., 3};
(4) Use p as the splitting plane for sets R and Sj ∪ Bj|j ∈ {1, ..., 3};
(5) if |Si| > 1 then recurse on the resultant sets;

end;

Section 2:
if The sets Si are not empty then

11



begin
(6) if There is not possibility to select a line l according to Lemma 3.3 then

// |l ∩B|/|l ∩ S| ≥ δ
Choose a new Bi, Si|i ∈ {1, ..., 3} not disturbing the Lemma 3.3 conditons;
// If any sets Bi, Si satysfying the Lemma 3.3 conditions doesn’t exist
// then the rectangle with its longest side is ε-free (using extended low
// direcitonal density).

(7) Select a line l according to Lemma 3.3 and associated plane p;
(8) Eliminate all segments b ∈ Bj|b ∩ p 6= ∅ from the sets Bj|j ∈ {1, ..., 3};
(9) Use p as the splitting plane for the sets R and Sj ∪ Bj|j ∈ {1, ..., 3};
(10) if |Si| > 1 then recurse on the resultant sets;
end;

An example of splitting of a rectangle from lines (4) or (9) is shown in
figure 8.

Now, we have to certify, that the assumptions of Lemma 3.3 are satisfied
in section 2 of the algorithm and that the algorithm finishes with BSP tree
of linear size.

We can observe, that there are exactly two segments b{1,2} ∈ B belonging
to segment s ∈ S at the start of this algorithm. A segment b ∈ B is discarded
in a section of the algorithm only in case, when it is crossed by (or contained
in) a BSP splitting line.

Let r be a rectangle derived by several steps of the algorithm. We denote
ror the original rectangle, which r has been derived from.

We can not certify the assumptions of Lemma 3.3 in the case that there
is a segment s ∈ S such that no b{1,2} belonging to s exists. Such segment
corresponds to a 1-side free or ε-free original rectangle r. We analyze these
two possibilities now.

Firstly: the rectangle r is ε-free. Nevertheless, all ε-free rectangles have
been discarded before entering the section 2. Hence, this event can not occur.

Secondly: the rectangle r is 1-side free3 but r is not ε-free. In this case,
we have to change the parameter i and continue the algorithm with new sets
Si, Bi. We show that a convenient parameter i always exists.

3We have to remind, that the cuts are drawn through the simple directional neighbour-
hood using the Lemma 3.3.
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Let us suppose that we have sets S
′

j, B
′

j|j ∈ {1, ..., 3} derived by the
algorithm from the initial sets Sj, Bj and associated with a convex region
R of a node of the BSP tree. In addition, we can not select any parameter
i to continue the algorithm. In this case, any set S

′

i |i ∈ {1, ..., 3} contains
at least one segment s such that there is no b ∈ B

′

i associated with s. The
segment s is derived from an original rectangle ror. LetM be a set of all such
rectangles (i.e. the set of all original rectangles, the 1-side free rectangles in
R was derived from) for the sets Si. Because the rectangles are axes aligned,
every rectangle projects either as copy of the original rectangle or as a line
segment. Let us select the rectangle ror ∈ M with maximal length of the
longer side and non zero area and mark this original rectangle as A. W.l.o.g.
we can suppose, that the selected rectangle is parallel to the plane xy. The
length of longer side of A is L, as you can see on figure 7. Now we transfer
our considerations onto the xy-coordinate.

L

L

C1

C2

C3

C4A

x

y

L

δ

Figure 7: Proof

It results from the definition of extended directional neighbourhood that
the width of A’s neighbourhood is at least 2δL + L in both x and y direc-
tions. In additional, A is bounded by two cuts parallel with a coordinate
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axis (w.l.o.g. we can suppose that it is the x axis) and going through its
simple directional neighbourhood. Further, we carry out two cuts through
A’s neighbourhood to bound the rectangle and to be able to use the ε-cut.

Again, let C be a rectangle ror1 ∈ M and C is bounded by two cuts
parallel with the y coordinate axis. Let L1 be the length of the longer side
of C. We can distinguish the next cases:

1. A = C. But then the rectangle r associated with A is bounded by four
axes parallel cuts. Hence r is ε-free - a contradiction.

2. A 6= C. Then:

(a) There are points u ∈ A and v ∈ C such that |u, v|xy < δL, where
|u, v|xy denotes the distance of points u,v in xy plane (see fig. 7,
rectangles C1 (or C2), A). Because C is bounded by two cuts
parallel with y coordinate axis and going through its simple di-
rectional neighbourhood, we can show that C with its simple di-
rectional neighbourhood lies whole inside of A with its extended
directional neighbourhood. Precisely: Let w be a point inside
of C with its simple directional neighbourhood. Then |u, w|xy <
|u, v|xy + L1 + δL1 < 2δL+ L. C is bounded by two cuts parallel
with the y coordinate axis and going through its simple directional
neighbourhood. From the previous considerations, both the cuts
are going through the extended directional neighbourhood of A.
Hence r is ε-free - a contradiction.

(b) There are points u ∈ A and v ∈ C such that |u, v|xy < δ does not
exist (see fig. 7, rectangles C3, A). Then ∀(u ∈ A, v ∈ C)|u, v|xy >
δ. Nevertheless, there is a cut parallel with y coordinate axis going
through the simple directional neighbourhood of B. Such cut must
separate the rectangle r and the rectangle r1. Hence, r and r1 can
not belong to the setM concurrently - a contradiction.

We have proved in the previous part, that a segment b belonging to s
always exists when we are entering part (7) of the algorithm. Therefore
|Si| ≤ |Bi|. In the whole algorithm, no changes of length of any segment bij
occur. Only a segment s ∈ Si can be split and hence shortened. It shows,
that ∀i ∈ {1, ..., n} : |si| ≤ α|bσ(i)|. The rest of assumptions of Lemma 3.3 is
apparently true.
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It remains to prove that this algorithm finishes with linear BSP tree for
an input set of segments S. In order to bound the resultant BSP tree size,
we summarize the total number of cuts in the course of the algorithm.

It is clear, that the nodes of resultant BSP tree contain only ε-free rect-
angles (or fragments of rectangles). Hereafter, at least one segment b ∈ Bj

or a ε-free rectangle (or its part) is treated in each pass of a section of the
algorithm and no quite new segment b ∈ B can arise in any new subregion.
Hence, the algorithm finishes after a finite number of steps.

There are two kinds of partition used in the algorithm:
The partitioning in the first section of the algorithm uses the ε-free cuts.

It means that the number of split rectangles by the directional neighbourhood
of a rectangle is at most ε.

The partitioning in the second section of the algorithm uses a splitting
plane derived from a splitting line of the Lemma 3.3. Given by the condition
from Lemma 3.3, the number of crossed segments from the set S is less or
equal 1/δ times the number of crossed segments from the set B. Furthermore,
to each rectangle (or part of rectangle) belongs exactly one segment s ∈ Si
and at most two segments b{1,2} ∈ Bi for each i ∈ {1, 2, 3}.

Let us select an arbitrary fixed i ∈ {1, 2, 3}. If the objects are split only by
the cuts perpendicular to i-axis and no object is split by a cut perpendicular
to another axis, then at moast 2n1

δ
+nε objects (rectangles) are split by this

cuts overall (we have to cross 2n segments b ∈ Bi and we use n free cuts).
Hence, we have at most n+ 2n1

δ
+ nε = (1 + 2

δ
+ ε)n resultant objects.

Now, we have to take into consideration, that we are working with planar
rectangles in R3. Any planar rectangle is 2-dimensional object. When a
rectangle is split, a new segment s ∈ S{j,k} and at most two new segments
b1, b2 ∈ B{j,k}|j 6= i, k 6= i can arise in a new subregion as you see at figure
8. Thereof, the number of generated objects (subrectangles) is bounded by
(1 + 2

δ
+ ε)2n.

Together, the maximal number of all generated subrectangles is bounded
by

(1 +
2

δ
+ ε)2n = O((1 +

1

δ
+ ε)2n)

Because δ and ε are constants, the number of objects in the BSP tree is at
most O(n) and the resultant BSP tree has linear size. 2

Remark: An appropriate directional neighbourhood could be defined for
any polygon (not necessarily axes aligned) but it can be too large and hence

15



First subregion Second subregion
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Figure 8: The rectangle R is divided into two parts.

useless. Moreover, there are technical problems with description and realiza-
tion of ε-free cuts.

4 BSP of hyperrectangles in the space

Obviously, every hyperrectangle E ∈ R3 is created by set of six bounding
rectangles. Hence, if we create a BSP of set of bounding rectangles, we have
the BSP of hyperrectangles. The first idea is to use the set of rectangles
with extended low directional density. Nevertheless, we propose better so-
lution following from new definition of the low directional density of set of
hyperrectangles. This definition exploits the idea of extended low directional
density in two directions only. The third direction can have the neighbour-
hood small. So we can do very flat cuts using this technique.

Definition 4.1: Let e be a axes aligned hyperrectangle with side vectors
~ex, ~ey and ~ez. W.l.o.g. we can suppose that ~ex ≥ ~ey ≥ ~ez. We assign
two directional neighbourhoods to the hyperrectangle e using the bounding
rectangles of e.
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1. We extend the neighbourhoods in directions ~ex, ~ey.

• fx = 1 + 2δ

• fy = |~rx|
|~ry|(1 + 2δ)

• fz = δ

Ω1(δ, E) = ∪re(Ω(δ, f, re))

2. We extend the neighbourhoods in directions ~ex, ~ez.

• fx = 1 + 2δ

• fy = δ

• fz = |~rx|
|~rz | (1 + 2δ)

Ω2(δ, E) = ∪re(Ω(δ, f, re))

z

x y

Figure 9: The Ω1(δ, E) neighbourhood.

We say, that the hyperrectangle e has (ε, δ)-low directional density, iff
|Ω1(δ, e) ∩ E| < ε or |Ω2(δ3, e) ∩E| < ε.

Lemma 4.2: Let E be a set of hyperrectangles with (ε, δ)-low directional
density. Then a linear BSP for the set E exists.

Proof: The proof comes out from the Lemma 3.4. The beginning of this
proof corresponds to the proof of Lemma 3.4 exactly. We build up tree aux-
iliary sets of segments Bi, Si|i ∈ {1, ..., 3} in the same manner. The Observa-
tion and their consequences hold as well. We can use the BSP construction
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algorithm without changes yet. The only part of the proof we have to top up
is the certify, that the assumptions of Lemma 3.3 are satisfied in the section
2 of the algorithm. Specifically the part "Secondly" has to be adapted.

Secondly: the rectangle r is 1-side free but r is not free. In this case, we
have to change the parameter i and continue the algorithm with new sets Si,
Bi. We show that a convenient parameter i always exists.

LetM be a set of rectangles defined in the same way as in Lemma 3.4.
Let A = ror ∈ M be the rectangle with maximal length of the longer side
and bigger length of the shorter side. Let E be the hyperrectangle in the R3

space bounded by rectangles r1, ...r6; r1, r2 ‖ xy plane, r3, r4 ‖ xz plane and
r5, r6 ‖ yz plane, A ∈ {r1, ...r6}. W.l.o.g. we can assume, that the functions
fx, fy, fz are defined for the neighbourhood extended in directions ~ex, ~ey (i.e.
fx = 1 + 2δ, fy = |~rx|

|~ry|(1 + 2δ) and fz = δ).

• If the rectangle A fulfils extended low directional density, (i.e. the
rectangle r is parallel with the xy plane in our case) then a segment
b belonging to the segment s of A always exists, as was shown in the
Lemma 3.4.

• If the rectangle A is parallel to the xz plane, then the two next cases
can occur:

– The (part of) hyperrectangle E containing the (sub) rectangle A
is bounded by two cuts parallel with xy plane. Hence no rectangle
(subrectangle of) r1 or r2 lies in this subspace. In this case, we
can use the A as a rectangle with extended low directional den-
sity, because the two sides repealing the extended low directional
density condition has been cut off.

– A rectangle (subrectangle of) Q ∈ {r1, r2} parallel with xy plane
exists. It follows from the definition, that this rectangle must be
at least as large as the rectangle A.
If Q ∈ M, then we can take q instead of r. The rectangle Q has
the extended low directional density and we can use the technique
from the Lemma 3.4.

Lemma 4.3: Let R be a convex BSP region derived by the
proposed algorithm. Let A ∈M be a rectangle with maximal length
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of the longer side. Then the A has maximal length of the longer
side among all rectangles ri|ri ∩R 6= 0.

Proof: The simple directional neighbourhood of A is intersected by
two parallel cuts. The distance of these cuts is at least 2δL + L.
The width of the neighbourhood of any rectangle C 6∈ M is less
then 2δL+L because the neighbourhood of C is intersected by at
most one cut. It implies that C < A. 2

If Q 6∈ M, then a rectangle Q1 ∈M|Q1 has a longer side then Q;
exists. Nevertheless, (the longest side of A) ≤ (the longest side of
Q) < (the longest side of Q1). This is a contradiction with our
selection of A as the rectangle with maximal length of its longer
side.

• If the rectangle A is parallel to the xy plane, then analogous arguments
holds as in the previous point.

The rest of this Lemma corresponds the rest of Lemma 3.4. 2

5 Design of the algorithm

The proof presented above provides us a pseudo algorithm how to create
a linear BSP tree. However, the construction steps of the algorithm are not
elementary and a brute force implementation could be very inefficient.

The second criterion of quality of resultant BSP tree (after size criterion)
is balance. Now, we give a formal definition of best-balanced cut as used in
[12].

Definition 5.1: Let C be cutting hyperplane in the space, C< and C>

denote the set of rectangles lying entirely in on of the two halfspaces generated
by the cut C. The best balanced cut is defined to be a cut which minimizes
the difference between C< and C>, i.e.

δC = ‖ |C<| − |C>| ‖,

where ‖x‖ denotes the absolute value of x.
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It is not possible to construct balanced BSP tree by the proposed algo-
rithm in any time. For example, the sequence of nested cubes with a common
center point and exponentially increasing diameters ({1, ..., 2n}) has low di-
rectional density abundantly. Unfortunately, the presented algorithm can
not create balanced BSP tree.

It is clear, that the proposed example is quite artificial. The balanced
tree exists for a large class of practical scenes. In the rest of this paper we
show an efficient algorithm involving trade-off between balance and size of
the resultant tree.

The proposed construction algorithm is based on segment trees discovered
by Bentley [6]. Segment tree is a data structure designed to handle intervals
on the real line whose extremes belong to a fixed set of O(n) endpoints. The
endpoints can be normalized by replacing each of them by its rank in their
left-to-right order. W.l.o.g., we may consider these endpoints as the integers
in the range [1, n].

We use the definition of F. Preparata and M. Shamos [17]:

Definition 5.2: The segment tree is a rooted binary tree. Given in-
tegers l and r, with l < r, the segment tree T (l, r) is recursively built as
follows: It consists of a root v, with parameters B[v] = l and E[v] = r
(B and E are mnemonic for "beginning" and "end," respectively), and if
r − l > 1, of a left subtree T (l, b(B[v] + E[v])/2c) and a right subtree
T (b(B[v] + E[v])/2, rc). (The roots of these subtrees are naturally identi-
fied as LSON[v] and RSON[v], respectively.) The parameters B[v] and
E[v] define the interval [B[v], E[v]] ⊆ [l, r] associated with node v. The
set of intervals {[B[v], E[v]] : v a node of T (l, r)} are the standard inter-
vals of T (l, r). The standard intervals pertaining to the leaves of T (l, r)
are called the elementary intervals. It is straightforward to establish that
T (l, r) is balanced (all leaves belong to two contiguous levels) and has depth
dlog2(r − l)e.

We will maintain the set of segments Bi, Si in a segment tree extended
by extra data. Using this trees, we will be able to select the splitting plane
according to Lemma 3.3 effectively.
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5.1 Preliminary calculations

Because the definition of low directional density of hyperrectangles de-
pends on neighbourhood, it is necessary to make a preliminary calculation.
To this purpose, we use the range trees with fractional cascading technique
[13, 22].

We have to choose the better from the possible extended directional neigh-
bourhoods. There are two rectangles parallel with any axes aligned plane:
r1, r2 ‖ xy and r3, r4 ‖ xz.

Let εi = |Ωe(δ, ri) ∩ E|, where e ∈ E. If ε1 + ε2 ≤ ε3 + ε4 then we select
the neighbourhood of rectangles r1, r2 else the neighbourhood of rectangles
r3, r4 in opposite case.

The Ωe(δ, r) can be substituted with a rectangle v = Ωe(δ, r) ∪ r. This
is correct because the number of intersections between the rectangle v and
E is the same in the case of nonintersecting hyperrectangles. In the case
of intersecting hyperrectangles, we can subtract the number of intersections
between E and r. Hence, we have O(n) intersection questions between the
bounding rectangles ofE and the neighbourhood rectangles (there are exactly
6n neighbourhood rectangles). Each intersection query can be computed in
O(log2 n) time using the range tree with fractional cascading and we obtain
the number of bounding rectangles intersecting the neighbourhood rectangle.
The range tree can be constructed in O(n log2 n) time. Together, we spend
O(n log2 n) time by computing the extended directional neighbourhoods to
the input set of hyperrectangles.

5.2 The trade-off algorithm

Our implementation corresponds to the presented pseudocode. We exe-
cute cuts according to Lemma 3.3 (i.e. it holds that |Bl|/|Sl| ≥ δ where |Bl|
is number of segments from the set B crossed by the line l and |Sl| is number
of segments from the set S crossed by the line l) until 1-side free rectangles
make it impossible in any dimension.

Then ε-free ctus are performed. If there is no rectangle bounded by
four cuts going through its simple directional neighbourhood, then we use
a hyperplane containing the longist rectangle with extended low directional
density. It follows from Lemma 4.2, that such rectangle is ε-free.

The main problems appear to select a line l according to Lemma 3.3. If
such line exists (line (7) of the algorithm), we eliminate the crossed segments
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b ∈ B (lines (4) and (8) of the algorithm) and split the sets Sj ∪ Bj|j ∈
{1, ..., 3} (lines (5) and (10) of the algorithm). If this is done by brute-force
manner, then the construction time can be quadratic. The reason of the
quadratic time is that we can spend O(n) time by searching for the splitting
line and the resultant BSP tree can be very unbalanced. In this case, the
recursion R(n) = R(n− 1) +O(n) leads to quadratic time.

In order to do it efficiently, we use segment trees. Initially, we have three
pairs of sets Bi, Si, i ∈ {1, ..., 3}. We create three segment trees (one for any
dimension) T{1,...,3} by the following way: The segment tree Ti contains all
segments b ∈ Bi and s ∈ Si. We will suppose in the rest of the paper, that the
endpoints contained in each T are in general position. If this condition doesnt
hold, we use the lexicographical ordering as was described in the Lemma 3.4
Moreover, we maintain the next items in each node N of the T :

1. BS quotient – the quotient |BN |/|SN | of segments b and s contained
in this node N .

2. best descendant – a pointer to a descendant node. Let N.Ti(l, r) be
the subtree generated by node N of the Ti(1, N) and let mi be a line
perpendicular to the i axis and intersecting the best quotient |b|/|s|
of segments contained in N.Ti(l, r) (if a such line can intersect only b
segments, then the line intersecting most b segments is selected). The
pointer best descendant selects the descendant node, which contains
elementary interval intersected by mi.

3. best quotient – the numbers |BN.Ti | and |SN.Ti | of segments b and s of
the subtree N.Ti(l, r) crossed by the line mi with best quotient |b|/|s|.

4. |C<| – the number of segments s lying entirely in the left subtree.

5. |C>| – the number of segments s lying entirely in the right subtree.

We also suppose, that we have cross pointers between segments belonging
to identical rectangle and subspace.

It is clear, that the finding of line l according to Lemma 3.3 (line (7))
can be carry out in O(logn) time by recursively descent using the described
segment tree for a set of O(n) segments. Moreover, we can order the descent
to select the best balanced cut fulfilling the Lemma 3.3 conditions.

The segment tree T (l, r) is a static structure with respect to the initial set
of segments (i.e. the segment trees does not support insertions or deletions
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of segments with new endpoints). Nevertheless, it can store intervals, whose
extremes belong to the set {l, ..., r} in a dynamic fashion (that is, supporting
insertions and deletions). Since, we can delete a crossed segment b in O(log n)
time (lines (4), (8)).

We have to proceed more properly by splitting a segment s. We can
not select the splitting line in any place of the crossed elementary interval
because no new endpoint can arise. Hence, we select one of the endpoints of
the elementary interval. Now, we can split the segments s in O(log n) time
as well (lines (5), (10)). We should take a note that the new data of the
segment tree can be updated in the same time.

The last problem occurs, when we have to split the sets of segments
Sj ∪ Bj|j ∈ {1, ..., 3}. As it has been shown, the splitting plane can be
found in O(logn) time using segment trees and we can determine the bigger
of resultant sets (Bigi) and the lesser of resultant sets (Smalli). Let us
suppose, the set Smalli contains O(m) segments. We take this segments
from the segment tree Ti(l, r) away and create a new segment tree for this
set from scratch.

In this way, we get two new segment trees (one for each new subset of
segments) and the algorithm can continue recursively.

Lemma 5.3: The proposed algorithm runs in O(n log2 n) time and space.

Proof: The preliminary calculations can be done in O(n log2 n) time and
space as it has been shown. Next, we have to analyze the trade of algorithm.

The steps (1) and (2) of the algorithm can be done in constant time.
Moreover, if we search for the best balanced cutting hyperplane containing
an ε-free rectangle, then we spend O(logn) time using the segment tree. The
steps (3) and (8) takes O(logn) time for each deleted segment and the step
(7) takes O(log n) time as was shown in the previous text. The steps (5), (6)
and (10) consume constant time apparently.

Now, we aim to bound the steps (4) and (8) and the recursion. In these
steps, we have to create the smaller segment tree of size O(m) from scratch
(it takes O(m logm) time) and update the original segment tree (deleting of
O(m) segments takesO(m log n) time). Together: O(m logm)+O(m logn) =
O(m logn). Now we use the issue of Lemma 4.2 that the consequential BSP
tree has linear size. Thereof, there is such constant c that the number of
nodes of the BSP tree is at most cn. The running time of the algorithm can
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be bounded by sum of O(n log2 n) and the recursion

R(n) ≤ max
0≤m≤cn/2

O(m log n) + T (m) + T (cn−m)

which implies that R = O(n log2 n). So the running time of the algorithm
is bounded by O(n log2 n). Because the memory requirements of segment
trees are O(n logn) the recurrence holds for the space as well and the space
complexity is identical. 2

Theorem 5.4: Let E be a set of hyperrectangles with (ε, δ)-low directional
density. Then the linear size BSP tree can be constructed in O(n log2 n) time
and O(n log2 n) space. Moreover, we can trade-off between balance and size
of the resultant tree.

6 Conclusion

In the proposed paper, we have tried to design an effective algorithm for
construction of low size BSP for a set of hyperrectangles. Such BSP can be
enormously useful in real-life problems because any set of bounding-boxes of
objects forms a set of hyperrectangles.

The presented algorithm creates linear BSP tree for so-called low direc-
tional density scenes. We compare this class of scenes with r-boundedness
[12] and unclutteredness [9] in the rest of this section.

Definition 6.1: For r > 1, a set S of non-overlapping axis-parallel hyper-
rectangles in Rd is said to be r-bounded if for all i, 1 ≤ i ≤ d, the ratio
between the longest and shortest length of xi-edges of hyperrectangles in S is
bounded by r.

Definition 6.2: Let S be a d-dimensional scene and let κ ≥ 1 be a pa-
rameter. We call S a κ-cluttered scene, if any hypercube whose interior
does not contain a vertex of one of the bounding boxes of the objects in S
is intersected by at most κ objects in S. The clutter factor of a scene is the
smallest κ for which it is κ-cluttered.
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It can be shown that the low directional density is independent on r-
boundedness and unclutteredness. Since it enlarges the class of objects for
which we can create linear BSP.

Figure 10 shows an example of hyperrectangles which have low directional
density but neither unclutteredness nor r-boundedness is satisfied.

Figure 10: Scene with low directional density

The algorithm can be simply extended for any constant dimension. How-
ever, the size of constant of the resultant BSP increases exponentially with
respect to the space dimension. The time and the space complexity of the
algorithm is O(max{n logd−1 n, n log2 n}) in d-dimensional space. In three-
dimensional space, it is only slightly worse than optimal O(n log n) time
complexity of De Berg [9] and Viet Hai [12] algorithm.
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