
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

On Clock-Aware LTL Properties
of Timed Automata

by

Peter Bezděk
Nikola Beneš
Vojtěch Havel

Jiří Barnat
Ivana Černá

FI MU Report Series FIMU-RS-2014-04

Copyright c© 2014, FI MU June 2014

Copyright c© 2014, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

On Clock-Aware LTL Properties
of Timed Automata

Peter Bezděk Nikola Beneš∗ Vojtěch Havel

Jiří Barnat Ivana Černá†

Faculty of Informatics, Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic

{xbezdek1,xbenes3,xhavel1,barnat,cerna}@fi.muni.cz

June 10, 2014

Abstract

We introduce the Clock-Aware Linear Temporal Logic (CA-LTL) for expressing linear

time properties of timed automata, and show how to apply the standard automata-

based approach of Vardi and Wolper to check for the validity of a CA-LTL formula

over the continuous-time semantics of a timed automaton. Our model checking

procedure employs zone-based abstraction and a new concept of the so called ultra-

regions. We also show that the Timed Büchi Automaton Emptiness problem is not

the problem that the intended automata-based approach to CA-LTL model checking

is reduced to. Finally, we give the necessary proofs of correctness, some hints for an

efficient implementation, and preliminary experimental evaluation of our technique.

1 Introduction

Model checking [CGP99] is a formal verification technique applied to check for logical

correctness of discrete distributed systems. While it is often used to prove the unreach-

ability of a bad state (such as an assertion violation in a piece of code), with a proper
∗The author has been supported by the MEYS project No. CZ.1.07/2.3.00/30.0009 Employment of

Newly Graduated Doctors of Science for Scientific Excellence.
†The author has been supported by the MEYS project No. LH11065 Control Synthesis and Formal

Verification of Complex Hybrid Systems.

1

specification formalism, such as the Linear Temporal Logic (LTL), it can also check for

many interesting liveness properties of systems, such as repeated guaranteed response,

eventual stability, live-lock, etc.

Timed automata have been introduced in [AD94] and have become a widely accepted

framework for modelling and analysis of time-critical systems. The formalism is built on

top of the standard finite automata enriched with a set of real-time clocks and allowing

the system actions to be guarded with respect to the clock valuations. In the general case,

such a timed system exhibits infinite-state semantics (the clock domains are continuous).

Nevertheless, when the guards are limited to comparing clock values with integers

only, there exists a bisimilar finite state representation of the original infinite-state real-

time system referred to as the region abstraction. The region abstraction builds on

top of the observation that concrete real-time clock valuations that are between two

consecutive integers are indistinguishable with respect to the valuation of an action

guard. Unfortunately, the size of the region-based abstraction grows exponentially with

the number of clocks and the largest integer number used. As a result, the region-based

abstraction is difficult to be used in practice for the analysis of more than academic toy

examples, even though it has its theoretical value.

A practically efficient abstraction of the infinite-state space came with the so called

zones [DT98]. Unlike the region-based abstraction, a single state in the zone-based

abstraction is no more restricted to represent only those clock values that are between

two consecutive integers. Therefore, the zone-based abstraction is much coarser and

the number of zones reachable from the initial state is significantly smaller. This in

turns allows for efficient implementation of verification tools for timed automata, see

e.g. UPPAAL [BDL+01].

In this paper we solve the model checking problem of linear time properties over

timed automata. To that end we introduce Clock-Aware Linear Temporal Logic (CA-LTL),

which is a linear time logic built from the standard boolean operators, the standard LTL

operator Until, and atomic propositions that are boolean combinations of comparisons of

clock valuations against integer constants and guards over variables of an underlying

timed automaton.

The ability to use clock-valuation constraints as atomic propositions makes the newly

introduced logic rather powerful. Note, for example, that in terms of expressibility, it

completely covers the fragment of TCTL as used for specification purposes by UPPAAL

model checker. The non-trivial expressive power of CA-LTL is also witnessed with

2

a CA-LTL formula FG(x ≤ 3) expressing that the timed automaton under investigation

will eventually come to a stable state where it is guaranteed that from that time on the

clock variable x will never exceed the value of 3, i.e. a reset of x is going to happen

somewhat regularly.

Regarding model checking of CA-LTL we stress that we are aware of the so called

Timed Büchi Automaton Emptiness problem [Tri09a, Li09, LOD+13]. Timed Büchi Automa-

ton Emptiness could be considered as the solution to the problem of LTL model checking

over timed automata provided that the logic used cannot refer to clock valuations. How-

ever, for CA-LTL we believe and show later in this paper that the solution of CA-LTL

model checking does not reduce to the problem of Timed Büchi Automaton Emptiness.

1.1 Contribution

In this paper we define the syntax and the continuous-time semantics of theClock-Aware

Linear Temporal Logic (CA-LTL). We then show how to apply the standard automata-based

approach to LTL model checking of Vardi and Wolper [VW86] for a CA-LTL formula and

a timed automaton. In particular, we show how to construct a Büchi automaton coming

from the CA-LTL specification with a zone-based abstraction of a timed automaton

representing the system under verification using the so-called ultraregions. We give the

necessary proof of correctness of our construction and list some hints that lead towards

an efficient implementation of it. We also report on the practical impact of introducing

ultraregions on the size of the zone-base abstracted timed automaton graph.

1.2 Outline

The rest of the paper is organised as follows. We first list the preliminaries and define

our new CA-LTL in Section 2. Then, we relate CA-LTL with other logics and explain the

motivation behind our approach in Section 3. The technical core of the synchronised

product of a Büchi automaton and a zone-based abstracted timed automaton is given in

Section 4 including the sketch of the proof of correctness. Section 5 gives some details

on the implementation of our construction and lists some experimental measurements

we did. In Section 6, we explain how to express all UPPAAL specification properties in

CA-LTL. Finally, Section 7 concludes the paper.

3

2 Preliminaries and Problem Statement

Let X be a finite set of clocks. A simple guard is an expression of the form x ∼ cwhere x ∈ X,

c ∈ N0, and ∼ ∈ {<,≤,≥, >}. A conjunction of simple guards is called a guard; the empty

conjunction is denoted by the boolean constant tt. We use G(X) to denote the set of all

guards over a set of clocks X. A clock valuation over X is a function η : X→ R≥0 assigning

non-negative real numbers to each clock. We denote the set of all clock valuations over X

by RX≥0 and the valuation that assigns 0 to each clock by 0. For a guard g and a valuation η,

we say that η satisfies g, denoted by η |= g, if g evaluates to true when all x in g are

replaced by η(x).

We define two operations on clock valuations. Let η be a clock valuation, d a non-

negative real number and R ⊆ X a set of clocks to reset. We use η + d to denote the

clock valuation that adds the delay d to each clock, i.e. (η + d)(x) = η(x) + d for all

x ∈ X. We further use η[R] to denote the clock valuation that resets clocks from the set R,

i.e. η[R](x) = 0 if x ∈ R, η[R](x) = η(x) otherwise.

Definition 2.1. A timed automaton (TA) is a tuple A = (L, l0, X, ∆, Inv) where

• L is a finite set of locations,

• l0 ∈ L is an initial location,

• X is a finite set of clocks,

• ∆ ⊆ L× G(X)× 2X × L is a finite transition relation, and

• Inv : L→ G(X) is an invariant function.

We use q g,R
−−→∆ q

′ to denote (q, g, R, q ′) ∈ ∆.

In the following, we assume that the invariants are upper bounds only, i.e. of the form

x < c or x ≤ c. Note that this is without loss of generality, as lower bound invariants

may be always moved to guards of incoming transitions.

The semantics of a timed automaton is given as a labelled transition system.

Definition 2.2. A labelled transition system (LTS) over a set of symbols Σ is a triple (S, s0,→),

where

• S is a set of states,

• s0 ∈ S is an initial state, and

4

• → ⊆ S× Σ× S is a transition relation.

We use s a
−→ s ′ to denote (s, a, s ′) ∈→.

Definition 2.3 (TA semantics). LetA = (L, l0, X, ∆, Inv) be a TA. The semantics ofA, denoted

by JAK, is a LTS (S, s0,→) over the set of symbols {act,∞} ∪ R≥0, where

• S = {(l, η) ∈ L× RX≥0 | η |= Inv(l)} ∪ {(l,∞) | Inv(l) = tt},

• s0 = (l0, 0),

• the transition relation → is specified for all (q, η), (q ′, η ′) ∈ S such that η is a clock

valuation as follows:

– (q, η)
d
−→ (q ′, η ′) if q = q ′, d ∈ R≥0, and η ′ = η+ d,

– (q, η)
∞
−→ (q ′, η ′) if q = q ′ and η ′ =∞,

– (q, η)
act
−→ (q ′, η ′) if ∃g, R : q

g,R
−−→∆ q

′, η |= g, and η ′ = η[R].

The first two kinds of transitions are called delay transitions, the latter are called action

transitions.

In the following, we assume that we only deal with deadlock-free timed automata,

i.e. that the only states without outgoing transitions in JAK are of the form (l,∞). A dead-

lock usually signalises a severe error in the model and its (non-)existence may be ascer-

tained in the standard way.

A proper run of JAK is an alternating sequence of delay and action transitions that

begins with a delay transition and is either infinite or ends with a∞ delay transition.

The length of a proper run |π| is the number of action transitions it contains. A proper

run is called a Zeno run if it is infinite while the sum of all its delays is finite. Zeno runs

usually represent non-realistic behaviour and it is thus desirable to ignore them in TA

analysis. However, we postpone the question of dealing with Zeno runs until Section 4.

We now define the syntax and semantics of the clock-aware linear temporal logic.

The atomic propositions of this logic are going to be of two kinds—those that consider

properties of locations and those that consider properties of clocks. The former ones,

which we call location propositions are just arbitrary symbols that are assigned to

locations via a labelling function. The latter ones are simple guards over the set of clocks.

5

Definition 2.4 (CA-LTL syntax). Let Ap = Lp∪G where Lp is a set of location propositions

and G is a set of simple guards. A clock-aware linear temporal logic (CA-LTL) formula over

Ap is defined as follows:

ϕ ::= l | g | ¬ϕ | ϕ∨ϕ | ϕUϕ

where l ∈ Lp and g ∈ G.

We also use the standard derived boolean operators such as ∧ and⇒, and the usual

derived temporal operators Fϕ ≡ tt Uϕ, Gϕ ≡ ¬F¬ϕ.

We want our semantics of CA-LTL to reason about continuous linear time. We thus

need a notion of a (continuous) suffix of a proper run. For a proper run π = (l0, η0)
d0−→

(l0, η0 + d0)
act
−→ (l1, η1)

d1−→ (l1, η1 + d1)
act
−→ · · · we define its suffix πk,t as follows:

• if |π| > k and t ≤ dk then πk,t = (lk, ηk + t)
dk−t−−−→ (lk, ηk + dk)

act
−→ · · · ,

• if |π| = k then πk,t = (lk, ηk + t)
∞
−→ (lk,∞),

• otherwise, πk,t is undefined.

Note that the condition |π| = k implies that π ends with · · · (lk, ηk)
∞
−→ (lk,∞). We further

define an ordering on the set of suffixes of π, denoted by /π as follows: πi,t /π πj,s if both

πi,t and πj,s are defined and either i < j or i = j and t ≤ s. (The semantics is that πi,t is an

“earlier” suffix of π than πj,s.)

Definition 2.5 (CA-LTL semantics). Let L : L → 2Lp be a function that assigns a set of

location propositions to each location. The semantics of a CA-LTL formula ϕ on a proper run

π = (l0, η0)
d
−→ (l0, η0 + d0)

act
−→ (l1, η1)

d1
−→ · · · with a labelling L is given as follows (the

semantics of the boolean operators is the usual one and is omitted here):

π |= p ⇐⇒ p ∈ L(l0)

π |= g ⇐⇒ η0 |= g

π |= ϕUψ ⇐⇒ ∃k, t : πk,t is defined, πk,t |= ψ, and

∀j, s such that πj,s /π πk,t : πj,s |= ϕ∨ψ

For a timed automaton A with a location labelling function L, we say that A with L satisfies ϕ,

denoted by (A,L) |= ϕ if for all proper runs π of JAK, π |= ϕ.

The goal of this paper is to solve the following problem.

CA-LTL Model Checking Problem. Given a timed automaton A, a location labelling func-

tion L, and a CA-LTL formula ϕ, decide whether (A,L) |= ϕ.

6

3 Related Work and Motivation

There is a plethora of derivatives of linear temporal logics for the specification of prop-

erties of real-time systems, timed automata in particular. To name at least some of

them, we list TPTL [AH94], MTL [Koy90], MITL [AFH96], RTTL [Ost89], XCTL [HLP90],

CLTL [DD07], and LTLC [LT02]. These logics employ various ways of expressing time

aspects of underlying systems including one global time clock, time-bounded tempo-

ral operators, timing variables with quantifiers, and freeze operators. Some logics are

defined with the use of time sampling semantics, which has been shown to be counter-

intuitive [AM04]. The key aspect differentiating our CA-LTL from the logics mentioned

above is the ability to properly and intuitively reason about clock values in the classi-

cal continuous-time semantics while still preserving practical efficiency of the model

checking process.

Similar qualities are found in the branching time logic TCTL [BK08] a subset of which

is actually supported with UPPAAL tool. Our motivation to introduce CA-LTL was to

mimic the branching time TCTL in a linear time setting. We stress that CA-LTL is able

to reason about values of clocks in timed automata while still being practically simple

enough to allow for an efficient model checking procedure. Note that the inclusion of

time-bounded operators, such as the until operator of TCTL, would lead to the expressive

power of at least MTL, model checking of which is considered computationally infeasible.

CA-LTL can thus be seen as a practically motivated extension of LTL, which is powerful

enough to express the same properties as can be expressed by the specification language

of the world-wide leading timed automata verification tool UPPAAL.1

Timed automata can be defined with different types of semantics. The standard

continuous-time semantics (as used also for the definition of CA-LTL) is in many cases

substituted with the so called sampling semantics. However, it has been shown in [AM04]

that cycle detection under the sampling semantics of timed automata with unknown

sampling rate is undecidable.

We now use an example of a timed automaton and some CA-LTL formulae to explain

the intricacies of our model checking problem.

Example 3.1. Let us consider a timed automaton as given in Fig. 1 with the labelling function L
assigning to each location its own name only, i.e. L(l) = {l} for all l. Let us further consider the

1For more details, see Section 6.

7

l0

x ≤ 6
start

l1

x ≤ 6
l2

x ≤ 6

l3

l4

y← 0 x ≥ 6

y < 6

y ≥ 6

Figure 1: Timed automaton A3.1

CA-LTL formulae

ϕ = G(l1 ⇒ ((x ≤ 3∧ y ≤ 3) U (x > 3∧ y > 3))) and ψ = F l3.

Note that while there exists a run satisfying ϕ and a run satisfying ψ, there is no run satisfying

their conjunction, ϕ∧ψ. The reason is that the runs satisfying ϕ always perform the reset of y

at time 0, while the runs satisfying ψ always perform the reset of y at some other time, to be able

to satisfy the guard y < 6 together with x = 6.

First of all, note that there is no obvious way of combining this TA with a Büchi

automaton representing the formula ϕ (or its negation). The reason is that while staying

in l0, the satisfaction of the guards x ≤ 3, y ≤ 3 changes. We could try splitting each

location into several ones such that staying in each of these new locations ensures

no changes of the guards. However, under the standard TA semantics, such feature

is impossible. Indeed, if there were two locations with invariants x ≤ 3 and x > 3,

respectively, no transition between them could be enabled at any time. There thus appears

to be no direct way of reducing our problem to Timed Büchi Automaton Emptiness.

One way of solving the problem whether a timed automaton satisfies a CA-LTL

formula is to evaluate the formula as a standard LTL formula over the automaton’s

region graph. Suppose that we have the standard region graph construction [ACD90],

in which the maximal bounds on each clock also include the bounds appearing in the

formula. Then the satisfaction of guards inside a region never changes. This shows that

the CA-LTL problem is in the PSPACE complexity class, as both the region graph and the

Büchi automaton for the formula may be created on the fly. However, it is well known

that the number of regions is impractically large. In the following, we therefore aim to

provide a zone-based model checking approach.

8

y

x

S0 S1

S2S3

0 3 6

3

6

Figure 2: Illustration of the need to consider diagonals separately

Considering the standard zone-based approach [Tri09b], the main issue pointed out

above remains—the satisfaction of the guards differs for various parts of a zone. Our first

idea is to slice (pre-partition) the zones according to the guards of the formula. In our

example, this would mean to slice the zones into one of the four “quadrants” [0, 3]× [0, 3],

(3,∞)× [0, 3], (3,∞)× (3,∞), [0, 3]× (3,∞). These are illustrated in Fig. 2 and named S0
to S3. Every sliced zone now respects the guards x ≤ 3, y ≤ 3. Note, however, that this

partitioning also comes with the need of describing new transitions between the newly

defined zone slices. These new transitions correspond to the passage of time within

the original zone. Now, consider again Example 1 and the zone that is created after the

transition from l0 to l1 is taken. The zone is defined as the set of all valuations of clocks ν

such that ν(x) − ν(y) ≥ 0 and ν(x), ν(y) ∈ [0, 6], also illustrated with the greyed area in

Fig. 2.

Let us take the S0 slice of this zone. The next slice is not uniquely determined. One

candidate is the S1 slice as all valuations with ν(x) − ν(y) > 0will reach this slice with

the passage of time. However, we also have another candidate, the S2 slice. This is due

to the fact that all valuations with ν(x) − ν(y) = 0 reach the S2 slice immediately after

leaving the S0 slice. We cannot take both options with a nondeterministic choice. This

would introduce incorrect behaviour, as then there would be a run in the zone graph

satisfying the conjunction of formulae ϕ∧ψ. Therefore, we also need to take diagonals

into account. The problem here is very similar to the problem that led to the inclusion

of diagonals into standard region graphs. Our slicing areas thus somehow resemble

regions, only much larger. Also, their count is only dependent on the number of guards

9

appearing in the CA-LTL formula, and may thus be expected to be reasonable. For their

similarity with regions, we call these areas ultraregions.

4 Zone-Ultraregion Semantics

In the following, let X be a fixed set of clocks and G a fixed set of simple guards over X.

For a clock x ∈ X, we define Ix to be the coarsest interval partition of R≥0 that respects the

guards inG, i.e. all values in an interval have to satisfy the same subset of guards ofG. Let

further Bx denote the set of bounds the clock x is compared against in the guards ofG and

let Bx−y = {a− b | a ∈ Bx, b ∈ By}. Let then Ix−y = {(−∞, c0), [c0, c0], (c0, c1), . . . , (ck,∞)}

where Bx−y = {c0, . . . , ck} and c0 < c1 < · · · < ck. For a valuation η ∈ RX≥0 we use Ix(η) to

denote the interval of Ix that contains the value η(x), similarly for Ix−y(η). We say that

Ix(η) is unbounded if it is of the form [c,∞) or (c,∞), otherwise we say that it is bounded.

We now define an equivalence relation with respect to a set of simple guards G on clock

valuations.

Definition 4.1 (Ultraregions). Let X be a set of clocks, G a set of simple guards over X. We

define a relation 'G on RX≥0 as follows: η 'G η ′ if for all x, Ix(η) = Ix(η ′), and for all y, z such

that Iy(η) and Iz(η) are bounded, Iy−z(η) = Iy−z(η ′). The equivalence classes of 'G are called

the ultraregions of G.

Note that every ultraregion is uniquely identified by a choice of intervals from Ix and

Ix−y for all clocks x, y. Also note that a choice in Ix−y always determines a choice in Iy−x.

Example 4.2. Let G = {x ≤ 3, x < 6, y ≤ 4}. Then Ix = {[0, 3], (3, 6), [6,∞)}, Iy =

{[0, 4], (4,∞)}, and Ix−y = {(−∞,−1), [−1,−1], (−1, 2), [2, 2], (2,∞)}.

The ultraregions of G look as follows:

U1 = {η = (x, y) | x ∈ [0, 3], y ∈ [0, 4], x− y < −1}

U2 = {η = (x, y) | x ∈ [0, 3], y ∈ [0, 4], x− y = −1}

U3 = {η = (x, y) | x ∈ [0, 3], y ∈ [0, 4], x− y ∈ (−1, 2)}

U4 = {η = (x, y) | x ∈ [0, 3], y ∈ [0, 4], x− y = 2}

U5 = {η = (x, y) | x ∈ [0, 3], y ∈ [0, 4], x− y > 2}

U6 = {η = (x, y) | x ∈ [0, 3], y > 4}

U7 = {η = (x, y) | x ∈ (3, 6), y > 4}

10

21 3 4 5 6

3

2

1

4

y

x

U5

U9

U1

U6 U7

U8

U2

U3

U4

U11

U12

U10

Figure 3: Ultraregions of G = {x ≤ 3, x < 6, y ≤ 4}

U8 = {η = (x, y) | x ∈ (3, 6), y ∈ [0, 4], x− y ∈ (−1, 2)}

U9 = {η = (x, y) | x ∈ (3, 6), y ∈ [0, 4], x− y = 2}

U10 = {η = (x, y) | x ∈ (3, 6), y ∈ [0, 4], x− y > 2}

U11 = {η = (x, y) | x ≥ 6, y ∈ [0, 4]}

U12 = {η = (x, y) | x ≥ 6, y > 4}

These ultraregions are illustrated in Figure 3.

Let U 6= U ′ be ultraregions. We say that U ′ is a successor of U if for all η ∈ U there

exists d ∈ R>0 such that η+ d ∈ U ′ and ∀0 ≤ d ′ ≤ d : η+ d ′ ∈ U ∪U ′.

Lemma 4.3. An ultraregion has at most one successor.

Proof. Let U be an ultraregion and let U ′, U ′′ be its successors. We show that U ′ ∩U ′′ 6= ∅.
As ultraregions are equivalence classes, this is equivalent to U ′ = U ′′. Let us choose an

arbitrary η ∈ U. There thus exist d1 and d2 satisfying the definition of a successor for U ′

and U ′′, respectively. Take d = min{d1, d2}. W.l.o.g. assume that d = d1. Then η+ d ∈ U ′.
As d ≤ d2, we also know that η + d ∈ U ∪ U ′′. This means that η + d ∈ U ′ ∩ (U ∪ U ′′).
Clearly, η+ d 6∈ U, as U 6= U ′. Therefore, η+ d ∈ U ′ ∩U ′′.

This allows us to denote the successor of U by succ(U). If U has no successor, we

additionally define succ(U) = U. Note that succ(U) = U if and only if all clocks are

unbounded in U, i.e. for every η ∈ U and every d ∈ R≥0, η+ d ∈ U.

11

Let now R ⊆ X be a set of clocks. The reset of U with respect to R, denoted by U〈R〉, is

defined as follows:

U〈R〉 = {U ′ | U ′ is an ultraregion ∧ ∃η ∈ U : η[R] ∈ U ′}

Example 4.4. Continuing with Example 4.2, we may see that e.g. succ(U8) = U7, succ(U12) =

U12, U11〈x〉 = {U1, U2, U3}, U9〈x, y〉 = {U3}, and U5〈x〉 = {U3}.

We may now define the zone-ultraregion semantics of a timed automaton. We use

the standard notion of clock zones here [Tri09b]. Every zone is described by a set of

diagonal constraints of the form xi − xj ≺ij cij where cij ∈ R, ≺ij ∈ {<,≤} for all clocks xi,

xj ∈ X ∪ {x0}, and x0 is a special clock that has always the value 0. We use these standard

operations on zones: intersection Z ∩ Z ′, reset Z[R] = {η[R] | η ∈ Z}, and time passing

Z↑ = {η+ d | η ∈ Z, d ∈ R≥0}. The zones may be efficiently represented using difference

bound matrices (DBM) [Dil90, BY04]. Although there may be different representations of

the same zone, it is a standard result that there exists a unique canonical representation

in which the bounds ≺ij cij are as tight as possible.

In order to keep the number of zones finite, we use the standard k-extrapolation

construction [Tri09b, BY04, Pet99, Bou04]. Let Z be a zone and let ≺ij cij be the bounds

in its canonical representation. LetM(x) be the highest bound in the guards of TA and

the guards from G that compare against x. The extrapolated zone E(Z) is defined by the

set of diagonal constraints xi − xj ≺ ′ij c ′ij where

≺ ′ij c ′ij =

<∞ if cij > M(xi),

< −M(xj) if cij < −M(xj),

≺ij cij otherwise.

Note that the ultraregions are a special case of zones (and the extrapolation does not

change them). We may thus also apply the zone operations to ultraregions. However,

be aware that the ultraregion reset and the zone reset of an ultraregion are different

operations. This is why we use a different notation for U〈R〉.

Definition 4.5 (Zone-ultraregion automaton). Let A = (L, l0, X, ∆, Inv) be a TA and let G

be a set of simple guards. The zone-ultraregion automaton (ZURA) of A with respect to G is

a labelled transition system whose states are triples (l, Z,U) where l ∈ L, Z is a clock zone, and

U is a ultraregion of G.

The initial state is (l0, Z0, U0) where Z0 = {0}↑∩ Inv(l0) andU0 is the ultraregion containing

the zero valuation 0. The transitions are of two kinds:

12

• delay transitions: (l, Z,U)
δ
−→ (l, Z, succ(U)) whenever Z ∩ succ(U) 6= ∅ and U =

succ(U) =⇒ Z = Z↑,

• action transitions: (l, Z,U)
act
−→ (l ′, E(Z ′), U ′) whenever l g,R

−−→∆ l
′, U ′ ∈ U〈R〉, Z ′ =

((Z ∩U ∩ g)[R] ∩U ′)↑ ∩ Inv(l ′), and Z ′ ∩U ′ 6= ∅.

Example 4.6. Continuing with Example 3.1, Fig. 4 represents the ZURA of the timed automaton

A3.1 with respect to G = {x ≤ 3, y ≤ 3}.

A combination of a ZURA with a location labelling function L is interpreted as

a Kripke structure [CGP99]. The states and transitions of this Kripke structure are the

states and transitions of the ZURA, forgetting the labels of transitions. The state labelling

function LK is defined as LK(l, Z,U) = L(l) ∪ {g ∈ G | U |= g}. Here, U |= g denotes that

all valuations of U satisfy g. Due to the definition of ultraregions, this is equivalent to

the existence of a valuation in U satisfying g.

In the next subsection, we are going to prove the following theorem. The theorem

gives us a solution to the CA-LTL model checking problem by reducing it to the problem

of standard LTL model checking of a Kripke structure.

Theorem 4.7. Let A be a TA, let AZURA be its zone-ultraregion automaton with respect to G.

Let further ϕ be a CA-LTL formula over G. Then A |= ϕ iff AZURA |= ϕ.

We finish this section with a remark about Zeno runs. It might sometimes happen

that the model checking algorithm produces a counterexample that is a Zeno run of

the original TA. If ignoring such runs is desirable (as it usually is), we may extend the

original TA with one special clock z, add a loop on every location with guard z = 1 and

reset {z}, and modify the original CA-LTL formula fromϕ to (G F z ≤ 0∧G F z > 0)⇒ ϕ.

4.1 Proof of Theorem 4.7

For the remainder of this section, let us assume a fixed TA A, a fixed set of guards G, and

a fixed location labelling function L.

We show that the proper runs of JAK and the runs of AZURA are, in some sense,

equivalent. In order to do that, we use the notion of a signature of a run. Intuitively,

a signature is a sequence of sets of atomic propositions that hold along the given run.

We use the fact that all valuations of a given ultraregion satisfy the same set of guards.

For an ultraregion U, we thus use G(U) to denote the set of guards satisfied by the

valuations of U.

13

(l0,

y

x0 6

6

,U0)

start

(l0,

y

x0 6

6

,U1)

(l1,

y

x0 6

6

,U0)

(l1,

y

x036

3
6

,U3)

(l1,

y

x036

3

,U5)

(l1,

y

x0 6

6

,U1)

(l1,

y

x036

3
6

,U5)

(l2,

y

x0 6

3

,U5)

(l2,

y

x0 6

6

,U1)

(l1,

y

x036

3
6

,U1)

(l3,

y

x0 6

3

,U5)

(l4,

y

x0 6

6

,U1)

(l2,

y

x0 6

3
6

,U1)

(l3,

y

x0 6

3

,U1)(l3,

y

x0 6

3
6

,U1)

(l2,

y

x0 6

3

,U5)

(l3,

y

x0 6

3

,U5)

(l3,

y

x0 6

3

,U1)

δ

act

(y← 0)

act

(y← 0)

act

(y← 0)

δ

δ

act

(x ≥ 6)

act

(x ≥ 6)

δ

act

(y < 6)

act

(y ≥ 6)

act

(x ≥ 6)

δ

δ

act

(y < 6)

δδ

act

(x ≥ 6)

act

(y < 6)

δ

δ

y

x

U0

U1

U2

U3

U4

U5

0 3

3

Figure 4: ZURA state space of timed automaton A3.1 with respect to G = {x ≤ 3, y ≤ 3}

14

Definition 4.8 (Signature). Let G be a set of simple guards, Lp a set of location propositions,

Ap = G ∪ Lp, and let π = (l0, η0)
d0−→ (l0, η0 + d0)

act
−−→ (l1, η1) · · · be a proper run of a TA. Let

Uj,0 be the ultraregion of G containing ηj and let Uj,i+1 = succ(Uj,i). For (lj, ηj)
dj
−→ (lj, ηj + dj)

in π, we define wj ∈ (2Ap)+:

wj = (L(lj) ∪G(Uj,0)) · (L(lj) ∪G(Uj,1)) · · · (L(lj) ∪G(Uj,k))

where k is the least such that Uj,k = Uj,k+1. For (lj, ηj)
∞
−→ (lj,∞), we define:

wj = (L(lj) ∪G(Uj,0)) · (L(lj) ∪G(Uj,1)) · · ·

In this case, wj ∈ (2Ap)ω. The signature of π with respect to Ap, denoted by sigAp(π), is defined

as the infinite word w = w0w1w2 · · ·wj if π ends with (lj,∞), w = w0w1w2 · · · otherwise.

Our first objective is to show that the runs of AZURA represent exactly the signatures

of all proper runs of A. We then show that the CA-LTL satisfaction on a proper run can

be reduced to the classic LTL satisfaction on its signature. These results together imply

the statement of Theorem 4.7.

Lemma 4.9. All reachable states (l, Z,U) of AZURA satisfy the following invariants: Z ∩U 6= ∅
and Z = Z↑ ∩ Inv(l).

Proof. The lemma follows clearly from the definition of ZURA.

Lemma 4.10. Let (l, η) act
−→ (l ′, ν)

d
−→ (l ′, ν+ d) such that ν 'G ν+ d. Let (l, Z,U) be a state

such that η ∈ Z ∩U. Then (l, Z,U)
act
−→ (l ′, Z ′, U ′) with ν+ d ∈ Z ′ ∩U ′.

Proof. Let η ∈ Z ∩U and let l g,R
−−→∆ l

′ be the timed automaton transition corresponding

to (l, η)
act
−→ (l ′, ν). This means that η |= g and ν = η[R]. Let U ′ be the ultraregion such

that ν ∈ U ′. Clearly, U ′ ∈ U〈R〉. Thus, ν ∈ (Z∩U∩g)[R]∩U ′. As (l ′, ν) d
−→ (l ′, ν+d), we

know that ν+ d ∈ Inv(l ′). The fact that ν+ d ∈ U ′ follows from ν 'G ν+ d. Therefore,

ν+ d ∈ Z ′ ∩U ′.

Lemma 4.11. Let (l, η) d
−→ (l, η+d) such thatU(η+d) = succ(U(η)) and let (l, Z,U) be a state

such that η ∈ Z ∩U. Let either succ(U) 6= U or Inv(l) = tt. Then (l, Z,U)
δ
−→ (l, Z, succ(U)).

Proof. The fact that η ∈ Z together with the second invariant of Lemma 4.9 implies that

η+d ∈ Z. Thus Z∩ succ(U) 6= ∅. If succ(U) = U and Inv(l) = tt then the second invariant

of Lemma 4.9 implies that Z = Z↑. In any case, (l, Z,U) δ
−→ (l, Z, succ(U)).

Repeated application of the previous lemma gives the following result.

15

Lemma 4.12. Let (l, η) d
−→ (l, η + d) and let (l, Z,U) be a state such that η ∈ Z ∩ U. Then

there exists i ∈ N0 such that (l, Z,U)
δ
−→ (l, Z, succ(U)) δ

−→ · · · δ
−→ (l, Z, succi(U)) with

η+ d ∈ Z ∩ succi(U).

Lemma 4.13. Let π be a proper run of A with signature sigAp(π). Then there exists an infinite

run (l0, Z0, U0)→ (l1, Z1, U1)→ · · · such that sigAp(π)(i) = L(li)∪G(Ui), where sigAp(π)(i)

denotes the ith letter (from 2Ap) of sigAp(π).

Proof. Let π = (l0, η0)
d0−→ (l0, η0 + d0)

act
−→ (l1, η1) · · · . Let sigAp(π) = w0w1w2 · · · where

wi are as given in Definition 4.8. We inductively define states Si and finite paths ρi of

AZURA and then show how to build the desired run. The intended invariant is that Si
contains (li, ηi) and ρi connects Si−1 to Si with the following exception: If wj is the last

in sigAp(π) then ρj is an infinite path from Si−1. Initially, S0 = (l0, Z0, U0) and ρ0 is empty.

We now build Si+1 and ρi for i ≥ 0.
Assume first that wi is finite. This means that (li, ηi)

di−→ (li, ηi + di)
act
−→ (li+1, ηi+1)

in π. Applying Lemma 4.12 to (li, ηi)
di−→ (li, ηi + di) and Si gives a run Si

δ
−→ · · · δ

−→
(li, Z

′, U ′) such that ηi+di ∈ Z ′ ∩U ′. Applying Lemma 4.10 to (li, ηi+di)
act
−→ (li+1, ηi+1)

and (li, Z
′, U ′) gives (li, Z

′, U ′)
act
−→ (li+1, Z

′′, U ′′) such that ηi+1 ∈ Z ′′ ∩ U ′′. Let Si+1 =

(li+1, Z
′′, U ′′) and let ρi be the path from Si to Si+1 created by the composition of the two

paths above.

Assume now thatwi is infinite. This means that (li, ηi)
∞
−→ (l,∞) and thus Inv(li) = tt.

Let d ∈ R≥0 be such that ηi + d ∈ U with U = succ(U). Such d has to exist due to the

unbounded invariant of l. Applying Lemma 4.12 to (li, ηi)
d
−→ (li, ηi+d) gives a run Si

δ
−→

· · · δ−→ (li, Z
′, U ′) where U ′ = succ(U ′). Applying Lemma 4.11 to (li, ηi + d)

0
−→ (li, ηi + d)

gives a loop (li, Z
′, U ′)

δ
−→ (li, Z

′, U ′). Combining the path with the loop gives an infinite

path, let us denote it by ρi.

The resulting run of AZURA is S0ρiS1ρ1 · · · , which ends with ρi iff sigAp(π) ends with

wi. It is clear that this run satisfies the statement of the lemma.

We have thus shown that every proper run ofA has its counterpart inAZURA. However,

to show the opposite we lack properties similar to Lemmata 4.10, 4.11, and 4.12. One

of the reasons is the zone extrapolation. However, even in the absence of extrapolation,

we could only prove a contravariant version of these lemmata, namely that for each

transition (l, Z,U)
γ
−→ (l ′, Z ′, U ′) and each η ∈ Z ′ ∩ U ′ there exists ξ ∈ Z ∩ U and

corresponding transitions that lead from (l, ξ) to (l ′, η). This would allow us to prove

that every finite path of AZURA has a counterpart in A, but that is insufficient, as there is

16

an uncountably infinite number of finite paths inA and we cannot combine them to make

one infinite run. We thus use a roundabout way similar to that used in [HSW11] (the

differences lie in the existence of delay transitions in ZURA and in the slightly different

definition of zones). We use the standard region equivalence to partition the states of A

into regions and show that every run of AZURA corresponds to a run in the region graph.

Again, our region graph is a bit nonstandard to account for the δ
−→ transitions.

In the following definition, we use b·c to denote the floor function and {·} to denote

the fractional part function.

Definition 4.14 (Region Equivalence). Let M ∈ N0. Two valuations ν and ν ′ are region

equivalent w.r.t. M, denoted by ν ∼M ν
′, if for all x, y ∈ X

1. ν(x) > M iff ν ′(x) > M,

2. if ν(x) ≤M then bν(x)c = bν ′(x)c,

3. if ν(x) ≤M then {ν(x)} = {ν ′(x)}, and

4. if ν(x) ≤M and ν(y) ≤M then {ν(x)} ≤ {ν(y)} iff {ν ′(x)} ≤ {ν ′(y)}.

The equivalence classes of ∼M are called regions.

In the following, let M be a fixed integer that is greater or equal to all bounds

appearing in A and all bounds appearing in G. Clearly, every ultraregion is a union of

regions w.r.t.M. Having suchM, all the valuations in a given region are indistinguishable

by any invariant or any guard appearing in A or G. We may thus extend notation from

valuations to regions, such as r |= g, U(r), and G(r).

A result from [HSW11] says that E(Z) ⊆ {r | r∩Z 6= ∅}. This implies r∩E(Z) 6= ∅ =⇒
r ∩ Z 6= ∅. We shall use this fact in the following.

A region automaton respecting G is a finite transition system with states of the form

(l, r) where l is a location and r a region with r |= Inv(l). We have two kinds of transitions:

(l, r)
δ
−→ (l, r ′) if there exists ν ∈ r and d ∈ R>0 such that (l, ν) d

−→ (l, ν + d), ν + d ∈ r ′,
U(r ′) = succ(U(r)) and if U(r) = U ′(r) then Inv(l) = tt; and (l, r)

act
−→ (l, r ′) if there exists

d ∈ R≥0, ν ∈ r, and ν ′ ∈ r ′ such that (l, ν) act
−−→ (l, ν ′−d)

d
−→ (l ′, ν ′) andU(ν ′−d) = U(ν ′).

The following lemma follows from the fact that ∼M is a time-abstracting bisimulation

[TY01].

Lemma 4.15. If (l, r) δ
−→ (l, r ′) then for all ν ∈ r there exists d ∈ R>0 such that ν+ d ∈ r ′ and

(l, ν)
d
−→ (l, ν+ d). If (l, r) act

−→ (l ′, r ′) then for all ν ∈ r there exists ν ′ ∈ r ′ and d ∈ R≥0 such

that (l, ν) act
−→ (l, ν ′ − d)

d
−→ (l ′, ν ′).

17

Lemma 4.16. Let γ ∈ {act, δ}. Let (l, Z,U) be a reachable state of AZURA with (l, Z,U)
γ
−→

(l ′, Z ′, U ′). Then for each region r ′ such that r ′ ∩ Z ′ ∩U ′ 6= ∅ there exists a region r such that

r ∩ Z ∩U 6= ∅ and (l, r)
γ
−→ (l ′, r ′).

Proof. Let first γ = act. This means that l g,R
−−→∆ l

′ and Z ′ = E(Z ′′) where Z ′′ = ((Z ∩U ∩
g)[R] ∩U ′)↑ ∩ Inv(l ′). Let r ′ be a region with r ′ ∩ Z ′ ∩U ′ 6= ∅. As explained above, this

implies that r ′∩Z ′′∩U ′ 6= ∅. Let us thus take a valuation η ∈ r ′∩Z ′′∩U ′. As η ∈ Z ′′, there

has to exist d ∈ R≥0 such that η−d ∈ (Z∩U∩g)[R]∩U ′. This implies that (η−d)(x) = 0

for all x ∈ R and that there exists ξ ∈ Z ∩U ∩ g such that ξ(x) = (η− d)(x) for all x 6∈ R.

Let r be the region that includes ξ. Then r ∩ Z ∩U 6= ∅ and (l, ξ)
act
−→ (l ′, η− d)

d
−→ (l ′, η).

Thus (l, r) act
−→ (l ′, r ′).

Let now γ = δ. This means that l = l ′, Z = Z ′ and U ′ = succ(U). Clearly, either

(l, Z,U) is reachable from the initial state only via δ
−→ transitions or there exists some

(l, Z,U) such that (l, Z,U) is a result of an act
−→ transition and (l, Z,U)

δ
−→ · · · δ−→ (l, Z,U).

In the first case, the statement is obvious.

Let now (l, Z,U) be as described above. This means that there is some lp, Zp, Up
such that lp

g,R
−−→∆ l, Z = E(Z ′′) where Z ′′ = ((Zp ∩Up ∩ g)[R] ∩U)↑ ∩ Inv(l). Notice that

Z ′′ ⊆ (Z ′′ ∩ U)↑. Let now r ′ be a region such that r ′ ∩ Z ∩ U ′ 6= ∅. Then, as mentioned

above, also r ′ ∩ Z ′′ ∩U ′ 6= ∅. Let η ∈ r ′ ∩ Z ′′ ∩U ′. Due to the previous observation, there

is some h ∈ R≥0 such that η − h ∈ (Z ′′ ∩ U). We know that U = succi(U) for some i.

This means that there exists some d such that η − h + d ∈ U. Clearly, d ≤ h. As zones

are convex, also η − h + d ∈ Z ′′ ⊆ Z. Take the region r such that η − h + d ∈ r. Then

r ∩ Z ∩U 6= ∅ and (l, η− h+ d)
h−d
−−→ (l, η). Thus (l, r) δ

−→ (l, r ′).

Lemma 4.17. Let (l0, Z0, U0)
γ0−→ (l1, Z1, U1)

γ1−→ · · · be a run ofAZURA with γi ∈ {act, δ}. Then

there exists a run (l0, r0)
γ0−→ (l1, r1)

γ1−→ · · · of the region automaton such that ri ⊆ Zi ∩Ui.

Proof. The proof of this lemma is similar to the proof of Theorem 7 in [HSW11]. We

construct a directed acyclic graph with nodes (i, qi, ri) such that ri ⊆ Zi ∩Ui. There is an

edge from (i, qi, ri) to (i+ 1, qi+1, ri+1) if (qi, ri)
γi−→ (qi+1, ri+1). Lemma 4.16 ensures that

every node in this graph (except for (0, l0, r0)) has at least one predecessor. As the graph

is infinite with finite branching, it has an infinite path.

Lemma 4.18. Let (l0, Z0, U0)
γ0−→ (l1, Z1, U1)

γ1−→ · · · be a run of AZURA with γi ∈ {act, δ}.

Then there exists a proper run π of A such that sigAp(π)(i) = L(li) ∪G(Ui).

Proof. Take the region automaton run of Lemma 4.17 and create a run of JAK by repeated

application of Lemma 4.15. The resulting run starts with an act transition (l0, η)
act
−→ (l1, ξ)

18

with η ∈ Z0∩U0. This means that η(x) = η(y) for all x, y. We extend the run into a proper

run with (l0, 0)
η(x)
−−→ (l0, η).

We have shown that the proper runs of A and the runs of AZURA are equivalent in

the sense that a signature of a proper run of A is the sequence of labellings on a run of

AZURA and vice versa. What remains is to show that CA-LTL satisfaction may be reduced

to standard LTL satisfaction on signatures. Let us recall that the classic satisfaction

relation for LTL on an infinite word from (2Ap)ω is given by w |= p ∈ Ap if p ∈ w(0),
w |= ϕUψ ⇐⇒ ∃k : wk |= ψ and for all j < k : wj |= ϕ. Here, w(0) is the first letter of

the word w and wk is the kth suffix of w. We omit the standard boolean operators.

We first observe that proper run suffixes and signature suffixes correspond. This

simple observation clearly follows from Definition 4.8.

Lemma 4.19. Let π be a proper run with signature sigAp(π) and let πk,t be defined. Then

sigAp(π
k,t) is a suffix of sigAp(π). Further, the set {sigAp(π

j,s) | πj,s / πk,t} is the set of all suffixes

of sigAp(π) that themselves contain sigAp(π
k,t) as a suffix.

Lemma 4.20. Let π be a proper run of a TA, let G be a set of simple guards, Lp a set of location

propositions, Ap = G ∪ Lp. Let ϕ be a CA-LTL formula over Ap. Then π |= ϕ iff sigAp(π) |= ϕ

when seen as an LTL formula.

Proof. The proof is done by induction on the structure of ϕ. The only interesting part is

that π |= ϕUψ as CA-LTL iff sigAp(π) |= ϕUψ as LTL. However, this is just a corollary

to Lemma 4.19.

This concludes the proof of Theorem 4.7.

5 Implementation

We first show how to compute the successor of a given fixed ultraregion U. Let X̂U ⊆ X
be the set of all clocks bounded in U, i.e. X̂U = {x ∈ X | ∃d ∈ R≥0 : ∀η ∈ U : η(x) ≤ d}.

For a clock x ∈ Xwe define Ux ∈ Ix to be the interval from Ix such that there exists

a valuation η ∈ U with η(x) ∈ Ux. For x, y ∈ X̂U we further define Ux−y to be the interval

from Ix−y such that there exists a valuation η ∈ U with η(x) − η(y) ∈ Ux−y. Note that

the existence and uniqueness of Ux and Ux−y follow from the definition of ultraregions,

and in the latter case, the fact that we only consider differences of bounded clocks. We

further use Ex to denote the right endpoint of Ux.

19

To establish the successor of U, we need to find out which clocks leave U soonest. We

thus define the following relation on X̂U:

x 4U y ⇐⇒ ∀η ∈ U : ∀d ∈ R≥0 : η(x) + d ∈ Ux ⇒ η(y) + d ∈ Uy

It is easy to see that 4U is reflexive, transitive, and that for all x, y ∈ X̂U, either x 4U y or

y 4U x. This means that 4U is a total preorder. We denote the induced equivalence by

≈U. The following lemma gives us a way of computing 4U. Here, we use the notation

a < Iwith the meaning ∀b ∈ I : a < b, similarly for >.

Lemma 5.1. Let x, y ∈ X̂U. Then x 4U y iff either (Ex − Ey) < Ux−y or (Ex − Ey) ∈
Ux−y ∧ (Ux right-closed =⇒ Uy right-closed).

Proof. We first prove the ‘if’ part. Assume first that (Ex − Ey) < Ux−y. This means that

for all η ∈ U, Ex − Ey < η(x) − η(y). Let η ∈ U and d ∈ R≥0 be arbitrary and let

η(x) + d ∈ Ux. This means that η(x) ≤ Ex − d. Combining the two inequalities gives

Ex − Ey < Ex − d − η(y). Thus η(y) + d < Ey, which means that η(y) + d ∈ Uy and

therefore x 4U y.

Assume now that (Ex − Ey) ∈ Ux−y and that Ux right-closed implies Uy right-closed.

Note that due to the definition of Ix−y, (Ex − Ey) ∈ Ux−y implies that Ux−y is a singleton

interval. Thus, for all η ∈ U, Ex − Ey = η(x) − η(y). Let again η ∈ U and d ∈ R≥0 be

arbitrary. Suppose that η(x) + d ∈ Ux while η(y) + d 6∈ Uy. This is only possible if

η(x) + d = Ex while η(y) + d = Ey. But this means that Ux is right-closed while Uy is

right-open, which is a contradiction. Therefore x 4U y.

We now prove the ‘only if’ part of the lemma. We assume that x 4U y. Suppose that

(Ex − Ey) ∈ Ux−y and Ux is right-closed. As already mentioned above, Ux−y is a singleton

interval in this case. Let us take an arbitrary η ∈ U and let d = Ex − η(x). Clearly,

d ≥ 0. As Ux is right-closed, η(x) + d ∈ Ux. Due to x 4U y, also η(y) + d ∈ Uy and as

Ex − Ey = η(x) − η(y), we know that η(y) + d = Ey, which means that the interval Uy is

right-closed.

Suppose now that (Ex − Ey) 6∈ Ux−y. This can mean that either (Ex − Ey) < Ux−y or

(Ex−Ey) > Ux−y. If (Ex−Ey) > Ux−y then for all η ∈ U, Ex−Ey > η(x) − η(y). Let η ∈ U
be arbitrary and let h = Ex−Ey− η(x) + η(y) > 0. Let further d = Ey− η(y) +h/2. Then

η(y) + d = Ey + h/2 6∈ Uy while η(x) + d = η(x) + Ey − η(y) + h/2 = Ex − h + h/2 =

Ex − h/2 ∈ Ux. By contradiction, (Ex − Ey) < Uxy .

We can now show the construction of a successor. Let X̃U be the set of the smallest

clocks with respect to 4U, i.e. X̃U = {x ∈ X̂U | ∀y ∈ X̂U : x 4U y}. For a bounded interval

20

J ∈ Ix, denote by J↑ the interval in Ix such that the right endpoint of J is the left endpoint

of J↑. For a clock x ∈ Xwe then define U ′x as follows:

U ′x =

U↑
x x ∈ X̃U

Ux x 6∈ X̃U

We then define U ′ = {η | ∀x ∈ X : η(x) ∈ U ′x and ∀x, y ∈ X : U ′x and U ′y bounded⇒ η(x) − η(y) ∈ Ux−y}. We want to show that U ′ = succ(U). In order to do that, we first

need an auxiliary lemma.

Lemma 5.2. For every η ∈ U there exists d ∈ R>0 such that ∀x ∈ X̃U : η(x) + d 6∈ Ux and

∀y ∈ X̂U \ X̃U : η(y) + d ∈ Uy.

Proof. We first note that as all clocks in X̃U are equivalent w.r.t. ≈U, we only need to

consider one of them. Let x ∈ X̃U be such a representant.

Let η ∈ U and y ∈ X̂U \ X̃U be arbitrary. This means that y 64U x. Due to the

previous lemma, either (Ey − Ex) > Uy−x or (Ey − Ex) ∈ Uy−x with Uy right-closed and

Ux right-open.

If (Ey − Ex) > Uy−x then also (Ey − Ex) > η(y) − η(x). Let dy = Ex − η(x) + (Ey − Ex −

η(y) + η(x))/2. As explained in the previous proof, η(x) + dy 6∈ Ux while η(y) + dy ∈ Uy.

If (Ey − Ex) ∈ Uy−x with Uy right-closed and Ux right-open, let dy = Ey − η(y). Again,

η(x) + dy 6∈ Ux while η(y) + dy ∈ Uy.
Let now d = miny∈X̂U\X̃U

dy. As η(x)+dy 6∈ Ux for all y, this means that η(x)+d 6∈ Ux.
Furthermore, as η(y) + dy ∈ Uy for all y and η(y) ∈ Uy, this means that η(y) + d ∈ Uy
(ultraregions are convex).

Theorem 5.3. Let U be an ultraregion, let U ′ be defined as above. Then U ′ = succ(U).

Proof. We first need to prove that U ′ is an ultraregion. U ′ clearly respects the equiva-

lence 'G. We only need to show that it is nonempty. Let η ∈ U be arbitrary and let d

be given by the previous lemma. Clearly, η + d ∈ U ′. We also see that η + d 6∈ U, thus

establishing that U and U ′ are different.

What remains is to show that ∀0 ≤ d ′ ≤ d : η+d ′ ∈ U∪U ′. Take an arbitrary such d ′.

For any clock y 6∈ X̃U, η(y) ∈ Uy, η(y)+d ∈ Uy and thus also η(y)+d ′ ∈ Uy (ultraregions

are convex). Let us now choose a clock x ∈ X̃U. We know that either η(x) + d ′ ∈ Ux or

η(x) + d ′ ∈ U ′x, as U ′x = U↑
x. In the first case, all z ∈ X̃U satisfy η(z) + d ′ ∈ Uz as all such

clocks are equivalent w.r.t. ≈U and thus η+ d ′ ∈ U. In the second case, all z ∈ X̃U satisfy

η(z) + d ′ ∈ U ′z for the same reason and thus η+ d ′ ∈ U ′.

21

We now show the construction of the reset operation on ultraregions. Let U be an

ultraregion and let R ⊆ X be a set of clocks. As an ultraregion is a special case of a zone,

we may apply the standard zone reset operation on U and then tighten the constraints

using the standard Floyd-Warshall algorithm approach. The resulting zone can be written

as:

U[R] =M = {η | ∀x ∈ R : η(x) = 0;∀x 6∈ R : η(x) ∈Mx

∀x, y 6∈ R : η(x) − η(y) ∈Mx−y}

whereMx ⊆ Ux andMx−y ⊆ Ux−y for all x, y. The implied constraints are η(x)−η(y) = 0

for x, y ∈ R and η(x) − η(y) ∈Mx for x 6∈ R and y ∈ R. We now have to find the set of

all ultraregions that intersectM. Clearly, such set is equal to U〈R〉. For x 6∈ R, y ∈ R, let

Jx−y = {J ∈ Ix−y | J ∩Mx 6= ∅}. Let f be a choice function that assigns to x, y an interval

in Jx−y, i.e. f(x, y) ∈ Jx−y. Let further Ox ∈ Ix be the interval containing 0, similarly for

Ox−y. We then define:

Uf = {η | ∀x ∈ R : η(x) ∈ Ox;∀x 6∈ R : η(x) ∈ Ux

∀x, y 6∈ R : η(x) − η(y) ∈Mx−y

∀x, y ∈ R : η(x) − η(y) ∈ Ox−y

∀x 6∈ R, y ∈ R : η(x) − η(y) ∈ f(x, y)}

Clearly, every ultraregion intersectingM is of the form Uf for some choice function f as

define above. However, as we show in the next example, some Uf do not intersectM.

Example 5.4. Let us now extend our ultraregion example 4.2 with another clock z with the

guard z ≤ 0. Then Iz = {[0, 0], (0,∞)}, Ix−z = {(−∞, 3), [3, 3], (3, 6), [6, 6], (6,∞)}, and

Iy−z = {(−∞, 4), [4, 4], (4,∞)}. Let U be the ultraregion

U = {(x, y, z) | x ∈ [0, 3], y ∈ [0, 4], z ∈ (0,∞), x− y ∈ (−1, 2)}

and let R = {y, z}. Using the zone reset operation and tightening the bounds gives M =

{(x, y, z) | x ∈ [0, 3], y = z = 0}. We then have Jx−y = {(−1, 2), [2, 2], (2,∞)} and Jx−z =

{(−∞, 3), [3, 3]}, which gives six possible choice functions and thus six candidate ultraregions.

It is easy to verify that two of these candidates, namely those corresponding to the choices

(−1, 2) ∈ Jx−y, [3, 3] ∈ Jx−z and [2, 2] ∈ Jx−y, [3, 3] ∈ Jx−z, do not intersect M. The other four

candidates together constitute U〈R〉.

22

The implementation of U〈R〉 thus works as follows: We first apply the zone reset

operation to U and tighten the bounds. We then create the sets of intervals Jx−y and

iteratively try all choice functions to get all possible candidates. Each candidate is then

intersected with M and checked for emptiness. Those who intersect M are then the

result.

We have shown the implementation of the ultraregion reset and the ultraregion

successor operations. Note that it is possible to pre-compute the ultraregion automaton

with respect to a given G. Such a pre-computed automaton will provide an efficient

way of obtaining the result of the successor and reset operations for a given ultraregion.

Obviously, all other operations required in the construction of the zone-ultraregion

automaton are the standard zone operations. These operations can be computed on the

fly, thus allowing to employ efficient on-the-fly model checking algorithms.

5.1 Experiments

We have evaluated our method within the parallel and distributed model checker DI-

VINE [BBH+13]. For the purpose of the evaluation we used several real-time mod-

els, namely 2doors.xml, bridge.xml, fisher.xml, and train-gate.xml, which are dis-

tributed with UPPAAL 4.0.13. We have measured the size of ZURA for selected instances

of the chosen models with the primary interest in the increase of the state space size with

respect to the number of guards used in a specification. Therefore, we work directly

with different guard sets instead of CA-LTL formulae. Table 1 shows the growth of

zone-ultraregion automaton state space size with the increasing size of the guard set.

We choose guard sets separately for each model as follows, for 2doors.xml G1 = {x ≤
4}, G2 = G1 ∪ {x ≤ 6}, G3 = G2 ∪ {w ≤ 0}, for bridge.xml G1 = {y ≤ 10}, G2 = G1 ∪ {y ≤
15}, G3 = G2 ∪ {time ≤ 25}, for fisher.xml G1 = {x ≤ 1}, G2 = G1 ∪ {x ≤ 2}, G3 =

G2 ∪ {x < 2}, for train-gate.xml G1 = {x ≤ 10}, G2 = G1 ∪ {x ≤ 5}, G3 = G2 ∪ {x < 15}.

6 Expressing UPPAAL Properties in CA-LTL

We now explain how all specification properties of UPPAAL can be expressed in CA-LTL.

We refer to the description given in [BDL04]. We first remark that any state formula

is a boolean combination of simple guards and location propositions (we consider the

value of variables to be the part of a location). We now deal with all kinds of UPPAAL

properties.

23

Table 1: Experimental evaluation of ZURA state space size

Model
|G| = 0 |G1| = 1 |G2| = 2 |G3| = 3

states trans. states trans. states trans. states trans.

2doors 189 343 294 508 364 636 482 817

bridge 723 1851 1446 3702 2169 5553 4617 11334

fischer4 1792 4912 12159 29808 16688 38337 32124 72668

fischer5 15142 45262 157623 426256 219435 556705 420875 1063796

fischer6 140716 453328 2174673 6424394 3070446 8536643 5817098 16279518

train-gate3 610 1153 3689 7486 11286 23023 28066 60422

train-gate4 9977 18233 98366 187327 351388 674504 936973 1915545

train-gate5 200776 359031 2479343 4589462 9662204 18112439 27159806 54271266

Reachability Properties The reachability properties in UPPAAL are expressed as E♦ϕ

where ϕ is a state formula. This existential property cannot be expressed as a CA-LTL

formula directly, as the semantics of CA-LTL considers all runs. However, we may use

the duality of existential and universal quantification and say that a timed automaton TA

satisfies E♦ϕ iff TA does not satisfy G¬ϕ.

Safety Properties The safety properties are expressed as A�ϕ or E�ϕ where ϕ is

a state formula. The A-version may be expressed directly as Gϕ, the E-version indirectly

as in the previous case: TA satisfies E�ϕ iff TA does not satisfy F¬ϕ.

Liveness Properties The simple liveness properties are expressed as A♦ϕ. These may

be expressed directly as Fϕ. The leads to formula ϕ ψ, which has a TCTL equivalent

A�(ϕ⇒ A♦ψ), can be expressed in CA-LTL as G(ϕ⇒ Fψ). The reason these formulae

are equivalent is similar to the reasoning behind the equivalence of A�(ϕ⇒ A♦ψ) and

G(ϕ⇒ Fψ) in standard CTL and LTL.

7 Conclusion and Future Work

Model checking of CA-LTL over timed automata provides system engineers with another

powerful formal verification procedure to check for reliability and correctness of time-

critical systems. To our best knowledge we are the first to fully describe and implement

the process of zone-based LTL model checking over timed automata for a logic that

allows clock constraints as atomic propositions. We again recall that the zone-based

solutions to the Timed Büchi Automaton Emptiness problem known so far have not

24

provided the solution to the CA-LTL model checking problem as presented in this paper.

Our implementation has been done within the parallel and distributed model checker

DIVINE which allows us to employ the aggregate power of multiple computational

nodes in order to deal with a single model checking task.

We are currently working on several extensions. One of them is to allow atomic

propositions used in CA-LTL formulae to be able to refer to the clock value differences.

Another extension deals with different zone extrapolation methods and the last one

enhances the logic with actions.

References

[ACD90] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-

time systems. In Logic in Computer Science, 1990. LICS’90, Proceedings., Fifth

Annual IEEE Symposium on e, pages 414–425. IEEE, 1990.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theor. Comput.

Sci., 126(2):183–235, 1994.

[AFH96] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing

punctuality. J. ACM, 43(1):116–146, January 1996.

[AH94] Rajeev Alur and Thomas A Henzinger. A really temporal logic. Journal of the

ACM (JACM), 41(1):181–203, 1994.

[AM04] Rajeev Alur and P. Madhusudan. Decision problems for timed automata:

A survey. In Marco Bernardo and Flavio Corradini, editors, Formal Methods

for the Design of Real-Time Systems, volume 3185 of Lecture Notes in Computer

Science, pages 1–24. Springer Berlin Heidelberg, 2004.

[BBH+13] J. Barnat, L. Brim, V. Havel, J. Havlíček, J. Kriho, M. Lenčo, P. Ročkai, V. Štill,

and J. Weiser. DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded

C & C++ Programs. In Computer Aided Verification (CAV 2013), volume 8044

of LNCS, pages 863–868. Springer, 2013.

[BDL+01] Gerd Behrmann, Alexandre David, Kim G. Larsen, Oliver Möller, Paul Pet-

tersson, and Wang Yi. UPPAAL - present and future. In Proc. of 40th IEEE

Conference on Decision and Control. IEEE Computer Society Press, 2001.

25

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL.

In Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design

of Real-Time Systems: 4th International School on Formal Methods for the Design of

Computer, Communication, and Software Systems, SFM-RT 2004, number 3185 in

LNCS, pages 200–236. Springer–Verlag, September 2004.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Represen-

tation and Mind Series). The MIT Press, 2008.

[Bou04] Patricia Bouyer. Forward analysis of updatable timed automata. Formal

Methods in System Design, 24(3):281–320, 2004.

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and

tools. In Lectures on Concurrency and Petri Nets, pages 87–124. Springer, 2004.

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, 1999.

[DD07] Stéphane Demri and Deepak D’Souza. An automata-theoretic approach to

constraint LTL. Information and Computation, 205(3):380–415, 2007.

[Dil90] David L Dill. Timing assumptions and verification of finite-state concurrent

systems. In Automatic verification methods for finite state systems, pages 197–212.

Springer, 1990.

[DT98] Conrado Daws and Stavros Tripakis. Model Checking of Real-Time Reach-

ability Properties Using Abstractions. In Proceedings of the 4th International

Conference on Tools and Algorithms for Construction and Analysis of Systems,

TACAS ’98, pages 313–329, London, UK, UK, 1998. Springer-Verlag.

[HLP90] Eyal Harel, Orna Lichtenstein, and Amir Pnueli. Explicit clock temporal logic.

In Logic in Computer Science, 1990. LICS’90, Proceedings., Fifth Annual IEEE

Symposium on e, pages 402–413. IEEE, 1990.

[HSW11] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient Emptiness

Check for Timed Büchi Automata (Extended version). CoRR, abs/1104.1540,

2011.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic.

Real-time systems, 2(4):255–299, 1990.

26

[Li09] Guangyuan Li. Checking Timed Büchi Automata Emptiness Using LU-

Abstractions. In Formal Modeling and Analysis of Timed Systems, volume 5813

of LNCS, pages 228–242. Springer, 2009.

[LOD+13] Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard,

Kim Guldstrand Larsen, and Jaco van de Pol. Multi-core Emptiness Checking

of Timed Büchi Automata Using Inclusion Abstraction. In Computer Aided

Verification (CAV 2013), volume 8044 of Lecture Notes in Computer Science, pages

968–983. Springer, 2013.

[LT02] Guangyuan Li and Zhisong Tang. Modelling real-time systems with

continuous-time temporal logic. In Chris George and Huaikou Miao, ed-

itors, Formal Methods and Software Engineering, volume 2495 of Lecture Notes in

Computer Science, pages 231–236. Springer Berlin Heidelberg, 2002.

[Ost89] Jonathan S Ostroff. Temporal logic for real-time systems, volume 40. Cambridge

Univ Press, 1989.

[Pet99] Paul Pettersson. Modelling and verification of real-time systems using timed

automata: theory and practice. Citeseer, 1999.

[Tri09a] S. Tripakis. Checking timed Büchi Automata Emptiness on Simulation Graphs.

TOCL, 10(3), 2009.

[Tri09b] Stavros Tripakis. Checking timed Büchi automata emptiness on simulation

graphs. ACM Transactions on Computational Logic (TOCL), 10(3):15, 2009.

[TY01] Stavros Tripakis and Sergio Yovine. Analysis of timed systems using time-

abstracting bisimulations. Formal Methods in System Design, 18(1):25–68, 2001.

[VW86] M. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-

gram verification (preliminary report). In Proceedings, Symposium on Logic in

Computer Science (LICS’86), pages 332–344. IEEE Computer Society, 1986.

27

