
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Probabilistic Bisimulation:
Naturally on Distributions

by

Holger Hermanns
Jan Krčál

Jan Křetínský

FI MU Report Series FIMU-RS-2014-3

Copyright c© 2014, FI MU April 2014

Copyright c© 2014, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Probabilistic Bisimulation:
Naturally on Distributions

Holger Hermanns

Saarland University – Computer Science, Saarbrücken, Germany

hermanns@cs.uni-saarland.de

Jan Krčál

Saarland University – Computer Science, Saarbrücken, Germany

krcal@cs.uni-saarland.de

Jan Křetínský

IST Austria

jan.kretinsky@ist.ac.at

April 20, 2014

Abstract

In contrast to the usual understanding of probabilistic systems as stochastic pro-

cesses, recently these systems have also been regarded as transformers of probabili-

ties. In this paper, we give a natural definition of strong bisimulation for probabilistic

systems corresponding to this view that treats probability distributions as first-class

citizens. Our definition applies in the same way to discrete systems as well as to

systems with uncountable state and action spaces. Several examples demonstrate

that our definition refines the understanding of behavioural equivalences of prob-

abilistic systems. In particular, it solves a longstanding open problem concerning

the representation of memoryless continuous time by memoryfull continuous time.

Finally, we give algorithms for computing this bisimulation not only for finite but

also for classes of uncountably infinite systems.

1

1 Introduction

Continuous time concurrency phenomena can be addressed in two principal manners:

On the one hand, timed automata (TA) extend interleaving concurrency with real-valued

clocks [2]. On the other hand, time can be represented by memoryless stochastic time,

as in continuous time Markov chains (CTMC) and extensions, where time is represented

in the form of exponentially distributed random delays [37, 35, 6, 26]. TA and CTMC

variations have both been applied to very many intriguing cases, and are supported

by powerful real-time, respectively stochastic time model checkers [3, 42] with growing

user bases. The models are incomparable in expressiveness, but if one extends timed

automata with the possibility to sample from exponential distributions [5, 12, 33], there

appears to be a natural bridge from CTMC to TA. This kind of stochastic semantics of

timed automata has recently gained considerable popularity by the statistical model

checking approach to TA analysis [16, 15].

Still there is a disturbing difference, and this difference is the original motivation [14]

of the work presented in this paper. The obvious translation of an exponentially dis-

tributed delay into a clock expiration sampled from the very same exponential proba-

bility distribution fails in the presence of concurrency. This is because the translation is

not fully compatible with the natural interleaving concurrency semantics for TA respec-

tively CTMC. This is illustrated by the following example, which in the middle displays

two small CTMC, which are supposed to run independently and concurrently.
q

u v

r

x:=Exp(1),
y:=Exp(2)

ax = 0 b y = 0

by = 0 a x = 0
1 2

q ′

u ′ v ′

r ′

x:=Exp(1),
y:=Exp(2)

y:=Exp(2) x:=Exp(1)

ax = 0 b y = 0

by = 0 a x = 0

On the left and right we see two stochastic automata (a variation of timed automata for-

mally defined in Section 3). They have clocks x and ywhich are initialized by sampling

from exponential distributions, and then each run down to 0. The first one reaching

0 triggers a transition and the other clock keeps on running unless resampled, which

happens on the right, but not on the left. The left model is obtained by first translating

the respective CTMC, and then applying the natural TA interleaving semantics, while

the right model is obtained by first applying the equally natural CTMC interleaving

semantics prior to translation.

The two models have subtly different semantics in terms of their underlying dense

probabilistic timed transition systems. This can superficially be linked to the memo-

2

ryless property of exponential distributions, yet there is no formal basis for proving

equivalence. This paper closes this gap, which has been open for at least 15 years, by

introducing a natural continuous-space distribution-based bisimulation. This result is em-

bedded in several further intriguing application contexts and algorithmic achievements

for this novel bisimulation.

The theory of bisimulations is a well-established and elegant framework to describe

equivalence between processes based on their behaviour. In the standard semantics of

probabilistic systems [43, 51], when a probabilistic step from a state to a distribution is

taken, the random choice is resolved and we instead continue from one of the successor

states. Recently, there has been considerable interest in instead regarding probabilistic

systems as deterministic transformers of probability distributions [41, 1, 23], where the

choice is not resolved and we continue from the distribution over successors. Thus,

instead of the current state the transition changes the current distribution over the states.

Although the distribution semantics is very natural in many contexts [34], it has been

only partially reflected in the study of bisimulations [34, 22, 27, 26].

Our definition arises as an unusual, but very simple instantiation of the standard

coalgebraic framework for bisimulations [48]. (No knowledge of coalgebra is required

from the reader though.) Despite its simplicity, the resulting notion is surprisingly

fruitful, not only because it indeed solves the longstanding correspondence problem

between CTMC and TA with stochastic semantics.

Firstly, it is more adequate than other equivalences when applied to systems with

distribution semantics, including large-population models where different parts of the

population act differently [44]. Indeed, as argued in [30], some equivalent states are not

identified in the standard probabilistic bisimulations and too many are identified in the

recent distribution based bisimulations [22, 27]. Our approach allows for a bisimulation

identifying precisely the desired states [30].

Secondly, our bisimulation over distributions induces an equivalence on states, and

this relation equates behaviourally indistinguishable states which in many settings

are unnecessarily distinguished by standard bisimulations. We shall discuss this phe-

nomenon in the context of several applications. Nevertheless, the key idea to work

with distributions instead of single states also bears disadvantages. The main difficulty

is that even for finite systems the space of distributions is uncountable, thus bisimula-

tion is difficult to compute. However, we show that it admits a concise representation

using methods of linear algebra and we provide an algorithm for computing it. Further,

3

in order to cover e.g. continuous-time systems, we need to handle both uncountably

many states (that store the sampled time) and labels (real time durations). Fortunately,

there is an elegant way to do so using the standard coalgebra framework. Moreover,

it can easily be further generalized, e.g. adding rewards to the generic definition is a

trivial task.

Our contribution is the following:

• We give a natural definition of bisimulation from the distribution perspective for

systems with generally uncountable spaces of states and labels.

• We argue by means of several applications that the definition can be considered

more useful than the classical notions of probabilistic bisimulation.

• We provide an algorithm to compute this distributional bisimulation on finite non-

deterministic probabilistic systems, and present a decision algorithm for uncount-

able continuous-time systems induced by the stochastic automata mentioned

above.

A full version of this paper is available Appendix.

2 Probabilistic bisimulation on distributions

A (potentially uncountable) set S is a measurable space if it is equipped with a σ-algebra,

which we denote by Σ(X). The elements of Σ(X) are called measurable sets. For a mea-

surable space S, letD(S) denote the set of probability measures (or probability distributions)

over S. The following definition is similar to the treatment of [58].

Definition 2.1. A non-deterministic labelled Markov process (NLMP) is a tuple P =

(S,L, {τa | a ∈ L}) where S is a measurable space of states, L is a measurable space of la-

bels, and τa : S → Σ(D(S)) assigns to each state s a measurable set of probability measures

τa(s) available in s under a.(1)

When in a state s ∈ S, NLMP reads a label a ∈ L and non-deterministically chooses a

successor distribution µ ∈ D(S) that is in the set of convex combinations(2) over τa(s),
(1)We further require that for each s ∈ S we have {(a, µ)|µ ∈ τa(s)} ∈ Σ(L) ⊗ Σ(D(S)) and for each

A ∈ Σ(L) and Y ∈ Σ(D(S)) we have {s ∈ S | ∃a ∈ A.τa(s) ∩ Y 6= ∅} ∈ Σ(S). Here Σ(D(S)) is the Giry

σ-algebra [32] over D(X).
(2)A distribution µ ∈ D(S) is a convex combination of a set M ∈ Σ(D(S)) of distributions if there is a

measure ν on D(S) such that ν(M) = 1 and µ =
∫
µ ′∈D(S) µ

′ν(dµ ′).

4

denoted by s a−→µ. If there is no such distribution, the process halts. Otherwise, it

moves into a successor state according to µ. Considering convex combinations is neces-

sary as it gives more power than pure resolution of non-determinism [49].

Example 2.2. If all sets are finite, we obtain probabilistic automata (PA) defined [49] as a

triple (S,L,−→) where −→ ⊆ S×L×D(S) is a probabilistic transition relation with (s, a, µ) ∈
−→ if µ ∈ τa(s).

Example 2.3. In the continuous setting, consider a random number generator that also remem-

bers the previous number. We set L = [0, 1], S = [0, 1] × [0, 1] and τx(〈new, last〉) = {µx} for

x = new and ∅ otherwise, where µx is the uniform distribution on [0, 1]× {x}. If we start with a

uniform distribution over S, the measure of successors under any x ∈ L is 0. Thus in order to get

any information of the system we have to consider successors under sets of labels, e.g. intervals.

For a measurable set A ⊆ L of labels, we write s A−→µ if s a−→µ for some a ∈ A,

and denote by SA := {s | ∃µ : s A−→µ} the set of states having some outgoing la-

bel from A. Further, we can lift this to probability distributions by setting µ A−→ν if

ν = 1
µ(SA)

∫
s∈SA

νs µ(d s) for some measurable function assigning to each state s ∈ SA a

measure νs such that s A−→νs. Intuitively, in µwe restrict to states that do not halt under

A and consider all possible combinations of their transitions; we scale up by 1
µ(SA)

to

obtain a distribution again.

Example 2.4. In the previous example, let υ be the uniform distribution. Due to the indepen-

dence of the random generator on previous values, we get υ [0,1]−→υ. Similarly, υ
[0.1,0.2]
−−−−→ υ[0.1,0.2]

where υ[0.1,0.2] is uniform on [0, 1] in the first component and uniform on [0.1, 0.2] in the second

component, with no correlation.

Using this notation, a non-deterministic and probabilistic system such as NLMP can

be regarded as a non-probabilistic, thus solely non-deterministic, labelled transition sys-

tem over the uncountable space of probability distributions. The natural bisimulation

from this distribution perspective is as follows.

Definition 2.5. Let (S,L, {τa | a ∈ L}) be a NLMP and R ⊆ D(S) × D(S) be a symmetric

relation. We say that R is a (strong) probabilistic bisimulation if for each µRν and measurable

A ⊆ L

1. µ(SA) = ν(SA), and

2. for each µ A−→µ ′ there is a ν A−→ν ′ such that µ ′ Rν ′.

5

We set µ ∼ ν if there is a probabilistic bisimulation R such that µRν.

Example 2.6. Considering Example 2.3, states {x} × [0, 1] form a class of ∼ for each x ∈ [0, 1]

as the old value does not affect the behaviour. More precisely, µ ∼ ν iff marginals of their first

component are the same.

Naturalness. Our definition of bisimulation is not created ad-hoc as it often appears for

relational definitions, but is actually an instantiation of the standard bisimulation for a

particular coalgebra. Although this aspect is not necessary for understanding the paper,

it is another argument for naturalness of our definition. For reader’s convenience, we

present a short introduction to coalgebras and the formal definitions in Appendix. Here

we only provide an intuitive explanation by example.

Non-deterministic labelled transition systems are essentially given by the transition

function S → P(S)L; given a state s ∈ S and a label a ∈ L, we can obtain the set of the

successors {s ′ ∈ S | s
a
−→s ′}. The transition function corresponds to a coalgebra, which

induces a bisimulation coinciding with the classical one of Park and Milner [46]. Simi-

larly, PA are given by the transition function S → P(D(S))L; instead of successors there

are distributions over successors. Again, the corresponding coalgebraic bisimulation

coincides with the classical ones of Larsen and Skou [43] and Segala and Lynch [50].

In contrast, our definition can be obtained by considering states S ′ to be distribu-

tions in D(S) over the original state space and defining the transition function to be

S ′ → ([0, 1]×P(S ′))Σ(L). The difference to the standard non-probabilistic case is twofold:

firstly, we consider all measurable sets of labels, i.e. all elements of Σ(L); secondly, for

each label set we consider the mass, i.e. element of [0, 1], of the current state distribution

that does not deadlock, i.e. can perform some of the labels. These two aspects form the

crux of our approach and distinguish it from other approaches.

3 Applications

We now argue by some concrete application domains that the distribution view on

bisimulation yields a fruitful notion.

6

3.1 Memoryless vs. memoryfull continuous time.

First, we reconsider the motivating discussion from Section 1 revolving around the dif-

ference between continuous time represented by real-valued clocks, respectively mem-

oryless stochastic time. For this we introduce a simple model of stochastic automata [12].

Definition 3.1. A stochastic automaton (SA) is a tuple S = (Q, C,A,→, κ, F) where Q is a

set of locations, C is a set of clocks, A is a set of actions,→ ⊆ Q×A× 2C ×Q is a set of edges,

κ : Q→ 2C is a clock setting function, and F assigns to each clock its distribution over R≥0.

Avoiding technical details, S has the following NLMP semantics PS with state space

S = Q × (R≥0)C , assuming it is initialized in some location q0: When a location q is

entered, for each clock c ∈ κ(q) a positive value is chosen randomly according to the

distribution F(c) and stored in the state space. Intuitively, the automaton idles in loca-

tion qwith all all clock values decreasing at the same speed until some edge (q, a, X, q ′)

becomes enabled, i.e. all clocks from X have value ≤ 0. After this idling time t, the ac-

tion a is taken and the automaton enters the next location q ′. If an edge is enabled on

entering a location, it is taken immediately, i.e. t = 0. If more than one edge become en-

abled simultaneously, one of them is chosen non-deterministically. Its formal definition

is given in Appendix. We now are in the position to harvest Definition 2.5, to arrive at

the novel bisimulation for stochastic automata.

Definition 3.2. We say that locations q1, q2 of an SA S are probabilistic bisimilar, denoted

q1 ∼ q2, if µ1 ∼ µ2 in PS where each µi corresponds to the location being qi, any c 6∈ κ(qi) being

0, and any c ∈ κ(qi) being independently set to a random value according to F(c).

This bisimulation identifies q and q ′ from Section 1 unlike any previous bisimula-

tion on SA [12]. In Section 4.2 we discuss how to compute this bisimulation, despite

being continuous-space. Recall that the model initialized by q is obtained by first trans-

lating two simple CTMC, and then applying the natural interleaving semantics, while

the model, of q ′ is obtained by first applying the equally natural CTMC interleaving

semantics prior to translation. The bisimilarity of these two models generalizes to the

whole universe of CTMC and SA:

Theorem 3.3. Let SA(C) denote the stochastic automaton corresponding to a CTMC C. For

any CTMC C1, C2, we have

SA(C1) ‖SA SA(C1) ∼ SA(C1 ‖CT C1).

7

Here, ‖CT and ‖SA denotes the interleaving parallel composition of SA [13] (echoing

TA parallel composition) and CTMC [37, 35] (Kronecker sum of their matrix represen-

tations), respectively.

3.2 Bisimulation for partial-observation MDP (POMDP).

A POMDP is a quadrupleM = (S,L, δ,O) where (as in an MDP) S is a set of states, A

is a set of actions, and δ : S × A → D(S) is a transition function. Furthermore, O ⊆ 2S

partitions the state space. The choice of actions is resolved by a policy yielding a Markov

chain. Unlike in an MDP, such choice is not based on the knowledge of the current state,

only on knowing that the current state belongs into an observation o ∈ O. POMDPs have

a wide range of applications in robotic control, automated planning, dialogue systems,

medical diagnosis, and many other areas [52].

In the analysis of POMDP, the distributions over states, called beliefs, arise nat-

urally. They allow for transforming the POMDP M into a fully observable NLMP

DM = (S,O,−→) with continuous space, by setting (s, o−→ , µ) ∈−→ if s ∈ o and

δ(s, a) = µ for some a ∈ A. Although probabilistic bisimulations over beliefs have

been already considered [7, 38], no connection of this particular case to general prob-

abilistic bisimulation has been studied. We can set µ ∼ µ ′ in M if µ ∼ µ ′ in DM. In

Section 4.1, we shall provide an algorithm for computing bisimulations over beliefs in

finite POMDP. Previously, there was only an algorithm [38] for computing bisimulations

on distributions of Markov chains with partial observation.

3.3 Further applications.

Probabilistic automata are especially apt for compositional modelling of distributed sys-

tems. The only information a component in a distributed system has about the current

state of another component stems from their mutual communication. Therefore, each

component can be also viewed from the outside as a partial-observation system. Thus,

also in this context, distribution bisimulation is a natural concept.

Furthermore we can understand a PA as a description, in the sense of [28, 44], of

a representative agent in a large homogeneous population. The distribution view then

naturally represents the ratios of agents being currently in the individual states and

labels given to this large population of PAs correspond to global control actions [28].

For more details on applications, see Appendix.

8

4 Algorithms

In this section, we discuss computational aspects of deciding our bisimulation. Since ∼ is

a relation over distributions over the system’s state space, it is uncountably infinite even

for simple finite systems, which makes it in principle intricate to decide. Fortunately,

the bisimulation relation has a linear structure, and this allows us to employ methods

of linear algebra to work with it effectively. Moreover, important classes of continuous-

space systems can be dealt with, since their structure can be exploited. We exemplify

this on a subset of deterministic stochastic automata, for which we are able to provide

an algorithm to decide bisimilarity.

4.1 Finite systems – greatest fixpoints

Let us fix a PA (S,L,−→). We apply the standard approach by starting withD(S)×D(S)
and pruning the relation until we reach the fixpoint ∼. In order to represent ∼ using

linear algebra, we identify a distribution µwith a vector (µ(s1), . . . , µ(s|S|)) ∈ R|S|.

Although the space of distributions is uncountable, we construct an implicit repre-

sentation of ∼ by a system of equations written as columns in a matrix E.

Definition 4.1. A matrix E with |S| rows is a bisimulation matrix if for some bisimulation R,

for any distributions µ, ν

µRν iff (µ− ν)E = 0.

For a bisimulation matrix E, an equivalence class of µ is then the set (µ + {ρ | ρE =

0}) ∩ D(S), the set of distributions that are equal modulo E.

Example 4.2. The bisimulation matrix E below encodes that several conditions must hold for

two distributions µ, ν to be bisimilar. Among others, if we multiply µ − ν with e.g. the second

column, we must get 0. This translates to (µ(v) − ν(v)) · 1 = 0, i.e. µ(v) = ν(v). Hence

for bisimilar distributions, the measure of v has to be the same. This proves that u 6∼ v (here

we identify states and their Dirac distributions). Similarly, we can prove that t ∼ 1
2
t ′ + 1

2
t ′′.

Indeed, if we multiply the corresponding difference vector (0, 0, 1,− 1
2
,− 1

2
, 0, 0) with any column

of the matrix, we obtain 0.

9

s t

u

v

a
½
a

½

b

c s ′
t ′

t ′′

a

½

½

a

a

s :

s ′ :

t :

t ′ :

t ′′ :

u :

v :

1 0 0 0 0

1 0 0 0 0

1 0 0 ½ ½

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

Note that the unit matrix is always a bisimulation matrix, not relating anything with

anything but itself. For which bisimulations do there exist bisimulation matrices? We

say a relation R over distributions is linear if µRν and µ ′Rν ′ imply
(
pµ+(1−p)µ ′

)
R
(
pν+

(1− p)ν ′
)

for any p ∈ [0, 1].

Lemma 4.3. For every linear bisimulation there exists a corresponding bisimulation matrix.

Since ∼ is linear (see Appendix), there is a bisimulation matrix corresponding to ∼. It

is a least restrictive bisimulation matrix E (note that all bisimulation matrices with the

least possible dimension have identical solution space), we call it minimal bisimulation

matrix. We show that the necessary and sufficient condition for E to be a bisimulation

matrix is stability with respect to transitions.

Definition 4.4. For a |S|× |S| matrix P, we say that a matrix E with |S| rows is P-stable if for

every ρ ∈ R|S|,

ρE = 0 =⇒ ρPE = 0 (1)

We first briefly explain the stability in a simpler setting.

4.1.1 Action-deterministic systems.

Let us consider PA where in each state, there is at most one transition. For each a ∈ L,

we let Pa = (pij) denote the transition matrix such that for all i, j, if there is (unique)

transition si a−→µ we set pij to µ(sj), otherwise to 0. Then µ evolves under a into µPa.

Denote 1 = (1, . . . , 1)>.

Proposition 4.5. In an action-deterministic PA, E containing 1 is a bisimulation matrix iff it is

Pa-stable for all a ∈ L.

To get a minimal bisimulation matrix E, we start with a single vector 1 which stands

for an equation saying that the overall probability mass in bisimilar distributions is the

10

same. Then we repetitively multiply all vectors we have by all the matrices Pa and

add each resulting vector to the collection if it is linearly independent of the current

collection, until there are no changes. In Example 4.2, the second column of E is obtained

as Pc1, the fourth one as Pa(Pc1) and so on.

The set of all columns of E is thus given by the described iteration

{Pa | a ∈ L}∗1

modulo linear dependency. Since Pa have |S| rows, the fixpoint is reached within |S|

iterations yielding 1 ≤ d ≤ |S| equations. Each class then forms an (|S|−d)-dimensional

affine subspace intersected with the set of probability distributions D(S). This is also

the principle idea behind the algorithm of [57] and [22].

4.1.2 Non-deterministic systems.

In general, for transitions under A, we have to consider cAi non-deterministic choices

in each si among all the outgoing transitions under some a ∈ A. We use variables

wji denoting the probability that j-th transition, say (si, a
j
i, µ

j
i), is taken by the sched-

uler/player(3) in si. We sum up the choices into a “non-deterministic” transition matrix

PWA with parameters W whose ith row equals
∑cAi

j=1w
j
iµ
j
i. It describes where the proba-

bility mass moves from si under A depending on the collection W of the probabilities

the player gives each choice. ByWA we denote the set of all suchW.

A simple generalization of the approach above would be to consider {PWA | A ⊆
L,W ∈ WA}

∗1. However, firstly, the set of these matrices is uncountable whenever there

are at least two transitions to choose from. Secondly, not all PWA may be used as the

following example shows.

Example 4.6. In each bisimulation class in the following example, the probabilities of s1+s2, s3,

and s4 are constant, as can also be seen from the bisimulation matrix E, similarly to Example 4.2.

Further, E can be obtained as (1 Pc1 Pb1). Observe that E is PW{a}-stable for W that maximizes

the probability of going into the “class” s3 (both s1 and s2 go to s3, i.e. w11 = w12 = 1); similarly

for the “class” s4.

(3)We use the standard notion of Spoiler-Duplicator bisimulation game (see e.g. [48]) where in {µ0, µ1}

Spoiler chooses i ∈ {0, 1}, A ⊆ L, and µi
A
−→µ ′

i, Duplicator has to reply with µ1−i
A
−→µ ′

1−i such that µi(SA) =

µi−1(SA), and the game continues in {µ ′
0, µ

′
1}. Spoiler wins iff at some point Duplicator cannot reply.

11

s1

s2

s3

s4

a

a

a

a

b
c PW{a} =

0 0 w11 w22

0 0 w12 w22

0 0 0 0

0 0 0 0

 E =

1 0 0

1 0 0

1 0 1

1 1 0

However, for W with w11 6= w12, e.g. s1 goes to s3 and s2 goes with equal probability to s3
and s4 (w11 = 1,w12 = w22 =

1
2
), we obtain from PW{a}E a new independent vector (0, 0.5, 0, 0)>

enforcing a partition finer than ∼. This does not mean that Spoiler wins the game when choosing

such mixed W in some µ, it only means that Duplicator needs to choose a different W ′ in a

bisimilar ν in order to have µPWA ∼ νPW
′

A for the successors.

A fundamental observation is that we get the correct bisimulation when Spoiler is

restricted to finitely many “extremal” choices and Duplicator is restricted for such ex-

tremalW to respond only with the very sameW.

To this end, consider MW
A = PWA E where E is the current matrix with each of e

columns representing an equation. Intuitively, the ith row of MW
A describes how much

of si is moved to various classes when a step is taken. Denote the linear forms in

MW
A over W by mij. Since the players can randomize and mix choices which transi-

tion to take, the set of vectors {(mi1(w
1
i , . . . , w

ci
i), . . . ,mib(w

1
i , . . . , w

ci
i)) | w1i , . . . , w

ci
i ≥

0,
∑ci

j=1w
j
i = 1} forms a convex polytope denoted by Ci. Each vector in Ci is thus the ith

row of the matrix MW
A where some concrete weights wji are “plugged in”. This way Ci

describes all the possible choices in si and their effect on where the probability mass is

moved.

Denote vertices (extremal points) of a convex polytope P by E(P). Then E(Ci) corre-

spond to pure (non-randomizing) choices that are “extremal” w.r.t. E. Note that now if

sj ∼ sk then Cj = Ck, or equivalently E(Cj) = E(Ck). Indeed, for every choice in sj there

needs to be a matching choice in sk and vice versa. However, since we consider bisim-

ulation between generally non-Dirac distributions, we need to combine these extremal

choices. We define the set E(C) ⊆
∏|S|

i=1 E(Ci) to contain a tuple c = (c1 · · · c|S|) iff the

ci’s are “extremal in (some) same direction”, i.e.
∑|S|

i=1 ci is a vertex (extremal choice) of

the polytope generated by points {
∑|S|

i=1 c
′
i | ∀i : c ′i ∈ Ci}. Each c ∈ E(C) is a tuple of

vertices, and thus corresponds to particular choices, denoted byW(c).

Proposition 4.7. Let E be a matrix containing 1. It is a bisimulation matrix iff it is PW(c)
A -stable

for all A ⊆ L and c ∈ E(C).

12

Input : Probabilistic automaton (S, L,−→)

Output : A minimal bisimulation matrix E

foreach A ⊆ L do
compute PWA //non-deterministic transition matrix

E← (1)

repeat

foreach A ⊆ L do

MW
A ← PWA E //polytope of all choices

compute E(C) fromMW
A //vertices, i.e. extremal choices

foreach c ∈ E(C) do

M
W(c)
A ←MW

A with valuesW(c) plugged in

Enew ←columns ofMW(c)
A linearly independent of columns of E

E← (E Enew)

until E does not change

Algorithm 1: Bisimulation on probabilistic automata

Theorem 4.8. Algorithm 1 computes a minimal bisimulation matrix.

The running time is exponential. We leave the question whether linear programming

or other methods [36] can yield E in polynomial time open. The algorithm can easily

be turned into one computing other bisimulation notions from the literature, for which

there were no algorithms so far, see Section 5.

4.2 Continuous-time systems - least fixpoints

Turning our attention to continuous systems, we finally sketch an algorithm for de-

ciding bisimulation ∼ over a subclass of stochastic automata, this constitutes the first

algorithm to compute a bisimulation on the uncountably large semantical object.

We need to adopt two restrictions. First, we consider only deterministic SA, where the

probability that two edges become enabled at the same time is zero (when initiated in

any location). Second, to simplify the exposition, we restrict all distributions occurring

to exponential distributions. Notably, even for this class, our bisimulation is strictly

coarser than the one induced by standard bisimulations [37, 35, 6] for continuous-time

Markov chains. At the end of the section we discuss possibilities for extending the class

of supported distributions. Both the restrictions can be effectively checked on SA.

13

Theorem 4.9. Let S = (Q, C,A,→, κ, F) be a deterministic SA over exponential distributions.

There is an algorithm to decide in time polynomial in |S | and exponential in |C| whether q1 ∼ q2
for any locations q1, q2.

The rest of the section deals with the proof. We fix S = (Q, C,A,→, κ, F) and q1, q2 ∈
Q. First, we straightforwardly abstract the NLMP semantics PS by a NLMP P̂ over state

space Ŝ = Q × (R≥0 ∪ {−})C where all negative values of clocks are expressed by one

element −. Let ξ denote the obvious mapping of distributions D(S) onto D(Ŝ). Then ξ

preserves bisimulation since two states s1, s2 that differ only in negative values satisfy

ξ(τa(s1)) = ξ(τa(s2)) for all a ∈ L.

Lemma 4.10. For any distributions µ, ν on S we have µ ∼ ν iff ξ(µ) ∼ ξ(ν).

Second, similarly to an embedded Markov chain of a CTMC, we further abstract

the NLMP P̂ by a finite deterministic PA D̄ = (S̄,A,−→) such that each state of D̄ is a

distribution over the uncountable state space Ŝ.

• The set S̄ is the set of states reachable via the transitions relation defined below

from the distributions µ1, µ2 corresponding to q1, q2 (see Definition 3.2).

• Let us fix a state µ ∈ S̄ (note that µ ∈ D(Ŝ)) and an action a ∈ A such that

in the NLMP P̂ an a-transition occurs with positive probability, i.e. µ Aa−→ν for

some ν and for Aa = {a} × R≥0. Thanks to restricting to deterministic SA,

P̂ is also deterministic and such a distribution ν is uniquely defined. We set

(µ, a,M) ∈ −→ where M is the discrete distribution that assigns probability pq,f
to state νq,f for each q ∈ Q and f : C → {−,+} where pq,f = ν(Ŝq,f), νq,f is the

conditional distribution νq(X) := ν(X ∩ Ŝq,f)/ν(Ŝq,f) for any measurable X ⊆ Ŝ,

and Ŝq,f = {(q ′, v) ∈ Ŝ | q ′ = q, v(c) ≥ 0 iff f(c) = + for each c ∈ C} the set of states

with location q and where the sign of clock values matches f.

For exponential distributions all the reachable states ν ∈ S̄ correspond to some location

qwhere the subset X ⊆ C is newly sampled, hence we obtain:

Lemma 4.11. For a deterministic SA over exponential distributions, |S̄| ≤ |Q|2|C|.

Instead of a greatest fixpoint computation as employed for the discrete algorithm, we

take a complementary approach and prove or disprove bisimilarity by a least fixpoint

procedure. We start with the initial pair of distributions (states in D̄) which generates

further requirements that we impose on the relation and try to satisfy them. We work

14

with a tableau, a rooted tree where each node is either an inner node with a pair of discrete

probability distributions over states of D̄ as a label, a repeated node with a label that

already appears somewhere between the node and the root, or a failure node denoted

by �, and the children of each inner node are obtained by one rule from {Step,Lin}. A

tableau not containing � is successful.

Step For a node µ ∼ ν where µ and ν have compatible timing, we add for each label

a ∈ L one child node µa ∼ νa where µa and νa are the unique distributions such

that µ a−→µa and ν a−→νa. Otherwise, we add one failure node. We say that µ and

ν have compatible timing if for all actions a ∈ A we have µ(SAa) = ν(SAa) and if

for all actions a ∈ Awith µ(SAa) > 0we have that µ restricted to SAa is equivalent

to ν restricted to SAa .

Lin For a node µ ∼ ν linearly dependent on the set of remaining nodes in the tableau,

we add one child (repeat) node µ ∼ ν. Here, we understand each node µ ∼ ν as a

vector µ− ν in the |SS |-dimensional vector space.

Note that compatibility of timing is easy to check. Furthermore, the set of rules is correct

and complete w.r.t. bisimulation in P̂.

Lemma 4.12. There is a successful tableau from µ ∼ ν iff µ ∼ ν in P̂. Moreover, the set of nodes

of a successful tableau is a subset of a bisimulation.

We get Theorem 4.9 since q1 ∼ q2 iff ξ(µ1) ∼ ξ(µ2) in P̂ and since, thanks to Lin:

Lemma 4.13. There is a successful tableau from µ ∼ ν iff there is a finite successful tableau from

µ ∼ ν of size polynomial in |S̄|.

Example 4.14. Let us demonstrate the rules by a simple example. Consider the following

stochastic automaton S on the left.

q u v

x := Exp(1/2)
y := Exp(1/2) x := Exp(1) x := Exp(1)

x = 0

a
a

y = 0
x = 0

a

x = 0

a µq µu µv
a

0.5

0.5 a a

Thanks to the exponential distributions, D̄ on the right has also only three states where µq =

q ⊗ Exp(1/2) ⊗ Exp(1/2) is the product of two exponential distributions with rate 1/2, µu =

u⊗ Exp(1), and µv = v⊗ Exp(1). Note that for both clocks x and y, the probability of getting

to zero first is 0.5.

15

1 · µu ∼ 1 · µv Step
1 · µu ∼ 1 · µv

1 · µq + 0 · µu ∼ 1 · µv
1
2
· µq + 1

2
· µu ∼ 1 · µv

1
4
· µq + 3

4
· µu ∼ 1 · µv
· · ·

Step

Step

Step

The finite tableau on the left is successful since it ends in a repeated node, thus it proves u ∼ v.

The infinite tableau on the right is also successful and proves q ∼ v. When using only the

rule Step, it is necessarily infinite as no node ever repeats. The rule Lin provides the means to

truncate such infinite sequences. Observe that the third node in the tableau on the right above is

linearly dependent on its ancestors.

Remark 4.15. Our approach can be turned into a complete proof system for bisimulation on

models with expolynomial distributions (4). Thanks to their properties, the states of the discrete

transition system D̄ can be expressed symbolically. In fact, we conjecture that the resulting

semi-algorithm can be twisted to a decision algorithm for this expressive class of models. Being

technically demanding, it is out of scope of this paper.

5 Related work and discussion

For an overview of coalgebraic work on probabilistic bisimulations we refer to a sur-

vey [53]. A considerable effort has been spent to extend this work to continuous-space

systems: the solution of [18] (unfortunately not applicable to R), the construction of

[24] (described by [48] as “ingenious and intricate”), sophisticated measurable selection

techniques in [21], and further approaches of [20] or [58]. In contrast to this standard

setting where relations between states and their successor distributions must be han-

dled, our work uses directly relations on distributions which simplifies the setting. The

coalgebraic approach has also been applied to trace semantics of uncountable systems

[40]. Coalgebraic treatment of probabilistic bisimulation is still very lively [47].

Recently, distribution-based bisimulations have been studied. In [22], a bisimulation

is defined in the context of language equivalence of Rabin’s deterministic probabilistic

automata and also an algorithm to compute the bisimulation on them. However, only

finite systems with no non-determinism are considered. The most related to our notion

are the very recent independently developed [27] and [55]. However, none of them is

(4)With density that is positive on an interval [`, u) for ` ∈ N0, u ∈ N ∪ {∞} given piecewise by ex-

pressions of the form
∑I
i=0

∑J
j=0 aijx

ie−λijx for aij, λij ∈ R ∪ {∞}. This class contains many important

distributions such as exponential, or uniform, and enables efficient approximation of others.

16

applicable in the continuous setting and for neither of the two any algorithm has pre-

viously been given. Nevertheless, since they are close to our definition, our algorithm

with only small changes can actually compute them. Although the bisimulation of [27]

in a rather complex way extends [22] to the non-deterministic case reusing their no-

tions, it can be equivalently rephrased as our Definition 2.5 only considering singleton

sets A ⊆ L. Therefore, it is sufficient to only consider matrices PWA for singletons A in

our algorithm. Apart from being a weak relation, the bisimulation of [55] differs in the

definition of µ A
−→ν: instead of restricting to the states of the support that can perform

some action of A, it considers those states that can perform exactly actions of A. Here

each ith row of each transition matrix PWA needs to be set to zero if the set of labels from

si is different from A.

There are also bisimulation relations over distributions that, however, coincide with

the classical [43] on Dirac distributions and are only directly lifted to non-Dirac distribu-

tions. Thus they fail to address the motivating correspondence problem from Section 1

and are less precise for large-population models. Moreover, no algorithms were given.

They were considered for finite [11, 34] and uncountable [8] state spaces.

There are other bisimulations that identify more states than the classical [43] such as

[54] and [4] designed to match a specific logic. Further, weak bisimulations coarser than

usual state based analogues were given in [26, 25, 19], which also inspires our work,

especially their approach to internal transitions. However, they are quite different from

our notion as in the case without internal transitions they basically coincide with lifting

[34] of the classical bisimulation [43]. Another approach to obtain coarser equivalences

on probabilistic automata is via testing scenarios [56].

6 Conclusion

We have introduced a general and natural notion of a distribution-based probabilistic

bisimulation, have shown its applications in different settings and have provide algo-

rithms to compute it for finite and some classes of infinite systems. As to future work,

the precise complexity of the finite case is certainly of interest. Further, the tableaux de-

cision method opens the arena for investigating wider classes of continuous-time sys-

tems where the new bisimulation is decidable.

Acknowledgement We would like to thank Pedro D’Argenio, Filippo Bonchi, Daniel

Gebler, and Matteo Mio for valuable feedback and discussions.

17

References

[1] M. Agrawal, S. Akshay, B. Genest, and P. Thiagarajan. Approximate verification of

the symbolic dynamics of Markov chains. In LICS, 2012.

[2] R. Alur and D. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–

235, 1994.

[3] G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W. Yi. Developing uppaal

over 15 years. Softw., Pract. Exper., 41(2):133–142, 2011.

[4] M. Bernardo, R. D. Nicola, and M. Loreti. Revisiting bisimilarity and its modal

logic for nondeterministic and probabilistic processes. Technical Report 06, IMT

Lucca, 2013.

[5] M. Bravetti and P. D’Argenio. Tutte le algebre insieme: Concepts, discussions and

relations of stochastic process algebras with general distributions. In Validation of

Stochastic Systems, 2004.

[6] M. Bravetti, H. Hermanns, and J.-P. Katoen. YMCA: Why Markov Chain Algebra?

Electr. Notes Theor. Comput. Sci., 162:107–112, 2006.

[7] P. Castro, P. Panangaden, and D. Precup. Equivalence relations in fully and par-

tially observable Markov decision processes. In IJCAI, 2009.

[8] S. Cattani. Trace-based Process Algebras for Real-Time Probabilistic Systems. PhD thesis,

University of Birmingham, 2005.

[9] K. Chatterjee, L. Doyen, and T. Henzinger. Qualitative analysis of partially-

observable Markov decision processes. In MFCS, 2010.

[10] L. Cheung. Reconciling nondeterministic and probabilistic choices. PhD thesis, Institute

for Computing and Information Sciences, Radboud University Nijmegen, 2006.

[11] S. Crafa and F. Ranzato. A spectrum of behavioral relations over ltss on probability

distributions. In CONCUR, 2011.

[12] P. D’Argenio and J.-P. Katoen. A theory of stochastic systems part I: Stochastic

automata. Inf. Comput., 203(1):1–38, 2005.

18

[13] P. D’Argenio and J.-P. Katoen. A theory of stochastic systems. part II: Process alge-

bra. Inf. Comput., 203(1):39–74, 2005.

[14] P. R. D’Argenio and C. Baier. What is the relation between CTMC and TA?, 1999.

Personal communication.

[15] A. David, K. Larsen, A. Legay, M. Mikucionis, D. Poulsen, J. van Vliet, and

Z. Wang. Statistical model checking for networks of priced timed automata. In

FORMATS, 2011.

[16] A. David, K. Larsen, A. Legay, M. Mikucionis, and Z. Wang. Time for statistical

model checking of real-time systems. In CAV, 2011.

[17] L. de Alfaro, T. Henzinger, and R. Jhala. Compositional methods for probabilistic

systems. In CONCUR, 2001.

[18] E. de Vink and J. Rutten. Bisimulation for probabilistic transition systems: A coal-

gebraic approach. In ICALP, 1997.

[19] Y. Deng and M. Hennessy. On the semantics of Markov automata. Inf. Comput.,

222:139–168, 2013.

[20] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating labeled

Markov processes. In LICS, 2000.

[21] E.-E. Doberkat. Semi-pullbacks and bisimulations in categories of stochastic rela-

tions. In ICALP, 2003.

[22] L. Doyen, T. Henzinger, and J.-F. Raskin. Equivalence of labeled Markov chains.

Int. J. Found. Comput. Sci., 19(3):549–563, 2008.

[23] L. Doyen, T. Massart, and M. Shirmohammadi. Limit synchronization in Markov

decision processes. CoRR, abs/1310.2935, 2013.

[24] A. Edalat. Semi-pullbacks and bisimulation in categories of Markov processes.

Mathematical Structures in Computer Science, 9(5):523–543, 1999.

[25] C. Eisentraut, H. Hermanns, J. Krämer, A. Turrini, and L. Zhang. Deciding bisimi-

larities on distributions. In QEST, 2013.

19

[26] C. Eisentraut, H. Hermanns, and L. Zhang. On probabilistic automata in continu-

ous time. In LICS, 2010.

[27] Y. Feng and L. Zhang. When equivalence and bisimulation join forces in proba-

bilistic automata. CoRR, abs/1311.3396, 2013.

[28] N. Gast and B. Gaujal. A mean field approach for optimization in discrete time.

Discrete Event Dynamic Systems, 21(1):63–101, 2011.

[29] N. Gast, B. Gaujal, and J.-Y. L. Boudec. Mean field for Markov decision processes:

From discrete to continuous optimization. IEEE Trans. Automat. Contr., 57(9):2266–

2280, 2012.

[30] S. Georgievska and S. Andova. Probabilistic may/must testing: retaining proba-

bilities by restricted schedulers. Formal Asp. Comput., 24(4-6):727–748, 2012.

[31] S. Giro and P. D’Argenio. Quantitative model checking revisited: Neither decidable

nor approximable. In FORMATS, 2007.

[32] M. Giry. A categorical approach to probability theory. In Categorical aspects of topol-

ogy and analysis. Springer, 1982.

[33] P. G. Harrison and B. Strulo. Spades - a process algebra for discrete event simula-

tion. J. Log. Comput., 10(1):3–42, 2000.

[34] M. Hennessy. Exploring probabilistic bisimulations, part i. Formal Asp. Comput.,

2012.

[35] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic process algebras - be-

tween lotos and markov chains. Computer Networks, 30(9-10):901–924, 1998.

[36] H. Hermanns and A. Turrini. Deciding probabilistic automata weak bisimulation

in polynomial time. In FSTTCS, 2012.

[37] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge Univer-

sity Press, New York, NY, USA, 1996.

[38] D. Jansen, F. Nielson, and L. Zhang. Belief bisimulation for hidden Markov models

- logical characterisation and decision algorithm. In NASA Formal Methods, 2012.

20

[39] B. Jovanovic and R. Rosenthal. Anonymous sequential games. Journal of Mathemat-

ical Economics, 17(1):77–87, 1988.

[40] H. Kerstan and B. König. Coalgebraic trace semantics for probabilistic transition

systems based on measure theory. In CONCUR, 2012.

[41] V. Korthikanti, M. Viswanathan, G. Agha, and Y. Kwon. Reasoning about mdps as

transformers of probability distributions. In QEST, 2010.

[42] M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of prob-

abilistic real-time systems. In CAV, vol. 6806 of Lecture Notes in Computer Science.

Springer, 2011.

[43] K. Larsen and A. Skou. Bisimulation through probabilistic testing. In POPL, 1989.

[44] R. May et al. Biological populations with nonoverlapping generations: stable

points, stable cycles, and chaos. Science, 186(4164):645–647, 1974.

[45] C. McCaig, R. Norman, and C. Shankland. From individuals to populations: A

mean field semantics for process algebra. Theor. Comput. Sci., 412(17):1557–1580,

2011.

[46] R. Milner. Communication and concurrency. PHI Series in computer science. Prentice

Hall, 1989.

[47] M. Mio. Upper-expectation bisimilarity and lukasiewicz µ-calculus. In FoSSaCS,

2014.

[48] D. Sangiorgi and J. Rutten. Advanced Topics in Bisimulation and Coinduction. Cam-

bridge University Press, New York, NY, USA, 1st edition, 2011.

[49] R. Segala. Modeling and Verification of Randomized Distributed Real-time Systems. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.

[50] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In

CONCUR, 1994.

[51] R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. In

CONCUR, vol. 836 of Lecture Notes in Computer Science. Springer, 1994.

21

[52] G. Shani, J. Pineau, and R. Kaplow. A survey of point-based pomdp solvers. AA-

MAS, 27(1):1–51, 2013.

[53] A. Sokolova. Probabilistic systems coalgebraically: A survey. Theor. Comput. Sci.,

412(38):5095–5110, 2011.

[54] L. Song, L. Zhang, and J. Godskesen. Bisimulations meet PCTL equivalences for

probabilistic automata. In CONCUR, 2011.

[55] L. Song, L. Zhang, and J. C. Godskesen. Late weak bisimulation for markov au-

tomata. CoRR, abs/1202.4116, 2012.

[56] M. Stoelinga and F. Vaandrager. A testing scenario for probabilistic automata. In

ICALP, 2003.

[57] W. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic au-

tomata. SIAM J. Comput., 21(2):216–227, 1992.

[58] N. Wolovick. Continuous probability and nondeterminism in labeled transaction systems.

PhD thesis, Universidad Nacional de Córdoba, 2012.

22

A Bisimulation coalgebraically

A.1 Short introduction to coalgebras

Definitions of bisimulations can be given in terms of relations and we did so. How-

ever, for two reasons we also give a coalgebraic definition that induces our relational

definition. Firstly, due to the general framework our definition will cover a spectrum

of bisimulations depending on the interpretation of the coalgebra and is applicable to

more complex systems, automatically yielding the bisimulation definitions. Secondly,

any ad-hoc features of a simple coalgebraic definition are more visible and can be clearly

identified, whereas it is difficult to distinguish which of two similar relational defini-

tions is more natural. As we assume no previous knowledge of categorical notions we

give a brief introduction to coalgebras in the spirit of [48].

A functor F (on sets) assigns to each set X a set F(X), and to each set function f : X→ Y

a set function F(f) : F(X) → F(Y) such that two natural conditions are satisfied: (i) the

identity function on X is mapped to the identity function on F(X) and (ii) a composition

f ◦ g is mapped to a composition F(f) ◦ F(g).

Example A.1. The powerset functor P(−) maps a set X to the set P(X) of its subsets and a

function f : X→ Y to P(f) : P(X)→ P(Y) by U 7→ {f(x) | x ∈ U}.
Similarly, for a fixed set L, the operator (−)L mapping X to the set XL of functions L → X

is a functor, where the image of f : X → Y is F(f) : XL → YL given by mapping u : L → X to

f ◦ u : L→ Y.

For a functor F, an F-coalgebra is a pair of the carrier set (or state space) S and the

operation function next : S→ F(S). Intuitively, the function next describes the transition

to the next step.

Example A.2. A transition system (S,→) with → ⊆ S × S can be understood as a P(−)-

coalgebra by setting next(s) = {s ′ | s−→s ′}. And vice versa, every P-coalgebra gives rise to a

transition system.

A labelled transition system (S, L,→) with the set of labels L and → ⊆ S × L × S can be

seen as a (P(−))L-coalgebra with next : S→ (P(S))L given by next(s)(a)→ {s ′ | s
a
−→s ′}.

A bisimulation on an F-coalgebra (S,next) is a an F-coalgebra (R,next) with R ⊆ S×S
such that the two projections π1 : R → S and π2 : R → S make the following diagram

commute:(5)

(5)I.e. next ◦ π1 = F(π1) ◦ next and next ◦ π2 = F(π2) ◦ next.

23

S

F(S)

S

F(S)

R

F(R)

next nextnext

π1 π2

F(π1) F(π2)

Example A.3. For LTS, the coalgebraic bisimulation coincides with the classical one of Park and

Milner [46], where a symmetric R is a bisimulation if for every sRt and s a−→s ′ there is t a−→t ′s,a,s ′,t
with s ′Rt ′s,a,s ′,t ′ . Indeed, given a classical bisimulation R, one can define next(〈s, t〉)(a) to

contain for every s a−→s ′ the matching pair 〈s ′, t ′s,a,s ′,t〉 and symmetrically for t. Since all these

pairs are from R, (R,next) is indeed a coalgebra. Further, the projection F(π1) of next(〈s, t〉)
yields for each a ∈ L all and nothing but the successors of s under a, symmetrically for t, hence

the commuting.

Conversely, given a coalgebraic bisimulation (R,next), the commuting of π1 guarantees that

next(〈s, t〉)(a) yields all and nothing but the successors of s under a. Hence, for each s a−→s ′
there must be 〈s ′, t ′〉 ∈ next(〈s, t〉)(a) ⊆ R, moreover, with t a−→t ′ due to π2 commuting.

As we have seen, the coalgebraic definition coincides with the relational one for non-

probabilistic systems. One can use the same theory for finite probabilistic systems, too.

Let D(X) denote the set of simple distributions, i.e. functions f : X→ [0, 1] such that f is

non-zero for only finitely many elements x1, . . . , xn and
∑n

i=1 f(xi) = 1. Note that D(−)

can be understood as a functor.

Example A.4. We can interpret (D(−) ∪ {•})L-coalgebras as finite Markov decision processes

(S, L, Pr) with Pr : S × L → D(S) ∪ {•} that under each action either proceed to a distribution

on successors (as opposed to a non-deterministic choice in LTS) or not have the action available

(the special element •). The corresponding coalgebraic bisimulation can be shown to coincide

with the classical one of Larsen and Skou [43], where an equivalence relation R is a bisimulation

if
∑

u∈U Pr(t, a)(u) =
∑

u∈U Pr(t
′, a)(u) for every a ∈ L, classes T,U of R and t, t ′ ∈ T .

In contrast, uncountable probabilistic systems are more intricate. The set of probabil-

ity measures over X (equipped with a σ-algebra clear from context) is denoted by D(X).
Again, defining D(f)(µ) = µ ◦ f−1 makes D(−) into a functor.

Example A.5. We can interpret D(−)-coalgebras as Markov chains with general (possibly un-

countable) state space. However, it is intricate to prove that the corresponding bisimulation is

defined so that it coincides with the relational definition as already mentioned in Section 1.

Example A.6. PA correspond to (P(D(−)))L-coalgebras.

24

A.2 Bisimulation on distributions coalgebraically

The bisimulation we proposed is induced by a different view on the probabilistic sys-

tems. Namely, we consider distributions D(S) or measures D(S) over its state space S

to form the carrier of the coalgebra. A transition then changes this distribution. For

instance, a Markov chain can be seen this way as a coalgebra of the identity functor.

Therefore, in order to capture the distributional semantics of NLMP and other con-

tinuous systems, we define a functor(6)

([0, 1]× P(−))P(L) (♠)

The vital part is not only [0, 1], but also the use of measurable sets of labels instead of

individual labels. We can view a NLMP P = (S,L, {τa | a ∈ L}) as a ♠-coalgebra with a

carrier set D(S). The coalgebra assigns to µ ∈ D(S) and to a set of labels A ∈ Σ(L) the

pair (p,M) such that

• p = µ(SA) is the measure of states that can read some a ∈ A where SA = {s ∈ S |

∃a ∈ A.τa(s) 6= ∅};

• M = ∅ if µ(SA) = 0, and M is the set of convex combinations(7) over {µρ |

measurable ρ : SA → ⋃
a∈A τa}, otherwise, where

µρ(X) =
1

µ(SA)
·
∫
s∈S
ρ(s)(X) µ(ds) ∀X ∈ Σ(S).

In other words,M is obtained by restricting µ to the states that can readA and weighting

all possible combinations of their transitions.

Lemma A.7. The union of ♠-bisimulations and ∼ coincide.

Proof. First, we prove that whenever there is ♠-bisimulation (R,next) with (µ, ν) ∈ R
then µ ∼ ν by proving that R∪ R−1 is a bisimulation relation. Let a ⊆ L and µRν or νRµ,

wlog the former (the latter follows symmetrically).

(6)On function, we define the functor by ♠(f)(n)(A) = (id × P(f))(n(A)). Here P(L) denotes only the

measurable sets of labels.
(7)The set of convex combinations is lifted to a measurable set Z of measures over S as the set {X 7→∫
µ∈Z µ(X)ν(dµ) | ν is a measure over Z}.

25

1. The first condition of the relational bisimulation follows by

µ(Sa) = π1(next(µ)(a))

= π1(next ◦ π1〈µ, ν〉(a))

= π1(♠π1 ◦ next〈µ, ν〉(a))

= π1((id× Pπ1)(next〈µ, ν〉(a)))

= id(π1(next〈µ, ν〉(a)))

= π1((id× Pπ2)(next〈µ, ν〉(a)))

= π1(♠π2 ◦ next〈µ, ν〉(a))

= π1(next ◦ π2〈µ, ν〉(a))

= π1(next(ν)(a))

= ν(Sa)

2. For the second condition of the relational bisimulation, let µ a
−→µ ′. Since

µ ′ ∈ π2(next(µ))(a)

= π2(next ◦ π1〈µ, ν〉(a))

= π2(♠π1 ◦ next〈µ, ν〉(a))

= π2((id× Pπ1)
(

next〈µ, ν〉(a)
)
)

= Pπ1(π2
(

next(〈µ, ν〉)(a)
)
)

there is ν ′ with

〈µ ′, ν ′〉 ∈ π2
(

next(〈µ, ν〉)(a)
)

Since R is a coalgebra, we have 〈µ ′, ν ′〉 ∈ R, i.e. µ ′Rν ′.

Second, given R = ∼, we define next making it into a coalgebra such that the bisimu-

lation diagram commutes. Let succa(µ) = {µ ′ | µ
a
−→µ ′} denote the set of all a-successors

of µ. For µRν, we set

next(〈µ, ν〉)(a) = (µ(Sa), {〈µ ′, ν ′〉 ∈ R ∩ succa(µ)× succa(ν)})

Since we imposed 〈µ ′, ν ′〉 ∈ R, (R,next) is a ♠-coalgebra. Further, we prove the bisimu-

lation diagram commutes. Firstly,

next ◦ π1〈µ, ν〉 = (µ(Sa), succa(µ))

next ◦ π2〈µ, ν〉 = (ν(Sa), succa(ν))

26

Therefore,

π1(next ◦ π1〈µ, ν〉) = µ(Sa) = π1(♠π1(next〈µ, ν〉)(a))

and

π1(next ◦ π2〈µ, ν〉) = ν(Sa) = µ(Sa) = π1(♠π2(next〈µ, ν〉)(a))

since µ(Sa) = ν(Sa) due to µ ∼ ν and the first relational bisimulation condition. Sec-

ondly,

π2(next ◦ π1〈µ, ν〉(a)) = succa(µ)
(1)
= π2(♠π1(next〈µ, ν〉)(a))

π2(next ◦ π2〈µ, ν〉(a)) = succa(ν)
(2)
= π2(♠π2(next〈µ, ν〉)(a))

After we show (1) and (2), we know both components of ♠π1(next〈µ, ν〉)(a) are the

same as of next(π1〈µ, ν〉)(a), and similarly for ♠π2, hence the commuting. As to (1),

⊇ follows directly by next defined above. For ⊆, for every µ ′ ∈ succa(µ) there is

ν ′ ∈ succa(ν) with µ ′Rν ′ due to the second realtional bisimulation condition. Thus

also 〈µ ′, ν ′〉 ∈ ♠π1(next〈µ, ν〉)(a). (2) follows from symmetric argument and R being

symmetric.

A.3 Related bisimulations

For discrete systmes, one could define a functor for finite probabilistic systems with non-

determinism by

([0, 1]× P(−))L (♥)

Now a PA (S,L,−→) is a♥-coalgebra with the carrier setD(S). Indeed, the coalgebra

assigns to a distribution µ and a label a the pair (p,M) where

• p = µ(Sa) is the probability of states that can read a;

• M = ∅ if µ(Sa) = 0, and M is the set of convex combinations over { 1
µ(Sa)

∑
s∈Sa νs ·

µ(s) | ∀s ∈ Sa.s a−→νs}, otherwise. We write µ a−→µ ′ for every µ ′ ∈M.

Remark A.8. The union of ♥-bisimulations and bisimulation of [27], denoted by ∼♥, coincide.

Although we can use ♥ to capture the distribution semantics of PA as above, we

could as well use it differently: if we defined that a label that cannot be read in the

current state is ignored instead of halting, the successor distribution would be defined by

27

making a step from states that can read the label and staying elsewhere. (This approach

is discussed in the next section.)

Moreover, we could easily extend the functor to systems with real rewards (as in [7])

simply by adding R to get R×([0, 1]×P(−))L for rewards on states or ([0, 1]×P(R×−))L

on transitions etc. Similarly, for systems without the inner non-determinism like Rabin

automata, we could simplify the functor to ([0, 1] × −)L. The only important and novel

part of the functor is [0, 1] stating the overall probability mass that performs the step.

(This is also the only difference to non-probabilistic coalgebraic functors.) In all the

cases, the generic ♥-bisimulation keeps the same shape. What changes is the induced

relational bisimulation.

B Applications

In the following subsections, we justify the proposed bisimulation yielded by ♠ by re-

viewing its application areas and comparing it to other bisimulations in these areas.

B.1 Bisimulation in compositional modelling of distributed systems

Probabilistic automata are apt for compositional modelling of communicating parallel

systems. This way, the whole system is built bottom-up connecting smaller components

into larger by the parallel composition operator. To tackle the state space explosion,

minimisation algorithms can be applied throughout the process after each composi-

tion. Computing the quotient according to a bisimulation serves well as a minimisation

algorithm if the bisimulation is a congruence w.r.t. parallel composition. This condi-

tion is satisfied by the (also distribution-based) strong bisimulation recently defined by

Hennessy [34], denoted by ∼Hen. This is not the case with ∼ as shown in the following

example.

Example B.1. According to our definition, u ∼ v because 1
2
uh+

1
2
ut ∼ v

′. In contrast, u 6∼Hen v.

Therefore, ∼Hen is strictly finer than ∼. Actually, ∼Hen coincides (on Dirac distributions) with the

standard probabilistic bisimulation of Larsen and Skou [43] which distinguishes u and v as well.

v v ′
a

a

1
2

1
2

h

t

u

uh

ut
a

1
2

1
2

a

a

h

t

28

Let ‖A denotes theCSP-style full synchronization on labels fromA and interleaving on L\A.

Then ∼ is not a congruence w.r.t. ‖A as u ‖L s 6∼ v ‖L s for s depicted below.

s s ′
a

a

a

h

t

This is actually a classical example, due to [49], modelling a process u (or v) generat-

ing a secret by tossing a coin and the process s guessing the secret. If s guesses correctly,

they synchronize forever on h or t; otherwise, they halt. In u ‖L s, the non-determinism

can be resolved by a scheduler in such a way that the guesser makes a correct guess with

probability 1 which is not possible in v ‖L s because the secret is generated later. This is

overly pessimistic in the context of distributed systems where the guesser observes only

the communication with the tosser and not its state. Namely, the systems u ‖L s and

v ‖L s exhibit the same behaviour (correct guess with probability at most 1/2) if the

non-determinism is resolved by distributed schedulers [17, 10, 31]. This means that the

non-determinism in each component of the composition is resolved independently of

the state of the other component.

B.2 Bisimulation for partially observable MDPs

In the distributed setting it is natural to assume that the state space of each component

is fully unobservable from outside. This is a special case of partially observable sys-

tems, such as partially observable Markov decision processes (POMDP). POMDPs have

a wide range of applications in robotic control, automated planning, dialogue systems,

medical diagnosis, and many other areas [52].

In the analysis of POMDP, the distributions over states, called beliefs, arise natu-

rally and yield a continuous-space (fully observable) belief MDP. Therefore, probabilis-

tic bisimulations over beliefs have been already studied [7, 38]. However, no connection

of this particular case to general probabilistic bisimulation has been studied.

There are various (equivalent) definitions of POMDP, we use one close to computa-

tional game theory [9].

Definition B.2. A partially observable Markov decision process (POMDP) is a tupleM =

(S, δ,O) where S is a set of states, δ ⊆ S×D(S) is a transition relation, and O ⊆ 2S is a set of

observations that partition the state space.

29

This formalism is also known as labelled Markov decision processes [22] where state

labels correspond to observations. Such a state-labelled system M = (S, δ,O) can be

easily translated to an action-labelled PA DM = (S,O,−→) where s o−→µ if s ∈ o and

(s, µ) ∈ δ. This way, we can define µ ∼ µ ′ inM if µ ∼ µ ′ in DM.

Hence, in Section 4.1, we give the first algorithm for computing bisimulations over

beliefs in finite POMDP. Previously, there was only an algorithm [38] for computing

bisimulations on distributions of Markov chains with partial observation.

B.3 Bisimulation for large-population models

In the sense of [28, 45, 44, 39], we can understand PA as a description of one agent in a

large homogeneous population. For example a chemical compounds, a node of a computer

grid, or a customer of a chain store.

The distribution perspective is a natural one – the distribution specifies the ratios

of agents being currently in the individual states. For a Markov chain, this gives a

deterministic process over the continuous space of distributions.

The non-determinism of PA has also a natural interpretation. Labels given to this

large population of PAs correspond to global control actions [29, 28] such as manipulation

with the chemical solution, a broadcast within the grid, or a marketing campaign of the chain

store. Agents react to this control action if currently in a state with transition under

this label, otherwise they ignore it. Multiple transitions under this label correspond to

multiple ways how the agent may react.

Example B.3. Let us illustrate the idea by an example of three models of customers of a chain

store with half of the population in state 1 and half of the population in state 3.

21

43

yoghurt ad

buy y.

müssli ad

buy m.

21

43

yoghurt ad

buy y.

müssli ad

buy m.

21

43

5

yoghurt ad

buy y.

müssli ad

buy m.

müssli adyoghurt ad
buy y.buy m.

It is natural to assume that these three models can be distinguished. Indeed none of the popula-

tions are bisimilar according to our definition. Note however, that the related distribution-based

bisimulation of [27] that allows only singletonsA in Definition 2.5 does not distinguish the first

and the second population. Their definition actually extends the bisimulation of [22] defined on

input-enabled models; they naturally transform general probabilistic automata to input-enabled

30

ones by directing the missing transitions into a newly added sink state. Observe that the sim-

ilarly natural alternative approach of adding self-loops does not distinguish the second and the

third population.

C Formal semantics of stochastic automata

Formally, a state (q, ξ) denotes being in location qwhere each clock c has value ξ(c). In

(q, ξ), a label of the form (a, t) is available if Ea 6= ∅where Ea is the set of edges that have

action a and become available after the idling time t. We set τ(a,t)((q, ξ)) = {µe | e ∈ Ea}
where µe for an edge e = (q, a,C, q ′) is the probability measure over states with

1. the marginal in the first component being Dirac on q ′;

2. the marginal for any c 6∈ κ(q ′) being Dirac on ξ(c) − t;

3. the marginals for each c ∈ κ(q ′) having CDF F(c), and their product being equal

to the joint distribution of κ(q ′).

Intuitively, it 1) moves to q ′, 2) decreases values of clocks by t, and 3) sets clocks of κ(q ′)

to independent random values.

D Proofs from Section 3

Theorem 3.3. Let SA(C) denote the stochastic automaton corresponding to a CTMC C.

For any CTMC C1, C2, we have

SA(C1) ‖SA SA(C1) ∼ SA(C1 ‖CT C1).

Proof. It is easy to see that the two SA have the same locations and edges, they only dif-

fer in which locations which clocks are reset. However, resetting of exponential clocks is

irrelevant for bisimulation ∼ in SA with exponential distribution. This fact is clear from

the construction of the discrete PA D̄ in Section 4 and from correctness of this algorithm.

31

E Proofs from Section 4

E.1 Discrete systems

We use the notation µ⊕pν to denote (1−p)µ+pν. Further, for a (not necessarily proba-

bilistic) measure µ = (µ(s1), . . . , µ(s|S|)) we denote |µ| =
∑|S|

i=1 µ(si). For any probability

distribution µ thus |µ| = 1.

Lemma 4.3. For every linear bisimulation there exists a corresponding bisimulation

matrix.

Proof. Let R be a linear bisimulation and Γ an arbitrary equivalence class of R. Due

to linearity, Γ is closed under convex combinations. Consider Γ̄ the affine closeru

of Γ , i.e. the smallest set that is closed under affine combinations. Then (i) Γ̄ is

an affine subspace, and (ii) Γ̄ ∩ D(S) = Γ . This holds for every class of R. Hence

{Γ̄ | Γ is an equivalence class of R} decomposes R|S| and all Γ̄ have the same difference

space. By (i) we get that ∆̄ := {µ − ν | µ, ν ∈ Γ̄ } (independent of choice of Γ) is a linear

space. Therefore, there is a matrix E such that ρ ∈ ∆̄ iff ρE = 0.

For every µRν we thus have (µ − ν)E = 0. In the other direction, let µ ∈ Γ and ν be

arbitrary distribution such that (µ − ν)E = 0. We thus have µ − ν ∈ ∆̄. Since µ ∈ Γ̄ we

thus get ν ∈ Γ̄ . Since ν ∈ D(S), we finally obtain ν ∈ Γ and thus µRν.

Lemma E.2. ∼ is linear.

Proof. We prove that µ1 ∼ ν1 and µ2 ∼ ν2 imply µ1⊕pµ2 ∼ ν1⊕pν2 for any p ∈ [0, 1]. This

follows easily from the Spoiler-Duplicator game. Indeed, let Duplicator have a winning

response to every Spoiler’s strategy both in µ1 ∼ ν1 and µ2 ∼ ν2. Let now p ∈ [0, 1]. Any

Spoiler’s strategy on µ1 ⊕p µ2 ∼ ν1 ⊕p ν2 (w.l.o.g. attacking on the left under a) can be

decomposed to a part acting on (1 − p)µ1 resulting into (1 − p)µ1(Sa), (1 − p)µ
′
1 and a

part acting on pν resulting into pµ2(Sa), pµ ′2. Duplicator has a winning response ν ′1 to

the former (when applied to the whole µ1) and also ν ′2 to the latter (when applied to the

whole µ2). Duplicator can now mix his responses resulting into ν ′1⊕pν ′2, which is clearly

a choice conforming both to the rules, since (ν1 ⊕p ν2)(Sa) = (1 − p)ν1(Sa) + pν2(Sa) =

(1−p)µ1(Sa) +pµ2(Sa) = (µ1⊕p µ2)(Sa) and also winning as the resultinig pair is again

a convex combination of individual resulting pairs.

Thus minimal bisimulation matrices always exist.

32

Corollary E.3. There is a minimal bisimulation matrix, i.e. a matrix E such that for any µ, ν ∈
D(S), we have µ ∼ ν iff (µ− ν)E = 0.

We are searching for the least restrictive system E satisfying stability. Therefore, we

can compute ∼, i.e. the greatest fixpoint of the bisimulation requirement of stability, as

the least fixpont of the partitioning procedure of adding equations. Indeed, recall that all

bisimulation matrices with the least possible dimension have the same solution space.

Proposition 4.5. In an action deterministic PA, E containing 1 is a bisimulation matrix

iff it is Pa-stable for all a ∈ L.

Proof. Firstly, we prove that for any a ∈ L, any bisimulation matrix E is Pa-stable. Let

ρ be such that ρE = 0. Let us write ρ = µ − ν where entries in µ and ν are non-

negative. Since E contains 1, we have |µ| = |ν|, moreover, for the moment let us assume

equal 1. Then ρ is a difference of two measures µ − ν. Since E is a bisimulation matrix,

we have µ ∼ ν. Therefore, if Spoiler attacks under a, we have µPa ∼ νPa. Therefore,

(µPa−νPa)E = 0, equivalently ρPaE = 0. In the general case, where |µ| = |ν| is not equal

1, we can write regard them as a scalar multiples of measures, normalize them, and use

the same reasoning (with the exception when they are 0, in which case the claim for

ρ = 0 holds trivially).

Secondly, let E contain 1 and be Pa-stable for all a ∈ L. We show that R defined by

µRν iff (µ − ν)E = 0 is a bisimulation relation. Consider now A ⊆ L singletons. The

first bisimulation condition for a ∈ L follows from (µ − ν)Pa1 = 0. The second one

then from (µ − ν)PaE = 0 implying (µPa − νPa)E = 0 by stability. For general A ⊆ L,

the bisimulation condition does not generate any new requirements due to the action

determinism. Since SA is a disjoint union of Sa for a ∈ A, the properties follow from the

properties of singeltons.

We recall that for elements of E(C), we use the name extreme choices as these points

are mapped to pure strategies and achieve Pareto extremal values when applied to any

distributions.

Proposition 4.7. E containing 1 is a bisimulation matrix iff the matrix is PW(c)
A -stable for

all A ⊆ L and c ∈ E(C).

Proof. We first prove the two following facts:

(1) the extremal choices, i.e. E(C), are sufficient for Spoiler,

33

(2) for an extremal choice W ∈ E(C) of Spoiler, W is an optimal reply of Duplicator

for any distributions µ and ν.

As to (1), for given µ 6∼ ν an optimal choice of Spoiler is a W such that µMW
a is Pareto

extremal, which is always achieved also in a corner. Indeed, if a non-extremal choiceW

is winning then in some direction from W one of the extremal choices is also winning

by convexity of the polytopes.

As to (2), let µ ∼ ν and WS be an extremal choice of Spoiler on µ, WD an optimal

(winning) response of Duplicator on ν supposed, for a contradiction, different from

WS. Since WS is more extreme in the direction of WS than WD, WS achieves Pareto (in

direction WS) strictly better value than WD on ν, hence also strictly better (in direction

WS) than WS on µ. If Spoiler moved from ν by WD a matching response would be WS.

On the other hand, if Spoiler moved from ν by WS, this choice strictly dominates WS

on µ (in direction WS) and thus all choices on µ (in direction WS) as WS is extremal (in

directionWS). Hence there is no matching response for the Duplicator, a contradiction.

As a result, the bisimulation matrix requirement, written in the game fashion as

follows, for all a ∈ L

(µ− ν)E = 0 =⇒ ∀WS ∈ W : ∃WD ∈ W :

µPWSa 1 = νPWDa 1 ∧ (µPWSa − νPWDa)E = 0

can be transformed into: for all a ∈ L

(µ− ν)E = 0 =⇒ ∀W ∈ E(C) :

(µPWa − νPWa)1 = 0∧ (µPWa − νPWa)E = 0

and since 1 is a column of E also as: for all a ∈ L

(µ− ν)E = 0 =⇒ ∀W ∈ E(C) : (µ− ν)PWa E = 0

which is nothing but PW(c)
a -stability for all a ∈ L and c ∈ E(C). (We deal with ρ not being

a difference of any two distributions by scaling as in Proposition 4.5).

Corollary E.6. Any PW(c)
a -stable (for all a ∈ L and c ∈ E(C)) matrix containing 1 with

minimal rank is a minimal bisimulation matrix.

34

Theorem 4.8. Algorithm 1 computes a minimal bisimulation matrix in exponential time.

Proof. The proof follows from the previous corollary and the fact that the algorithm only

adds columns required by stability on the current partitioning.

Concerning the complexity, each step is polynomial except for computing and iter-

ating over all exponentially many extremal choices.

E.2 Continuous-time systems

Let us repeat the main theorem of the subsection.

Theorem 4.9. Let S = (Q, C,A,→, κ, F) be a deterministic SA over exponential distribu-

tions. There is an algorithm to decide in time polynomial in |S | and exponential in |C|
whether q1 ∼ q2 for any locations q1, q2.

The proof follows easily from the following lemmata.

Lemma 4.10. For any distributions µ, ν on Swe have µ ∼ ν iff ξ(µ) ∼ ξ(ν).

Proof. ⇒: Let us take the maximal bisimulation in PS . We map it by ξ; it is easy to see

that it is still a bisimulation since the operations ξ and A−→ commute for any A ⊆ L.⇐: Let us take µ, ν such that µ 6∼ ν. Then there is a finite sequence of set of labels

A1, . . . , An, such that after applying this sequence, one of the conditions in Definition 2.5

is unstatisfied. Again, as the operations ξ and A−→ commute for any A ⊆ L, we get that

also ξ(µ) 6∼ ξ(ν).

Lemma 4.11. For a deterministic SA over exponential distributions, |S̄| ≤ |Q|2|C|.

Proof. It is easy to check that for all states of the form q⊗
⊗

c∈X⊆C Exp(λc), any successor

in D̄ has the same form.

Lemma 4.12. There is a successful tableau from µ ∼ ν iff µ ∼ ν in P̂. Moreover, the set of

nodes of a successful tableau is a subset of a bisimulation.

Proof. ⇐: We can build an infinite successful tableau only using the rule Step. Note that

the rule exactly follows the transition relation of P̂ (only regards the distribution as a

discrete convex combination of one of finitely many distributions – states of D̄). Hence,

by applying the rule Step from bisimilar distributions, we can obtain only tableau nodes

corresponding to bisimilar distributions never reaching a failure node.

35

⇒: First, observe that if there is a successful tableau T from node µ ∼ ν, there also

is a successful (possibly infinite) tableau T ′ using only the rule Step. This is easy to

observe since whenever there is an application of the Lin rule, you can iteratively apply

the Step rule infinitely many times (since you can express the current node as a linear

combination of nodes from which you can apply the Step rule; and the same inductively

holds for each such successor node).

Note that by this construction, the set of nodes of T is a subset of the set of nodes

of T ′. We show that for any node µ1 ∼ µ2 in T ′ we have µ1 ∼ µ2 in P̂. Let us fix such a

node µ1 ∼ µ2 and let R be a relation such that µ ′1Rµ
′
2 if µ ′1 ∼ µ

′
2 is an ancestor of the node

µ1 ∼ µ2. Since the rule Step closely follows the definition of bisimulation, it is easy to

see that R is a bisimulation. As R contains also (µ1, µ2), we have µ1 ∼ µ2.

Lemma 4.13. There is a successful tableau from µ ∼ ν iff there is a finite successful

tableau from µ ∼ ν of size polynomial in |S̄|.

Proof. The implication⇐ is trivial. As regards⇒, let us assume that there is a successful

tableau from µ ∼ ν. As each node in the tableau corresponds to a vector of dimension

|S̄|, the maximal size of a set of linearly independent nodes is |S̄|. By applying the rule

Lin when possible we can prune the tableau into linear size.

36

