
⑥✇✁✂✄☎✆✝✞✟✡☛☞✌✍✏✑✒✓✔✕✖✗✘✙✚✤✥✦✧★✩✪✫✬✭✮✰✱✲✳✴✵✶✷✸✹✺❁②❆⑤ FI MU
Faculty of Informatics

Masaryk University Brno

Traffic characteristics of common DoS tools

by

Vít Bukač

FI MU Report Series FIMU-RS-2014-02

Copyright c© 2014, FI MU April 2014

Copyright c© 2014, Faculty of Informatics, Masaryk University.

All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

Publications in the FI MU Report Series are in general accessible

via WWW:

❤tt♣✿✴✴✇✇✇✳❢✐✳♠✉♥✐✳❝③✴r❡♣♦rts✴

Further information can be obtained by contacting:

Faculty of Informatics

Masaryk University

Botanická 68a

602 00 Brno

Czech Republic

Traffic characteristics of common DoS tools

Vít Bukač

Faculty of Informatics, Masaryk University, Brno, CZ

bukac@mail.muni.cz

April 6, 2014

Abstract

Denial of service (DoS) attacks is an ever growing threat to the availability of com-

puter systems. Numerous solutions have been proposed both for DoS attacks detec-

tion and mitigation. However, their evaluation and mutual comparison is compli-

cated due to scarcity of representative contemporary input data. In academia, pro-

posed DoS detection systems are frequently evaluated with obsolete and in practice

no longer used tools. Such discrepancy can lead to distinctly different detection ef-

ficiency in evaluation environment and real environment. To address this issue, we

provide a comparative analysis of traffic features of DoS attacks that were gener-

ated by state-of-the-art standalone DoS attack tools. We list frequently used traffic

features and verify their presence in analyzed attack traffic. Common denomina-

tor of all attack traffic is the presence of repeated similar yet independent opera-

tions. Therefore, we propose a new research area for the detection of DoS attacks

the source end, based on repeated attack patterns recognition.

1

Contents

1 Introduction 7

1.1 Related work . 7

1.2 Experiment . 8

1.2.1 Environment . 8

1.2.2 Measurement principle . 9

1.2.3 Processes . 10

1.3 DoS Tools . 11

1.3.1 Tools selection . 11

1.3.2 Capabilities . 12

1.3.3 Binaries . 15

2 Configurations 15

3 IP behavior 27

3.1 Traffic volume . 27

3.1.1 Packet rate . 27

3.1.2 Byte rate . 27

3.1.3 Attack buildup . 27

3.1.4 Byte rate and packet rate relationship 30

3.2 Packet rate burst behavior . 31

3.3 IP fragmentation . 33

3.4 IP spoofing . 33

3.5 Average packet size . 35

3.6 Packet size distribution . 36

3.7 Packet incoming to outgoing ratio . 38

4 TCP behavior 41

4.1 Flow count . 41

4.2 Flow parallelity . 43

4.3 Flow packet count . 45

4.4 TCP flag ratios . 50

4.4.1 SYN outgoing to SYNACK incoming 50

4.4.2 FIN segments to all segments ratio 50

4.4.3 RST segments to all segments ratio 53

2

4.4.4 NS, ECE, CWR, URG to all TCP segments ratio 56

4.5 Average flow duration . 56

5 HTTP behavior 58

5.1 HTTP requests success . 58

5.2 HTTP requests per flow . 63

5.3 HTTP request method . 65

5.4 HTTP requests URIs . 66

5.5 HTTP header fields . 68

5.5.1 User-Agent . 68

5.5.2 Referer . 70

5.5.3 Accept-Encoding and Accept-Language 71

6 Summary 74

6.1 Attacks diversity . 74

6.2 Traffic features . 74

6.3 Repeating patterns . 75

6.4 Evasion techniques . 76

6.5 Experiment designs . 76

6.6 Tools characteristics . 76

7 Conclusions 77

3

List of Tables

1 DoS tools analyses . 8

2 DoS tools selection . 13

3 Tools capabilities . 14

4 DoS tool binaries . 16

5 TCP Attack configurations Part 1 . 17

6 TCP Attack configurations Part 2 . 18

7 TCP Attack configurations Part 3 . 19

8 HTTP Attack configurations Part 1 . 20

9 HTTP Attack configurations Part 2 . 21

10 HTTP Attack configurations Part 3 . 22

11 HTTP Attack configurations Part 4 . 23

12 HTTP Attack configurations Part 5 . 24

13 HTTP Attack configurations Part 6 . 25

14 HTTP Attack configurations Part 7 . 26

15 Average packet rate . 28

16 Average byte rate . 29

17 Packet rate burstiness . 33

18 Average packet size with limit – TCP configurations 36

19 Average packet size with limit – HTTP configurations 37

20 Packet size distribution – TCP . 39

21 Packet size distribution – HTTP . 40

22 Limited – Interesting values – approximate 41

23 Flow count in 60 s interval – TCP . 43

24 Flow count in 60 s interval – HTTP . 43

25 Flows parallelity – TCP . 46

26 Flows parallelity – HTTP . 46

27 Flows attacker packet count – HTTP . 48

28 Flows attacker packet count – TCP . 48

29 SYN outgoing to SYNACK incoming TCP segments ratio 51

30 FIN segments to all segments ratio . 54

31 RST segments to all segments ratio . 56

32 Flow duration – Summary . 59

4

33 Flow duration Part 1 . 60

34 Flow duration Part 2 . 61

35 Flow duration Part 3 . 62

36 HTTP requests success . 63

37 HTTP requests per flow . 64

38 HTTP requests method . 65

39 HTTP requests URIs . 66

40 HTTP requests URIs modifications . 68

41 HTTP requests User-Agents . 71

42 HTTP requests header fields – Referer . 72

43 HTTP requests header fields – Accept-Encoding 72

44 HTTP requests header fields – Accept-Language 73

5

List of Figures

1 Attack buildup . 30

2 Packet rate . 31

3 Byte rate . 31

4 Packet rate and byte rate relationship anomalies 32

5 Packet rate burstiness – Full burstiness example 34

6 Packet rate burstiness – Regular peaks example 34

7 Packet rate burstiness – One-time extreme example 34

8 Flow count example . 44

9 Flow packet count histogram example . 49

10 SYN outgoing to SYNACK incoming TCP segments ratio – Stability ex-

ample . 52

11 SYN outgoing to SYNACK incoming TCP segments ratio – Initiation

phase example . 52

12 SYN outgoing to SYNACK incoming TCP segments ratio – IP spoofing

present example . 52

13 FIN segments to all segments ratio – Stability example 55

14 FIN segments to all segments ratio – Anomaly example 55

15 FIN segments to all segments ratio – Repeated pattern 55

16 RST segments to all segments ratio – Stability example 57

17 RST segments to all segments ratio – Planks example 57

18 RST segments to all segments ratio – Anomaly example 57

19 HTTP request per flow count . 65

20 HTTP request URIs – Unique HTTP request count 69

21 HTTP request URIs – Unique HTTP request without parameters count . . 69

6

1 Introduction

This work has three major contributions:

• An overview of existing standalone DoS attack tools, their attack traffic properties

and used evasion techniques. Network traffic profiles of standalone DoS tools

will help design detection methods that are based on valid assumptions in the

future. Also, by creating a database of attack tools in the wild, it will be possible

to estimate which classes of DoS attacks can be detected by each proposed method.

• Identification of network traffic features that are suitable for the source-end DoS

attack detection. Evaluate the importance of selected feature for various classes

of DoS attacks. Due to difficulties with packet recording at high DoS tools per-

formance settings, the measurement was focused on tools’ capabilities and traffic

features, not performance comparison.

• Support for the use of state-of-the-art tools for evaluation of DoS intrusion detec-

tion systems in academic research. Share discovered properties, tools and experi-

ment design with researchers to facilitate mutually comparable results.

1.1 Related work

Even though DDoS attacks are steadily gaining on popularity both among cyber crim-

inals and among security researchers, there are only few studies focusing on the thor-

ough characteristics of DDoS attack traffic. We observe a serious discrepancy between

tools that are being used by attack perpertrators and the tools that are being used for

testing of DDoS detection and mitigation solutions proposed by academia. The list of

tools and techniques actively used in real environment contains advanced tools such

as LOIC, HOIC or Slowloris. Conversely, academia solutions are notoriously evaluated

with long obsolete and in practice already forgotten tools, most notably TFN, TFN2k,

Shaft, Trinoo, Knight, mstream and Stacheldraht which all date back to year 2000. We

still encounter numerous research works which present these tools as representatives

of state-of-the-art DDoS attacks, even in respectable periodics (i.e., [OG10], [BKBK13],

[AMG+12], [YKP+13]).

Relatively few surveys has been devoted to current trending DoS attack tools. Thing

et al. [TSD07] performed a detailed analysis of source code of selected popular DDoS

attack bots, namely Agobot, SDBot, RBot and Sybot. Authors emphasize the importance

7

of randomization in creating the packet which is a view we share. Given the availability

of the source code, the analysis is very descriptive with deep understanding of inner

works of each tool, but the analysis does not provide a high-level overview of the traffic

in real situations.

Another study aimed at properties of DDoS bots has been performed by Jeff Ed-

wards and Jose Nazario [EN11]. The study focuses on families of DDoS botnet malware

controlled predominantly from Chinese IP space. An exhaustive summary of character-

istics is provided for bot communication protocols and command grammars. Attacks

supported by each bot are listed along with a high-level attack type taxonomy. Statistics

of attack types and DDoS targets distribution by countries is shown. However, from the

perspective of attack traffic characteristics, only few unique properties of chosen bots

are discussed.

Some of the most prominent DoS tools are occasionally examined by freelance se-

curity specialists or companies dealing in DDoS protection solutions. Such analyses

are often thorough and descriptive, but lack mutual comparison and frequently are fo-

cused on the tools themselves, without deriving general concepts. Table 1 lists some of

the freely available analyses of tools that were also included in our survey.

Table 1: DoS tools analyses

HOIC spiderlabs.com prolexic.com

HULK prolexic.com

LOIC computerbiology.blogspot.cz spiderlabs.com

OWASP HTTP tool owasp.org

Slowloris slashroot.in ckers.org

1.2 Experiment

1.2.1 Environment

Analysis was performed in a controlled virtual environment with only minimal back-

ground traffic. Virtual environment was used in order to minimize the influence of real

intermediate network on measurements. Also, snapshot feature of virtual machines al-

lows returning to a conjoint initial stable state. Therefore, subsequent measurements

are not affected by artifacts from previous measurements (e.g., keep-alive packets sent

by either side).

8

http://blog.spiderlabs.com/2012/01/hoic-ddos-analysis-and-detection.html
http://www.prolexic.com/threatadvisories.html
http://www.prolexic.com/threatadvisories.html
http://computerbiology.blogspot.cz/2011/03/low-orbit-ion-cannon-loic-explored.html
http://blog.spiderlabs.com/2011/01/loic-ddos-analysis-and-detection.html
https://www.owasp.org/index.php/OWASP_HTTP_Post_Tool
http://www.slashroot.in/slowloris-http-dosdenial-serviceattack-and-prevention
http://blog.spiderlabs.com/2011/01/loic-ddos-analysis-and-detection.html

Two virtual machines were created. Windows 7 machine designated ATTACKER

and Windows Server 2008 R2 designated VICTIM. Both virtual machines were fully

updated. Wireshark packet sniffer, 7zip file archiver, Python 2.7.5 and ActivePerl 5.16.3

were installed on ATTACKER. Web server role was added to VICTIM. Tested DoS tools

were copied to ATTACKER in separate encrypted ZIP archives. After software and

server system features were installed a snapshot of each machine was created in order

to get an initial state for measurement.

Internal network was created between the two virtual machines. Firewalls on both

machines were configured to allow all incoming traffic from the shared network. Set-

tings for other subnets were kept default. Except of DoS attack tools and operating

system itself no other legitimate network traffic was produced. However, due to the

nature and dubious origin of some DoS tools, several tested tools may have contained

Trojan malware. DoS tools that provably contained malware were not included in the

test. Collected packet traces were not tested for the presence of malware network traffic.

Tools were executed by a member of Administrators group with UAC enabled.

As a testing target page a CNN.com webpage from 11/19/2012 19:39 UTC was used,

renamed to index.htm. Popular existing webpage was selected in order to mimic real

conditions under which DoS tools are launched. Saved webpage has 109 files. Total

size is 3.3 MB including images. The target webserver was IIS 7.0 installed on Windows

Server 2008 R2.

1.2.2 Measurement principle

DoS tools were executed in a common initial state. Both outgoing and incoming net-

work traffic was recorded with dumpcap tool from Wireshark suite. Sixty-second and

three hundred-second traffic samples were obtained for every tool configuration. Anal-

ysis was performed offline on collected PCAP files. Analysis consisted of two parts.

First, the traffic was divided to 1 second intervals. Network features statistics (e.g.,

byterate, packetrate, TCP flag ratios) were then computed for each interval. Second,

the PCAP file was process packet by packet and network flows were reconstructed and

flow statistics were computed (e.g., simultaneous flow count, packets per flow). Graphs

on the following pages represent values of respective metrics each second of the first

minute of the attack.

9

1.2.3 Processes

First tool execution

1. Shutdown both machines.

2. Restore initial state of both virtual machines.

3. Unpack tested tool.

4. Execute tool. If the tool is a script, use appropriate command interpreter.

5. Note if the tool requires administrative rights to execute.

6. Note if the tool requires installation of additional files.

7. Take screenshot of launched tool.

Network traffic acquisition

1. Shutdown both virtual machines.

2. Restore initial state of both virtual machines.

3. Perform steps necessary to execute the tool (e.g., elevate privileges, register addi-

tional OCX files).

4. Execute tool. Only one DoS attack tool can be executed during each network traffic

acquisition.

5. Configure the tested settings of the tool.

6. Take screenshot of the settings and save as

%TOOLNAME%_%ATTACKTYPE%_%INDEX%.png

7. Start network traffic sniffer with command

dumpcap -w %TOOLNAME%_%ATTACKTYPE%_%INDEX%.pcap -a dura-

tion:60

8. Timeout runs out. Dumpcap finishes.

9. Stop attack tool.

10. Note the percentage of traffic recorded by dumpcap.

11. Copy pcap and png files to storage.

10

1.3 DoS Tools

1.3.1 Tools selection

For analysis a subset of existing DoS tools were selected based on their popularity and

capabilities. Emphasis is on tools that were used or allegedly used during publicized

DDoS campaigns, usually related to Anonymous movement and hacktivism, are a pop-

ular choice on public hacker forums, or are created as open source and available in

public software repositories. Tools were selected in order to represent a full spectrum

of existing types of TCP and HTTP DoS attacks. Tools that may be little popular, but

take an extraordinary approach in causing a DDoS effect were added. Several versions

of iconic LOIC tool were included in order to track the development in time.

Since our study is aimed at standalone DoS tools, any attack tools that either require

controlled bots or perform reflection attacks with help of unknowing middle-men were

discarded from the selection.

Hacktivism

Hacktivism is the use of computers to manifest political opinions. By performing

denial of service attacks hacktivists may express their disagreement with a targeted or-

ganization. Large hacktivist operation can target many organizations simultaneously

and can span over period of several months. The operation usually starts with pub-

lic announcement and subsequent recruitment of individuals willing to participate in

the protest. Tools to be used during the operation are either mentioned directly in the

announcement or are suggested during chats of organizers with recruits.

Operation Israel was announced on November 14, 2012 by members of Anony-

mous as a response on military action performed by Israel Defense Forces in Gaza Strip

[Unk12]. One of the aims of this operation was performing distributed DoS attacks

against Israel web sites. Company Radware identified 7 DoS tools that were suggested

by attack coordinators and other active participants: ByteDoS 3.2, Mobile LOIC, LOIC

for android devices, Tor’s Hammer, Slowloris, PyLoris and THC SSL DOS [EYA12].

On May, 1 2013 US Department of Homeland Security warned against a planned

cyber-attack campaign against US Government agencies, financial institutions and com-

mercial organizations [oIA13]. This campaign was dubbed OpUSA. Later report from

US National Cybersecurity and Communications Integration Center announced a list

of DoS tools that are often used by hacktivist and could be used during the cam-

paign [Nat13]. List includes: LOIC, HOIC, HULK, Slowloris, DDos Notepad, ByteDOS,

11

Turbinas, Syn Flood DOS, Jays Booter, HTTPFlooder, Torshammer, R.U.D.Y., OWASP

HTTP Tool, Anonymous DOSer, Windows_DNS_Attack_Tool and GoodBye.

Operation Myanmar is a hacktivist campaign started in December 2012 by group

DangerHackers [Tea12]. This campaign is a protest against killing of Muslim Rohingya

in Myanmar. Operation declaration contains a list of target webpages and DDoS tools to

be used against them. Advertised DoS tools are: LOIC, FireFlood, Anonymous DoSer,

HOIC, ByteDOS and UDPUnicorn.

Other sources

Respected security companies that provide anti-DDOS solutions often publish lists

of DDoS tools that are either trending or present a new step in development of DoS

tools. These lists provide an up-to-date insight into what attack variants are popular and

what attack tools can most likely be faced. Pavitra Shankdhar in his report for InfoSec

institute mentions these tools: LOIC, XOIC, HULK, DDOSIM, R.U.D.Y, Tor’s Hammer,

PyLoris, OWASP DDoS HTTP POST, DAVOSET and GoldenEye HTTP Denial of Service

Tool [Sha13]. Another comprehensive list from Curt Wilson of Arbor Networks focuses

mostly on bots and paid DDoS services, but it also includes several standalone DoS

tools, most notably Drop-Dead DDoS, AlbaDDOS, Manta d0s, GoodBye, PHPDOS and

Janidos [Wil12].

An important source of feedback for DoS tool creators are hacker forums. During our

monitoring of hackforums.net we have identified following tools to be popular, freely

available and fairly advanced: Longcat, UnknownDoser. Last remaining tools were

added because they are representatives of extraordinary approaches to DoS attacks and

should be included both for attack spectrum completeness and to provide more data

sources for comparison.

1.3.2 Capabilities

For each selected tool one release version was obtained, preferably the version that

was advertised in sources that we examined. For AnonymousDOS, BanglaDOS,

HTTPFlooder, Janidos, SimpleDoSTool and Syn Flood DOS we were unable to deter-

mine the version number, probably because its releases were one-time. Due to the popu-

larity of LOIC several different samples have been collected in order to map the changes

in time.

Most standalone DoS tools are single-purpose programs that are capable of only one

type of attack. Moreover, even tools that support multiple attack types rarely can launch

12

Table 2: DoS tools selection

Name Source info

Anonymous DoSer OpUSA, OpMyanmar

AnonymousDOS Representative

BanglaDOS Representative

ByteDOS OpIsrael, OpUSA, OpMyanmar

DoS Representative

FireFlood OpMyanmar

Goodbye OpUSA, Arbor Networks report

HOIC OpUSA, OpMyanmar

HULK OpUSA, InfoSec report

HTTP DoS Tool Representative

HTTPFlooder OpUSA

Janidos -Weak edition- Arbor Networks report

JavaLOIC OpUSA, OpMyanmar, InfoSec report

LOIC OpUSA, OpMyanmar, InfoSec report

Longcat Hackforums

OWASP HTTP Tool OpUSA, InfoSec report

SimpleDoSTool Representative

Slowloris OpIsrael, OpUSA

Syn Flood DOS OpUSA

TORSHAMMER OpIsrael, OpUSA, InfoSec report

UnknownDoser Hackforums

XOIC InfoSec report

13

Table 3: Tools capabilities

Name Version Source Tool ID Attacks

Anonymous DoSer 2.0 AD HTTP

AnonymousDOS Script ADR HTTP

BanglaDOS BAD HTTP

ByteDOS 3.2 BD SYN, ICMP

DoS 5.5 DS TCP

FireFlood 1.2 FF HTTP

Goodbye 3.0 GB3 HTTP

Goodbye 5.2 GB5 HTTP

HOIC 2.1.003 HO HTTP

HULK 1.0 Script HU HTTP

HTTP DoS Tool 3.6 YES HDT slow headers, slow POST

HTTPFlooder HF HTTP

Janidos -Weak edition- JA HTTP

JavaLOIC 0.0.3.7 YES JL TCP, UDP, HTTP

LOIC 1.0.4.0 YES LO1 TCP, UDP, HTTP

LOIC 1.0.7.42 YES LO2 TCP, UDP, HTTP

LOIC 1.1.1.25 YES LO3 TCP, UDP, HTTP

LOIC 1.1.2.0b YES LO4 TCP, UDP, HTTP, ReCoil, slowLOIC

Longcat 2.3 YES LC TCP, UDP, HTTP

SimpleDoSTool SD TCP

Slowloris 0.7 Script SL HTTP

Syn Flood DOS SF SYN

TORSHAMMER 1.0b Script TH HTTP

UnknownDoser 1.1.0.2 UD HTTP GET, HTTP POST

XOIC 1.3 YES XO Normal (=TCP), TCP, UDP, ICMP

14

several attacks simultaneously. This is in contrast with Arbor Networks annual report

of 2012 [Net12], which points out the growth of multi-vector attacks. Apparently, in case

of standalone DoS tools the heterogeneity of attacks is caused by loose coordination of

attackers, who can agree on a target, but choice of attack tools is left upon discretion

and preferences of each participant.

Only Syn Flood DOS and UnknownDoser require administrative privileges on the

host to execute their attacks. However, several other tools require registering OCX files

(usually MSWINSCK.OCX) that are not present in a standard Windows 7 SP1 installa-

tion. This is a one-time operation that requires elevated privileges. For any subsequent

execution of the tool standard user privileges are sufficient.

1.3.3 Binaries

Table 4 lists tool binaries that were analyzed. Version numbers for AnonymousDOS,

BanglaDOS, HTTPFlooder, Janidos, SimpleDoSTool and SYN Flood DOS were either

not availabl or their author does not differentiate version numbers. No single author

nickname was found for HOIC and Longcat tools, although authors of HOIC are be-

lieved to be members of group Anonymous. MD5 hash of primary executable is pro-

vided. For HTTP DoS Tool and R-U-Dead-Yet an MD5 hash of ZIP archive with all

required files is provided.

2 Configurations

Each tool has been tested with various configurations. The first configuration of each

tool has been set with default tool settings if such exist. An unique identifier is provided

to each configuration for easy reference. Configurations were chosen in order to test pri-

marily settings that can alter the form of produced network traffic. Secondary criterion

was to test the tool performance in closed environment. If an input string was required

and default string was not provided, the string AABBCCDDEE123456 was used. Total

number of tested configurations depends primarily on the variety of attack properties

that can be changed.

Every configuration has an unique identifier by which it is referenced. Identifier

consists of tool ID, attack type (T – TCP-based, G – HTTP GET, P – HTTP POST, R –

Recoil, SL – SlowLOIC) and a sequence number.

15

Table 4: DoS tool binaries

Name Version Author MD5 hash

Anonymous DoSer 2.0 1337 Haxxor b86e117d120264bf7d165ed578843510

AnonymousDOS PrOtOn_An0n 3ea5ca4f7a9a06cf91fc184b77853368

BanglaDOS Samin Yasar 086ea03e34eb3b603ffc1e0c16ba92d7

ByteDOS 3.2 VanX 997d9bb1c8453de00e6c806fca09b54e

DoS 5.5 xyr0x e85553ed14ad99b876b0d4ff19e09e7c

FireFlood 1.2 BackStar 45706cd746212ae91fb32a47904033ee

Goodbye 3.0 Puridee eea3c1840dadeeb2b53b5fe1091c9314

Goodbye 5.2 Puridee f10bc6dd9b82bf380fedb0c121f1465e

HOIC 2.1.003 451c94a23536dcbba422d7612b34b6ff

HULK 1.0 Barry Shteiman 9851ec582aee27ddfdc966fc4ce9ffd9

HTTP DoS Tool 3.6 Tom Brenann c8fc6281162085fc4f70dea0141fca68

HTTPFlooder van1lle 5dbd0ee777d1c96194192c9bd3dd5fa3

Janidos -Weak ed.- Janizary ef83f0fe8a4125b4f03737df01bb5e71

JavaLOIC 0.0.3.7 acruxaldebaran b54c6f08236d8f16d6e80ea5b2661714

LOIC 1.0.4.0 Praetox 9dbe2c1a0f3360af6a9e24b2b303113d

LOIC 1.0.7.42 Praetox b596e7cacbad1e814b0cd053086c4900

LOIC 1.1.1.25 NewEraCracker 54a4ccfecce789344ff858a85839c531

LOIC 1.1.2.0b NewEraCracker 976104ade0e9e67a275ae4a5ea58ece9

Longcat 2.3 f5985b20190f56f882f7ed58bd1f92a4

R-U-Dead-Yet 2.2 Hybrid Security 306389a496410e5be9ecfeed8f30decb

SimpleDoSTool evileXe 83a2e2daeac52f6e2f93e463190ead45

Slowloris 0.7 Rsnake, J. Kinsella ba43c68709a67e8e233575641e3c7d17

Syn Flood DOS Defc0n1 da71708b7b9ab59308a89c73ce99c1a9

TORSHAMMER 1.0b solarstone 6acdb872b766f089eac3ada04043c444

UnknownDoser 1.1.0.2 unKn0wn_H4CK3r b6ae4be140ffe447889b43050522dd11

XOIC 1.3 DLR b6c4e2c4fa384212126d7dbb832460c9

16

Table 5: TCP Attack configurations Part 1

Tool Version ID Config

ByteDOS 3.2 [BD-T-1] attack: SYN flood, IP: 192.168.1.20, port: 80, Attack: 2x (same attacker)

ByteDOS 3.2 [BD-T-2] attack: SYN flood, IP: 192.168.1.20, port: 80, Attack: 2x (each attacker one but-

ton)

DoS 5.5 [DS-T-1] target: 192.168.1.20, port: 80, connections: 5000

DoS 5.5 [DS-T-2] target: 192.168.1.20, port: 80, connections: 10000

JavaLOIC 0.0.3.7 [JL-T-1] target: 192.168.1.20, port: 80, method: TCP, TCP/UDP message: AABBC-

CDDEE123456, threads: 10, wait for reply: True, timeout: 9000, delay: 0

JavaLOIC 0.0.3.7 [JL-T-2] target: 192.168.1.20, port: 80, method: TCP, TCP/UDP message: random,

threads: 2, wait for reply: True, timeout: 9000, delay: 0

JavaLOIC 0.0.3.7 [JL-T-3] target: 192.168.1.20, port: 80, method: TCP, TCP/UDP message: AABBC-

CDDEE123456, threads: 2, wait for reply: False, timeout: 3000, delay: 0

LOIC 1.0.4.0 [LO1-T-1] target: 192.168.1.20, speed: minimal, port: 80, threads: 10, timeout: 9001,

TCP/UDP message: AABBCCDDEE123456, wait for replay: true

LOIC 1.0.4.0 [LO1-T-2] target: 192.168.1.20, speed: middle, port: 80, threads: 10, timeout: 9001,

TCP/UDP message: AABBCCDDEE123456, wait for replay: true

LOIC 1.0.4.0 [LO1-T-3] target: 192.168.1.20, speed: middle, port: 80, threads: 5, timeout: 9001,

TCP/UDP message: AABBCCDDEE123456, wait for replay: true

17

Table 6: TCP Attack configurations Part 2

Tool Version ID Config

LOIC 1.0.4.0 [LO1-T-4] target: 192.168.1.20, speed: middle, port: 80, threads: 5, timeout: 9001,

TCP/UDP message: AABBCCDDEE123456, wait for replay: false

LOIC 1.0.7.42 [LO2-T-1] target: 192.168.1.20, speed: minimal, port: 80, threads: 10, timeout: 9001,

TCP/UDP message: AABBCCDDEE123456, wait for replay: true

LOIC 1.0.7.42 [LO2-T-2] target: 192.168.1.20, speed: middle, port: 80, threads: 10, timeout: 9001,

TCP/UDP message: AABBCCDDEE123456, wait for replay: true

LOIC 1.0.7.42 [LO2-T-3] target: 192.168.1.20, speed: middle, port: 80, threads: 5, timeout: 9001,

TCP/UDP message: AABBCCDDEE123456, wait for replay: true

LOIC 1.0.7.42 [LO2-T-4] target: 192.168.1.20, speed: middle, port: 80, threads: 5, timeout: 9001,

TCP/UDP message: AABBCCDDEE123456, wait for replay: false

LOIC 1.1.1.25 [LO3-T-1] target: 192.168.1.20, speed: minimal, port: 80, method:TCP, threads: 10, time-

out: 9001, TCP/UDP message: AABBCCDDEE123456, wait for replay: true

LOIC 1.1.1.25 [LO3-T-2] target: 192.168.1.20, speed: middle, port: 80, method:TCP, threads: 10, timeout:

9001, TCP/UDP message: U dun goofed, wait for replay: true

LOIC 1.1.1.25 [LO3-T-3] target: 192.168.1.20, speed: middle, port: 80, method:TCP, threads: 5, timeout:

9001, TCP/UDP message: AABBCCDDEE123456, wait for replay: true

LOIC 1.1.1.25 [LO3-T-4] target: 192.168.1.20, speed: middle, port: 80, method:TCP, threads: 5, timeout:

9001, TCP/UDP message: AABBCCDDEE123456, wait for replay: false

LOIC 1.1.2.0b [LO4-T-1] target: 192.168.1.20, speed: minimal, port: 80, method:TCP, threads: 10, time-

out: 30, TCP/UDP message: AABBCCDDEE123456, wait for replay: true

18

Table 7: TCP Attack configurations Part 3

Tool Version ID Config

LOIC 1.1.2.0b [LO4-T-2] target: 192.168.1.20, speed: middle, port: 80, method:TCP, threads: 10, 30,

TCP/UDP message: AABBCCDDEE123456, wait for replay: false

LOIC 1.1.2.0b [LO4-T-3] target: 192.168.1.20, speed: middle, port: 80, method:TCP, threads: 5, timeout:

30, TCP/UDP message: AABBCCDDEE123456, wait for replay: true

Longcat 2.3 [LC-T-1] target: 192.168.1.20, port: 80, protocol: SYN Flood, Speed: 2nd from left, use

socket blocking: true, number of TCP/UDP users to simulate: 10

Longcat 2.3 [LC-T-2] target: 192.168.1.20, port: 80, protocol: SYN Flood, Speed: 2nd from left, use

socket blocking: true, number of TCP/UDP users to simulate: 2

SimpleDoSTool [SD-T-1] IP: 192.168.1.20, port: 80, socks: 300

SimpleDoSTool [SD-T-2] IP: 192.168.1.20, port: 80, socks: 100

SimpleDoSTool [SD-T-3] IP: 192.168.1.20, port: 80, socks: 500

SYN Flood DoS [SF-T-1] target: 192.168.1.20, port: 80

SYN Flood DoS [SF-T-2] target: 192.168.1.20, port: 80

XOIC 1.3 [XO-T-1] IP: 192.168.1.20, port: 80, protocol: Normal, msg: ~MESSAGE~

XOIC 1.3 [XO-T-2] IP: 192.168.1.20, port: 80, protocol: Normal, msg: AABBCCDDEE123456

XOIC 1.3 [XO-T-3] IP: 192.168.1.20, port: 80, protocol: TCP, msg: ~MESSAGE~

XOIC 1.3 [XO-T-4] IP: 192.168.1.20, port: 80, protocol: TCP, msg: AABBCCDDEE123456

19

Table 8: HTTP Attack configurations Part 1

Tool Version ID Config

AnonymousDoS [AD-G-1] threads: 10 (default), message: <empty>

AnonymousDoS [AD-G-2] threads: 25, message: AABBCCDDEE123456

AnonymousDoSer 2.0 [ADR-P-1] Website: 192.168.1.20, time: 120 s

BanglaDOS [BAD-G-

1]

target: http://192.168.1.20/index.htm, requests per second: 10, append mes-

sage: AABBCCDDEE123456

BanglaDOS [BAD-G-

2]

target: http://192.168.1.20/index.htm, requests per second: 1000 (default), ap-

pend message: "We Are Legion - Fear US"

FireFlood 1.2 [FF-G-1] hostname: http://192.168.1.20/index.htm, power: (default)

FireFlood 1.2 [FF-G-2] hostname: http://192.168.1.20/index.htm, power: full left

FireFlood 1.2 [FF-G-3] hostname: http://192.168.1.20/index.htm, power: full right

GoodBye 3.0 [GB3-G-1] IP: 192.168.1.20, uri: /index.htm

GoodBye 5.2 [GB5-G-1] IP: 192.168.1.20, uri: /index.htm

GoodBye 5.2 [GB5-G-2] 5 simultaneous: IP: 192.168.1.20, uri: /index.htm

HOIC 2.1.003 [HO-G-1] target: http://192.168.1.20/index.htm, threads: 2 (default), power: low (de-

fault), no booster

HOIC 2.1.003 [HO-G-2] target: http://192.168.1.20/index.htm, threads: 4, power: low (default), no

booster

HOIC 2.1.003 [HO-G-3] target: http://192.168.1.20/index.htm, threads: 2, power: middle, no booster

20

Table 9: HTTP Attack configurations Part 2

Tool Version ID Config

HTTP DoS Tool

(OWASP)

3.6 [HDT-P-1] attack type: Slow headers, URL: http://192.168.1.20/index.htm, proxy:

<empty>, connections: 400, connection rate: 50, timeout: 40 s, random: False,

User agent: Mozilla/4.0..., diagnostics: False, Use POST (instead of GET): False

HTTP DoS Tool

(OWASP)

3.6 [HDT-P-2] attack type: Slow POST, URL: http://192.168.1.20/index.htm, proxy:

<empty>, connections: 400, connection rate: 50, timeout: 100 s, random: False,

User agent: Mozilla/4.0..., diagnostics: False, Content length: 1000000, Ran-

dom: False, POST field: <empty>, Randomise payload: False

HTTP DoS Tool

(OWASP)

3.6 [HDT-P-3] attack type: Slow headers, URL: http://192.168.1.20/index.htm, proxy:

<empty>, connections: 400, connection rate: 50, timeout: 60 s, random: True,

User agent: OWASP DDoS, diagnostics: False, Use POST (instead of GET):

True

HTTP DoS Tool

(OWASP)

3.6 [HDT-P-4] attack type: Slow POST, URL: http://192.168.1.20/index.htm, proxy:

<empty>, connections: 400, connection rate: 50, timeout: 100 s, random: True,

User agent: Mozilla/4.0..., diagnostics: False, Content length: 1000000, Ran-

dom: True, POST field: <empty>, Randomise payload: True

HTTPFlooder [HF-P-1] target: 192.168.1.20, duration: 120 s

HULK 1.0 [HU-G-1] http://192.168.1.20/index.htm

21

Table 10: HTTP Attack configurations Part 3

Tool Version ID Config

Janidos [JA-G-1] target: 192.168.1.20, bot: 50 (default), timeout: 5 (default), get con-

firm to all requests: FALSE (default), Request type: Firefox (default),

Browser: Lynx/2.8.5dev.7 (default), Connection: Keep-alive, Object: im-

age/gif, image/x-xbitmap (default), request page: default, language: tr (de-

fault), Referance: <empty> (default)

Janidos [JA-G-2] target: 192.168.1.20, bot: 1, timeout: 5 (default), get confirm to all requests:

FALSE (default), Request type: Internet Explorer, Browser: Mozilla/4.0, Con-

nection: Keep-alive, Object: image/gif, image/x-xbitmap (default), request

page: index.htm, language: en, Referance: <empty> (default)

Janidos [JA-G-3] target: 192.168.1.20, bot: 50 (default), timeout: 5 (default), get confirm to all re-

quests: TRUE, Request type: Firefox (default), Browser: Mozilla/4.0, Connec-

tion: Keep-alive, Object: image/gif, image/x-xbitmap (default), request page:

index.htm, language: tr (default), Referance: <empty> (default)

JavaLOIC 0.0.3.7 [JL-G-1] target: 192.168.1.20, port: 80, method: HTTP, HTTP subsite: /index.htm,

threads: 10 (default), wait for reply: True (default), timeout: 9000 (default),

delay: 0 (default)

JavaLOIC 0.0.3.7 [JL-G-2] target: 192.168.1.20, port: 80, method: HTTP, HTTP subsite: random, threads:

2, wait for reply: True (default), timeout: 9000 (default), delay: 0 (default)

JavaLOIC 0.0.3.7 [JL-G-3] target: 192.168.1.20, port: 80, method: HTTP, HTTP subsite: /index.htm,

threads: 2, wait for reply: False, timeout: 3000, delay: 0 (default)

22

Table 11: HTTP Attack configurations Part 4

Tool Version ID Config

LOIC 1.0.4.0 [LO1-G-1] target: 192.168.1.20, subsite: /index.htm, threads: 10 (default), speed: mini-

mal, wait for reply: true (default), port: 80, attack: HTTP, TCP/UDP message:

AABBCCDDEE123456, timeout: 9001

LOIC 1.0.4.0 [LO1-G-2] target: 192.168.1.20, subsite: /index.htm, threads: 1, speed: maximum, wait

for reply: true (default), port: 80, attack: HTTP, TCP/UDP message: QWER-

TYUIOP, timeout: 9001

LOIC 1.0.4.0 [LO1-G-3] target: 192.168.1.20, subsite: /index.htm, threads: 5, speed: middle, wait for re-

ply: false, port: 80, attack: HTTP, TCP/UDP message: AABBCCDDEE123456,

timeout: 4001

LOIC 1.0.7.42 [LO2-G-1] target: 192.168.1.20, subsite: /index.htm, threads: 10 (default), speed: mini-

mal, wait for reply: true (default), port: 80, attack: HTTP, TCP/UDP message:

AABBCCDDEE123456, timeout: 9001

LOIC 1.0.7.42 [LO2-G-2] target: 192.168.1.20, subsite: /index.htm, threads: 1, speed: maximum, wait

for reply: true (default), port: 80, attack: HTTP, TCP/UDP message: QWER-

TYUIOP, timeout: 9001

LOIC 1.0.7.42 [LO2-G-3] target: 192.168.1.20, subsite: /index.htm, threads: 5, speed: middle, wait for re-

ply: false, port: 80, attack: HTTP, TCP/UDP message: AABBCCDDEE123456,

timeout: 4001

LOIC 1.0.7.42 [LO2-G-4] target: 192.168.1.20, subsite: /index.htm, threads: 1, speed: minimal, wait for

reply: true (default), port: 80, attack: HTTP, TCP/UDP message: AABBC-

CDDEE123456, timeout: 9001

23

Table 12: HTTP Attack configurations Part 5

Tool Version ID Config

LOIC 1.1.1.25 [LO3-G-1] target: 192.168.1.20, speed: minimal, port: 80, method:HTTP, threads: 10 (de-

fault), timeout: 9001 (default), wait for replay: true (default), use GZIP: true

(default), HTTP subsite: /index.htm, append random characters: false

LOIC 1.1.1.25 [LO3-G-2] target: 192.168.1.20, speed: minimal, port: 80, method:HTTP, threads: 2, time-

out: 9001 (default), wait for replay: true (default), use GZIP: true (default),

HTTP subsite: /index.htm?, append random characters: true

LOIC 1.1.1.25 [LO3-G-3] target: 192.168.1.20, speed: minimal, port: 80, method:HTTP, threads: 1, time-

out: 9001 (default), wait for replay: true (default), use GZIP: false, HTTP sub-

site: /index.htm?, append random characters: true

LOIC 1.1.2.0b [LO4-G-1] target: 192.168.1.20, speed: minimal, port: 80, method:HTTP, threads: 10 (de-

fault), timeout: 30, wait for replay: true, HTTP subsite: /index.htm, append

random characters: false

LOIC 1.1.2.0b [LO4-G-2] target: 192.168.1.20, speed: minimal, port: 80, method:HTTP, threads: 2, time-

out: 30, wait for replay: false, HTTP subsite: /index.htm?, append random

characters: true

LOIC 1.1.2.0b [LO4-G-3] target: 192.168.1.20, speed: maximal, port: 80, method:HTTP, threads: 1, time-

out: 30, wait for replay: true, HTTP subsite: /index.htm, append random char-

acters: true

24

Table 13: HTTP Attack configurations Part 6

Tool Version ID Config

LOIC 1.1.2.0b [LO4-R-1] target: 192.168.1.20, speed: minimum, port: 80, method:Recoil, threads: 10,

socket/thread: 50, http subsite: /index.htm, timeout: 30

LOIC 1.1.2.0b [LO4-R-2] target: 192.168.1.20, speed: middle, port: 80, method:Recoil, threads: 5,

socket/thread: 15, http subsite: /index.htm, timeout: 30

LOIC 1.1.2.0b [LO4-SL-1] target: 192.168.1.20, speed: minimum, port: 80, method:Recoil, threads: 10,

socket/thread: 50, http subsite: /index.htm, timeout: 30, use GET: False

LOIC 1.1.2.0b [LO4-SL-2] target: 192.168.1.20, speed: middle, port: 80, method:Recoil, threads: 5,

socket/thread: 15, http subsite: /index.htm, timeout: 30, use GET: False

LOIC 1.1.2.0b [LO4-SL-3] target: 192.168.1.20, speed: minimum, port: 80, method:Recoil, threads: 10,

socket/thread: 50, http subsite: /index.htm, timeout: 30, use GET: True

LOIC 1.1.2.0b [LO4-SL-4] target: 192.168.1.20, speed: middle, port: 80, method:Recoil, threads: 5,

socket/thread: 15, http subsite: /index.htm, timeout: 30, use GET: True

Longcat 2.3 [LC-G-1] target: http://192.168.1.20/index.htm, number of HTTP users to simulate: 25

(default)

Longcat 2.3 [LC-G-2] target: http://192.168.1.20/index.htm, number of HTTP users to simulate: 5

Longcat 2.3 [LC-G-3] target: http://192.168.1.20/index.htm, number of HTTP users to simulate: 1

Slowloris 0.7 [SL-G-1] (HTTP DoS example) -dns 192.168.1.20 -port 80 -timeout 2000 -num 500 -tcpto

5

Slowloris 0.7 [SL-G-2] (stealth host DoS example) -dns 192.168.1.20 -port 80 -timeout 30 -num 500

-tcpto 1 -shost www.virtualhost.com

Slowloris 0.7 [SL-G-3] -dns 192.168.1.20 -port 80 -timeout 50 -num 100 -tcpto 5

25

Table 14: HTTP Attack configurations Part 7

Tool Version ID Config

Torshammer 1.0b [TH-P-1] -t 192.168.1.20 -p 80 -r 256

Torshammer 1.0b [TH-P-2] -t 192.168.1.20 -p 80 -r 64

UnknownDoser 1.1.0.2 [UD-G-1] target: 192.168.1.20, port: 80, method: GET, randomize request: NO (default),

timeout: 5 s (default), duration: 300 s, number of threads: 5

UnknownDoser 1.1.0.2 [UD-G-2] target: 192.168.1.20, port: 80, method: GET, randomize request: YES, timeout:

5 s (default), duration: 300 s, number of threads: 2

UnknownDoser 1.1.0.2 [UD-P-1] target: 192.168.1.20, port: 80, method: POST, randomize request: NO (default),

timeout: 20 s, duration: 300 s, number of threads: 5

UnknownDoser 1.1.0.2 [UD-P-2] target: 192.168.1.20, port: 80, method: POST, randomize request: YES, timeout:

10 s, duration: 300 s, number of threads: 5

UnknownDoser 1.1.0.2 [UD-G-3] target: 192.168.1.20, port: 80, method: GET, randomize request: NO, timeout:

5 s (default), duration: 120 s (default), number of threads: 2

26

3 IP behavior

3.1 Traffic volume

Byte rate and packet rate are the most common characteristics associated with DoS at-

tacks. Traditionally, DoS attacks were believed to produce excessively high volume of

attack traffic in order to overwhelm the target. However, even though the peak vol-

umes of observed DoS attacks are steadily increasing, the ratio between the number of

volume-based attacks and the number of vulnerability-based attacks is slowly shifting

towards low-rate attacks.

Traffic volume is simply measured with NetFlow data, which assures high scalability

of attack detection. Intuitively, traffic volume metric is the most efficient when deployed

in the target network, where the attack traffic from all sources is aggregated. We intend

to provide a notion of what traffic volume can be observed in the source end network.

3.1.1 Packet rate

Packet rate is arguably the most frequent input feature of DoS detection. Gil and Po-

letto construct a tree of packet rate statistics in order to track significant disproportional

differences between packet rates going to and coming from a host or subnet [GP01].

Dainotti et al. process a time series of packet rates [DPV06]. Lee et al. calculate packet

volume in conjunction with other parameters as input for cluster analysis of traffic

[LKK+08].

3.1.2 Byte rate

Byte rate is frequently used as an input feature for DoS attack detection. It has been

utilized in many aspects. Öke and Loukas employ both total byte rate and byte rate

change to detect high volume attacks [LO09]. Shevtekar and Ansari measure flow bytes

and total bytes for low-rate attacks detection [SA07]. Tao et al. measure separately traffic

volume from the attacker towards the victim and from the victim back to the attacker

[TYP+09].

3.1.3 Attack buildup

Attack can either start with full possible strength or a short period of gradual attack

buildup may take place. Immediate full strength attack benefit from a higher attack

27

Table 15: Average packet rate

0 – 100 pps [BD-T-1] [BD-T-2] [HDT-P-1] [HDT-P-2] [HDT-P-3] [HDT-P-4]

[JA-G-2] [LO1-T-1] [LO1-T-2] [LO1-T-3] [LO1-T-4] [LO2-T-1]

[LO2-T-2] [LO2-T-3] [LO2-T-4] [LO4-R-2] [LO4-SL-1] [LO4-SL-2]

[LO4-SL-3] [LO4-SL-4] [SL-G-1] [SL-G-2] [SL-G-3] [SF-T-1] [SF-T-

2] [TH-P-2]

101 – 500 pps [AD-G-1] [AD-G-2] [ADR-P-1] [BAD-G-1] [DS-T-1] [DS-T-2]

[GB3-G-1] [GB5-G-1] [GB5-G-2] [HF-P-1] [LO3-T-1] [LO3-T-3]

[LO3-T-4] [LO4-G-3] [LO4-T-1] [LO4-T-2] [LO4-T-3] [LO4-R-1]

[LC-T-2] [TH-P-1] [UD-G-2] [UD-P-1] [UD-P-2]

501 – 1000 pps [HO-G-1] [LO3-T-2] [LC-G-1]

1001 – 5000 pps [BAD-G-2] [HO-G-2] [HO-G-3] [HU-G-1] [JA-G-1] [JA-G-3] [JL-T-

2] [LO1-G-1] [LO2-G-4] [LO3-G-2] [LO3-G-3] [LO4-G-2] [LC-T-1]

[UD-G-3]

5001 – 10000 pps [JL-G-1] [JL-G-2] [JL-G-3] [JL-T-1] [JL-T-3] [LO1-G-2] [LO1-G-3]

[LO3-G-1] [LC-G-3] [SD-T-1] [SD-T-2] [SD-T-3] [UD-G-1]

10000+ pps [FF-G-1] [FF-G-2] [FF-G-3] [LO2-G-1] [LO2-G-2] [LO2-G-3] [LO4-

G-1] [LC-G-2] [XO-T-1] [XO-T-2] [XO-T-3] [XO-T-4]

28

Table 16: Average byte rate

0 – 100 kbit/s [LO4-SL-2] [LO4-SL-4] [SF-T-1] [SF-T-2]

100 Kbit/s – 1 Mbit/s [BD-T-1] [BD-T-2] [DS-T-1] [DS-T-2] [HDT-P-1] [HDT-P-3] [JA-

G-2] [LO1-T-1] [LO1-T-3] [LO1-T-4] [LO2-T-1] [LO2-T-3] [LO2-T-

4] [LO4-R-2] [LO4-SL-1] [LO4-SL-3] [SL-G-1] [SL-G-2] [SL-G-3]

[TH-P-2]

1 Mbit/s – 10 Mbit/s [ADR-P-1] [GB3-G-1] [GB5-G-1] [GB5-G-2] [HDT-P-2] [HDT-P-

4] [HF-P-1] [LO1-T-2] [LO2-T-2] [LO3-T-1] [LO3-T-2] [LO3-T-3]

[LO3-T-4] [LO4-G-3] [LO4-T-1] [LO4-T-2] [LO4-T-3] [LO4-R-1]

[LC-T-1] [LC-T-2] [TH-P-1] [UD-G-2] [UD-P-1] [UD-P-2]

10 Mbit/s – 100

Mbit/s

[AD-G-1] [AD-G-2] [BAD-G-1] [HO-G-1] [JA-G-1] [JA-G-3] [JL-

G-1] [JL-G-3] [JL-T-1] [JL-T-3] [LO1-G-1] [LO1-G-2] [LO1-G-3]

[LC-G-1] [SD-T-1] [SD-T-2] [SD-T-3]

100 Mbit/s – 1 Gbit/s [BAD-G-2] [FF-G-1] [FF-G-2] [FF-G-3] [HO-G-2] [HO-G-3] [HU-

G-1] [JL-G-2] [JL-T-2] [LO2-G-4] [LO3-G-1] [LO3-G-2] [LO3-G-3]

[LO4-G-1] [LO4-G-2] [LC-G-3] [UD-G-1] [UD-G-3] [XO-T-1] [XO-

T-2] [XO-T-3] [XO-T-4]

1 Gbit/s+ [LO2-G-1] [LO2-G-2] [LO2-G-3] [LC-G-2]

29

Figure 1: Attack buildup

(a) [LO1-T-3] Packet rate (b) [LO2-T-1] Packet rate (c) [LO4-G-1] Packet rate

intensity and flexibility. Quick response makes this approach ideal for attacks on online

gamers or ransom victims. On the other hand, gradual buildup is more subtle. It is

more difficult to recognize for intrusion detection systems that are based on the change

detection.

In our set, the clear majority of tools employs immediate full attack strength ap-

proach. Exceptions are LO and JL configurations which may have an initiation period

up to 10 seconds long (Figure 1). We consider this revelation important, because it

is a strong indicator that detection methods based on change detection can be widely

adopted in real environments.

3.1.4 Byte rate and packet rate relationship

Division of configurations into classes by byte rate shows that we can encounter both

volume-rich tools and tools that produce hardly any traffic. When choosing configura-

tions for the analysis, we focused on low performance settings in order to record every

packet transmitted. Therefore, byte rate and packet rate values are especially interesting

for tools that do not enable to specify attack intensity (e.g., ADR, GB, HF, XO). Tables 15

and 16 show these tools are spread across the whole spectrum of possible values. Op-

positely, tools that enable performance settings can trivially circumvent simple volume

thresholds.

For the vast majority of configurations the changes of byte rate value in time cor-

respond to the changes of packet rate value. Examples for comparison are offered in

Figures 2 and 3. The reason is a very homogenous distribution of attack traffic packet

sizes as will be seen in Section 3.6.

30

Figure 2: Packet rate

(a) [FF-G-1] (b) [HO-G-1] (c) [UD-G-2]

Figure 3: Byte rate

(a) [FF-G-1] (b) [HO-G-1] (c) [UD-G-2]

Only exceptions are configurations [GB5-G-1], [GB5-G-2] and [JL-T-2]. In case of GB,

while the packet rate starts to slowly decline after approximately 35 seconds, the byte

rate rises slightly and becomes much more volatile. This effect is caused by a change

in attack method on-the-fly. Most attack flows of GB5 just establish a TCP connection

and leave it open. However, during the first 5 seconds of the attack and again since

35 second mark some flows also send a malformed HTTP request towards the victim,

hence the increase in byterate. [JL-T-2] is a configuration that produces fully random

payloads of packets in a TCP flooding attack. After 25 seconds the packet rate drops

considerably while byte rate significantly increases. The number of distinct packet sizes

in [JL-T-2] is 35. The packet drop is caused by several higher-than average packet sizes,

that are used more frequently after 25 second mark.

3.2 Packet rate burst behavior

Packet rates of many DoS tools in our set exhibit burst behavior. The cause may be

ticking of internal tool timer, synthesis of requests between multiple process threads

or an intentional design characteristic. We divide observed burst types into four types.

31

Figure 4: Packet rate and byte rate relationship anomalies

(a) [JL-T-2] Packet count (b) [GB5-G-1] Packet count (c) [GB5-G-2] Packet count

(d) [JL-T-2] Byte rate (e) [GB5-G-1] Byte rate (f) [GB5-G-2] Byte rate

Attribution of configurations to burst types is shown in Table 17. We did not observe any

significant differences between the burst behavior of TCP DoS attack tools and HTTP

DoS attack tools.

• Full burstiness. The attack traffic is delivered only in bursts. Minimal or none

traffic is exchanged between bursts. Full burstiness is very popular with slow

attacks, often probably due to guidance by an internal clock. However, tools that

produce low rate traffic are also most likely to be modified in order not to produce

traffic in bursts.

• Regular peaks. Produced network traffic is very stable except for regular repeating

anomalies.

• One-time extreme. At some point of the tool run, often at the beginning of the

attack, the traffic characteristics are significantly different from the rest.

• None. The tool does not produce traffic that has observable bursts in packet rate.

Athough to our knowledge DoS burst behavior has not yet been used in the source

end DoS attack detection, it could become a valid alternative to existing detection meth-

ods. A new method could be based on the detection of burst behavior, recognition of

32

repeated occurrences of bursts and on similarity comparisons of these bursts. Advan-

tages are low input data collection costs and a possibility of continuous detection which

does not require comparison to a model of normal network traffic.

Table 17: Packet rate burstiness

Full burstiness [HDT-P-1] [HDT-P-2] [HU-G-1] [LO4-SL-1] [LO4-SL-2] [LO4-SL-

3] [LO4-SL-4] [SL-G-1] [SL-G-2] [SL-G-3] [SF-T-1] [SF-T-2]

Regular peaks [BD-T-1] [BD-T-2] [HO-G-1] [HO-G-2] [HO-G-3] [LO1-G-1] [LO3-

G-2] [LO3-G-3] [LO4-G-3] [LC-T-1] [LC-T-2] [UD-G-2] [UD-P-1]

[UD-P-2]

One-time extreme [AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [DS-T-1] [DS-T-2]

[GB3-G-1] [GB5-G-1] [GB5-G-2] [HDT-P-3] [HDT-P-4] [TH-P-1]

[TH-P-2]

None [ADR-P-1] [FF-G-1] [FF-G-2] [FF-G-3] [HF-P-1] [JA-G-1] [JA-G-2]

[JA-G-3] [JL-G-1] [JL-G-2] [JL-G-3] [JL-T-1] [JL-T-2] [JL-T-3] [LO1-

G-2] [LO1-G-3] [LO1-T-1] [LO1-T-2] [LO1-T-3] [LO1-T-4] [LO2-

G-1] [LO2-G-2] [LO2-G-3] [LO2-G-4] [LO2-T-1] [LO2-T-2] [LO2-

T-3] [LO2-T-4] [LO3-G-1] [LO3-T-1] [LO3-T-2] [LO3-T-3] [LO3-T-

4] [LO4-G-1] [LO4-G-2] [LO4-T-1] [LO4-T-2] [LO4-T-3] [LO4-R-1]

[LO4-R-2] [LC-G-1] [LC-G-2] [LC-G-3] [SD-T-1] [SD-T-2] [SD-T-3]

[UD-G-1] [UD-G-3] [XO-T-1] [XO-T-2] [XO-T-3] [XO-T-4]

3.3 IP fragmentation

Packet fragmentation can be employed to boost the efficiency of any DoS attack. By

dividing attack packets into several fragments, a victim is forced to commit some of

its computational resources to packet reassembly. However, packet fragmentation is

becoming less and less common in current networks. Therefore, fragmented traffic can

be efficiently filtered out by ISPs or at the border router of victim’s network. None of

the standalone DoS tools in our set employed fragmentation.

3.4 IP spoofing

Forging packet source IP address is traditionally associated with SYN flood attacks, re-

flection attacks and amplification attacks [Pax01]. By using IP spoofing, the volume

33

Figure 5: Packet rate burstiness – Full burstiness example

(a) [HDT-P-1] (b) [SF-T-2] (c) [SL-T-3]

Figure 6: Packet rate burstiness – Regular peaks example

(a) [BD-T-1] (b) [HO-G-2] (c) [LC-T-1]

Figure 7: Packet rate burstiness – One-time extreme example

(a) [AD-G-1] (b) [TH-P-1] (c) [DS-T-1]

34

of attack traffic can be multiplied by poorly configured hosts in the middle. Also, at-

tacker’s real IP addresses are hidden from the target and the attack traffic is received

from a significantly higher number of sources. On the other hand, spoofed attacks must

be very simple, because it is not possible for the attacker to complete a handshake with

the target. Numerous methods for source-end DoS detection based on the recognition

of IP spoofing were proposed [XCH06, PYHR10] in the past.

Efficient IP spoofing attacks require tight cooperation between participating hosts

and an up-to-date list of available proxy servers or a large number of hosts some of

which serve as proxies. This level of coordination is difficult to achieve with standalone

DoS attack tools. Users of standalone DoS attack tools can be located in different time-

zones, have different means of communication and use various attack tools. Therefore,

the popularity of IP spoofing among standalone DoS attack tools is low, SYN Flood DoS

being the only representative in our set.

3.5 Average packet size

Continuous measurement of average connection packet size in time is a simple metrics

to distinguish between legitimate and non-standard flows. The detection can be based

on observing divergence from a predefined threshold or on observation of long-term

metric values. TCP-based DoS attacks are rarely based on the volume of transmitted

data, but rather on exploiting the design weaknesses of TCP protocol. Therefore, in

many cases no payload data is actually transmitted over established connections or the

transmitted messges are short, often expressing political or sociological opinion (e.g.,

default string at LOIC "U dun goofed"). Since all packets during the TCP 3-way hand-

shake have small constant packet sizes, average packet size measurement can be an

effective detection method for these connections.

Seo at al. measure occurrences of connections with average byte size less than 64

bytes [SWH11] as a mean how to detect DoS attacks at attacker’s network. Table 18

summarizes our comparative results. We agree that average packet size is less than 64

bytes for most TCP-based DoS attacks, including TCP SYN flood with spoofed source IP

addresses. Notable exceptions are LOIC, JavaLOIC and XOIC that employ volumetric

flooding. In case of DoS attack tools, average packet size depends mostly on lengths

of IP and TCP header, length of payload and also on internal mechanics of each tool.

Since modifications of IP and TCP headers are relatively rare, the string to be inserted

in payload of TCP segments is crucial. For example, JavaLOIC allows to use a random

35

string as a payload for each TCP segment and LOIC creates several concatenations of

the user-chosen string to create a TCP payload. Long payloads subsequently result in

average packet sizes higher than the threshold.

The 64-byte threshold is also useable for some types of HTTP DoS attacks based on

malformed HTTP requests (Table 19). Especially slow attacks, that exploit long server-

side timeouts for sending or receiving HTTP messages, are likely candidates. Other

parameters that can influence the success rate of detection are the length of URL, the

size of error message that is sent from server or lengths of optional fields in a malformed

HTTP request.

Long-term observation of static average packet size cannot be considered a detec-

tion metrics by itself. However, it can serve as an secondary evidence that the flow is

homogenous and repeating in time. Also, attack tools that can circumvent host system

network stack, may enforce a different behavior from an expected behavior of TCP pro-

tocol. When a target server is becoming overwhelmed with messages, it requests clients

to lower their rate of sending via a TCP protocol mechanics. Attacker tools with root

access can ignore the request and maintain constant byte rate and packet rate, therefore

revealing themselves as anomalous.

Table 18: Average packet size with limit – TCP configurations

Average packet size

=< 64 B

[BD-T-1] [BD-T-2] [DS-T-1] [DS-T-2] [JL-T-1] [JL-T-3] [LC-T-1]

[LC-T-2] [SD-T-1] [SD-T-2] [SD-T-3] [SF-T-1] [SF-T-2]

Average packet size

> 64 B

[JL-T-2] [LO1-T-1] [LO1-T-2] [LO1-T-3] [LO1-T-4] [LO2-T-1]

[LO2-T-2] [LO2-T-3] [LO2-T-4] [LO3-T-1] [LO3-T-3] [LO3-T-4]

[LO4-SL-1] [LO4-SL-2] [LO4-SL-3] [LO4-SL-4] [LO4-T-1] [LO4-T-

2] [LO4-T-3] [XO-T-1] [XO-T-2] [XO-T-3] [XO-T-4]

3.6 Packet size distribution

A common TCP connection consists of a 3-way handshake (3WH) part, data transmis-

sion part and closure part. TCP segments in the 3WH part and the closure part have

constant packet sizes. Among those the most frequent values are one 60/62/66 B packet

per flow for connection establishment (SYN segments from the attacker and SYNACK

segments from the victim), several 54 B packets (ACK segments) and one FIN/RST seg-

ment for connection closure. Connection closure packets often have 54 B also. Some

36

Table 19: Average packet size with limit – HTTP configurations

Average packet size

=< 64 B

[LO4-R-1] [LO4-R-1] [LO4-R-2] [SL-G-1] [SL-G-2] [SL-G-3] [TH-

P-1] [TH-P-2]

Average packet size

> 64 B

[ADR-P-1] [AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [FF-G-1]

[FF-G-2] [FF-G-3] [GB3-G-1] [GB5-G-1] [GB5-G-2] [HDT-P-1]

[HDT-P-2] [HDT-P-3] [HDT-P-4] [HO-G-1] [HO-G-2] [HO-G-3]

[HF-P-1] [HU-G-1] [JA-G-1] [JA-G-2] [JA-G-3] [JL-G-1] [JL-G-2]

[JL-G-3] [LO1-G-1] [LO1-G-2] [LO1-G-3] [LO2-G-1] [LO2-G-2]

[LO2-G-4] [LO3-G-1] [LO3-G-2] [LO3-G-3] [LO4-G-1] [LO4-G-2]

[LO4-G-3] [LC-G-1] [LC-G-2] [LC-G-3] [UD-G-1] [UD-G-2] [UD-

G-3] [UD-P-1] [UD-P-2]

types of DoS attacks completely omit data transmission part. Therefore, by examining

the distribution of packet sizes it may be possible to detect these types of DoS attacks.

Du and Abe discovered that many applications have typical packet sizes with respect to

requests and responses or data and acknowledgements [DA07]. We argue, that the same

holds for many standalone DoS tools and by extension also for types of DoS attacks.

In our measurements, we consider only the outgoing (attack) traffic in order to cre-

ate a more focused profile of DoS attack tools and to minimize affects of server-side

processing. We believe that any potential DoS detection method based on packet size

distribution of DoS traffic should focus on flow from the attacker to the victim. This

approach minimizes errors caused by changing server state (e.g., dynamic target web-

pages, server’s growing unresponsiveness). Tables 21 and 20 show packet size distri-

butions of all configurations. Packet size is considered major if its ratio in the traffic ex-

ceeds 1%. We have introduced this second distribution in order to filter out rare events

(e.g., initial probing flows, retransmissions).

From Table 20 it can be seen that all configurations except those of LOIC and JavaL-

OIC in randomization mode produce flows with at most 3 unique packet sizes, often

only 2 of those being dominant. These unique packet sizes correspond to our percep-

tion of three parts of a TCP connection. As in case of average packet size, LOIC and

JavaLOIC are again outliers from remaining TCP-based DoS attack tools. Oppositely,

XOIC’s behavior is now comparable with the rest of the tools. It’s high average packet

37

size is caused by a big response from the server, which has no impact in our design of

packet size distribution measurement.

As expected, HTTP traffic is more diverse from the point of packet size distribution.

Established TCP connection is a prerequisite to execute HTTP DoS attack. Also, at least

one another packet is required – HTTP request message. Yet still AD, ADR, BAD, GB, JA

and JL still maintain unique packet size count at three. Reason is an improper handling

of the connection closure. AD, ADR, BAD and GB leave the connection closure entirely

up to the server, therefore saving one of three common unique packet sizes for other

use, in this case for an HTTP request. Oppositely, JA and JL do close their connections,

but the RST/FIN segments are encapsulated in packets of 54B length, therefore being

grouped with common ACK segments.

3.7 Packet incoming to outgoing ratio

Ratio of the number of incoming and outgoing packets has been used as a detection

metrics by Laurens et al. [LMSD09] and Suresh and Anitha [SA11]. The intention of

the attacker is to overwhelm the target. Authors assume that the attacker will not wait

for server acknowledgements and will aggresively flood the victim, making the ratio

abnormaly high.

Ratio can be also utilized for traffic pattern matching. Our other measurements have

shown that the attack traffic tends to exhibit only little variance. We highlight two sig-

nificant values for incoming to outgoing packet count ratio that were encountered at

multiple configurations during initial 60 seconds of the attack tool run. Even if the ratio

does not fall into one of these two classes, the value may still be important because it is

often long-term constant (e.g., [XO-T-1] holds 0.6 very stable in time).

• 0.5. This value is characteristic for TCP attacks that are closed one-sidedly by the

victim. I.e., victim may send a FIN TCP segment which is ignored by the attacker

or the victim may send RST TCP segment, which does not mandate response from

the attacker in the first place.

• 0.66. This ratio is common for attacks when both sides participate in the flow clo-

sure, after it was established via a 3-way handshake, but without any data packets

exchanged. Any more packets transmitted via a TCP connection will increase the

ratio in the longterm.

38

Table 20: Packet size distribution – TCP

Config ID Unique

packet

size

count

Major

packet

size

count

[BD-T-1] 3 3

[BD-T-2] 3 3

[DS-T-1] 2 2

[DS-T-2] 2 2

[JL-T-1] 2 2

[JL-T-2] 30+ 8

[JL-T-3] 2 2

[LO1-T-1] 8 2

[LO1-T-2] 13 3

[LO1-T-3] 7 2

[LO1-T-4] 11 2

[LO2-T-1] 6 2

[LO2-T-2] 6 2

[LO2-T-3] 7 4

[LO2-T-4] 2 2

[LO3-T-1] 3 1

[LO3-T-2] 2 1

Config ID Unique

packet

size

count

Major

packet

size

count

[LO3-T-3] 3 1

[LO3-T-4] 3 1

[LO4-T-1] 3 1

[LO4-T-2] 3 1

[LO4-T-3] 3 1

[LC-T-1] 3 2

[LC-T-2] 3 2

—–

[SD-T-1] 3 3

[SD-T-2] 3 2

[SD-T-3] 3 3

[SF-T-1] 2 2

[SF-T-2] 2 2

[XO-T-1] 3 3

[XO-T-2] 3 3

[XO-T-3] 3 3

[XO-T-4] 3 3

39

Table 21: Packet size distribution – HTTP

Config ID Unique

packet

size

count

Major

packet

size

count

[AD-G-1] 3 2

[AD-G-2] 3 2

[ADR-P-1] 3 3

[BAD-G-1] 3 2

[BAD-G-2] 3 2

[FF-G-1] 4 3

[FF-G-2] 4 3

[FF-G-3] 4 3

[GB3-G-1] 3 3

[GB5-G-1] 3 3

[GB5-G-2] 3 3

[HO-G-1] 3 3

[HO-G-2] 3 3

[HO-G-3] 3 3

[HDT-P-1] 6 6

[HDT-P-2] 3 3

[HDT-P-3] 7 6

[HDT-P-4] 8 7

[HF-P-1] 3 3

[HU-G-1] 100+ 2

[JA-G-1] 3 3

[JA-G-2] 3 3

[JA-G-3] 3 3

[JL-G-1] 3 3

[JL-G-2] 3 3

[JL-G-3] 3 3

[LC-G-1] 10+ 3

[LC-G-2] 7 4

[LC-G-3] 5 2

Config ID Unique

packet

size

count

Major

packet

size

count

[LO1-G-1] 3 3

[LO1-G-2] 3 3

[LO1-G-3] 3 3

[LO2-G-1] 6 4

[LO2-G-2] 7 5

[LO2-G-3]

[LO2-G-4] 6 5

[LO3-G-1] 6 4

[LO3-G-2] 6 5

[LO3-G-3] 4 4

[LO4-G-1] 7 6

[LO4-G-2] 7 4

[LO4-G-3] 4 4

[LO4-R-1] 4 1

[LO4-R-2] 4 1

[LO4-SL-1] 5 5

[LO4-SL-2] 5 5

[LO4-SL-3] 5 5

[LO4-SL-4] 5 5

[SL-G-1] 4 4

[SL-G-2] 4 4

[SL-G-3] 4 4

[TH-P-1] 20+ 3

[TH-P-2] 20+ 3

[UD-G-1] 6 4

[UD-G-2] 100+ 2

[UD-P-1] 3 3

[UD-P-2] 100+ 2

[UD-G-3] 6 4
40

Because the detection based on dwindling victim responses depends heavily on the

victim side and also on the success or failure of the attack, it was not included in our

analysis.

Table 22: Limited – Interesting values – approximate

0.49-0.51 [DS-T-1] [DS-T-2] [GB3-G-1] [GB5-G-1] [GB5-G-2] [JA-G-1] [LO3-

T-1] [LO3-T-2] [LO3-T-3] [LO3-T-4] [LO4-T-1] [LO4-T-2] [LO4-T-

3] [UD-G-2] [UD-P-2]

0.65-0.67 [BD-T-1] [BD-T-2] [JL-T-1] [JL-T-3] [SD-T-1] [SD-T-2] [SD-T-3]

4 TCP behavior

4.1 Flow count

One of the most common assumptions about DoS attacks is that attacker’s establish

many connections towards a victim. Reasoning behind the assumption states that mul-

tiple connections imply higher attack performance. Also, some attacks are based on

the number of connections or on the rate of their generation and therefore high num-

ber of flows is a desirable property. A number of detection methods that calculate

with flow count have been proposed, for example by Malliga et al. [MTJ08], Cheng

et al.[CYL+09], Lee et al.[LKK+08] and Mirkovic and Reiher [MR05]. High number of

flows is frequently associated with the presence of IP spoofing. Since the response is

never received, flows with spoofed source IPs are considered open for a prolonged time,

emphasizing the presence of an anomaly in the monitored network.

Our observations partially contradict and partially supplement these perceptions.

Tables 23 and 24 classifies configurations by the number of flows that were observed

during initial 60 seconds of the attack.

• Of our set, 28 configurations generate 100 or less flows during a first 60 seconds

of a DoS attack. Without regards to tools’ versions, following tools can be con-

figured to launch an attack with 100 or less flows: AD, BAD, HDT, LO (TCP,

Recoil, SlowLOIC), LC (HTTP), SL, TH. Low flow counts make these tools un-

detectable for source-end intrusion detection systems that are based on analysis of

flow count.

41

• At least 2 tools in the set can generate more than 1000 flows per second without

IP spoofing on a standard laptop. Depending on the configuration and the perfor-

mance of the source host, several more tools can be expected to reach such limit,

especially if the tool is executed several times in parallel (e.g., HU, FF).

Low flow count attacks can be seen usually with HTTP-based DoS tools, such as

AD, BAD and LC (HTTP attack). These tools open a static low number of connections

towards the victim and subsequently send HTTP requests repeatedly over existing con-

nections. Slow attacks also tend to have a smaller number of connections. Common

principle of slow attacks is to bind available server resources for long-term reserva-

tions. Slow attacks are therefore limited to hundreds or thousands connections, usually

simultaneous. As expected, TCP-based DoS attacks usually cause a high number of

connections, LOIC TCP flooding attack as the only exception. Flow count differences

between TCP-based attacks are caused mostly by the efficiency of tool implementation.

From the point of long-term performance, we have recognized four patterns.

• Stability. Most tools exhibit only minor changes while the long term trend remains

steady, e.g. FF (Figure 8a) or JA (Figure 8b). In many cases it takes several seconds

of a transition period to build up the attack. Figure 8c gives an example of LO

gradually opening flows up to the desired limit during the first 5 seconds and

subsequently keeping the count unchanged.

• Pulsing. Intentionally pulsing attack is generally viewed as an attempt to stay un-

detected while maintaining a reasonable per host attack strength. Our measure-

ment shows that pulsing can also be an integral part of the attack. Representatives

are LO, which achieves pulsing by batch flow closures (Figure 8d) or HDT, which

alternates between calm no-traffic periods and periods of batch packet sendings

(Figure 8e).

• Decreasing count. Several tools such as DS, GB and HDT tend to decrease the

number of observable flows, even if the victim has not been made unavailable

(e.g., Figure 8f or Figure 8g).

• Increasing count. Although attacker is expected to attempt to use all available

resources as soon as possible to overwhelm the victim, increasing strength could

be used to circumvent reputation-based and some anomaly-based intrusion detec-

tion systems. Subtle attack start phase could lead to the attack being undetected

42

for a prolonged time. Naturally, subtle attacks are not tempting for hacktivists,

who want the publicity of the attack. None of the tools in our set has shown an

increasing strength trend from the point of flows count.

Table 23: Flow count in 60 s interval – TCP

0-10 [LO1-T-1] [LO1-T-2] [LO1-T-3] [LO1-T-4] [LO2-T-1] [LO2-T-2]

[LO2-T-3] [LO2-T-4] [LO3-T-1] [LO3-T-2] [LO3-T-3] [LO3-T-4]

[LO4-T-1] [LO4-T-2] [LO4-T-3]

11-100

101-1000 [SF-T-1] [SF-T-2]

1001-10000 [BD-T-1] [BD-T-2] [DS-T-1] [DS-T-2] [LC-T-2]

10001-100000 [JL-T-1] [JL-T-2] [JL-T-3] [LC-T-1]

100000+ [SD-T-1] [SD-T-2] [SD-T-3] [XO-T-1] [XO-T-2] [XO-T-3] [XO-T-4]

Table 24: Flow count in 60 s interval – HTTP

0-10 [AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [LC-G-1] [LC-G-2]

[LC-G-3]

11-100 [LO4-R-1] [LO4-R-2] [LO4-SL-2] [LO4-SL-4] [SL-G-3] [TH-P-2]

101-1000 [ADR-P-1] [HO-G-1] [HO-G-2] [HO-G-3] [HDT-P-1] [HDT-P-2]

[HDT-P-3] [HDT-P-4] [HF-P-1] [JA-G-2] [LO4-SL-1] [LO4-SL-3]

[SL-G-1] [SL-G-2] [SF-T-1] [SF-T-2] [TH-P-1]

1001-10000 [GB3-G-1] [GB5-G-1] [GB5-G-2] [HU-G-1] [LO2-G-4][LO3-G-2]

[LO3-G-3] [LO4-G-1] [LO4-G-2] [LO4-G-3] [UD-G-1] [UD-G-2]

[UD-P-1] [UD-P-2] [UD-G-3]

10001-100000 [FF-G-1] [FF-G-2] [FF-G-3] [JA-G-1] [JA-G-3] [JL-G-1] [JL-G-2]

[JL-G-3] [LO1-G-1] [LO1-G-2] [LO1-G-3] [LO2-G-1] [LO2-G-2]

[LO2-G-3] [LO3-G-1] [LO4-G-1] [LO4-G-2] [LO4-G-3]

100000+

4.2 Flow parallelity

Flow parallelity is an important secondary feature to flow count. Flows can be sampled

either in regular time intervals or per packet in real time. If two or more connections

43

Figure 8: Flow count example

(a) [FF-G-2] (b) [JA-G-3] (c) [LO3-T-1]

(d) [LO2-G-4] (e) [HDT-P-1]

(f) [DS-T-1] (g) [GB3-G-1]

44

have been established and closed within one time interval, these flows seem to be simul-

taneous even though in reality they might have existed in succesion. That may increase

false positives rate of DoS detection systems. Oppositely, real time sampling is more

resource demanding and prone to intermittent network errors, such as packet retrans-

missions. Both sampling types has been utilized extensively. We divide tools into four

categories by flows parallelity.

• All simultaneous. Flows that are initiated in short succession and are never closed

under normal circumstances. Attacker keeps these flows open for the duration of

the attack and sends attack packets over them.

• Mostly simultaneous. Flows are closed after a prolonged time, usually by the

victim after connection timeout. Many flows are open at the same time. Flows

duration often exceeds 60 seconds.

• Long-term consecutive, many simultaneous. Generation and existence of flows

themselves is one of the means of attack. Flows are generated rapidly, often by

several process threads simulaneously. Flow duration varies with the performance

of the attack tool.

• Mostly consecutive. Flows are established and closed in succession, eventually

only a few flows overlaps. Attacks aim to overwhelm the victim with flow gener-

ation rate. Flows have very short duration.

Results of flow parallelity measurements in Tables 25 and 26 support our observa-

tions from flow count measurement. The level of flow parallelity decreases with flow

count. Our observations show real time parallelity is not very common. Many tools ac-

tually produce flows in succession or in small batches of simultaneous flows. The outer

effect of massive flow parallelity is caused by the length of flow sampling interval. With

decreasing interval, thresholds for DoS detection via simultaneous flows count should

be lowered in order to maintain detection accuracy, because the count of seemingly

simultaneous flows will decrease. In contrast, the count of truly simultaneous flows

would remain constant.

4.3 Flow packet count

Packet count is one of the most important properties of every flow. Collection of flow

packet counts is trivial, being a part of NetFlow standard, yet it still has a high infor-

45

Table 25: Flows parallelity – TCP

All simultaneous [SF-T-1] [SF-T-2]

Mostly simultane-

ous

[LO1-T-1] [LO1-T-2] [LO1-T-3] [LO1-T-4] [LO2-T-1] [LO2-T-2]

[LO2-T-3] [LO2-T-4] [LO3-T-1] [LO3-T-2] [LO3-T-3] [LO3-T-4]

[LO4-T-1] [LO4-T-2] [LO4-T-3] [DS-T-1] [DS-T-2]

Long-term consecu-

tive, many simulta-

neous

[SD-T-1] [SD-T-2] [SD-T-3]

Mostly consecutive [BD-T-1] [BD-T-2] [JL-T-1] [JL-T-2] [JL-T-3] [LC-T-1] [LC-T-2] [XO-

T-1] [XO-T-2] [XO-T-3] [XO-T-4]

Table 26: Flows parallelity – HTTP

All simultaneous [AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [LC-G-1] [LC-G-2]

[LC-G-3]

Mostly simultane-

ous

[GB3-G-1] [GB5-G-1] [GB5-G-2] [HDT-P-1] [HDT-P-2] [HDT-P-3]

[HDT-P-4] [HU-G-1] [LO4-R-1] [LO4-R-2] [LO4-SL-1] [LO4-SL-2]

[LO4-SL-3] [LO4-SL-4] [SL-G-1] [SL-G-2] [SL-G-3] [TH-P-1] [TH-

P-2] [UD-G-3]

Long-term consecu-

tive, many simulta-

neous

[LO1-G-1] [LO1-G-2] [LO1-G-3] [LO2-G-1] [LO2-G-2] [LO2-G-3]

[LO2-G-4] [LO3-G-1] [LO3-G-2] [LO3-G-3] [LO4-G-1] [LO4-G-2]

[LO4-G-3]

Mostly consecutive [ADR-P-1] [FF-G-1] [FF-G-2] [FF-G-3] [HF-P-1] [HO-G-1] [HO-G-

2] [HO-G-3] [JA-G-1] [JA-G-2] [JA-G-3] [JL-G-1] [JL-G-2] [JL-G-3]

[UD-G-1] [UD-G-2] [UD-P-1] [UD-P-2]

46

mational value. Flooding DoS attacks operate with many flows and many packets. Our

analysis focused on the characterization of flows by their packet numbers.

Siaterlis and Maglaris calculate ’flow length’ metrics as a number of packets in a flow

in the last 30 seconds [SM05]. Subsequently, flows with just one packet are suspected to

be a part of an outgoing DoS attack with spoofed source IP address. We aim to broaden

the scope of flow packet count metric. We believe it can be used to detect spoofed

attacks, some classes of non-spoofed DoS attacks and, most importantly, it can serve as

an indicator of similarity between seemingly unrelated flows.

Tables 27 and 28 show our findings for flow packet count of closed flows. Configu-

rations that do not close flows under normal circumstances (AD-G, BAD-G, LC-G) were

excluded from testing. Only packets packets sent by the attacker (i.e., initiator of the

connection) are considered. Configurations were divided into three groups.

• All flows same packet count. All closed flows during the lifetime of the attack

have the same packet count, with exceptions of packet retransmissions.

• Minimal differences. All flows have the packet count within 2 % of the packet

count median rounded up (i.e., difference by one packet is always eligible). Flow

packet count can serve as a secondary indice of flow similarity, but not as a decid-

ing factor.

• Significant differences. No correlation between packet counts of individual flows

have been found.

Flow packet count is a precise metric for detection of outgoing TCP-based DoS at-

tacks. Of the tested tools, only LO is not suitable for the detection based on packet flow

count. Spoofed SYN flooding attack produced by SF can be detected with by method

of Siaterlis and Maglaris. Remaining TCP attack tools produce traffic where every flow

has exactly the same packet count. We believe that when applied to high flow counts

tools (e.g., SD, XO, JL), this metric can be both very precise and computationally effi-

cient. The detection model would also be configurable in the terms of false positives

rate. Precision can be devised from how many flow counts must be correctly predicted

in order to consider those flows being a part of DoS attack. Adding to the effectiveness

of the proposed method is also a relatively low flow packet count of TCP-based attacks.

The purpose of normal traffic is to transmit data between communication participants.

In terms of TCP protocol, three packets are required to establish the connection and one

47

or more packets to terminate the connection. Of those, two or more packets must be sent

by connection initiator. Therefore, any terminated connection with two or less packets

sent by initiator could not transmit any data.

The detection of HTTP-based attacks can work on the same basic principle, however

there are less eligible tools. Especially tools with low number of flows (e.g., AD, BAD,

LC) have packet count differences that are preventing succesful detection.

Table 27: Flows attacker packet count – HTTP

All flows same

packet count

[ADR-P-1] [FF-G-1] [FF-G-2] [FF-G-3] [GB3-G-1] [GB5-G-1] [GB5-

G-2] [HDT-P-1] [HDT-P-2] [HF-P-1] [JA-G-1] [JA-G-2] [JA-G-3]

[JL-G-1] [JL-G-2] [JL-G-3] [LO1-G-1] [LO1-G-2] [SL-G-1] [SL-G-2]

[SL-G-3] [UD-G-2] [UD-P-2]

Minimal differences [LO2-G-1] [LO4-G-3] [LO4-SL-1] [LO4-SL-2] [LO4-SL-3] [LO4-

SL-4] [UD-P-1]

Significant differ-

ences

[HDT-P-3] [HDT-P-4] [HO-G-1] [HO-G-2] [HO-G-3] [HU-G-1]

[LO1-G-3] [LO2-G-2] [LO2-G-3] [LO2-G-4] [LO3-G-1] [LO3-G-

2] [LO3-G-3] [LO4-G-1] [LO4-G-2] [LO4-R-1] [LO4-R-2] [TH-P-1]

[TH-P-2] [UD-G-1] [UD-G-3]

Table 28: Flows attacker packet count – TCP

All flows same

packet count

[BD-T-1] [BD-T-2] [DS-T-1] [DS-T-2] [JL-T-1] [JL-T-3] [LC-T-1]

[LC-T-2] [SD-T-2] [SF-T-1] [SF-T-2] [XO-T-1] [XO-T-2] [XO-T-3]

[XO-T-4]

Minimal differences [SD-T-1]

Significant differ-

ences

[JL-T-2] [LO1-T-1] [LO1-T-2] [LO1-T-3] [LO1-T-4] [LO2-T-1]

[LO2-T-2] [LO2-T-3] [LO2-T-4] [LO3-T-1] [LO3-T-2] [LO3-T-3]

[LO3-T-4] [LO4-T-1] [LO4-T-2] [LO4-T-3] [SD-T-3]

Even though some tools have been put into Minimal differences group or Significant

differences group, sometimes we can still find that a clear majority of flows has a similar

value of flow packet count feature, for example, [JL-T-2] (Figure 9b), [LO1-G-3], [LO3-

G-3], [LO4-G-3] or [SD-T-3] (Figure 9a). Configurations with more uniform distribution

are for example [HDT-P-3], [HO-G-2] (Figure 9c), [LO3-G-2] or [LO4-G-2] (Figure 9d).

48

Figure 9: Flow packet count histogram example

(a) [SD-T-3] (b) [JL-T-2]

(c) [HO-G-2] (d) [LO4-G-2]

49

4.4 TCP flag ratios

4.4.1 SYN outgoing to SYNACK incoming

During TCP 3-way handshake, three TCP segments are exchanged. SYN sent by con-

nection initiator/client, SYNACK response from the server and ACK from client that

confirms the succesful receival of the response. Attackers that employ IP spoofing in

their packets are unable to finish the 3WH, because the server response is never re-

ceived. The measurement differences SYN between SYNACK TCP segment couns is

a natural approach to detect outgoing DoS attacks that employ IP spoofing. A system

based on this metrics were suggested by Nashat et al. [NJH08]. We show the graphs of

ratio of outgoing SYN TCP segments and incoming SYNACK TCP segments. An outgo-

ing TCP SYN attack with IP spoofing is manifested by the ratio exceeding 1.0. We have

encountered three various states. The attribution of configurations to states is provided

in Table 29 and example graphs in Figures 10, 11 and 12.

• Stability. Ratio is longterm stable with minimal or none deviations. This is ex-

pectable from tools that rely on high number of flows. In controlled environment

with zero packet drops the ratio is 1.0. Minor anomalies may be caused when

a SYN segment is sent during a first sampling interval and SYNACK segment is

received during the next sampling interval.

• Initiation phase. Ratio is countable only during a short initiation phase. After

the end of initiation phase, no SYN and SYNACK TCP segments are exchanged.

We define the initiation phase as first 5 seconds of the attack. This is expected

behavior from tools that use a long-term established connections to deliver the

attack payload.

• IP spoofing present. During intervals when SYN TCP segments are sent to the

network, the ratio value highly exceeds 1.0. For fully spoofed attacks, the value is

equal to the number of packets with a spoofed source IP address.

4.4.2 FIN segments to all segments ratio

TCP flows are usually closed both half of the flow independently. Both client and server

transmit FIN TCP segment and acknowledge receive with ACK TCP segment. The re-

sponding side may react with FIN+ACK TCP segment, therefore lowering the number

50

Table 29: SYN outgoing to SYNACK incoming TCP segments ratio

Stability [ADR-P-1] [BD-T-1] [BD-T-2] [DS-T-1] [DS-T-2] [FF-G-1] [FF-G-

2] [FF-G-3] [GB3-G-1] [GB5-G-1] [GB5-G-2] [HO-G-1] [HO-G-2]

[HO-G-3] [HF-P-1] [HU-G-1] [JA-G-1] [JA-G-2] [JA-G-3] [JL-G-1]

[JL-G-2] [JL-G-3] [JL-T-1] [JL-T-2] [JL-T-3] [LO1-G-1] [LO1-G-2]

[LO1-G-3] [LO2-G-1] [LO2-G-2] [LO2-G-3] [LO2-G-4] [LO3-G-1]

[LO3-G-2] [LO3-G-3] [LO4-G-1] [LO4-G-2] [LO4-G-3] [LO4-SL-1]

[LO4-SL-3] [LC-T-1] [LC-T-2] [SD-T-1] [SD-T-2] [SD-T-3] [UD-G-

1] [UD-G-2] [UD-P-1] [UD-P-2] [UD-G-3] [XO-T-1] [XO-T-2] [XO-

T-3] [XO-T-4]

Initial phase [AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [HDT-P-1] [HDT-P-

2] [HDT-P-3] [HDT-P-4] [LO1-T-1] [LO1-T-2] [LO1-T-3] [LO1-T-

4] [LO2-T-1] [LO2-T-2] [LO2-T-3] [LO2-T-4] [LO3-T-1] [LO3-T-2]

[LO3-T-3] [LO3-T-4] [LO4-R-1] [LO4-R-2] [LO4-SL-2] [LO4-SL-4]

[LO4-T-1] [LO4-T-2] [LO4-T-3] [LC-G-1] [LC-G-2] [LC-G-3] [SL-

G-1] [SL-G-2] [SL-G-3] [TH-P-1] [TH-P-2]

IP spoofing [SF-T-1] [SF-T-2]

51

Figure 10: SYN outgoing to SYNACK incoming TCP segments ratio – Stability example

(a) [GB5-G-1] (b) [SD-T-1] (c) [XO-T-2]

Figure 11: SYN outgoing to SYNACK incoming TCP segments ratio – Initiation phase

example

(a) [AD-G-2] (b) [LO1-T-4] (c) [TH-P-2]

Figure 12: SYN outgoing to SYNACK incoming TCP segments ratio – IP spoofing

present example

(a) [SF-T-1]

52

of packets required for termination. As a second possibility, TCP flow may be aborted

with RST TCP segment. RST segment terminates the flow immediately, no response

from the other party is required. Famous paper by Wang, Zhang and Shin exploits the

differences between the number of SYN TCP segments and FIN TCP segments. We ex-

plore the relationship between the number of FIN or RST segments and the number of

all packets [WZS02].

Huge majority of tools always close a flow with the same combination of TCP flags.

Grouping flows by their termination method is another measure to identify similarities

between flows originating from a DDoS attack tool. Four distinct states have been ob-

served regarding the ratio of FIN segments and all segments in our analysis in the initial

60 seconds of the attack. The attribution of configurations to states is provided in Table

30 and example graphs in Figures 13, 14 and 15.

• No FIN TCP segments. Most tools do not close TCP connections with FIN TCP

segments or the closure takes place with delay that is longer than our 60 second

observation window. This is somewhat surprising, because FIN closure is default

for ordinary connections. Included are tools that would not be closed during the

lifetime of the attack (e.g., AD, ADR, LC) and configurations with flows that are

closed with RST TCP segments.

• Stability. Ratio holds approximately the same value in long-term.

• Anomaly. No predictions can be made about the ratio. In case of GB, the cause is

an uneven distribution of HTTP requests in attack traffic.

• Repeated pattern. Patterns with LO1 are caused by regular peaks of packet rate.

Steady packet rate would result in stable ratio.

4.4.3 RST segments to all segments ratio

TCP segments with RST flags are second option how to terminate a TCP flow. States

are similar to states observed with FIN TCP segments. Classification of configurations

is provided in Table 31 and examples in Figures 16, 17 and 18.

• No RST TCP segments. Flows are closed with FIN segment or are not closed dur-

ing the sample window at all.

53

Table 30: FIN segments to all segments ratio

None [AD-G-1] [AD-G-2] [ADR-P-1] [BAD-G-1] [BAD-G-2] [DS-T-

1] [DS-T-2] [FF-G-2] [HDT-P-1] [HDT-P-2] [HDT-P-3] [HDT-P-

4] [HF-P-1] [HU-G-1] [LO1-T-1] [LO1-T-2] [LO1-T-3] [LO1-T-4]

[LO2-G-1] [LO2-G-2] [LO2-G-3] [LO2-G-4] [LO2-T-1] [LO2-T-2]

[LO2-T-3] [LO2-T-4] [LO3-G-1] [LO3-G-2] [LO3-G-3] [LO3-T-1]

[LO3-T-2] [LO3-T-3] [LO3-T-4] [LO4-G-1] [LO4-G-2] [LO4-G-3]

[LO4-T-1] [LO4-T-2] [LO4-T-3] [LO4-R-1] [LO4-R-2] [LO4-SL-1]

[LO4-SL-2] [LO4-SL-3] [LO4-SL-4] [LC-G-1] [LC-G-2] [LC-G-3]

[LC-T-1] [LC-T-2] [SL-G-1] [SL-G-2] [SL-G-3] [SF-T-1] [SF-T-2]

[TH-P-1] [TH-P-2] [UD-G-1] [UD-G-2] [UD-P-1] [UD-P-2] [UD-

G-3]

Stability [BD-T-1] [BD-T-2] [FF-G-1] [FF-G-3] [HO-G-1] [HO-G-2] [HO-

G-3] [JA-G-1] [JA-G-2] [JA-G-3] [JL-G-1] [JL-G-2] [JL-G-3] [JL-T-

1] [JL-T-2] [JL-T-3] [SD-T-1] [SD-T-2] [SD-T-3] [XO-T-1] [XO-T-2]

[XO-T-3] [XO-T-4]

Anomaly [GB3-G-1] [GB5-G-1] [GB5-G-2]

Repeated pattern [LO1-G-1] [LO1-G-2] [LO1-G-3]

54

Figure 13: FIN segments to all segments ratio – Stability example

(a) [BD-T-2] (b) [JL-G-3] (c) [SD-T-2]

Figure 14: FIN segments to all segments ratio – Anomaly example

(a) [GB5-G-2] (b) [GB3-G-1]

Figure 15: FIN segments to all segments ratio – Repeated pattern

(a) [LO1-G-1] (b) [LO1-G-2]

55

• Stability. Ratio holds approximately the same value in long-term.

• Planks. Corresponds to repeated patterns state of TCP RST segments. Caused by

LO closing flows in batches with idle periods in between and by SF sending all

packets in batches.

• Anomaly. Ratio does not yield any observable trend.

Table 31: RST segments to all segments ratio

None [AD-G-1] [AD-G-2] [ADR-P-1] [BAD-G-2] [DS-T-1] [DS-T-2] [FF-

G-2] [GB3-G-1] [GB5-G-1] [GB5-G-2] [HO-G-1] [HO-G-2] [HO-

G-3] [HDT-P-1] [HDT-P-2] [HDT-P-3] [HDT-P-4] [HF-P-1] [JA-

G-3] [LO1-T-1] [LO1-T-2] [LO1-T-3] [LO1-T-4] [LO2-T-1] [LO2-T-

2] [LO2-T-3] [LO3-T-1] [LO3-T-2] [LO3-T-3] [LO3-T-4] [LO4-T-1]

[LO4-T-2] [LO4-T-3] [LO4-R-1] [LO4-R-2] [LO4-SL-1] [LO4-SL-

2] [LO4-SL-3] [LO4-SL-4] [LC-G-1] [LC-G-2] [LC-G-3] [SL-G-1]

[SL-G-2] [SL-G-3] [TH-P-1] [TH-P-2] [UD-G-1] [UD-G-2] [UD-P-

1] [UD-P-2] [UD-G-3]

Stability [BD-T-1] [BD-T-2] [FF-G-1] [FF-G-3] [JA-G-1] [JA-G-2] [JL-G-2]

[JL-G-3] [JL-T-1] [JL-T-3] [LC-T-1] [LC-T-2] [SD-T-1] [SD-T-2] [SD-

T-3] [XO-T-1] [XO-T-2] [XO-T-3] [XO-T-4]

Planks [LO1-G-1] [LO1-G-2] [LO1-G-3] [LO2-G-1] [LO2-G-2] [LO2-G-3]

[LO2-G-4] [LO2-T-4] [LO3-G-1] [LO3-G-2] [LO3-G-3] [LO4-G-1]

[LO4-G-2] [LO4-G-3] [SF-T-1] [SF-T-2]

Anomaly [BAD-G-1] [HU-G-1] [JL-G-1] [JL-T-2]

4.4.4 NS, ECE, CWR, URG to all TCP segments ratio

None of the tools in the set has created TCP segments with NS, CWR, ECE or URG

flag set. The reasons may be these flags are not as widely used as the other core flags,

therefore it would be possible to filter out attack traffic trivially.

4.5 Average flow duration

Duration is an important and an easily measurable property of the flow. Similar dura-

tion of many flows may be just another indicator of mutual resemblance. Also, there

56

Figure 16: RST segments to all segments ratio – Stability example

(a) [FF-G-1] (b) [JA-G-2] (c) [XO-T-2]

Figure 17: RST segments to all segments ratio – Planks example

(a) [HU-G-1] (b) [LO3-G-2] (c) [SF-T-1]

Figure 18: RST segments to all segments ratio – Anomaly example

(a) [BAD-G-1] (b) [JL-G-1] (c) [JL-T-2]

57

exist several key values of flow duration that can help estimate the outcome of the

flow. For example, flows taking 130 seconds might have been closed after server time-

out. Flow duration has been utilized for detection of DDoS attacks by Tao et al. in

[TYP+09]. Siaterlis and Maglaris measure the number of flows with duration less than

10 ms [SM05]. Oppositely, Galtsev and Sukhov consider flows with duration longer

than 300 seconds [GS11]. Braga et al. measure the average duration of flows in order to

decrease false positives when there is a small number of packets exchanged [BMP10].

We provide summary of flow measurement in Table 32. Full results are available in

Tables 33, 34 and 35. Majority of TCP-based attacks produce very short flows. Unsur-

prisingly, HTTP-based attacks that use malformed HTTP requests also generate flows

with short average duration. We can observe there are configurations with very small

relative standard deviation (LO-T, SL, TH). Small variance in flow duration for these

configurations is the manifestation of batch flow establishment. Long flows are charac-

teristic for slow attacks and HTTP attacks with multiple requests over each flow. LO-T is

the only example of TCP-based attack that spans over period of more than one second.

We are convinced that flow duration metric has a decent potential for detection of

outgoing DDoS attacks. It is measured effectively with NetFlow, applicable to all types

of attacks and previous works have shown its practical useability. We especially high-

light its convenience for detection of TCP-based attacks with high number of flows. For

these types of attacks, flow duration measurement can become a quick and reasonably

precise DoS detection input feature. Poor detection swiftness is an obvious handicap for

the detection of DoS attacks with long flows. However, we still perceive the useability

as a signature-based metrics that can be used to identify flows that were closed after a

key time period. Such key time period is 130 seconds in our case, which seems to be a

default timeout interval of IIS 7.0 webserver.

5 HTTP behavior

5.1 HTTP requests success

Success rate of client HTTP request is an interesting metric to use. While occasional

errors can be expected, most standard HTTP requests are resolved successfully in the

longterm. Following events can alter the HTTP request success and failure ratio:

58

Table 32: Flow duration – Summary

0 – 100 ms [ADR-P-1] [DS-T-1] [DS-T-2] [FF-G-1] [FF-G-2] [FF-G-3] [GB3-G-

1] [GB5-G-1] [GB5-G-2] [HO-G-1] [HO-G-2] [HO-G-3] [HDT-P-2]

[HF-P-1] [HU-G-1] [JA-G-1] [JA-G-2] [JA-G-3] [JL-G-1] [JL-G-2]

[JL-G-3] [JL-T-1] [JL-T-2] [JL-T-3] [LC-T-1] [LC-T-2] [SD-T-2] [UD-

G-1] [UD-P-1] [XO-T-1] [XO-T-2] [XO-T-3] [XO-T-4]

101 ms – 1 s [BD-T-1] [BD-T-2] [SD-T-1] [SD-T-3] [SF-T-1] [SF-T-2] [SL-G-1]

[UD-G-2] [UD-P-2]

1 s – 10 s [LO1-G-1] [LO1-G-2] [LO1-G-3] [LO2-G-1] [LO2-G-2] [LO2-G-3]

[LO2-G-4] [LO3-G-1] [LO3-G-2] [LO3-G-3] [LO4-G-1] [LO4-G-3]

> 10 s [AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [HDT-P-1] [HDT-P-

3] [HDT-P-4] [LO1-T-1] [LO1-T-2] [LO1-T-3] [LO1-T-4] [LO2-T-

1] [LO2-T-2] [LO2-T-3] [LO3-T-1] [LO3-T-2] [LO3-T-3] [LO3-T-4]

[LO4-G-2] [LO4-R-1] [LO4-R-2] [LO4-SL-1] [LO4-SL-2] [LO4-SL-

3] [LO4-SL-4] [LO4-T-1] [LO4-T-2] [LO4-T-3] [LC-G-1] [LC-G-2]

[LC-G-3] [SL-G-2] [SL-G-3] [TH-P-1] [TH-P-2] [UD-G-3]

• Target server overwhelmed. If the DDoS attack is successful and the target is grad-

ually overwhelmed, one of the possible outcomes is an increase in error responses

from server.

• HTTP request poorly constructed. Many attack tools in our analysis were de-

signed for maximal sending performance, often even at the expense of following

standards. Missing or invalidly populated header fields were observed. Filtering

for flows with high failure rate will reveal destination IP addresses, that are having

connection issues. Subsequent flow protocol validation may reveal if the failure is

caused by poorly constructed request.

• Network failure. Failure of internet uplink will result in lost connectivity to the

majority of servers in Internet. This possibility can be partially distinguished from

focused DDoS attacks, because during the attack the legitimate traffic is not ex-

hibiting altered behavior.

Table 36 shows our observations about the success rate of HTTP DoS tools. We reit-

erate and emphasize that tools and the victim server were tuned in order to keep server

59

Table 33: Flow duration Part 1

Config ID Avg Max Min SD RSD Count

[ADR-P-1] 0.0014 0.0114 0.0000 0.0005 36% 938

[AD-G-1] 28.2488 53.5429 2.9546 35.7713 127% 2

[AD-G-2] 28.0777 53.1523 3.0031 35.4608 126% 2

[BAD-G-1] 29.4374 58.6171 0.2577 41.2663 140% 2

[BAD-G-2] 58.6889 58.8207 58.5570 0.1865 0% 2

[BD-T-1] 0.1093 0.1119 0.0004 0.0034 3% 1061

[BD-T-2] 0.1093 0.1405 0.0003 0.0035 3% 1068

[DS-T-1] 0.0006 0.0045 0.0000 0.0009 160% 3190

[DS-T-2] 0.0004 0.0036 0.0000 0.0006 143% 3250

[FF-G-1] 0.0006 0.0154 0.0003 0.0005 72% 88449

[FF-G-2] 0.0006 0.0208 0.0001 0.0004 60% 90438

[FF-G-3] 0.0006 0.0266 0.0002 0.0003 49% 91621

[GB3-G-1] 0.0012 0.0385 0.0000 0.0032 260% 3009

[GB5-G-1] 0.0020 0.048 0.0000 0.0066 327% 3363

[GB5-G-2] 0.0023 0.0528 0.0000 0.0070 312% 3342

[HO-G-1] 0.0358 0.2823 0.0150 0.0162 45% 290

[HO-G-2] 0.0383 0.6452 0.0166 0.0312 81% 580

[HO-G-3] 0.0369 0.4548 0.0151 0.0241 65% 530

[HDT-P-1] 40.2030 40.2156 40.1905 0.0069 0% 400

[HDT-P-2] 0.0085 0.386 0.0009 0.0424 500% 400

[HDT-P-3] 34.4402 59.3839 0.1963 16.4264 48% 400

[HDT-P-4] 15.9257 57.0776 0.0007 18.7415 118% 400

[HF-P-1] 0.0073 0.7182 0.0000 0.0526 718% 939

[HU-G-1] 0.0402 25.1578 0.0000 0.5952 1481% 1798

[JA-G-1] 0.0010 0.0066 0.0000 0.0004 38% 26296

[JA-G-2] 0.0010 0.005 0.0000 0.0003 27% 533

[JA-G-3] 0.0015 0.028 0.0000 0.0007 49% 26244

[JL-G-1] 0.0051 0.1806 0.0000 0.0055 109% 52449

[JL-G-2] 0.0009 0.0152 0.0002 0.0008 93% 54539

[JL-G-3] 0.0008 0.0157 0.0000 0.0007 81% 56522

[JL-T-1] 0.0008 0.0901 0.0000 0.0014 189% 82553

60

Table 34: Flow duration Part 2

Config ID Avg Max Min SD RSD Count

[JL-T-2] 0.0042 0.0472 0.0000 0.0055 130% 20456

[JL-T-3] 0.0007 0.0167 0.0000 0.0006 81% 71313

[LO1-G-1] 2.3076 10.3934 0.0003 1.4452 63% 17387

[LO1-G-2] 1.7054 6.593 0.0003 0.9439 55% 60877

[LO1-G-3] 2.8775 23.6393 0.0000 4.9639 173% 67230

[LO1-T-1] 55.1059 57.841 52.3495 1.7078 3% 10

[LO1-T-2] 53.7746 58.4762 50.5862 2.4658 5% 10

[LO1-T-3] 56.0803 58.2867 54.5122 1.5607 3% 5

[LO1-T-4] 56.0613 57.4233 54.8967 0.9772 2% 5

[LO2-G-1] 1.8304 5.6529 0.0000 1.6133 88% 16127

[LO2-G-2] 5.9598 45.541 0.0000 12.8220 215% 20934

[LO2-G-3] 3.2682 54.5414 0.0000 2.4853 76% 17279

[LO2-G-4] 4.1139 8.5306 0.0000 2.3841 58% 1849

[LO2-T-1] 53.9854 58.4887 49.5677 2.9930 6% 10

[LO2-T-2] 54.5070 58.8819 50.0166 3.0145 6% 10

[LO2-T-3] 56.4958 58.4759 54.4940 1.5642 3% 5

[LO2-T-4] 0.0003 0.0005 0.0002 0.0001 52% 5

[LO3-G-1] 2.4553 10.4998 0.0010 1.4827 60% 17281

[LO3-G-2] 5.4782 25.0519 0.0000 3.6445 67% 3725

[LO3-G-3] 5.5278 28.7546 0.0018 4.6426 84% 1858

[LO3-T-1] 55.3803 58.0563 52.6357 1.6760 3% 10

[LO3-T-2] 55.7212 58.4092 52.9784 1.6750 3% 10

[LO3-T-3] 56.6614 58.0005 55.5723 0.9376 2% 5

[LO3-T-4] 56.8953 58.2339 55.8207 0.9316 2% 5

[LO4-G-1] 3.1134 13.7684 0.0000 2.1474 69% 8764

[LO4-G-2] 14.4561 38.6941 0.0023 11.6941 81% 1837

[LO4-G-3] 3.7483 18.2816 0.0015 2.8575 76% 3691

[LO4-R-1] 56.5123 58.4393 44.5326 2.4885 4% 50

[LO4-R-2] 44.1579 56.8907 34.9020 10.6802 24% 15

[LO4-SL-1] 25.7346 33.2687 0.0007 12.0514 47% 500

[LO4-SL-2] 30.4306 30.6527 30.1989 0.1361 0% 75

61

Table 35: Flow duration Part 3

Config ID Avg Max Min SD RSD Count

[LO4-SL-3] 22.7357 33.2744 0.0006 13.7977 61% 500

[LO4-SL-4] 30.4195 30.6387 30.2008 0.1356 0% 75

[LO4-T-1] 55.8061 58.4824 53.0576 1.6750 3% 10

[LO4-T-2] 55.6772 58.3595 52.9320 1.6728 3% 10

[LO4-T-3] 56.9255 58.2771 55.8384 0.9399 2% 5

[LC-G-1] 54.4606 54.7849 54.1363 0.4586 1% 2

[LC-G-2] 54.7416 54.7418 54.7414 0.0003 0% 2

[LC-G-3] 55.1862 55.1862 55.1862 — — 1

[LC-T-1] 0.0193 0.425 0.0001 0.0394 204% 27394

[LC-T-2] 0.0161 0.4228 0.0003 0.0174 108% 6869

[SD-T-1] 0.1941 8.4353 0.0000 0.6478 334% 119161

[SD-T-2] 0.0504 0.0773 0.0001 0.0063 13% 115101

[SD-T-3] 0.4076 16.2237 0.0000 1.2419 305% 115552

[SL-G-1] 0.4172 0.5274 0.3943 0.0236 6% 500

[SL-G-2] 30.2226 30.2758 30.1919 0.0171 0% 500

[SL-G-3] 50.2318 50.272 50.1888 0.0190 0% 100

[SF-T-1] 0.1100 21.0025 0.0000 1.4384 1308% 464

[SF-T-2] 0.1100 21.0323 0.0000 1.4393 1308% 464

[TH-P-1] 56.8418 57.916 54.8748 0.6904 1% 256

[TH-P-2] 57.7713 58.6353 56.0571 0.6791 1% 64

[UD-G-1] 0.0704 0.4216 0.0026 0.0953 135% 3729

[UD-G-2] 0.2117 0.8378 0.0014 0.0441 21% 2125

[UD-P-1] 0.0085 0.6873 0.0007 0.0466 551% 3710

[UD-P-2] 0.2088 0.8745 0.0021 0.0458 22% 3780

[UD-G-3] 22.5169 43.3079 0.0034 13.7701 61% 2152

[XO-T-1] 0.0006 0.0066 0.0001 0.0004 65% 100082

[XO-T-2] 0.0006 0.011 0.0001 0.0004 67% 102668

[XO-T-3] 0.0006 0.0068 0.0002 0.0004 68% 101496

[XO-T-4] 0.0006 0.0066 0.0003 0.0004 64% 102510

62

stable and not overwhelmed. The produced results were the consequence of adhering

to standards both by the attacker and by the victim.

Special case is Slowloris. This tool is designed to tie available server connections

by slowly sending long HTTP request. During our defined sample window this HTTP

request is never finished, therefore the response is not observed. Normally, Microsoft

IIS server reacts by closing the connection with RST segment.

Interesting is also the development of LOIC. Version 1.0.4.0 produces HTTP requests

for which IIS responds with error 400 Bad request. Later versions are corrected and the

response is properly received. Oppositely, JavaLOIC do not implement this modifica-

tion and produces minimal HTTP requests, that cause error 400.

Table 36: HTTP requests success

Ok [AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [HO-G-1] [HO-G-2]

[HO-G-3] [HDT-P-1] [HDT-P-2] [HDT-P-3] [HDT-P-4] [HU-G-1]

[LO2-G-1] [LO2-G-2] [LO2-G-3] [LO2-G-4] [LO3-G-1] [LO3-G-

2] [LO3-G-3] [LO4-G-1] [LO4-G-2] [LC-G-1] [LC-G-2] [LC-G-3]

[UD-G-1]

Malformed connec-

tion, closed due to

timeout

[SL-G-1] [SL-G-2] [SL-G-3]

Error 40x [ADR-P-1] [FF-G-1] [FF-G-2] [FF-G-3] [GB3-G-1] [GB5-G-1] [GB5-

G-2] [HF-P-1] [JA-G-1] [JA-G-2] [JA-G-3] [JL-G-1] [JL-G-2] [JL-G-

3] [LO1-G-1] [LO1-G-2] [LO1-G-3] [LO4-G-3] [TH-P-1] [TH-P-2]

[UD-G-2] [UD-G-3] [UD-P-1] [UD-P-2]

5.2 HTTP requests per flow

Number of outgoing HTTP requests per the number of flows for a single destination IP

address can be considered a decent detection metric. The normal traffic consists both

of TCP flows with only one HTTP request and of TCP flows that carry multiple HTTP

requests along with respective responses. Therefore on average, the number of HTTP

requests exchanged over destination port 80 is higher than the number of TCP flows

with this destination port. This important characteristic is only rarely emulated by DoS

tools. Volume-based attack tools produce many HTTP requests and their distribution

63

between flows is often very straightforward, as can be seen in Table 37 and Figure 19.

FF and HO are classic examples of tools with many flows, one HTTP request each. LO

Recoil attack is a slow attack with never finished HTTP header, therefore only the first

part of each segmented HTTP request is marked.

• One per flow. Each established TCP flow is closed after at most one HTTP request

is sent from the attacker to the victim. The ratio between the number of HTTP

requests and the number of TCP flows carrying HTTP protocol messages conver-

gates to 1.

• Multiple per flow. Established TCP flows can carry one or more separate HTTP

requests and respective responses. Of the tested tools, none has exhabitied such

behavior with chosen configurations.

• Infinite per flow. TCP flows carrying attack HTTP requests are never closed under

normal circumstances and the request sending has not been observed to be stop-

ping during our analysis. The ratio between the number of HTTP requests and

the number of TCP flows carrying HTTP protocol messages during each interval

is much higher than 1 and is usually copying packet rate curve.

Table 37: HTTP requests per flow

One per flow [ADR-P-1] [FF-G-1] [FF-G-2] [FF-G-3] [GB3-G-1] [GB5-G-1] [GB5-

G-2] [HO-G-1] [HO-G-2] [HO-G-3] [HDT-P-1] [HDT-P-2] [HDT-

P-3] [HDT-P-4] [HF-P-1] [HU-G-1] [JA-G-1] [JA-G-2] [JA-G-3]

[JL-G-1] [JL-G-2] [JL-G-3] [LO1-G-1] [LO1-G-2] [LO1-G-3] [LO2-

G-1] [LO2-G-2] [LO2-G-3] [LO2-G-4] [LO4-G-1] [LO4-G-2] [LO4-

G-3] [LO4-R-1] [LO4-R-2] [LO4-SL-1] [LO4-SL-2] [LO4-SL-3]

[LO4-SL-4] [SL-G-1] [SL-G-2] [SL-G-3] [TH-P-1] [TH-P-2] [UD-G-

1] [UD-G-2] [UD-P-1] [UD-P-2] [UD-G-3]

Multiple per flow

Infinite per flow [AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [LC-G-1] [LC-G-2]

[LC-G-3]

64

Figure 19: HTTP request per flow count

(a) [FF-G-2] (b) [HO-G-2] (c) [LO4-R-2]

5.3 HTTP request method

Request method indicates the action that is required from the server. RFC 2616 defines

8 methods: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, CONNECT. In prac-

tice, most HTTP requests use GET or POST method. We can expect only these two most

common methods to be used during DDoS attacks. Employing rare request method

would simplify both the harmful traffic detection and filtering. From the source end

DDoS detection perspective, measuring the ratio between GET and remaining methods

may be used, especially for the detection of POST flooding. Excessive amount of POST

requests are worth close investigation.

None of the tools in our analysis have used other method than GET or POST. Re-

quests produced by tools were also always homogenous, without switching between

different methods during the attack.

Table 38: HTTP requests method

GET [AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [FF-G-1] [FF-G-2] [FF-

G-3] [GB3-G-1] [GB5-G-1] [GB5-G-2] [HO-G-1] [HO-G-2] [HO-G-

3] [HU-G-1] [JA-G-1] [JA-G-2] [JA-G-3] [JL-G-1] [JL-G-2] [JL-G-3]

[LO1-G-1] [LO1-G-2] [LO1-G-3] [LO2-G-1] [LO2-G-2] [LO2-G-3]

[LO2-G-4] [LO3-G-1] [LO3-G-2] [LO3-G-3] [LO4-G-1] [LO4-G-2]

[LO4-G-3] [LO4-R-1] [LO4-R-2] [LO4-SL-3] [LO4-SL-4] [LC-G-1]

[LC-G-2] [LC-G-3] [SL-G-1] [SL-G-2] [SL-G-3] [UD-G-1] [UD-G-

2] [UD-G-3]

POST [ADR-P-1] [HDT-P-1] [HDT-P-2] [HDT-P-3] [HDT-P-4] [HF-P-1]

[LO4-SL-1] [LO4-SL-2] [TH-P-1] [TH-P-2] [UD-P-1] [UD-P-2]

65

5.4 HTTP requests URIs

We are convinced URI monitoring one of the most important metrics that can be used

to verify the presence of an outgoing DDoS attack in a given traffic sample. Observ-

ing repeated similar URIs either within one HTTP flow or within multiple flows with

very similar characteristics justifies raising an alert for a security operator to investigate

manually. There are several methods that can be employed in order to make comparison

of HTTP URIs difficult. Tables 39 and 40 show a detailed listing of URI modifications

observed during our analysis.

Table 39: HTTP requests URIs

Same HTTP requests

among multiple

flows

[ADR-P-1] [FF-G-1] [FF-G-2] [FF-G-3] [GB3-G-1] [GB5-G-1] [GB5-

G-2] [HO-G-1] [HO-G-2] [HO-G-3] [HDT-P-1] [HDT-P-2] [HDT-

P-3] [HDT-P-4] [HF-P-1] [JA-G-1] [JA-G-2] [JA-G-3] [JL-G-1]

[JL-G-3] [LO1-G-1] [LO1-G-2] [LO1-G-3] [LO2-G-1] [LO2-G-2]

[LO2-G-3] [LO2-G-4] [LO3-G-1] [LO3-G-2] [LO3-G-3] [LO4-G-1]

[LO4-G-2] [LO4-G-3] [LO4-R-1] [LO4-R-2] [LO4-SL-1] [LO4-SL-

2] [LO4-SL-3] [LO4-SL-4] [LC-G-1] [LC-G-2] [LC-G-3] [SL-G-1]

[SL-G-2] [SL-G-3] [TH-P-1] [TH-P-2] [UD-G-1] [UD-P-1] [UD-G-

3]

Completely different

URLs

[JL-G-2] [UD-G-2] [UD-P-2]

Same base URL, dif-

ferent parameters

[AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [HU-G-1]

• URI string set. The tool attacks not just one URI, but a predefined set of URIs.

Using a set may slightly downgrade the attack efficiency, because not only the

most resource demanding page is chosen to be the target, but also several other.

Moreover, if chosen URIs are not as critical as the primary target, selected HTTP

requests may be blocked before reaching the intended target. URI string set modi-

fication can be overcome by grouping the flows by destination address. Even if the

threshold is set per-URI, the attack may be detected if the set is small. Enlargening

the set signifies efficiency drop.

66

• Page crawling. The tool starts with an initial URI and gets more URIs by parsing

the links in the HTTP response. Page crawling may seem like an efficient method,

but its implementation is difficult. Current webpages frequently host links that

lead to other webservers and following them would result in attack traffic being

spread among many more targets. Therefore, the tool would have to allow to con-

figure limitations for crawling. Also, the impact on tool performance might be

significant. Attack tools do not process the response and doing so would require

much more resources on the attacker machine. Crawling can be employed to cre-

ate an URI set which is subsequently used. In such situation, listed limitations for

string sets apply. In our analysis, no tool employed page crawling nor predefined

URI set.

• Parameter change. The base domain and file path remains constant, but full URI

is made unique by adding unique parameter values. This method allows to spec-

ify the precise target, while maintaining a decent level of stealthiness. Unique

parameter values also render webpage caching servers between the attacker and

the victim useless, therefore make the attack mitigation more difficult. Obvious

countermeasure is to only consider the base path. While it is not often possible

for the purposes of attack mitigation, it is a solid approach for the purposes of an

outgoing DDoS attack detection. Figures 20 and 21 provide a sample compari-

son of HTTP request count when full URIs are considered and when parameters

are dropped. Dropped parameters result in constant unique HTTP request count

equal to 1.

– Per-thread random parameter. LO pursues an interesting policy. For each

process thread a random string is generated and subsequently the string is

appended to URIs of all HTTP requests produced by this thread. This policy

is reasonable from the performance point of view. Also, victim-based DDoS

detection systems can be initially overcome if the attack is sufficiently dis-

tributed. Over time however, the constant parameter may be used filter out

attack flows by routers and firewalls on the path between the attacker and

the victim. Per-thread parameters are also useless against source-end DDoS

detection systems. Example of a [LO3-G-2] request is

"GET index.htm?LFMLND".

67

– Timestamp parameter. Each request has a timestamp information that makes

it unique. Timestamps we observed had Unix timestamp format. Example of

a [BAD-G-2] request is

"GET index.htm?id=1383307797379&msg=We%20Are%20Legion".

– Random key=value parameter. HU adds a structure that mimics standard

URI parameters. Random key name and random key value are separated

with "=" sign. Example HTTP request is

"GET index.htm?TJSXF=SQGUISOS".

• Random URI. URI may be fully randomly generated. That presents a challenge

for the attack detection and mitigation, but the attack effectiveness is severely de-

graded. A huge majority of responses is error 400, therefore the web server does

not saturate its outgoing bandwidth and also do not devote as much computa-

tional power to retrieve the response. Alternatively, only a parameter part of the

URI may be random. In such case, limitations listed for parameter changes apply.

Table 40: HTTP requests URIs modifications

Random URI [JL-G-2] [UD-G-2] [UD-P-2]

Per-thread random

parameter

[LO3-G-2] [LO3-G-3] [LO4-G-2] [LO4-G-3]

Timestamp parame-

ter

[AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2]

Random key=value

parameter

[HU-G-1]

5.5 HTTP header fields

5.5.1 User-Agent

User-Agent (UA) field in HTTP header serves as an identifier of the client sending the

request. It’s purpose is mainly to allow to provide different content for different situ-

ations, e.g. the server may respond with webpage suitable for small displays if the re-

quest comes from a mobile device browser. User-Agent string is selected by the creator

of the client application. Theoretically, it is possible for creators of malware and hacking

68

Figure 20: HTTP request URIs – Unique HTTP request count

(a) [AD-G-1] (b) [BAD-G-2] (c) [HU-G-1]

Figure 21: HTTP request URIs – Unique HTTP request without parameters count

(a) [AD-G-1] (b) [BAD-G-2] (c) [HU-G-1]

69

tools to mimic UA strings of popular software. However in practice, UA strings have

been succesfully used to track generic malware [MV11]. We have identified three filling

methods for UA field. Classification of DDoS tools by the methods is given in Table 41.

• Missing UA. Even though UA string is not a required HTTP header field, it can

be found in the vast majority of HTTP requests. Many DDoS tools in our set are

however so focused on requests per second rate that the UA field is not included.

Tracking the number of HTTP requests destined for the same IP address and mea-

suring the percentage of requests without UA field can become a decent anomaly

detection method.

• Static UA. UA field is filled with a static string, depending on the tool in question.

Most of the tools mimic existing web browsers, which makes the UA field unsuit-

able for detection purposes. However, there exist also tools which either allow to

insert an arbitrary static string (e.g., [HDT-P-3]) or which fill the field with easily

distinguishable string (e.g., [JA-G-1]). In these situations, UA field can be used

both for signature detection and traffic clustering.

• Dynamic UA. The field is filled with a string from a limited set or the string is

randomly generated, possibly from basic building blocks. Dynamic UA aim to

confuse victim-based detection systems, which cannot subsequently cluster the

traffic by UA strings. However, this technique makes the tool very visible for

source-end based detection systems. A simple threshold scheme for the maximal

number of unique UAs, implemented easily for example with cumulative Bloom

filters, can detect the presence of such tool on the host.

5.5.2 Referer

Referer HTTP header field contains the address of a website from which the URI in

current request was linked. This field is intended mostly for the purposes of advertising

and user profiling. As can be seen in Table 42, huge majority of DDoS tools do not

include this header in the request. This approach is not unexpected, because inserting

a static referer string could make requests clustering easier while inserting dynamic

referer string presents a non-trivial problem.

Configurations [BAD-G-1] and [BAD-G-2] always use a static string

"http://127.0.0.1/?a=e". This string is probably default value for ZzeePhpExe

70

Table 41: HTTP requests User-Agents

User-agent field

missing

[ADR-P-1] [GB3-G-1] [GB5-G-1] [GB5-G-2] [HO-G-1] [HO-G-2]

[HO-G-3] [HF-P-1] [JL-G-1] [JL-G-2] [JL-G-3] [LO1-G-1] [LO1-G-

2] [LO1-G-3] [LO2-G-1] [LO2-G-2] [LO2-G-3] [LO2-G-4] [LC-G-1]

[LC-G-2] [LC-G-3] [UD-G-1] [UD-P-1] [UD-G-3]

User-agent field

static

[AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [FF-G-1] [FF-G-2] [FF-

G-3] [HDT-P-1] [HDT-P-2] [HDT-P-3] [HDT-P-4] [JA-G-1] [JA-G-

2] [JA-G-3] [LO3-G-1] [LO3-G-2] [LO3-G-3] [LO4-G-1] [LO4-G-2]

[LO4-G-3] [SL-G-1] [SL-G-2] [SL-G-3]

User-agent field dy-

namic

[HU-G-1] [TH-P-1] [TH-P-2] [UD-G-2] [UD-P-2]

compiler this tool was built with. [HU-G-1] employes much more sophisti-

cated technique. Each referer is unique. It consists of an URI from a predefined

set (e.g., "www.usatoday.com/search/results", "www.google.com") followed by

a key "q" with a random value consisting of 5-10 capital letters. Example is

"http://www.usatoday.com/search/results?q=AVBPW". Although it is possible

to collect all URIs in the set and subsequently to construct a regular expression that will

filter only traffic produced by HU, we consider this solution very time consuming and

inflexible for practical use. Referer field populating by HU is an example of advanced

DoS HTTP request construction with focus on making the detection as difficult as

possible.

5.5.3 Accept-Encoding and Accept-Language

Two remaining HTTP header fields occasionally encountered at requests generated by

DoS tools are Accept-Encoding and Accept-Language. Accept-Encoding determines

what types of encoding are understood and preferred by the client application, Accept-

Language field specifies output in what language is acceptable for the client application

respectively. We did not discover any interesting anomalies regarding the usage of these

two fields. Tables 43 and 44 show that even though these fields are utilized occasionally,

most tools create HTTP requests without them.

Accept-Language field for AD and BAD is filled with value "en-US\r\n". Con-

versely, HO uses "en\r\n". Both these values are common and valid. All tools ex-

71

Table 42: HTTP requests header fields – Referer

Referer field missing [AD-G-1] [AD-G-2] [ADR-P-1] [FF-G-1] [FF-G-2] [FF-G-3] [GB3-

G-1] [GB5-G-1] [GB5-G-2] [HO-G-1] [HO-G-2] [HO-G-3] [HDT-

P-1] [HDT-P-2] [HDT-P-3] [HDT-P-4] [HF-P-1] [JA-G-1] [JA-G-2]

[JA-G-3] [JL-G-1] [JL-G-2] [JL-G-3] [LO1-G-1] [LO1-G-2] [LO1-G-

3] [LO2-G-1] [LO2-G-2] [LO2-G-3] [LO2-G-4] [LO3-G-1] [LO3-G-

2] [LO3-G-3] [LO4-G-1] [LO4-G-2] [LO4-G-3] [LC-G-1] [LC-G-2]

[LC-G-3] [SL-G-1] [SL-G-2] [SL-G-3] [TH-P-1] [TH-P-2] [UD-G-1]

[UD-G-2] [UD-P-1] [UD-P-2] [UD-G-3]

Referer field popu-

lated

[BAD-G-1] [BAD-G-2] [HU-G-1]

cept HU contain an expected string "gzip, deflate\r\n" in their Accept-Encoding HTTP

header field. HU fills the field with a reserved word "identity\r\n". This codeword tells

the receiving server that any encoding is acceptable for the client.

Table 43: HTTP requests header fields – Accept-Encoding

Accept-Encoding

field missing

[ADR-P-1] [FF-G-1] [FF-G-2] [FF-G-3] [GB3-G-1] [GB5-G-1] [GB5-

G-2] [HO-G-1] [HO-G-2] [HO-G-3] [HDT-P-1] [HDT-P-2] [HDT-

P-3] [HDT-P-4] [HF-P-1] [JL-G-1] [JL-G-2] [JL-G-3] [LO1-G-1]

[LO1-G-2] [LO1-G-3] [LO2-G-1] [LO2-G-2] [LO2-G-3] [LO2-G-4]

[LO3-G-3] [LO4-G-1] [LO4-G-2] [LO4-G-3] [SL-G-1] [SL-G-2] [SL-

G-3] [TH-P-1] [TH-P-2] [UD-G-1] [UD-G-2] [UD-P-1] [UD-P-2]

[UD-G-3]

Accept-Encoding

field valid

[AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [HU-G-1] [JA-G-1]

[JA-G-2] [JA-G-3] [LO3-G-1] [LO3-G-2]

72

Table 44: HTTP requests header fields – Accept-Language

Accept-Language

field missing

[ADR-P-1] [FF-G-1] [FF-G-2] [FF-G-3] [GB3-G-1] [GB5-G-1] [GB5-

G-2] [HDT-P-1] [HDT-P-2] [HDT-P-3] [HDT-P-4] [HF-P-1] [HU-

G-1] [JL-G-1] [JL-G-2] [JL-G-3] [LO1-G-1] [LO1-G-2] [LO1-G-3]

[LO2-G-1] [LO2-G-2] [LO2-G-3] [LO2-G-4] [LO3-G-1] [LO3-G-

2] [LO3-G-3] [LO4-G-1] [LO4-G-2] [LO4-G-3] [LC-G-1] [LC-G-2]

[LC-G-3] [SL-G-1] [SL-G-2] [SL-G-3] [TH-P-1] [TH-P-2] [UD-G-1]

[UD-G-2] [UD-P-1] [UD-P-2] [UD-G-3]

Accept-language

field valid

[AD-G-1] [AD-G-2] [BAD-G-1] [BAD-G-2] [HO-G-1] [HO-G-2]

[HO-G-3]

73

6 Summary

6.1 Attacks diversity

Network traffic generated by tools in our set present a variety of DoS attacks. Even

though it was possible to classify attacks by the basic concept, every attack was unique

in some regard.

6.2 Traffic features

Although almost every traffic feature that we measured yielded some results, none

proved to be sufficient alone for the detection of DoS attacks in the source-end net-

work. Every feature can detect only a subset of existing DoS attacks. We believe that an

aggregation of multiple features is necessary to be used for a general detection. Stan-

dalone features suffer from false positives, but more importantly, have an unexceedable

limit of false negatives rate. Different classes of DoS attacks have different properties

and none of the traffic features could be applied to all. We support the approach taken

for example by [SM05], [OL07] and [TYP+09] who collect multiple feature values and

subsequently compute their aggregate importance.

Serious consideration must be given not only to the computational efficiency of fea-

tures’ values analysis, but also to an efficient collection of input values. Features in-

cluded in NetFlow standard are therefore preferred. However, as our results show, this

limited set of flow-based statistics and network layer features may not be sufficient for

the reliable confirmation of some classes of DoS attacks. In order to balance the com-

plexity of collection and processing of some features and potentially huge amounts of

packets/flows for analysis, sampling and filtering of suspicious flows may be employed

prior to the analysis. We believe that the analysis process separated into several stages

as proposed, for example, by Wang et al. [WWWS12] is promising.

Traditional metrics such as high bitrate and high packetrate are by themselves not re-

liable options for source-end detection. By definition, slow attacks are hardly detectable

via metrics focused on high volumes. Also, many tools enable to specify the attack

performance so it is possible to find a configuration which cannot be detected through

volume-based metrics.

74

6.3 Repeating patterns

Most important observation of this work is that standalone DoS attack tools traffic com-

prises of repeating operations. Every attack has a basic construction unit which is iterated

in time, creating a series of similar operations. Although some characteristics of opera-

tions may change with each iteration, most defining properties are constant. Construc-

tion units may have a form of flows with distinct characteristics in case of TCP-based

attacks or HTTP requests and according responses in case of HTTP-based attacks.

Example 1 – [BD-T-1]. The traffic comprises of separate attack flows. Each flow is

to be considered an operation. Each flow has the same packet count, packet size distri-

bution and is carrying TCP segments. Each flow has the same TCP flags composition.

The flow is always established via a correct 3-way handshake and terminated by the at-

tacker with TCP FIN segments, which is followed by TCP RST segment from the victim.

None of the TCP segments transmits any payload. All of the TCP header options fields

of packets in one flow have the same values as the equivalent packets in other flows.

All flows have a very short duration, 99 % of them takes between 0.1 and 0.12 seconds.

None of the packets in the flow is fragmented, has the TTL value altered or is using a

spoofed IP address.

Example 2 – [AD-G-2]. Attacker opens a fixed number of simultaneous flows to-

wards the victim. Repeated HTTP requests are sent over each flow. Each HTTP request

is an operation. All packets with HTTP requests have the same length, TTL field value

and are not fragmented. Header of every HTTP request contains the same fields with

the same values. Referer field is always missing. Full URI comprises of a basic path

and parameters. The path is similar across all flows. The parameter is numeric and is

gradually rising, while the second parameter is a static string.

Example 3 – [LO3-G-2]. Attack comprises of many flows. Each flow is an opera-

tion. Each flow is opened with a correct 3WH, one HTTP request is sent towards the

victim and the flow is closed. Similarities between different flows can be found on IP

layer (e.g., packet sizes, packet count from attacker), TCP layer (e.g., TCP flag ratios,

window size, TCP checksum) and HTTP layer (e.g., HTTP fields found in the header,

URI, parameters).

Noise traffic can be filtered out once DoS operations are identified. Subsequently,

traffic can be analyzed on high scale. Patterns such as packet rate burst behavior, flow

count in time or flow paralellity are recognizable. Existing DoS detection methods can

be applied to the filtered traffic with an increased accuracy.

75

Pattern recognition opens a new area of how detect outgoing DoS attacks at the

source end. This novel approach presents challenges how to recognize construction

units in a traffic that contains both benign traffic and malicious traffic, how to deter-

mine which unit properties are constant and how to apply chosen pattern matching

in time efficiently. Benefits are high precision growing with each next correctly identi-

fied operation and possibility to detect yet unknown attacks. Since repeating patterns

have been identified across all classes of attacks, it can become a basis of a very broad

detection method.

6.4 Evasion techniques

Most tools do not support any type of detection evasion techniques. Even if supported,

they are not enabled by default. Most frequent are various kinds of randomization (e.g.,

packet payload, HTTP request URI). Randomization is usually configurable only for

packet fields chosen by tool creator. Therefore, effect of randomization can be negated

if multiple input features are analyzed in conjunction. Exception to the rule is HOIC,

which provides environment for randomization of almost all fields in HTTP header.

6.5 Experiment designs

The consequence of diversity of attacks and class-specific features is that features for

DoS detection are not mutually comparable. We want to encourage researchers to al-

ways state what their basic assumptions about DoS attacks are and what features are

processed. If possible, at least a rudimentary analysis of properties of both the training

traffic and the real traffic that was used in the experiment should be provided. Efficiency

measurement and methods comparison should be performed only within a scope of at-

tacks that satisfies chosen assumptions.

6.6 Tools characteristics

Majority of tools does not require root privileges and so can be executed on computers

at work, school or internet cafe. Basic work with tools does not require advanced knowl-

edge about the victim or the type of attack. Most tools allow targeting only one victim

at a time. This is an important observation for source-end detection, because statistics

of multiple flows aimed at a single target can be included in detection. One tool usually

supports 3 different types of attack at most. The actual attack configuration may vary

76

considerably. We encountered tools both with plenty options as well as tools that do

not support any configuration except choice of target. Standalone DoS tools are not in-

tended for automated use. Majority of them have a simple GUI without corresponding

command-line interface.

7 Conclusions

This technical report provides a comprehensive analysis of attack traffic generated by

existing and widely used standalone DoS attack tools. We analyze the attack traffic

in perspectives of various traffic features. Traffic features are divided according to the

ISO/OSI layer at which they can be measured. For each feature we divide tool behavior

into classes, provide characteristics of each class and attribute DoS tools to these classes.

Our analysis shows that DoS attack traffic comprises of repeating operations. A close

examination of attack traffic can always identify independent building blocks – opera-

tions. These operations are mostly similar with minimum variability. The presence

and nature of operations can rarely be observed from the perspective of just one traf-

fic feature. Usually, an aggregation of several traffic features is required for reasonable

characterization of an operation. Since operations are omnipresent at all attack traffic

samples in our analysis, we propose a new research area for the detection of DoS at-

tacks at the source end that is based on repeated attack pattern recognition. Our future

work will focus on efficient aggregation of several traffic features in order to be able to

identify repeating DoS attack patterns in observed network traffic.

None of the DoS detection metrics in our analysis proved to be sufficient for the

detection of all types of DoS attacks by its own. For example, volume-based DoS de-

tection metrics cannot reliably detect slow attacks, while protocol validation metrics

are unsuccessful during HTTP attacks comprising of legitimate requests. As a conse-

quence, mutual comparison of detection systems can be performed only on types of

attacks for which these metrics are suitable. Therefore, we urge researchers to include

their assumptions about detectable attack types, their properties and possible detection

evasion techniques in every research output/publication that is dealing with DoS attack

detection.

Standalone DoS attack tools are widely available, trivial to use, can generate a full

scale of existing DoS attacks and are regularly observed during real hacktivist cam-

paigns. Some of them are being constantly developed, adding new attack types and

77

countermeasures against defense systems in the process. We are convinced that stan-

dalone DoS attack tools can be used both for understanding of modern DoS attacks and

for testing new detection systems. We encourage the use of these tools, opposite to

obsolete tools still prevailing in academia such as TFN2k, Trinoo or Shaft.

Acknowledgements

Authors wish to acknowledge support of the Czech research project VG20102014031,

programme BV II/2 - VS.

78

References

[AMG+12] Esraa Alomari, Selvakumar Manickam, B. B. Gupta, Shankar Karuppayah,

and Rafeef Alfaris. Botnet-based Distributed Denial of Service (DDoS)

Attacks on Web Servers: Classification and Art. International Journal of

Computer Applications, 49(7):24–32, July 2012. Published by Foundation of

Computer Science, New York, USA.

[BKBK13] Monowar H. Bhuyan, H. J. Kashyap, D. K. Bhattacharyya, and J. K. Kalita.

Detecting Distributed Denial of Service Attacks: Methods, Tools and Fu-

ture Directions. The Computer Journal, 2013.

[BMP10] R. Braga, E. Mota, and A. Passito. Lightweight DDoS flooding attack detec-

tion using NOX/OpenFlow. In 2010 IEEE 35th Conference on Local Computer

Networks (LCN), pages 408–415, Oct 2010.

[CYL+09] Jieren Cheng, Jianping Yin, Yun Liu, Zhiping Cai, and Min Li. DDoS attack

detection algorithm using IP address features. In Frontiers in Algorithmics,

pages 207–215. Springer, 2009.

[DA07] Ping Du and Shunji Abe. Detecting DoS attacks using packet size distribu-

tion. In Bio-Inspired Models of Network, Information and Computing Systems,

2007. Bionetics 2007. 2nd, pages 93–96. IEEE, 2007.

[DPV06] Alberto Dainotti, Antonio Pescapé, and Giorgio Ventre. Wavelet-based De-

tection of DoS Attacks. In Global Telecommunications Conference, 2006.

[EN11] Jeff Edwards and Jose Nazario. A survey of contemporary Chinese DDoS

malware. In Proceedings of the 21st Virus Bulletin International Conference.

Virus Bulletin Ltd, 2011.

[EYA12] Benishti Eyal, Balmas Yaniv, and Matan Atad. #OPISRAEL, November

2012. Threat Alert, Radware.

[GP01] Thomer M. Gil and Massimiliano Poletto. MULTOPS : a data-structure for

bandwidth attack detection. In Proceedings of the 10th conference on USENIX

Security Symposium, volume 10, 2001.

79

[GS11] Aleksey A. Galtsev and Andrei M. Sukhov. Network Attack Detection at

Flow Level. In Sergey Balandin, Yevgeni Koucheryavy, and Honglin Hu,

editors, Smart Spaces and Next Generation Wired/Wireless Networking, volume

6869 of Lecture Notes in Computer Science, pages 326–334. Springer Berlin

Heidelberg, 2011.

[LKK+08] Keunsoo Lee, Juhyun Kim, Ki Hoon Kwon, Younggoo Han, and Sehun

Kim. DDoS attack detection method using cluster analysis. Expert Systems

with Applications: An International Journal, 34(3):1659–1665, April 2008.

[LMSD09] Vicky Laurens, Alexandre Miege, Abdulmotaleb El Saddik, and Pulak

Dhar. DDoSniffer: Detecting DDoS Attack at the Source Agents. Interna-

tional Journal of Advanced Media and Communication, 3(3):290–311, July 2009.

[LO09] Georgios Loukas and Gülay Öke. Protection Against Denial of Service At-

tacks: A Survey. The Computer Journal, 53(7):1020–1037, August 2009.

[MR05] Jelena Mirkovic and Peter Reiher. D-WARD: a source-end defense against

flooding denial-of-service attacks. IEEE Transactions on Dependable and Se-

cure Computing, 2(3):216–232, 2005.

[MTJ08] S. Malliga, A. Tamilarasi, and M. Janani. Filtering spoofed traffic at source

end for defending against DoS/DDoS attacks. In 2008 International Confer-

ence on Computing, Communication and Networking, pages 1–5. IEEE, 2008.

[MV11] Darren Manners and Robert Vandenbrink. The user agent field: Analyzing

and detecting the abnormal or malicious in your organization. 2011. SANS

Institute.

[Nat13] National Cybersecurity and Communications Integration Center, Depart-

ment of Homeland security. OpUSA: Potential Tools. Technical report,

May 2013.

[Net12] Arbor Networks. Worldwide infrastructure security report. Technical re-

port, 2012.

[NJH08] Dalia Nashat, Xiaohong Jiang, and Susumu Horiguchi. Router based de-

tection for Low-rate agents of DDoS attack. In 2008 International Conference

on High Performance Switching and Routing, pages 177–182, May 2008.

80

[OG10] Sean-Philip Oriyano and Michael Gregg. Hacker Techniques, Tools, and Inci-

dent Handling. Jones and Bartlett Publishers, Inc., USA, 1st edition, 2010.

[oIA13] Office of Intelligence and Department of Homeland security Analysis.

OpUSA: Criminal Hackers Planning Cyber Attacks Against US Websites.

Technical report, May 2013.

[OL07] Gülay Öke and Georgios Loukas. A Denial of Service Detector based on

Maximum Likelihood Detection and the Random Neural Network. The

Computer Journal, 50(6), September 2007.

[Pax01] Vern Paxson. An analysis of using reflectors for distributed denial-

of-service attacks. ACM SIGCOMM Computer Communication Review,

31(3):38–47, July 2001.

[PYHR10] Pyungkoo Park, HeeKyoung Yi, SangJin Hong, and JaeCheul Ryu. An Ef-

fective Defense Mechanism against DoS / DDoS Attacks in Flow-based

routers. In Proceedings of the 8th International Conference on Advances in Mo-

bile Computing and Multimedia, 2010.

[SA07] Amey Shevtekar and Nirwan Ansari. A Proactive Test Based Differentia-

tion Technique to Mitigate Low Rate DoS Attacks. In 2007 16th International

Conference on Computer Communications and Networks, August 2007.

[SA11] Manjula Suresh and R. Anitha. Evaluating Machine Learning Algorithms

for Detecting DDoS Attacks. In David Wyld, Michal Wozniak, Nabendu

Chaki, Natarajan Meghanathan, and Dhinaharan Nagamalai, editors, Ad-

vances in Network Security and Applications, volume 196 of Communications

in Computer and Information Science, pages 441–452. Springer Berlin Heidel-

berg, 2011.

[Sha13] Pavitra Shankdhar. DOS Attacks and Free DOS Attacking Tools, Oc-

tober 2013. Webpage, http://resources.infosecinstitute.com/dos-attacks-

free-dos-attacking-tools/ (4/4/2014).

[SM05] Christos Siaterlis and Vasilis Maglaris. Detecting Incoming and Outgoing

DDoS Attacks at the Edge Using a Single Set of Network Characteristics.

In 10th IEEE Symposium on Computers and Communications (ISCC’05), 2005.

81

[SWH11] Sin-Seok Seo, Young J. Won, and James Won-Ki Hong. Witnessing dis-

tributed denial-of-service traffic from an attacker’s network. In Network

and Service Management (CNSM), 2011 7th International Conference on, pages

1–7, 2011.

[Tea12] TeamDangerHackers. Anonymous - #Op MYANMAR, December

2012. Webpage, https://www.youtube.com/watch?v=flNwuDge-EE

(4/4/2014).

[TSD07] Vrizlynn L. Thing, Morris Sloman, and Naranker Dulay. A Survey of Bots

Used for Distributed Denial of Service Attacks. In Hein Venter, Mariki

Eloff, Les Labuschagne, Jan Eloff, and Rossouw Solms, editors, New Ap-

proaches for Security, Privacy and Trust in Complex Environments, volume

232 of IFIP International Federation for Information Processing, pages 229–240.

Springer US, 2007.

[TYP+09] Ran Tao, Li Yang, Lu Peng, Bin Li, and Alma Cemerlic. A case study: Us-

ing architectural features to improve sophisticated denial-of-service attack

detections. In 2009 IEEE Symposium on Computational Intelligence in Cyber

Security, March 2009.

[Unk12] Author Unknown. Anon_doxing #OPISREAL, 2012. Webpage,

http://pastebin.com/9M0HLC3d (4/4/2014).

[Wil12] Curt Wilson. Attack of the Shuriken: Many

Hands, Many Weapons, February 2012. Webpage,

http://www.arbornetworks.com/asert/2012/02/ddos-tools/

(4/4/2014).

[WWWS12] Fei Wang, Hailong Wang, Xiaofeng Wang, and Jinshu Su. A new multi-

stage approach to detect subtle DDoS attacks. Mathematical and Computer

Modelling, 55(1):198 – 213, 2012. Advanced Theory and Practice for Cryp-

tography and Future Security.

[WZS02] Haining Wang, Danlu Zhang, and Kang G. Shin. Detecting SYN flooding

attacks. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, volume 3, pages

1530–1539. IEEE, 2002.

82

[XCH06] Bin Xiao, Wei Chen, and Yanxiang He. A novel approach to detecting DDoS

Attacks at an Early Stage. The Journal of Supercomputing, 36(3):235–248, June

2006.

[YKP+13] Jaehak Yu, Hyunjoong Kang, DaeHeon Park, Hyo-Chan Bang, and

Do Wook Kang. An in-depth analysis on traffic flooding attacks detection

and system using data mining techniques. Journal of Systems Architecture,

59(10, Part B):1005 – 1012, 2013. Advanced Smart Vehicular Communica-

tion System and Applications.

83

	Introduction
	Related work
	Experiment
	Environment
	Measurement principle
	Processes

	DoS Tools
	Tools selection
	Capabilities
	Binaries

	Configurations
	IP behavior
	Traffic volume
	Packet rate
	Byte rate
	Attack buildup
	Byte rate and packet rate relationship

	Packet rate burst behavior
	IP fragmentation
	IP spoofing
	Average packet size
	Packet size distribution
	Packet incoming to outgoing ratio

	TCP behavior
	Flow count
	Flow parallelity
	Flow packet count
	TCP flag ratios
	SYN outgoing to SYNACK incoming
	FIN segments to all segments ratio
	RST segments to all segments ratio
	NS, ECE, CWR, URG to all TCP segments ratio

	Average flow duration

	HTTP behavior
	HTTP requests success
	HTTP requests per flow
	HTTP request method
	HTTP requests URIs
	HTTP header fields
	User-Agent
	Referer
	Accept-Encoding and Accept-Language

	Summary
	Attacks diversity
	Traffic features
	Repeating patterns
	Evasion techniques
	Experiment designs
	Tools characteristics

	Conclusions

