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Abstract

Finding an infinite sequence of transitions (a run) going through some special states

(called accepting) is of importance for fields like formal verification. Whereas find-

ing such a sequence as been extensively studied, the problem of maintaining this

sequence upon changes in the model or the specification has received less attention.

In this work, we propose a solution to the maintenance of an accepting run when

the transition system representing the product of the model and of the specification

is changed, using the Tarjan’s algorithm as a base algorithm.

1 Introduction

A model is susceptible to change. The reason may vary: it could have been proven

incorrect with regard to an expected specification, or a new feature needed to be in-

cluded, or an existing one had to be modified, etc. One particularly interesting question

is whether some previous computation can be reused on its new, updated version.

Consider the model checking technique which is used to verify that a model is cor-

rect to a given specification. Traditionnally, as soon as the model change, checking that

the updated version posseses the expected property is done by launching the whole

verification process once again. In many cases this re-computation is very costly and

may greatly benefits from not recomputing everything.

Likewise, a model could be the representation of the multiples trajectories of a robot.

Whenever a path has been planned (according to many good properties: shortest, going

from a to b, etc.), modifying the model may obviously break the previously computed
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path. Considering the previous computation to recompute a new path could be a bene-

ficial move.

The latter example can be seen a model checking instance, which is why we will

focus on model checking without (hopefully too much) loss of generality.

Checking the validity of an LTL formula f on a transition system t can be accom-

plished by checking the emptiness of the intersection of t’s traces language with the

language recognized by the non-deterministic Bücchi Automaton (NBA) of the formula

¬f (B(¬f)). Checking the emptiness of the intersection language can be done by check-

ing whether the product of t by B(¬f) has no accepting cycle. Checking that the product

of t by B(¬f) has no accepting cycle means that the original formula f is valid. Would

an accepting cycle be found, it would “prove” that ¬f holds (i.e. f does not hold). The

infinite trace starting from the initial state of t and comprising this accepting cycle is

called an accepting run or a counter-example of f.

Instead of using this traditional model-checking approach, we are more interested

in finding (and maintaining) a witness of the property f. This is equivalent to wanting to

maintain a counter-example of the property ¬f, but we prefer doing it directly by checking

whether the language recognized by the product t× B(f) is empty.

Therefore, in this work we focus on the product and forget that it was obtained from

a transition system and the NBA of a formula f.

This article proposes a solution to tackle the issue of maintaining an accepting run

after a modification of the product from which the run was extracted. Possible modifi-

cations include removing or adding any transition on the system.

Notice that considering any modification of the product is equivalent to consider any

modification of the original model t as well as any modification of the original property

f.

1.1 Related works

An early model-checking work [1] proposes to use a model-checking technique for

checking (alternation free) modal µ-calculus and adapt it to handle changes in the prod-

uct. It is possible to specify the existence of an accepting run using the alternation free

µ-calculus. However, modal µ-calculus being a powerful logic, the product needed to

check it is bigger than what one would expect to simply check the existence of an accept-

ing run. Finally, only the maintenance of the product is of interest in this work and no
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particular attention has been given to get a witness or a counter-example, and a fortiori

to maintain it.

Dynamic graph problems are closely related to what we try to achieve in this work.

The main goal being to avoid recomputations when the graph is modified. The closest

works we are aware of consider the maintenace of the reachability relation of a graph

[3].

The problem usually comes with a trade-off between the query time and the update

time. A query is a request of the considered problem, i.e. in [3], a query is to answer

whether one vertex is reachable from one another. An update is a modification of the

graph. In [3] the achieved query time is O(n) in the worst case (n being the number of

vertices) and the achieved amortized update time isO(m+nlogn) (m is the number of

edges).

Notice that the problem is at the same time more general that ours: the reachability

query can be for any vertex to any vertex and also more restrictive as only finite path

are considered.

Other related works are considering the maintenance of all-pairs shortest path and

transitive closure ([4], [5]). Finding accepting runs with a transitive closure is easy.

Unfortunately the trade-off is that computing this transitive closure takes much more

time that a simple (nested) depth first search traversal performed by a model-checker.

Closer to our problem, a parity condition strategy can be updated when a Markov

decision process is updated [9]. This work actually solves a more general problem,

however reducing it to our framework may not lead to good results. The approach

is strongly based on an offline method: the end-components have to be completely

discovered, even though an accepting cycle could be detected at the beginning (our

approach uses an on-the-fly algorithm). Also, to retrieve an accepting run, at least one

depth first search have to be performed in the end components involved in the accepting

cycle: a path must be extracted to reach each end-component (our approaches uses

an on-the-fly variant of the Tarjan’s algorithm that can output the accepting run when

detected).

Another related work is [8], in which the authors use a SAT-based model-checker

to incrementally construct an inductive proof that a property holds. When the speci-

fication or even the property is changed, that proof can be used to check which part

of the system need to be updated. In this work, the authors claim that they use safety

properies, which is too weak to specify an accepting run.
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In [6], the authors propose an approach to model a program using control flow

graphs, give a safety property using an automaton and maintain the resulting product

whenever a change in the control flow graph occurs. The limitation to safety properties

prevent to specify accepting cycles.

In [10], the authors study propose an incremental model-checking technique for LTL

used in the “Software Product-line” engineering methodology. This methodology heav-

ily relies on reusing assets, which are bits of code, requirements, test cases, etc. Assets are

characterized by their feature, corresponding to what they can be used for. The author

then restrict the incremental model-checking to additions of features.

2 Accepting run maintenance

In this section, the notion of accepting run is defined, along with the maintenance prob-

lem tackled in this article.

Definition 2.1. Let Q be the set of all possible states.

Definition 2.2. An Unlabelled Büchi Automaton (UBA) is a tuple 〈Q, δ, s0, A〉 in which:

• Q ⊆ Q is a set of states,

• δ ⊆ Q×Q is the transition relation,

• s0 ∈ Q is the initial state,

• A ⊆ Q is the set of accepting states.

A transition (s, t) ∈ δ, will be written s δ
−→ t. The transitive closure of a relation R

will be denoted R+.

Definition 2.3. A path p of a relation δ is a transition sequence p1 . . . pn+1 such that p ∈
δ∗ ∧ (∀i ∈ [1, n])(pi = (s, t)∧ pi+1 = (t, u)), where δ∗ is the Kleene closure of δ.

Definition 2.4. s δ
=⇒ t = {p = p1 . . . pn | p is a path and p1 = (s, x) ∧ pn = (y, t)}. s δ

=⇒ t is

the set of paths in δ whose first transition source state is s and last transition target state is t.

Definition 2.5. The set of paths in δ is PATHS(δ) = {s0
δ
=⇒ t|(s0, t) ∈ δ+}.

Definition 2.6. A path p = p1 . . . pn is a cycle iff p1 = (s, x) and pn = (y, s).
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Definition 2.7. A path p = p1 . . . pn is a run iff (∃i)(pi = (s, x) and pn = (y, s)). p1 . . . pi−1
is called the initial part of the run and pi . . . pn the cyclic part of the run.

Definition 2.8 (Accepting run). Let r be a run ri . . . rn be its cyclic part. r is accepting iff

(∃j ∈ [i, n])(rj = (s, t)∧ s ∈ A).

Definition 2.9. A patch is a couple 〈U, T〉, in which:

• U ⊆ Q×Q is a set of updates.

• T ∈ {Add, Rem} is the type of the updates.

A patch whose type is Add is called an additive patch. Likewise, a patch whose type

is Rem is called a destructive patch.

Definition 2.10. Let b = 〈Q, δ, s0, A〉 be an UBA and let p = 〈U, T〉 be a patch. Applying the

patch p on B gives the UBA c = 〈Q ′, δ ′, s0, A〉, where:

• If T = Add then δ ′ = δ ∪U and Q ′ = Q ∪ {s, t | (s, t) ∈ U}

• If T = Rem then δ ′ = δ \U and Q ′ = Q \ {t | (s, t) ∈ U∧ (∀(u, v) ∈ δ ′)(v 6= t)}

The patch application is written C = [B]TU or C = [B]p depending on whether we want to use

the internal information of p.

In this work, we propose a new solution for the following problem. Given an UBA

B = 〈Q, δ, s0,A〉 and a sequence of patches P = p1. . . . .pn, we want to know whether

there exists an accepting run for each updated version of B (i.e. for each
[
[B]p1 . . .

]
pi

(∀i ∈ [1, n]) ), and output it if it does.

3 Toward a solution

Let us suppose that the search for an accepting run is accomplished by the algorithm α

(no knowledge of α is required yet). For an UBA b, the result of α(b) is an accepting

run (or ε if none was found).

All the solutions we propose in this work are based on the algorithm λ of Fig. 1

defining how patches are applied.

A different solution can be found by setting a different definition for 1) r is invali-

dated by x, 2) Restart the computation and 3) Manage the patch p.
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Initially, given an UBA B,

λ(B) = α(B)

Afterwards,

given the previous accepting run r = λ(b),

and the patch pi = (u, t)

λ([[b]p1 . . . ]pi) =

if ∃x ∈ u: r is invalidated by x

then Restart the computation

else Manage the patch p

Figure 1: Patch application pattern

Defining those three sentences defines how a patch is applied. The main motivation

being that a patch should be applied lazily, i.e. the application of a patch should be

avoided when it is not strictly required. Also, while we want a patch to be lazily applied,

we also want the (generic) property 1 to hold: applying each patch using λ gives the

same result as applying the patch to the UBA and re-computing from scratch for every

patch.

Property 1. Given a patch sequence p1 . . . pn and an UBA B:

(∀i ∈ [1, n])
(
λ

([
[B]p1 . . .

]
pi

)
= α

([
[B]p1 . . .

]
pi

))
Depending on the definition of the three previous items, the laziness degree may

heavily vary.

Definition 3.1. A non-lazy patch application λ0 can be defined as follows:

• r is invalidated by u: always true

• Restart the computation: launch α([[b]p1 . . . ]pi), i.e. launch α on the UBA b updated

with the patches p1 . . . pi.

• Manage the patch p: do nothing

The λ0 patch application has the lowest laziness degree possible, since it is not lazy at

all. In fact, λ0 is exactly equivalent to the right hand side of Prop. 1. For every patch, the
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UBA is updated and the accepting run is computed from scratch. Using this solution,

if the update is discovered late during the computation, then a lot of work have been

potentially wasted: up to the update discovery point, the computation have been the

same as for the previous iteration. The complexity of this solution is O(n × (|V | + |E|)),

where n is the number of patches.

An alternative could be to consider that a recomputation is only needed whenever 1)

the run is broken by removing a transition or 2) if a new transition is introduced while

no accepting run was previously found.

Definition 3.2. Let p = (u, Rem) and r = r1 . . . rn ∈ PATHS(δ), the updates u in the destruc-

tive patch p break the run r (written u ×−→ r) when (∃i ∈ [1, n])(ri ∈ u).

Going just one step away from λ0 and using the previous idea, we obtain the first

truly lazy patch application λ1.

Definition 3.3. The lazy patch application λ1 is defined as follows:

• r is invalidated by the patch p = (u, t) iff

t = Rem∧ r 6= ε∧ u ×−→ r

or t = Add∧ r = ε

• Restart the computation: launch α([[b]p1 . . . ]pi)

• Manage the patch p: do nothing

Property 2. Property 1 is true if λ = λ1.

Proof. By induction on n:

Base Case: Initially no patch is applied to B, then λ(B) = α(B).

Induction Case: Suppose that Prop. 2 is true up to patch pi−1, we need to prove that

Prop. 2 is still correct after applying pi. The computation is restarted from scratch, for

the updated version of the UBA, every time the run is invalidated. We are then sure to

get a correct answer iff the invalidation conditions are correct.

The conditions to invalidate a run are the following:

• t = Rem, the patch is destructive, r 6= ε, there is an actual accepting run r in b

and u ×−→ r there is an update breaking the run. This means one of the transitions

removed was used by r. Then r cannot be valid anymore.

7



• t = Add, the patch is additive, r = ε and there is no accepting run in b. Adding a

transition can create an accepting cycle, and to be safe, we require a new compu-

tation.

Otherwise:

• t = Rem, the patch is destructive,

– r 6= ε, there is an actual accepting run r in b and ¬u ×−→ r, none of the

updates u are transitions involved in the run. This means the run is still there

and valid.

– r = ε, there is no accepting run in b. Removing transitions can only destroy

cycles. If none of them was accepting, then there cannot be new cycles after

removing some transitions.

• t = Add, the patch is additive, r 6= ε and there is an actual accepting run r in b.

Adding transitions cannot break any cycle and a fortiori the patch cannot break

the accepting run r.

Property 3. λ1 never performs more re-computations than λ0.

Proof. When r is invalidated (surely or potentially) by a patch, a single re-computation

is performed. If there ism patches which are not invalidating r amongst a total number

of n patches, then (n−m) ≤ n re-computations will be performed using λ1, whereas n

re-computations would have been required with the strict application of patches λ0.

This solution is still not really satisfactory. We can certainly save a lot of work by us-

ing this basic update management algorithm, but the ineffiency stated before, namely

“up to the update discovery point, the computation have been the same as for the previous iter-

ation”, is still there. In other words, the lazy patch application did not solve anything

regarding the situation in which a single update may change the existence of the accept-

ing run, i.e. the update may have an impact on the accepting run existence.

A computation α(b) can always be restarted from scratch, i.e. it can always be

restarted from the initial state s0. To show that the computation is restarted from s0,

α can be overloaded to α(b, s0). We say that α is backtrackable to s0.

Suppose that we already computed an accepting run for b. When patching bwith p,

we want to be able to identify a state i (ideally discovered the latest possible) for which
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α ′([b]p, i) ⇔ α([b]p, s0), where α ′ is a modified version of α capable of backtracking to

i. In other words, we want to identify a state i such that, when applying the patch p to

b, backtracking to i using α ′ yield the same result as restarting α from s0.

The patch p contains an update u that caused α ′ to be backtracked to i. We say that

i is the impact state of the update u, or the oldest impact state of the patch p.

In Section 4, we present three backtrackable algorithms that can get an accepting run

in an UBA b, based on Tarjan’s algorithm. And we will discuss the different heuristics

we can use to manage the patches in Section 6.

4 Accepting run computation definitions

4.1 Depth first exploration

Definition 4.1. An exploration e is the tuple 〈Qe, δe, s0, A,Ce〉, where

• 〈Qe, δe, s0, A〉 is an UBA.

• Ce : δe × δe be an ordering on the transitions δe. The transitions with a common source

state are totally ordered by Ce, i.e. (∀x δe−→ y, x
δe−→ z)(y = z∨ x

δe−→ yCe x
δe−→ z∨ x

δe−→
zCe x

δe−→ y).

Definition 4.2. Let e = 〈Qe, δe, s0, A,Ce〉 be an exploration, the relation ≺e: Qe × Qe is

defined as follows: x δe−→ y∧ x
δe−→ z∧ z

δe=⇒ y 6= ∅ =⇒ x
δe−→ yCe x

δe−→ z.

The triple 〈Qb,≺b, s0〉 is a rooted tree called depth first exploration tree. When s
≺+

b−−→ t

(i.e. (s, t) belongs to the transitive closure of ≺b), we say that s is a dfs-ancestor of t.

Definition 4.3. Let e = 〈Qe, δe, s0, A,Ce〉 be an exploration, the depth first ordering <e is

defined as follows: x <e y ⇐⇒
∃ s0

≺+
e−−→ z

≺e−→ a
≺+

e−−→ x ∧ ∃ s0
≺+

e−−→ z
≺e−→ b

≺+
e−−→ x ∧ z

≺e−→ aCe z
≺e−→ b.

The relation<e defines the depth first (total) ordering amongst the stateQe according

to the transition ordering Ce. The expression x <e y∨ x = y is denoted x ≤e y.

Definition 4.4. Let r be a total ordering on some set X. The minimum and maximum w.r.t.

r of a set Y are written respectively Minr(Y) and Maxr(Y). If Y ∩ X = ∅ then Minr(Y) =

Maxr(Y) = ⊥.

Definition 4.5. The exploration e = 〈Qe, δe, s0, A,Ce〉 is a partial exploration of f =

〈Qf, δf, s0, A,Cf〉 iff:
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• Qe ⊆ Qf and δe ⊆ δf

• Qe = {s ∈ Qf | s ≤Max<e(Qe)}

• δe = {(s, t) ∈ δf | (s, t) ≤MaxCe(δe)}

• (∀x, y ∈ δe)(xCe y =⇒ xCf y)

Notice that the definitions ofQb and δb are recursive. The setsQe and δe are defined

by their maximum element: all the lower elements w.r.t <e (resp. Ce) inQf (resp. δf) are

also in Qe (resp. δe). Notice that (∀x, y ∈ Qe)(x <e y =⇒ x <f y) is a consequence of

the fourth item in definition 4.5.

Definition 4.6. Let e = 〈Qe, δe, s0, A,Ce〉 be an exploration, 〈{s0}, ∅, s0, A, ∅〉 is called the

initial partial exploration of e.

Definition 4.7. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
Let (s, t) be the next transition to explore in e. (s, t) is given by MinCf(δf \ δe). Exploring

(s, t) from e yields the partial exploration g = 〈Qg, δg, s0, A,Cg〉 of f such that: Qg = Qe∪ {t},
δg = δe∪ {(s, t)} andMax<g(Qg) =Max

<f(Max<e(Qe), t),MaxCg(δg) = (s, t) and finally,

e is a partial exploration of g.

Definition 4.8. Let f = 〈Qf, δf, s0, A,Cf〉 be an exploration. BACKTRACK(e, s) is a par-

tial exploration e = 〈Qe, δe, s0, A,Ce〉 of f, in which Max<e(Qe) = s and MaxCe(δe) =

MaxCf{x
δf−→ s}.

The partial exploration BACKTRACK(f, s) gives the configuration of the depth first

exploration at which point s has just been visited for the first time.

4.2 Patching a partial exploration

Definition 4.9. Let p = (u, Rem) be a patch and e = 〈Qe, δe, s0, A,Ce〉 a partial exploration

of f = 〈Qf, δf, s0, A,Cf〉. The set of impacting updates in p is IDFu (p) = {(s, t) ∈ u | s ≺e t}.

An update has an impact on the exploration state order iff it breaks one edge of the

depth first exploration tree.

Definition 4.10. Let p = (u,Add) be a patch and e = 〈Qe, δe, s0, A,Ce〉 a partial exploration

of f = 〈Qf, δf, s0, A,Cf〉. The set of impacting updates in p is:

IDFu (p) =

 {(x, y) ∈ u | x, y ∈ Qe ∧ x <e y∧ x 6≺+
b y} ∪

{(x, y) ∈ u | x ∈ Qe ∧ y 6∈ Qe}

.
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Definition 4.11. Let p be a patch and e = 〈Qe, δe, s0, A,Ce〉 a partial exploration of f =

〈Qf, δf, s0, A,Cf〉. The set of impacting states of p is IDFs (p) = {s | (s, t) ∈ IDFu (p)}.

Definition 4.12. Let p be a patch and e = 〈Qe, δe, s0, A,Ce〉 a partial exploration of f =

〈Qf, δf, s0, A,Cf〉. The impact state of p is IDF(p) = Min<e(IDFs (p)).

Definition 4.13. Let e = 〈Qe, δe, s0, A,Ce〉 and g = 〈Qg, δg, s0, A,Cg〉 be two partial explo-

rations of f = 〈Qf, δf, s0, A,Cf〉 and let p = (u, t) be a patch. The exploration g is a patching

of e, written PATCHING(e, p) = g iff

• Qg = Qe

• δg = δe \ u, if t = Rem

• δg = δe ∪ {(s, t) ∈ u | s, t ∈ Qe ∧ s <e IDF(p)}, if t = Add

Definition 4.14. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
The exploration h = 〈Qh, δh, s0, A,Ch〉 is a patching backtrack of e to the state s ∈ Qe using

the patch p, written h = PATCHBACKpe(s), iff h = PATCHING(BACKTRACK(e, s), p).

Property 4. Let p = (u, Rem) be a patch, f = 〈Qf, δf, s0, A,Cf〉 be an exploration and h =

〈Qh, δh, s0, A,Ch〉= PATCHBACKpe(I
DF(p)). The exploration h is a partial exploration of [f]p.

Proof. Let g = 〈Qg, δg, s0, A,Cg〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉 such

that g = BACKTRACK(f, IDF(p)). All the impacting updates (those in IDFu (p)) do not

belong to δg, i.e. (δg ∩ u) ∩ IDFu (p) = ∅, by definition of BACKTRACK.

We will now see that applying the (non-impacting) updates of u cannot change the

ordering and just transforms g so that its updated form h = [g]p is a partial exploration

of [f]p.

Every transition (s, t) in u \ IDFu (p) is such that s 6≺g t. Then removing s
δg
−→ t in g

have no influence on the depth first state ordering, since s 6≺g t means there exists a

path in s
δg
=⇒ t discovered before the exploration of s

δg
−→ t.

Then the ordering of the states in Qh is equivalent to the ordering in Qg: (∀s, t ∈
Qh)(s <h t ⇐⇒ s <g t). As g is a partial exploration of f and because only non

order-changing updates were removed from g then h is a partial exploration of [f]p.

Property 5. Let p = (u,Add) be an additive patch, f = 〈Qf, δf, s0, A,Cf〉 be an exploration

and h = PATCHBACKpf (I
DF(p)). The exploration h is a partial exploration of [f]p.
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Proof. A transition is in IDFu (p) when adding it to f would change its depth first order-

ing. There are two possible cases (represented by the two terms in the IDFu (p) union of

Definition 4.10): either both source and target state (x and y) of an update are already

explored in f and x is older than y but x is not an ancestor of y. Adding (x, y) makes x

an ancestor of y, thus changing the state order.

Or, y is not known in e. If the exploration of x and all its descendance has been com-

pleted then there is no need to do anything: ywill be explored when its turn comes. But,

knowing this requires more data (or more computation) than what a simple depth first

exploration has access to. This implies that to correctly insert y (and all its successors)

in the state ordering, the exploration must restart from x.

Like for Property 4, adding to BACKTRACK(f, IDF(p)) all the updates of p that have

no effect and that are younger than IDF(p), guarantees that h is a partial exploration of

[f]p.

In other words, Property 4 and 5 state that exploring [f]p from its initial partial ex-

ploration leads to a partial exploration h that can also be obtained from the exploration

f by backtracking to g and patching g to h. This means that we can achieve the same

result without restarting the computation from scratch.

4.3 Tarjan’s algorithm

Definition 4.15. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
A state s is fully explored in e (written FEXe(s)) iff ∀(x, y) ∈ (δf \ δe)(s 6≺+

f x∧ s 6≺+
f y).

A state s is fully explored in e iff no transition left to be explored (those in δf \ δe)

can add new descendent state to s. Or following the formal definition, s cannot be an

ancestor of any source or destination state of any transition left to be explored.

Definition 4.16. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
The lowlink of a state s in Qe is:

LOW(s) =Min({s} ∪ {LOW(t) | s
δe−→ t∧ s <e t} ∪ {t | s

δe−→ t∧ t <e s∧ t is free})

Even though definition 4.16 is short, it might be hard to understand. Definition 4.17

provides an (equivalent) alternative longer version.

Definition 4.17. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
The lowlink of a state s in Qe is: LOW(s) =Min<e(D(s) ∪ (1-STEP(D(s)) ∩ FREE)), where:
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• D(s) = {s, t ∈ Qe | s ≺+
e t} is the descendance of s which is younger than s,

• 1-STEP(X) = {t | s
δe−→ t∧ s ∈ X}, are the states reachable from X by one transition in δe,

• FREE= {s ∈ Qe | s is free}

The definitions of a lowlink and of the freedom of a state are two dependent defi-

nitions, see Definition 4.19 below for that of FREE(s). Informally, a state is free in e iff

the strongly connected component it belongs to has not been fully explored. In terms

of Tarjan’s algorithm, we would say that a state is free iff it has not been assigned to a

strongly connected component yet.

From the Definition 4.16, we can see that the lowlink relation is included in δ+e , which

means that LOW states the existence of a path between a state s and its lowlink LOW(s).

Let’s call D all the states in the subtree of 〈Qe,≺e, s0〉, whose root is s. The lowlink

LOW(s) of a state s is the oldest free state that can be reached whithin one transition

from any state in D. In other words, it gives the oldest free state that can be reached

while exploring the descendence of s.

Definition 4.18. The reachability Rfs of a relation f : Q × Q from a state s is the set of state

Rfs = {t | (s, t) ∈ f+}

Definition 4.19. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
A state s is free, written FREE(s) in e iff ¬FEXe(Min

<e(RLOW
s )).

The expression FEX(Min<e(RLOW
s )) means that the oldest state that s can reach

through the relation LOW is fully explored. If this is the case, then s is also fully ex-

plored, and more importantly, the strongly connected component to which s belongs

has been completely discovered. If FEX(Min<e(RLOW
s )) thenMin<e(RLOW

s ) is also the old-

est state of its strongly connected component (s belong to the same scc asMin<e(RLOW)),

Min<e(RLOW
s ) can uniquely define an SCC and is called the root of the SCC.

Definition 4.20. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
The source of the lowlink of state s in e, written SRC(s) is defined as follows:

LOW(s) ∈ {t ∈ Qe | s
δe−→ t∧ t <e s∧ FREE(t)} =⇒ SRC(s) = LOW(s)

or (∃t ∈ Qe)(s
δe−→ t∧ s <e t∧ LOW(s) = LOW(t) =⇒ SRC(s) = t)

The lowlink of a state s can come from two situations: either LOW(s) can be directly

reached from s, in which case LOW(s) = SRC(s), or LOW(s) comes from a descendant
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t (thus t is younger than s), and then SRC(s) = t. In both cases, SRC(s) indicates the

successor of s to follow in order to reach LOW(s), in other words, s δe−→ SRC(s) is the first

step of a path p ∈ s δe=⇒ LOW(s).

In what follows, the notation si is used to extract the ith letter of the word s, i.e.

s = s1 . . . si . . . s|s|, where |s| denotes the length of the word s.

Definition 4.21. Let e = 〈Qe, δe, s0, A,Ce〉 be an exploration. The common dfs-path of

two states a, b ∈ Qe is the sequence s1 . . . sn of states in which sn ≺+
e a, sn ≺+

e b, (∀i ∈
[0, n[)(si ≺e si+1) and (∀x)(sn < x ⇒ ¬(x ≺+

e a ∧ x ≺+
e b)). The state sn is called the

Youngest State of the Common Path, written YSCP(a, b) = sn.

s0

s1 s2 = YSCP(a, b)

s3 s4

s6

s7 a

s9 b
s11 s12

Figure 2: s2 is the Youngest State of the Common Path of a and b

Example 4.22. The figure 2 depicts a depth first exploration tree whose root is s0. The path to

reach a is s0.s2.s3.s6.a and the path to reach b is s0.s2.s4.b. The states s0 and s2 belong to both

of them, therefore the state s2 is the youngest state of the common path of a and b.

Definition 4.23. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
Algorithm T0 (Tarjan’s algorithm) associates some data d with the partial exploration e. These

are called T0-data and are defined as the tuple d = 〈sorder, index, S,D,Acc, low, src, scc〉,
where:

• (∀s, s ′ ∈ Qe)(s <e s
′ ∧ ¬(∃s ′′)(s <e s ′′ <e s ′) ⇐⇒ sorder(s ′) = sorder(s) + 1)

• index = sorder(Max<e(Qe)) + 1

• S ∈ (s0.Qe
∗) and {si | i ∈ [1, |S|]} = {s ∈ Qe | FREE(s)} and (∀i ∈ [1, |S|− 1])(Si < Si+1)

• D ∈ (s0.Qe
∗) and D|D| =Max(Qe) and (∀i ∈ [1, |D|− 1])(Di ≺ Di+1)

• Acc ∈ Qe
∗: Acc = ProjA(D) where:

– ProjA(w.x) = Proj(w).x, if x ∈ A
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– ProjA(w.x) = Proj(w), if x 6∈ A

• LOW and SRC are defined as previously

• SCC(s) =Min(RLOW
s ) if s is not free, or ⊥ otherwise

The previous algorithm is actually an extension of Tarjan’s algorithm used to detect

and retrieve accepting run on-the-fly, as proposed by [7]. SRC is the only data-structure

that was not used in the original Tarjan’s algorithm. A small modification from [7] is

that we restored the original LOW management as given by Tarjan, as it revealed more

practical to backtrack the algorithm than the variant proposed by [7].

The sorder relation is an implementation of the depth first exploration order. Two

states s and s ′ are distant by one unit in sorder iff there is no possible state s ′′ that can

be strictly in between them in <e.

The index variable gives the order number that will be associated to the next not-

yet-visited state encountered. Max<e(Qe) is the last visited state (it is on top of both D

and S).

S, D and Acc are three stacks (given here as sequences of states). D gives the path

in ≺e to reach Max<e(Qe) from s0. S holds an ordered sequences of free states (from the

oldest, s0, to the youngest Max<e(Qe). Acc is an ordered sequence of accepting states. It

is a projection of D on the accepting state set A.

SCC is a relation associating a state s to the root of its Scc. If the Scc of s has not been

yet fully discovered (s is still free), then SCC is undefined, written SCC(s) = ⊥.

Definition 4.24. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉
and d be a T0-data of e. Let p = (u, type) be a patch.

The T0-impact state of p is IT0(p) = YSCP(Is,Max
<e(Qe)), where

Is =



Min<e

 {s ∈ Qe | (s, t) ∈ (u ∩ δe)∧ s <e t} ∪
{s ∈ Qe | (s, t) ∈ u∧ t = SRCd(s)}


if type = Rem

Min<e



{s ∈ Qe | (s, t) ∈ u∧ t 6∈ Qe} ∪
{s ∈ Qe | (s, t) ∈ u∧ s <e t} ∪
{s ∈ Qe | (s, t) ∈ u∧ s = t∧ s ∈ A} ∪
{s ∈ Qe | (s, t) ∈ u∧ t <e LOWd(s)∧ SCCd(t) = ⊥}


if type = Add
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Remark. Notice that s ∈ Qe is equivalent to sorder(s) 6= ⊥.

Property 6. YSCP(x,Max(Q)) = y ⇐⇒ y =Max{Di | Di ≤ x}

Proof. (⇐) Suppose the opposite: y = Max{Di | Di ≤ x} but y 6= YSCP(x,Max<e(Q)).

By definition of YSCP either y 6≺+
e x, or y ≺+

e x and there is a younger state z s.t. z ≺+
e

Max<e(Qe) ∧ z ≺+
e x. If y 6≺+

e x then either x < y or x > Max<e(Qe) and both cases

contradict the hypothesis (x is supposed to be inQe). If (∃z)(y < z∧ z ≺+
e Max

<e(Qe)∧

z ≺+
e x) then y 6=Max<e{Di | Di ≤ x}.
(⇒) Suppose the opposite: y = YSCP(x,Max<e(Qe)) and y 6= Max<e{Di | Di ≤ x}.

By definition of YSCP, y ≺+
e Max

<e(Qe) and then (∃j)(y = Dj). Also, there must exists

z such that z = Dk and k > j (i.e. z > y) such that z ≤ x, which implies that z ≺+
e x.

Finally, z = YSCP(x,Max<e(Q)) which contradicts the hypothesis.

Property 6 is important to show how to compute YSCP(x, y) when x is an arbitrary

node and y the last node of D. Notice that this would also be true for any state in D.

Property 7. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉. Let

p = (u, t) be a patch. The exploration h = PATCHBACKpe(I
T0(p)) is a partial exploration of

[f]p.

Proof. We need to prove that the backtrack followed by the patch application is done at

a point of the exploration for which all the source states of all the updates in p that can

change the state ordering of e have not yet been visited.

For a destructive patch p, Is, that can be viewed as an “ideal” impact state w.r.t. to

available data, comes from two cases: either the update breaks the state ordering, or it

breaks the LOW relation. In the first case, one would want to check ≺e, but this infor-

mation is unavailable as a T0-data. Therefore, s <e t replaces s ≺e t, as s <e t can be

checked using sorder(s) < sorder(t). In the second case, when t = SRC(s), then the

path to lowlink is corrupted and LOW(s) may not be correct (Notice that (s, t) is nec-

essarily in δe). Comparing to IDF(p), since s <e t is stronger than s ≺e t and because

t = src(s) is an additional constraint, then Is ≤ IDF(p). As YSCP(Is,Max<e(Qe)) ≤ Is,
then IT0(p) ≤ IDF(p). This means that e is a partial exploration of PATCHBACKpe(I

DF(p)).

Because PATCHBACKpe(I
DF(p)) is also a partial exploration of [f]p then e is a partial ex-

ploration of [f]p.

When p is an additive patch, many things changed compared to IDF. Checking

s ≺+
d (t) is of theoretical possibility, but is unefficient in DF as well as in T0, as the
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only way to check this expression is to recompute the descendance of s, i.e. do a depth

first exploration from s. This is why the constraint has been removed in T0.

New constraints have been introduced. t <e LOWd(s) ensures that LOWd(s) is correct

and request a recomputation no further than s in that case. Moreover, this recomputa-

tion is only required when t is free (otherwise LOW(s) stays the same). State t freedom

is efficiently checked using SCC(t).

The other new constraint is s = t ∧ s ∈ A. This case means s δe−→ s is an accepting

cycle. If no accepting run was previously found, then one has just been found. Or the

newly discovered accepting run n is “younger” than the previous one p (i.e. should the

computation be restarted from the initial state, nwould be found before p).

This means Is ≤e IDF(p) and by following the same logic as previously, e is a partial

exploration of [f]p.

Property 8. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉 and c

be the T0-data of e. Let p = (u, type) be a patch. Finally, let h = PATCHBACKpe(I
T0(p)). If the

T0-data d is defined as follows:

let s =Max<h(Qh),

• sorderd = sorderc \ {(a, b) ∈ sorderc | s <e a}

• (∀X ∈ {LOW, SRC})(Xd = Xc \ {(a, b) ∈ Xc | s ≤e a} ∧ Xd(s) = s)

• indexd = sorderc(s) + 1

• Sd (resp. Dd) = s0 . . . s where s0 . . . s is a prefix of Sc (resp. Dc)

• Accd = ProjA(Dd) (and Accd is a prefix of Accc)

Then d is a T0-data of h.

Proof. The main idea behind IT0(p) is that the stack D is the most important because

it is the most limiting factor of all the data when its comes to backtracking. From the

definition of a T0-data,Dd must be a path in the relation ≺e. But ≺e is not available in d.

The only path of ≺e that can be used is Dc itself. Therefore, Dd must be a prefix of Dc.

Using Property 6, we see that Max(Qh) = Max<e{Di
c | D

i
c ≤ Is}: the state from which

the exploration will start after the backtrack is the youngest state inDc that is older than

(or equal to) the state Is.
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Because h = PATCHBACKpe(I
T0(p)) then all the states that were free inQe are still free

in Qh, therefore all the states in Sd were in Sc and likewise all the states in Dd were in

Dc.

As h = PATCHBACKpe(I
T0(p)) then h is a partial exploration of e, hence (∀x, y ∈

Qh)(x <h y =⇒ x <e y) and Qe ⊆ Qf. Then sorderc is correct for any state older than

or equal to s = Max<h(Qh) (actually, it is true for any state older than or equal to Is, but

for simplicity reason and because s ≤ Is, we chose to reset sorderc up to s).

We know that s = Max<h(Qh) = IT0(p) = YSCP(Is,Max<e(Qe)). Thus, by definition

of YSCP, s ∈ Qe. All the states in any stack D is free, then s is free and by consequence

SCC(s) = ⊥. Any state t older than s such that SCC(t) 6= ⊥ implies that SCC(t) is

not free and thus cannot be on D, i.e. it cannot be an ancestor of s. This means that

when backtracking s, SCC(s) cannot change. Any state t younger than s is necessary

a descendent of s, or else s would not be on D. Hence, when SCC(t) 6= ⊥, SCC(t) will

be updated when revisiting t from s (since sorder is reset, t will be considered as not

visited before any attempt to read its SCC). In conclusion, SCC does not need to be reset

at all.

As for LOWd and SRCd, those two data are computed by exploring the descendence

of a state. As the update modifies the descendance of Is. Any LOW or SRC information

concerning a state strictly younger than Is have to be reset. But resetting up to Is is not

quite correct since some older state might bear an incorrect LOW/SRC information due

to the fact that Is might have been previously fully explored (and then may have propa-

gated its now possibly incorrect lowlink to its father node). This problem is avoided by

resetting everything up to s, because s ∈ Dd which means s has not been fully explored

and cannot have propagated its lowlink to an older state.

Notice that a depth first exploration is expressed here using partial explorations,

which concernsQ and δ only. Therefore the backtrackings performed by the depth first

exploration are invisible. A backtracking is accomplished when a state is fully explored:

the exploration of its parent state is then resumed. For example, when s ≺ t ≺ u, and

s
δ
−→ t and t δ

−→ u are the last transitions to explore from s and t respectively, then the

backtracking from u to s is done in two invisible steps. This abstraction means that the

top of the stack D is always Max(Q). Describing the exploration into more details would

require a pointer to the top of (at least) D.
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Also, another information have been abstracted away in this presentation: when

backtracking from a state s to a state t, the algorithm must know which transition to

explore next. When removing a transition, this data must be updated to take into ac-

count the fact that this transition does not exist anymore and thus cannot be the next

transition of any state in D.

The backtracking of T0 is quite brutal: it may require erasing some data for all the

states, which is an important overhead just to restart from the initial state. In the next

section, we introduce a mechanism for a more efficient backtracking.

4.4 T1 = T0 extended with ranks

In the following, we will use the operator + as a tuple merging operation.

Definition 4.25. Let t1 = 〈x1, . . . , xn〉 ∈ Q1×· · ·×Qn and t2 = 〈y1, . . . yn〉 ∈ R1×· · ·×Rm
then t1 + t2 = 〈x1, . . . , xn, y1, . . . , ym〉 ∈ Q1 × · · · ×Qn × R1 × · · · × Rm

Definition 4.26. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
Algorithm T1 extends T0 with 〈ranks〉. Like previously, this data, called T1-data, is a tuple

d = c+ 〈ranksd〉 associated with the partial exploration e where

1. c is a T0-data of e,

2. (∀s)(sorderd(s) 6= ⊥∧ sorderd(s) < indexd ⇐⇒ s ∈ Qe)

3. (∀s ∈ Qe)(ranksd(sorderd(s)) = s)

4. (∀s)(ranksd(sorderd(s)) = s∨ ranksd(sorderd(s)) = ⊥)

The major difference with T0 is that the element which are also T0-data are not

patched in the same way. T1 introduces a validity zone for all the states: a state s is

valid iff it is in Qe iff sorderd(s) < indexd. Previously, a state s was being visited iff

sorderd(s) 6= ⊥. This is no longer the case, as sorderd(s) 6= ⊥ can now mean that the

state is invalid.

This being said, there is an essential behavior for ranks that must be defined.

Definition 4.27. Let e = 〈Qe, δe, s0, A,Ce〉 and g = 〈Qg, δg, s0, A,Cg〉 be two partial explo-

rations of f = 〈Qf, δf, s0, A,Cf〉 such that δg = δe ∪ {MaxCf(δf \ δe)} (i.e. from e, the next

transition is explored, resulting in the exploration g). If c and d are respectively T1-data of e and

g, then sorderd(ranksc(indexc)) = ⊥.
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Intuitively, this says that the previouly invalid state ranksc(indexc) that is about to

be updated to a newly found state must reset its ordering.

Property 9. Definition 4.27 and Definition 4.26 are consistent.

Proof. When exploring a new transition (s, t) from an exploration a = 〈Qa, δa, s0, A,Ca〉
resulting in the exploration b = 〈Qb, δb, s0, A,Cb〉, if t is newly discovered, then

Max<b(Qb) = t. To respect the second invariant, concerning sorder, we have

sorderb(t) = indexa − 1 = sordera(Max
<a(Qa)) + 1 = indexa − 1+ 1.

Let us suppose that because of some backtracking happening before a, we have

ranksa(indexa) 6= ⊥. In a, ranksa(indexa) is an invalid data, but because indexa will

become a valid ordering number in b, ranksb(indexa) will be indeed valid.

Because it is invalid, ranksa(indexa) can be any state (valid or not), for example it

can happen that sordera(ranksa(indexa)) = indexa. If we do not change sordera in

that case (i.e. sorderb(ranksa(indexa)) = sordera(ranksa(indexa))) then we would

have two states with the same index: indexa = sorderb(t) = sorderb(ranksa(indexa)).

But this is a major problem, because sorder serves to establish a total order between

states, and then sorder must be bijective. Also, it could lead to violate the definition

of a T1-data. Since (by definition of T1-data) sordera(x) = indexa =⇒ x 6∈ Qa and

ranksa(sordera(x)) = x, then x = ranksa(indexa) does not belong to Qa. When x 6= t,
then x does not belong to Qb either, and consequently sorderb(ranksa(indexa)) = ⊥
can be chosen to respect invariant 2 of Definition 4.26 (an alternative would be to respect

sorderb(ranksa(indexa)) ≥ indexa, which is not as straightforward).

Property 10. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
Applying a patch p = (u, t) on the T1-data c of e, the partial exploration e is patched and back-

tracked to a partial exploration h = PATCHBACKpe(I
T0(p)). The T1-data d, defined as follows, is

a T1-data for h.

• (∀x ∈ {sorder, LOW, SRC, SCC, ranks})(xd = xc)

• index and the three stacks S,D,Acc are updated like for T0

Proof. The exploration is backtracked to the same state as for T0, the only difference

being how the backtracking is performed. Instead of deleting every invalid data, we

defined a state validity bound that is modified when new states are discovered.
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Property 9 states that the dynamic behavior of ranks and sorder respects T1-data

invariants. Also, s ∈ Q iff sorder(s) 6= ⊥ ∧ sorder(s) < index. Other than that, the

proof of Property 8 remains valid here.

Although the backtracking of a T1-data is more efficient than that of a T0-data, having

to backtrack to a state in D is a strong limitation. In the next section, we change how

the stacks are built and managed, bringing a noticeable improvement on the age of the

impact state.

4.5 T2 = generalization of T1 stacks with prev

Definition 4.28. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
Algorithm T2 generalizes the stacks of T1 with 〈prev〉. The T2-data of e is a tuple

d = 〈sorder, index, low, src, scc, ranks, prev〉, where:

• 〈sorder, index, low, src, scc, ranks〉 is a T1-data from which the statcks S, D and Acc

have been removed,

• prev : {S,D,Acc} × Qe −→ Qe and top : {S,D,Acc} −→ Qe, where {S,D,Acc} is an

arbitrary enumeration.

•
∀X ∈ {S,Acc} : {w ∈ Q∗e | w1 = s0 ∧ wi = prev(X,wi+1)} =⋃

e∈P{w | w = stack X of partial exploration e}

where P is the set of all partial explorations of e and stack X follows the definition of stacks

S and Acc of Definition 4.23.

• (∀s ∈ Qe)(prev(D, s) = t ⇐⇒ t ≺e s)

UBA b prev(D) prev(S) prev(Acc)

s0

s1

s2 s3

s4

s5

s0

s1

s2 s3

s4

s5

s0

s1

s2

s3

s4

s5

⊥

s2s0 s1 s3 s4

s5

Figure 3: An UBA whose accepting state is s4 and the value of prev(X), X ∈ {D, S,Acc}
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Example 4.29. Figure 3 gives an example of what prev(D) looks like. The UBA b is explored

from left to right: i.e. s0 −→ s1 is explored before s0 −→ s4. The relation prev(X) are represented

as trees: an edge s1 −→ s0 in prev(X) means (s1, s0) ∈ prev(X).

Definition 4.30. Let p = (u, type) be a patch. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial explo-

ration of f = 〈Qf, δf, s0, A,Cf〉 and let d be a T2-data of e.

The impact state IT2(p) of the patch p is defined as follows:

IT2(p) =



Min<e

 {s | (s, t) ∈ u∧ s ≺e t} ∪
{LOW(s) | (s, t) ∈ u∧ t = SRCd(s)}


if type = Rem

Min<e



{s ∈ Qe | (s, t) ∈ u∧ t 6∈ Qe} ∪
{s ∈ Qe | (s, t) ∈ u∧ s <e t∧ s 6≺+

e t} ∪
{s ∈ Qe | (s, t) ∈ u∧ s = t∧ s ∈ A} ∪
{s ∈ Qe | (s, t) ∈ u∧ t <e LOWd(s)∧ SCCd(t) = ⊥}


if type = Add

Property 11. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉. Let

p = (u, t) be a patch. The exploration h = PATCHBACKpe(I
T2(p)) is a partial exploration of

[f]p.

Proof. One difference with IT0 is that {s | (s, t) ∈ (u ∩ δe) ∧ s <e t} has been replaced

{s | (s, t) ∈ u∧ s ≺e t}. The latter is precisely IDFu (p).

Another difference is that s has been replaced by LOW(s) in {LOW(s) | (s, t0 ∈ u∧t =
src(s)}, which have no influence Ce or <e.

Finally, s 6≺+
e (t) has been introduced since it is now possible to check it without

performing a depth first exploration from s (it is now a matter of following prev(D)

from t). But this operation is still quite expessive and may be advantageously dropped

when the cost of computing a state is cheap.

In the end, the exploration h = PATCHBACKpe(I
T2(p)) is a partial exploration of [f]p.

Property 12. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
Applying a patch p = (u, t) on the T1-data c of e, the partial exploration e is patched and back-

tracked to a partial exploration h = PATCHBACKpe(I
T2(p)). The T2-data d, defined as follows, is

a T2-data for h.

Let s = IT2(p),

• (∀x ∈ {sorder, LOW, SRC, ranks, prev})(xd = xc)
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• (∀x ≤e s)(SCCc(x) ∈ {SCCc(y) | y ≺+
e s∧ ¬FREE(y)} =⇒ SCCd(x) = ⊥)

• indexd = sorderc(s) + 1

Proof. The impact states IT0(p) and IT1(p) belongs to D because of the operation

YSCP(Is,Max<e(Qe)). Backtracking to Is would have been better, but no data allowed

to do that. With prev, things have changed, and Is can now be used, with the differ-

ences exhibited in the proof of Property 11.

The backtracking is a bit different than previously in that s has been replaced by

LOW(s) in {LOW(s) | (s, t0 ∈ u ∧ t = src(s)}. Previously, the impact state s was in D,

meaning that s was not fully explored. But this is not true anymore. As a consequence,

the lowlink of s can have been propagated up to LOW(s) while backtracking the depth

first exploration. Now that (s, t) has been removed, this propagation may not be correct

anymore. To get a correct lowlink for the state younger than LOW(s), it is then required

to re-start the exploration from LOW(s).

Another consequence of IT2(p) being potentially fully explored in e is that SCC have

to be modified in a different way than previously. Let us suppose that IT2(p) is fully

explored. Then potentially every ancestor of IT2(p) is also fully explored. This means

that all the SCCalong the path s0
≺+

e−−→ IT2(p) must be reset as “not fully discovered”. The

set X = {SCCc(y) | y ≺+
e s ∧ ¬FREE(y)} regroups all the SCCs of the non free states that

are ancestors of IT2(p). Any state x whose SCCbelongs to X must be un-assigned from

that SCC, i.e. SCCd(x) = ⊥.

The words representing a path in prev(X) in the exploration h are those representing

X for each partial exploration of h. Because h is partial exploration of e, then (∀s, t ∈
Qh)(s ≺h t =⇒ s ≺e t) and then (∀s, t ∈ Qh)(s = prevd(D, t) =⇒ s = prevc(D, t)).

Because c is a T2-data, then s = prevc(D, t) ⇐⇒ s ≺e t and finally (∀s, t ∈ Qh)(s =

prevd(D, t) ⇐⇒ s ≺h t). Then prevd(D) respects the T2-data definition.

The words representing Acc in each partial exploration of h are all projections of the

corresponding stack D on the set of accepting states. Because h is partial exploration of

e, then any path of≺e is preserved by≺h as long as its source and destination are inQh.

Therefore, all the projections on the set of accepting states are preserved under the same

condition. Then prevd(Acc) respects the T2-data definition.

As for prev(S), because h is partial exploration of e and c is a T2-data of e, then all the

stack S of all the partial explorations of h are also stacks S for the partial explorations
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of e up to h (these are the same explorations). Then for all state s ≤h IT2(p), prevh(S) =

prevc(S) and by consequent prevd(S) conforms to the definition of a T2-data.

The main difference with T1, is that prev keeps a lot more information than the stacks

previously did since prev is the tree of the previous stack configurations. Therefore

prev allows for much more powerful backtracking of the exploration (to the price of

more memory consumption). But still, SCC must be updated in order to have a correct

backtracking and be able to resume the exploration from IT2(p). This updating of SCC is

avoided in the next section.

4.6 T3 = T2 + DF post-order (rorder + rankr + rindex + maxr)

Definition 4.31. Let e = 〈Qe, δe, s0, A,Ce〉 be an exploration. The depth first post-order le is

defined as follows: s1 le s2 ⇐⇒ (s1 <e s2 and s1 6≺+
e s2)∨ (s2 <e s1 and s2 ≺+

e s1)

Definition 4.32. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
Algorithm T3 extends T2 with 〈rorder, rindex, rankr,maxr〉. The T3-data of exploration e, is

a tuple d = c+ 〈rorder, rindex, ranks〉 associated with the partial exploration e, where:

• c is a T2-data of e,

•
(
∀s, s ′ ∈ Qe

)(
(FEX(s) ∧ FEX(s ′) ∧ sle s

′ ∧ ¬(∃s ′′ ∈ Qe)(sle s
′′ le s

′)⇐⇒ rorder(s ′) = rorder(s) + 1)
)

•
(
∀s
)(
(rorder(s) 6= ⊥∧ rorder(s) < rindex) ⇐⇒ FEX(s)

)
• rindex =Max{rorder(s) | s ∈ Qe}+ 1

• (∀s ∈ Qe)(rankr(rorder(s)) = s)

• Let g be a partial explorations of e:(
δe \ δg = {(s, t)} ∧Qe \Qg = {t}

)
=⇒ maxr(t) = rindexg

The relation rorder, that maps a state to a natural number (its ordering number),

implements the order l. The natural number rindex provides a validity limit for rorder

and rankrmaps an ordering number to a state. Those data are to l what sorder, ranks

and index are for <.

The relationmaxr(t) saves the value of rindexwhen twas visited for the first time.
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Definition 4.33. Let p = (u, type) be a patch. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial explo-

ration of f = 〈Qf, δf, s0, A,Cf〉 and d be a T3-data of e.

The impact state IT3(p) of the patch p is IT3(p) = IT2(p), where SCCd(t) = ⊥ is replaced

with rorderd(SCCd(s)) < rindexd.

Property 13. Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉.
Applying a patch p = (u, t) on e, whose T3-data is c results in h = PATCHBACKpe(I

T3(p)). The

tuple d, defined as follows, is a T3-data for h.

Let s = IT3(p), in

• (∀ ∈ {sorder, LOW, SRC, SCC, ranks, prev, rorder, rankr,maxr})(xd = xc)

• indexd = sorderc(s) + 1

• rindexd = maxrc(s)

Proof. First, we can see that there is need to reset T3, because now it is possible to see

whether a state is fully explored: FEX(s) ⇐⇒ rorder(s) 6= ∧rorder(s) < rindex).

SCC(s) is then a valid information iff rorder(SCC(s)) < rindex.

From the definition of a T3-data,maxrc(s) = rindexg where g is a partial exploration

of e for which swas to be discovered for the first time by the next transition. rindexg =

Max{rorderg(s) | s ∈ Qg} + 1. In fact, g = BACKTRACKT3(e, p) and then rindexd =

Max{rorderg(s) | s ∈ Qg} as intended.

Because the backtracking did not change since T2, i.e. IT3(p) = IT2(p), then
(
∀s, t ∈

Qh

)(
(s <h t =⇒ s <e t)∧ (s ≺h t =⇒ s ≺e t)

)
. We also have

(
∀s, t ∈ Qh

)(
(FEX(s)∧

FEX(t) ∧ s lh t) =⇒ s le t
)
. This means rorderh is the same as rordere for all states

older than or equal to s. As a consequence, this is also true for rankrd.

In the end, the new data respects the T3-data invariants along with the old ones,

which means that d is a T3-data.

5 Example

In Figure 4, s2 is the only accepting state and four patches are applied. Each update is

labeled by its patch number and a superscript + or − respectively indicating that the

transition is removed or added. Additionally, blue transitions indicates added transi-

tions, while red transitions indicates removed transitions. The four tree depicted be-

low U gives the depth first exploration tree (given by the relation ≺). The green boxes
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Figure 4: UBA U patched four times
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around the states represent the SCCs of U after the corresponding patches have been

applied.

At the end of the first exploration, U has been completely explored and no accepting

run has been found.

Patch number 1 adds a transition from state s6 to state s2. s6 is older than s2 and

s6 6≺+
d s2 (s6 is not an ancestor of s2). Because U is completely explored, the stack D is

empty, thus T0 and T1 restart the exploration from s0.

Using T2, because s6 is fully explored, all the SCCs along the ≺ path leading to s6
have to be reset. s6 is reachable by s0

≺
−→ s1

≺
−→ s2

≺
−→ s4

≺
−→ s6, which means that SCC(s6),

SCC(s4), SCC(s1) and SCC(s0) are to be reset if they are not free. This means SCC is

reset for every state in {s0, s1, s3, s4, s5, s6} (no state can be free since U has been explored

exhaustively).

Using T3, the post-order l is the following: s5 l s3 l s6 l s4 l s1 l s2 l s0. Therefore

maxr(s6) = 2 and then rindex = 3 when backtracking to s6. Since rorder(SCC(s6)) =

rorder(s1) = 4 ≥ 3, the state SCC(s6) is considered invalid (no need to reset it). But,

here, that information is not actually necessary to perform the exploration of s2 from s6.

After the re-exploration from s6, no accepting run has been found and U has been

completely explored.

Patch number 2 adds a transition from state s2 to state s4. The lowlink of s2 is s2 itself

and s4 is older than s2. When exploring s2, s4 was still free because s4 ≺+ s2. This means

the lowlink of s2 have to be updated with s4.

Becaues U has been completely explored, the stack D is empty and T0 and T1 are

restarted from s0.

As for T2, s2 is reachable by s2 ≺ s6 ≺ s4 ≺ s1 ≺ s0, which means the SCC of every

state is reset. Then exploration is restarted form s2.

Using T3, we have s5l s3l s2l s6l s4l s1l s0, restarting from s2 means rindex = 2

after the backtrack and rorder(SCC(s2)) = rorder(s2) = 2. Then SCC(s2), SCC(s1) and

SCC(s0) are known to be invalid. Like T2, the exploration is then restarted from s2.

From s2, the state s4 is encountered. This state has been visited and it is free, either

because SCC(s4) = ⊥ for the variants T0 to T2, or because rindex ≤ rorder(SCC(s4)) in

T3 (rindex = 2 and rorder(SCC(s4)) = rorder(s1) = 5). s2 is an accepting state, which

means that Acc is not empty and because s4 is older than the top element of Acc, then

we found an accepting run: s0
≺
−→ s1

≺
−→ s4

≺
−→ s6

≺
−→ s2

SRC
−−→ s4. Note that because an

accepting run is found, no SCC has actually been discovered by any variant T0 to T3.
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Indeed, SCC(s1) will only be discovered when backtracking the depth first exploration

from s2 to s1 and SCC(s0) when backtracking from s1 to s0 (because every state have been

visited when the accepting run is found).

Patch number 3 is essential harmless: it removes the transition s1
δ
−→ s6 . Since s6 has

been discovered from the exploration of s1 through s4, s1
δ
−→ s6 does not influence the

state order (s1
≺
−→ s4

≺
−→ s6 is still here, or this can also be seen by remarking that (s1, s6)

is not in ≺ but s1 < s6). Hence, no re-exploration has to be performed.

The last patch removes s3
δ
−→ s1 and this transition makes the lowlink of s3 invalid

since LOW(s3) = SRC(s3) = s1. At this point, D = s0.s1.s4.s6.s2 and YSCP(s3, s2) = s1.

Then the exploration is restarted from s1 in T0 and T1.

The backtracking in T0 is quite uninteresting as every invalid data is being updated.

T1, however, does not invalid the ordering number sorder of every invalid state but use

index instead. sorder(s1) = 1 then index = 2when restarting from s1. When exploring

s3, as index ≤ sorder(s3) then s3 is considered invalid and its exploration continued

to s5 wich is also considered invalid, then from s5, s3 is found but now index = 4

and sorder(s3) < index, then s3 is considered as already visited. Although we did

not describe it before, this mechanism is used by T2 and T3. After backtracking to s3,

it is found fully explored, and because LOW(s3) = s3, then a new SCChas been found,

namely {s3, s5}. After that, the exploration continues from s1 until it finds the same

accepting run as previously.

As for T2, SCC is reset for the state s3, s1 and s0 (the other state of SCC(s1) are younger

than s3). Then exploration is restarted from s3.

For T3, the exploration is also restarted from s3. rindex = maxr(s3) = 0, which

means no state is fully explored, and then no SCC can be different from ⊥ (and if it is

this means it is not valid).

6 Heuristics

In the previous section, all that was considered were the effects an update can have on

the data-structures. Essentially, when breaking the state ordering, or the lowlink, or the

source of a lowlink, an update was considered harmful and required a backtracking.

But, in the end, what is important is that the output of the algorithm, the accepting run,

is “correct” is the sense that it is a valid one, and not even necessarily the first to be

found in the depth first exploration meaning.
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The last patch of the example in section 5 is a good demonstration: it tries to re-

move a transition that cannot break the previously found accepting run. Restarting the

exploration as a response to this update is then unecessary.

In the following, we present different heuristics exploiting this observation which

may yield another speed increase.

But, before continuing on, recall that in section 3, we presented a pattern of lazy

patch application. The heuristics will be given following this pattern.

To subsume what we presented in Section 4, the following shows how to fit them in

the lazy patch application pattern.

Definition 6.1. Let x ∈ [0, 3]. Let e be an exploration.

The lazy patch application λTx2 is defined as follows:

• r is invalidated by the patch p = (u, t) iff ITx(p) 6= ⊥

• Restart the computation: h = PATCHBACKpe(I
Tx(p)) and then restart Tx from h

• Manage the patch p: e← PATCHING(e, p)

6.1 Prudent

The prudent heuristics that is presented here can hardly be called as such, since it is

better to use it than λ2 in a vast majority of the cases.

The prudent heuristics stores the oldest impact state of any impacting update that

cannot invalid the accepting run or introduce a new one if none was found.

An impacting destructive update can change this oldest impact state when it is not

part of the accepting run, or when no accepting run was previously found.

An impacting additive update can change this oldest impact state when any accepting

run was previously found.

As soon as a run changing update appears (either by adding a transition when there

exists no accepting run, or by removing a transition used by the accepting run), the

computation is backtracked to the saved oldest impact state.

Definition 6.2. Let x ∈ [0, 3]. Let e be an exploration.

The lazy patch application λTx3 (prudent heuristics) is defined as follows:

• Initially, old = ⊥

• r is invalidated by the patch p = (u, t) iff
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t = Rem∧ r 6= ε∧ u ×−→ r

or t = Add∧ r = ε

• Restart the computation:

– h = PATCHBACKpe(Min<e(old, ITx(p)))

– old← ⊥
– and then restart Tx from h

• Manage the patch p: if ITx(p) 6= ⊥ then old ← Min<e(old, ITx(p)). In any case, e ←
PATCHING(e, p).

For simplicity reason, we suppose that x <e ⊥ is defined and is true for any state

x ∈ Qe. Also, when restarting the computation ITxs (p) 6= because r is invalidated by the

patch p: the invalidation conditions are included in those used to get the impact state

of each Tx. Therefore, Min<e(old, ITxs (p)) will always be defined.

In the worst case case, the heuristics does not help at all, and may even introduces

some overhead when the computation of u ×−→ r becomes significant (which is quite

unusual).

The good “prudent” feature of this heuristics is that λTx3 cannot introduce more back-

tracking and re-exploration than λTx2 .

6.2 Imprudent

In some cases, restarting from the oldest impacting state of the updates which did not

change the accepting run, as it is done in the prudent heuristics, can produces excessive

backtracking.

Here, we introduce another heuristics that is a two-sided blade: although it can

improve on the previous heuristics, it may also require more backtracking.

The idea of this heuristics is to bet on the locality of the impacts: if the current patch

has an impact, this impact should not imply the previously non run changing impacting

updates. This can be sometimes very wrong and will require, in the worst case, one

backtracking per update (instead of per patch for the prudent heuristics).

Definition 6.3. Let x ∈ [0, 3], let e be an exploration and let ITxu (p) = {x ∈ u | ITx(({x}, t)) 6= ⊥}
be the set of impacting updates of the patch p. Let T(Add) = A and T(Rem) = R and finally,
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T̄(Add) = R and T̄(Rem) = A. The lazy patch application λTx3 (prudent heuristics) is defined

as follows:

• Initially, A, R = ⊥,⊥

• The run is invalidated by the patch p = (u, t) in the same way as λ2

• Restart the computation:

T(t)← T(t) ∪ ITxu (p) and e← PATCHING(e, p)

do∣∣∣∣∣∣∣∣∣∣
e← BACKTRACK

(
e, ITx(T(t), t)

)
(∀X ∈ {A,R})(X← X \ {(s, t) ∈ X | ITx(T(t), t) ≤ s})
Restart Tx from exploration e

while r is invalidated by (A,Add) or (R, Rem)

• Manage the patch p: T(t)← T(t) ∪ ITxu (p) and e← PATCHING(e, p).

The set ITxu (p) yields the updates of p having an impact on Tx: for each update x ∈ u,

if the patch ({x}, t) holding the single update x has an impact then x ∈ ITxu (p).

When the computation needs to be restarted, the first step is to update T(t): T(t) ←
T(t) ∪ ITxu (p), meaning that the set of impacting updates of the patch p are added to the

set A or R according to the type t of the patch p. The patch is then incorporated into e.

Then e is backtracked to the oldest impact state of the patch (T(t), t). The sets A and

R are then updated: each update (s, t) whose source state s is younger than or equal to

the impact state of (T(t), t) is removed from the set.

Finally, the exploration is restarted from e. The loop ends when the previous accept-

ing run is not invalidated by any update in A or R (depending on whether an accepting

run has been found by the previous exploration).

One the one hand, this heuristics will only trigger necessary re-explorations, which

may bring a big improvement over the prudend heuristics, but on the other hand, some

required backtracking may be missed at a given step and only be detected at a subse-

quent one. Therefore, using this heuristics may require more re-explorations than the

prudent heuristics. Also, the list of pending update may become big and parsing it may

become a problem.
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Notice that any pending update whose source state is younger than the impact state

is removed from the list of pending updates, as it will get covered when the explo-

ration reaches it (indeed, remember that every update is inconditionally inserted into

the graph).

As for the worst case of the heuristics: consider a sequence of n patches for which all

the updates are impacting but only the last one invalidates the accepting run. This last

impacting patch has m updates and the only invalidating update u has the youngest

source state among all the other updates of the patch and of both A and R. This means

all the updates of all the patches are in A or R, except of cause for u. Now u triggers a

re-computation that switches the status of the accepting run: if the accepting run was

previously found then the re-computation cannot find any accepting run anymore or if

none was previously found then the re-computation find a new accepting run. When

testing this new run for a possible invalidation from A or R, only one update u ′ in the

corresponding set is found to be invalidating and, as for u, it has the youngest source

state of A and R. Again re-computating from u ′ changes the status of the run, and the

process is repeated until both A and R are empty. In this case, which can definitely

happen, a backtrack and a re-exploration is required for every update.

6.3 Mixed

A combination of the two previous heuristics is possible by computing both the oldest

(non run changing) impacting update old and the pending updates A, R and use one or

the other heuristics based on whether a given threshold has been reached.

One such threshold can be the number of patches. When a whole patch does not

invalidate the previously found accepting run (it may be empty if none was found), no

re-computation is required. Therefore a re-exploration has been effectively avoided for

this patch.

Definition 6.4. Let x ∈ [0, 3], let e be an exploration and let ITxu (p) = {x ∈ u | ITx(({x}, t)) 6= ⊥}
be the set of impacting updates of the patch p. Let T(Add) = A and T(Rem) = R and finally,

T̄(Add) = R and T̄(Rem) = A. The lazy patch application λTx4 (mixed heuristics) is defined as

follows:

• Initially, old,A, R = ⊥,⊥,⊥ and unavoided, nb_patch = 0

• The run is invalidated by the patch p = (u, t) in the same way as λ2
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• Restart the computation:

if unavoided < nb_patch then //uses Imprudent heuristics ...

T(t)← T(t) ∪ ITxu (p) and e← PATCHING(e, p)

increment nb_patch

do∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if avoided < nb_patch //... and continue to use it ...

e← BACKTRACK
(
e, ITx(T(t), t)

)
(∀X ∈ {A,R})(X← X \ {(s, t) ∈ X | ITx(T(t), t) ≤ s})
Restart Tx from exploration e

increment unavoided

else //... until the nb_patch threshold is reached

e← BACKTRACK(e,Min<e(old, ITxs (p)))

restart Tx from e

increment unavoided
while r is invalidated by (A,Add) or (R, Rem)

else //uses Prudent heuristics

e← PATCHBACKpe(Min<e(old, ITxs (p)))

restart Tx from e

increment unavoided and nb_patch and old← ⊥
• Manage the patch p:

if ITx(p) 6= ⊥ then old←Min<e(old, ITx(p)).

T(t)← T(t) ∪ ITxu (p)

e← PATCHING(e, p).

increment nb_patch

The worst case of this heuristics is one re-exploration by patch. In some cases there

may be more re-exploration than using the prudent heuristics, and in some cases there

may be less, but this re-exploration number is necessarily bounded by the number of

patches because when avoided reaches nb_patch the prudent heuristics is used and

we already saw that the worst case for the prudent heuristics is the number of patches.

A way to ensure that they cannot be more re-exploration than using λ2 is to add

ITx(p) 6= ⊥ as a condition for the whole “Manage the patch p” block. Indeed, when
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ITx(p), λ2 necessarily require a re-exploration, which is here avoided because the impacts

of p does not invalidate the accepting run.

The avoidance threshold could be extended to re-computations that are considered

as avoided by setting another threshold on the percentage of states that have avoided a

recomputation w.r.t. the total number of states computed during the previous iteration.

For example, when a backtracking avoids the recomputation of 80 percent of the previ-

ously computed state, the re-computation could be considered as avoided, even through

this is not strictly correct.

7 Updating the accepting states

In the previous sections, we did not take into account the fact that the set of accepting

state may change from a patch to another.

The first thing to acknowledge is that removing or adding accepting states does not

alter any state ordering nor any lowlink. Instead it only impacts the stack Acc, which is

only used to detect the existence of an accepting run.

Let e = 〈Qe, δe, s0, A,Ce〉 be a partial exploration of f = 〈Qf, δf, s0, A,Cf〉 and r be an

accepting run of e or r = ε if no accepting run was found in e.

• r = ε and s is removed from A. In that case, notice that e = f.

– in T0 or T1, because the exploration has explored and discovered all the SCCs,

then D is necessarily empty and thus so is Acc. Since r = ε, removing s

cannot introduce a new accepting run, therefore there is nothing to update in

that case.

– in T2 or T3, prev(Acc) will become corrupted:

∗ either update prev(Acc) into prev ′(Acc): (∀x ∈ Qe)(prev(Acc, x) =

s =⇒ prev ′(Acc, x) = prev(Acc, s))

∗ or restart from s

Using an heuristics like the prudent heuristics, the computation can be

avoided and s can be considered a non-run-changing impact state.

• r = ε and s is added to A

– s is necessarily visited

34



– in T0 or T1, because smay introduce an accepting run, but becauseD is empty

in e, the exploration have to be backtracked to s0.

– in T2 or T3, s introduces an accepting run iff s is part of a non-trivial SCC. This

can be checked using prev(D, sorder[ranks[s] + 1]) = s and scc[ranks[s] +

1] = scc[s]. In other words, the succesor t in the ordering is a direct successor

of s (s δ
−→ t) and both s and t belong to the same SCC. If this is the case, the

exploration have to be backtracked to s.

• r 6= ε and s is removed from A.

– in T0 or T1, the stack Acc must be updated and then the exploration must be

backtracked to YSCP(s, top(D)).

– in T2 or T3, the stack Acc must be updated and the exploration must be back-

tracked to s.

Removing s from A can only change the accepting run iff s is on top of Acc. In-

deed, the accepting run has been detected using this value and as long as it does

not change, the accepting run cannot change. Therefore, using the prudent heuris-

tics, removing s from A only triggers a re-computation when s is on top of Acc.

Otherwise, s is considered as a non-run-changing impacting state.

• r 6= ε and s is added to A. In this case s can introduce a “younger” run, i.e. a run

discovered before r.

– in T0 or T1, the stack Acc must be updated and then the exploration must be

backtracked to YSCP(s, top(D)).

– in T2 or T3, the stack Acc must be updated and the exploration must be back-

tracked to s.

Adding s to A cannot break the accepting run, it may only introduce “younger”

ones. Therefore, using the prudent heuristics, all the state s in that case are con-

sidered as non-run-changing impact states.

35



8 Experiments

In this section, we present some experiments conducted using a prototype tool that can

construct random UBAs. Except for the mixed heuristics everything has been imple-

mented in the tool.

The time consumption of the algorithm Tx (x ∈ [0, 3]) is separated from the patching

and backtracking process. Patching and backtracking means modifying the underlying

graph of an UBA and performing the requested backtracking (according to the algo-

rithm and the heuristics). The time spent in Tx represents the time necessary to find an

accepting run (or to explore everything when no accepting run can be found) from the

impact state of the previous backtracking.

As a global performance indicator, the total amount of state as computed by a ref-

erence computation (for which the computation always restarted the computation from

the initial state) is compared to the total amount of state computed by the given al-

gorithm/heuristics combination. This gives the overall computation avoidance of the

algorithm/heuristics compared to the reference computation.

Finally, when backtracking, the maximum amount of states whose computation can

be avoided is exactly the amount of visited states in the previous exploration (given by

index). Then ranks(impact)/index describles the rate of re-computation avoidance

achieved by the experiment, where impact is the state to which the exploration is back-

tracked to.

These measures will be depicted according to the key of Figure 5. If colors are not

Algorithm Tx time (in seconds)
Patching + backtracking time (in seconds)

Actually computed / Total computed by Ref (in %)
Re-computation Avoidance (in %)

Figure 5: Measures used for the experiments

available, the measures taken from top to bottom will always be displayed from left to

right.

First experiment. This experiment tests the effect of having one million patches each

of which is consituted by a single update. Moreover, for each case, the breadth of the

UBA is set to 2, 10 and 100while the number of states is set to 50 000, 10 000 and 1 000, so

that the maximal number of transition still remains equal to 100 000 (it is initially equal
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to 100 000 and will vary as the updates happen, but it will never exceed this amount).

Finally, there is only one accepting state.

 0.01

 0.1

 1

 10

 100

 1000

Ref H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(s.) (%)

T3T2T1T0

Figure 6: (Exp. 1) Number of states: 50 000, breadth: 2

The fact that each patch only contains one update means the UBA stays almost the

same after each patch, but the great amount of patches makes it changes quite signifi-

cantly in the end.

The first interesting result of this experiment is how the potential speed-up can be

orders of magnitude higher than the reference computation. The other interesting result

is how the heuristics can greatly improve the re-computation avoidance rate from H0 to

H1 and from H1 to H2.

But, not everything is ideal: in Figure 8 the time taken by H2 in T0 and T1 is quite

high and get very close the time taken by reference computation.

Second experiment. This experiment tests the effect of having only 10 patches made

of 1 000 000 updates each. Like previously, the underlying graph of the UBA varies

in breadth and number of states so that there at most 2 000 000 transitions. Also like

previously, there is only one accepting state.
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Figure 7: (Exp. 1) Number of states: 10 000, breadth: 10
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Figure 8: (Exp. 1) Number of states: 1 000, breadth: 100
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Figure 9: (Exp. 2) Number of states: 1 000 000, breadth: 2
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Figure 10: (Exp. 2) Number of states: 10 000, breadth: 200
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The interesting result of this experiment, depicted by Figures 9 and 10 is the overall

weak performance of all the algorithms when compared to the reference computation,

but it especially demonstrate that H2 can have a really bad performance. This result

is due to the heavy modification of the UBA: each path can modify at most half the

transitions. This heavy modification, because it is random, have a great chance to have

impact state very close to the initial state.

As for H2, even though its avoidance rate is 50%, it requires a lot more re-

computations and ends up with a 128% of global avoidance rate in Figure 9 i.e. it

computes more state than the reference computation. All that is due to its exessively

aggressive laziness when it comes to check which update has the oldest impact.

As for Figure 10 the inefficiency mostly comes from the backtracking itself and

shows how big its impact on the timings can be.

Third experiment. This experiment tests the effect of a big UBA, comprising

20 000 000, 200 000 000 and 500 000 000 transitions with a significant amount of ac-

cepting states (1 000 000). Like previously, this transition number is an upper bound

and is made of a fixed amount of states (10 000 000) and of variations on breadth (2,

20 and 50). 1 000 patches each constituted of 5 000 updates are applied for the exper-

iment of Figures 11 and 12, while 10 000 patches of 500 updates were applied for the

experiment of Figure 13.

The amount of updates is quite small compared to size of the UBA, which leads to

very good results in the experiment. The only inefficiency is located to T0 and is linked

to its inefficient backtracking.

Fourth experiment. Unlike the previous experiments, this one keeps the same

state/breadth ratio but instead the patches are generated so that the source state of each

update is within some varying distance from the last impact state. Distance is to be un-

derstood as a distance in the state ordering: the last visited state s (ranks(s) = index−1)

is the most distant from initial state. The patches in this experiment vary according to

a given minimal distance from the initial state. This minimal distance is stated in per-

centage: 100% is only possible for the last visited state and 0% means no restriction on

the the distance (the patches source and target states can be any visited states younger

than the initial state: all the states verify that). The distance restriction applied in this

experiment are 0%, 30%, 60% and 90%.
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Figure 11: (Exp. 3) Number of states: 10 000 000, breadth: 2
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Figure 12: (Exp. 3) Number of states: 10 000 000, breadth: 20

41



 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

Ref H0 H1 H2 Ref H0 H1 H2 Ref H0 H1 H2 Ref H0 H1 H2
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(s.) (%)

v=90v=60v=30v=0

Figure 13: (Exp. 3) Number of states: 10 000 000, breadth: 50

And additional rule is that even if the update (Rem, s, t) respects the distance restric-

tion, it is only kept if it respects src(s) 6= t or low(s) respects the distance limitation. By

doing this the percentage will also represent the minimal avoidance percentage of the

patches.

In this experiment, the graph contains 10 000 000 states and maximaly 20 000 000

transitions. Ten patches are applies each of which contains at most 500 000 updates.

The fourth experiment shows how badly the algorithm can behave, even when the

patches are following a profitable pattern. In Figure 14, when d reaches 90% no more re-

computation is necessary but knowing this requires a computation that can be expensive

and may in facttake more time than the basic exploration, as it can be seen in Figure 14

for d = 60 and d = 90.

But there is two observations which can be done that soften this bad result. For the

most part, this inefficiency comes from testing whether one update breaks the accepting

run or not. Because there is quite a lot of updates, testing whether a patch is impacting

for H1 and H2 becomes very costly. But, even though the prototype does optimize the

test by using a binary search when possible, this may not be the only optimization pos-
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Figure 14: (Exp. 4) The v% closest state to s0 cannot be used in a patch
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Figure 15: (Exp. 4) Experiment of Fig. 14 (v=90) with a delay d (in microseconds) added

to the computation of the next state
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sible. In fact, here parallellization of this test may yield very good results since the test

is essentially a membership test.

Also, and more importantly, the prototype is written in such a way that retrieving the

next state is only a matter of accessing two vectors in a sequence. Getting the next state

is then very fast, which is highly improbable in the context of on-the-fly model-checking

for example.

The results depicted in Figure 15, are a demonstration of how adding a delay of 15

microseconds to the computation of the next state compensates the computation over-

head of H1 and H2 .

Fifth experiment. This experiment is a slight modification of the previous one to show

a favorable case. Compared to the previous experiment, the number of accepting state

has been augmented to 100making is slightly easier to find an accepting run. The num-

ber of update per patch was reduced to 5 000 while the patch number was augmented

to 1 000 (this means that the total number of updates is maximaly the same).
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Figure 16: (Exp. 5) Less updates per patch than Exp. 4

In the end, in this experiment we can see that the update number is no longer a prob-

lem (the backtracking taking less than one second is not shown) and the re-computation
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avoidance is good enough to have a speed-up of more than 5 in d = 60 and d = 90. Also

notice the high avoidance rate, that is very benefical in situations where the computa-

tion of one state is slow.

Remark. One important remark is that we did not use the ancestor check (s ≺+ t)

because it turned out to be quite unefficient in a lot of situations. Unless the computation

of a successor state takes a lot of time, or if the graph depth is quite small, then this

checking should be avoided.

As an example of how bad this can be, a similar computation takes places in the

backtracking for T0 and T1 whose bad effect can be seen in Figure 7 for example.

9 Conclusion

This work presented a technique that can be used to maintain an accepting run af-

ter some updates in the underlying graph of an UBA. As expected, the technique can

greatly improve the performance when the updates are in small number or adequately

localized. On the contrary the performance is negligeable or even worse in some cases

when the updates are too numerous. Overall, the presented technique performs best in

situations in which computing a state takes a long time.

One of the major issue remaining with this approach is to link it to a model-checking

methodology. Indeed, we considered the product as an input, whereas to be more use-

ful for model-checking we still need some way to map modifications of the model or

modifications of the property to modifications in the product.
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