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Abstract

We consider modal transition systems with infinite state space generated by finite

sets of rules. In particular, we extend process rewrite systems to the modal setting

and investigate decidability of the modal refinement relation between systems from

various subclasses. Since already simulation is undecidable for most of the cases, we

focus on the case where either the refined or the refining process is finite. Namely,

we show decidability for pushdown automata extending the non-modal case and

surprising undecidability for basic parallel processes. Further, we prove decidabil-

ity when both systems are visibly pushdown automata. For the decidable cases, we

also provide complexities. Finally, we discuss a notion of bisimulation over MTS.

1 Introduction

The ever increasing complexity of software systems together with their reuse call for

efficient component-based design and verification. One of the major theoretically well

founded frameworks that answer this call are modal transition systems (MTS) [LT88].

∗The author has been supported by the Czech Science Foundation, grant No. GAP202/11/0312.
†The author is a holder of Brno PhD Talent Financial Aid and is supported by the Czech Science

Foundation, grant No. P202/12/G061.
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Their success resides in natural combination of two features. Firstly, it is the simplic-

ity of labelled transition systems, which have proved appropriate for behavioural de-

scription of systems as well as their compositions; MTS as their extension inherit this

appropriateness. Secondly, as opposed to temporal logic specifications, MTS can be

easily gradually refined into implementations while preserving the desired behavioural

properties.

MTS consist of a set of states and two transition relations. The must transitions pre-

scribe which behaviour has to be present in every refinement of the system; the may

transitions describe the behaviour that is allowed, but need not be realized in the refine-

ments. This allows for underspecification of non-critical behaviour in the early stage of

design, focusing on the main properties, verifying them and sorting out the details of

the yet unimplemented non-critical behaviour later.

The formalism of MTS has proven to be useful in practice. Industrial applica-

tions are as old as [Bru97] where MTS have been used for an air-traffic system at

Heathrow airport. Besides, MTS are advocated as an appropriate base for interface

theories in [RBB+09] and for product line theories in [Nym08]. Further, MTS based

software engineering methodology for design via merging partial descriptions of be-

haviour has been established in [UC04]. Moreover, the tool support is quite extensive,

e.g. [BLS95, DFFU07, BML11, BČK11].

Over the years, many extensions of MTS have been proposed. While MTS can

only specify whether or not a particular transition is required, some extensions equip

MTS with more general abilities to describe what combinations of transitions are possi-

ble [LX90, FS08, BK10, BKL+11]. Further, MTS framework has also been lifted to quan-

titative settings. This includes probabilistic [CDL+10] and timed systems [ČGL93, JLS11,

BFJ+11, BKL+12, DLL+10, BLPR11] with clear applications in the embedded systems

design. As far as the infinite state systems are concerned, only a few more or less ad hoc

extensions have been proposed, such as systems with asynchronous communication

based on FIFO [BHJ10] or Petri nets [EBHH10]. In this paper, we introduce modalities

into a general framework for infinite-state systems, where we study modal extensions

of well-established classes of infinite-state systems.

Such a convenient unifying framework for infinite-state systems is provided by Pro-

cess rewrite systems (PRS) [May00]. They encompass many standard models such as

pushdown automata (PDA) or Petri nets (PN) as syntactic subclasses. A PRS consists of

a set of rewriting rules that model computation. These rules may contain sequential and
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parallel composition. For example, a transition t of a Petri net with input places I1, I2
and output placesO1, O2 can be described by the rule I1 ‖ I2

t
−→ O1 ‖ O2. A transition of

a pushdown automaton in a state swith a top stack symbol X reading a letter a resulting

in changing the state to q and pushing Y to the stack can be written as sX a
−→ qYX. Lim-

iting the occurrences of parallel and sequential composition on the left and right sides

of the rules yields the most common automata theoretic models. For these syntactic

subclasses of PRS, see Figure 1 and a more detailed description in Section 2.

Motivation One can naturally lift PRS to the modal world by having two sets of rules,

may and must rules. What is then the use of such modal process rewrite systems (mPRS)?

Firstly, potentially infinite-state systems such as Petri nets are very popular for mod-

elling whenever communication or synchronization between processes occurs. This is

true even when they are actually bounded and thus with a finite state space.

Example 1.1. Consider the following may rule (we use dashed arrows to denote may rules)

generating a small Petri net.

resource ‖ customer
consume
99K trash

This rewrite rule implies that e.g. a process resource ‖ customer ‖ customer may be changed

into trash ‖ customer. Therefore, if there is no other rule with trash on the right side a safety

property is guaranteed for all implementations of this system, namely that trash can only arise

if there is at least one resource and one customer. On the other hand, it is not guaranteed

that trash can indeed be produced in such a situation. This is very useful as during the design

process new requirements can arise, such as necessity of adding more participants to perform

this transition. For instance,

resource ‖ customer ‖ permit
consume
99K trash

expresses an auxiliary condition required to produce trash, namely that permit is available.

Replacing the old rule with the new one is equivalent to adding an input place permit to the

Petri net. In the modal transition system view, the new system refines the old one. Indeed,

the new system is only more specific about the allowed behaviour than the old one and does not

permit any previously forbidden behaviour. One can further refine the system by the one given

by

resource ‖ customer ‖ permit ‖ bribe consume
−→ trash

where additional condition is imposed and now the trash-producing transition has to be available

(denoted by an unbroken arrow) whenever the left hand side condition is satisfied.
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Secondly, even if an original specification is finite its refinements and the final imple-

mentation might be infinite. For instance, consider a specification where permit needs

to be available but is not consumed or there is an unlimited amount of permits. In an

implementation, the number of permits could be limited and thus this number with no

known bounds needs to be remembered in the state of the system. Similarly, consider

a finite safety specification of a browser together with its implementation that due to

the presence of back button requires the use of stack, and is thus a pushdown system.

Further, sometimes both the specification and the implementation are infinite such as a

stateless BPA specification of a stateful component implemented by a PDA.

Example 1.2. Consider a basic process algebra (BPA) given by rules X
(

−→ XX and X
)

−→ ε for

correctly parenthesized expressions with X
a

99K X for all other symbols a, i.e. with no restriction

on the syntax of expressions. One can easily refine this system into a PDA that accepts correct

arithmetic expressions by remembering in the state whether the last symbol read was an operand

or an operator.

Further, opposite to the design of correct software where an abstract verified MTS is

transformed into a concrete implementation, one can consider checking correctness of

software through abstracting a concrete implementation into a coarser system. The use

of MTS as abstractions has been advocated e.g. in [GHJ01]. While usually overapproxi-

mations (or underapproximations) of systems are constructed and thus only purely uni-

versal (or existential) properties can be checked, [GHJ01] shows that using MTS one can

check mixed formulae (arbitrarily combining universal and existential properties) and,

moreover, at the same cost as checking universal properties using traditional conserva-

tive abstractions. This advantage has been investigated also in the context of systems

equivalent or closely related to MTS [HJS01, DGG97, Nam03, DN04, CGLT09, GNRT10].

Although one is usually interested in generating finite abstractions of infinite systems,

it might be interesting to consider situations where the abstract system is infinite. For

instance, if one is interested in a property that is inherently non-regular such as correct

parenthesizing in the previous example, the abstraction has to capture this feature. One

could thus abstract the PDA from the previous example into the smaller BPA above

and prove the property here using algorithms for BPA. Moreover, if one is interested in

mixed properties the abstract system has to be modal. It would be useful to extend the

verification algorithms for systems such as PDA to their modal versions along the lines

of the generalized model checking approach [BG00, BČK11]. This is, however, beyond

the scope of this paper.
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PRS

(G, G)

PAD

(S, G)

PAN

(P, G)

PDA

(S, S)

PN

(P, P)

PA

(1, G)

BPA

(1, S)

BPP

(1, P)

FSM

(1, 1)

Figure 1: PRS hierarchy

Our contribution In this paper, we focus on modal infinite-state systems and decid-

ability of the most fundamental problem here, namely deciding the refinement relation,

for most common classes of systems. Since simulation is undecidable already on basic

parallel processes (BPP) [Hüt94] and basic process algebras (BPA) [GH94], cf. Figure 1,

the refinement as a generalization of simulation is undecidable in general. However,

one can consider the case where either the refined or the refining system is finite (a fi-

nite state machine, FSM). This case is still very interesting, e.g. in the context of finite

abstractions or implementations with bounded resources. [KM99] shows that while

simulation remains undecidable between process algebras (PA) and FSM, it is decidable

between PDA and FSM. We extend this result using methods of [KM02b] to the modal

setting. Further, although simulation is decidable between PN and FSM [JM95] (in both

directions), we show that surprisingly this result cannot be extended and the refinement

is undecidable even for BPP and FSM in the modal setting. Although the decidabil-

ity of the refinement seems quite limited now, we show that refinement is sometimes

decidable even between two infinite-state systems, namely between modal extensions

of visibly pushdown automata [AM04], cf. Example 1.2; for this, we use the methods

of [Srb06]. To summarize:
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• We introduce a general framework for studying modal infinite-state system,

namely we lift process rewrite systems to the modal setting. This definition comes

along with the appropriate notion of refinement.

• We prove un/decidability of the refinement problem for modal extensions of stan-

dard classes of infinite-state systems. Apart from trivial corollaries due to the un-

decidability of simulation, this amount to proving undecidability of refinement

between Petri nets and FSM (on either side) and decidability between pushdown

systems and FSM (again on either side). Moreover, we prove decidability for visi-

bly PDA. For the decidable cases, we show that the complexity is the same as for

checking the respective simulation in the non-modal setting. Finally, we discuss a

notion of bisimulation over MTS, which we name birefinement.

Related work There are various other approaches to deal with component refine-

ments. They range from subtyping [LW94] over Java modelling language [JP01] to in-

terface theories close to MTS such as interface automata [dAH01]. Similarly to MTS,

interface automata are behavioural interfaces for components. However, their compo-

sition works very differently. Furthermore, its notion of refinement is based on alter-

nating simulation [AHKV98], which has been proved strictly less expressive than MTS

refinement—actually coinciding on a subclass of MTS—in a paper [LNW07] that com-

bines MTS and interface automata based on I/O automata [Lyn88]. The compositional-

ity of this combination is further investigated in [RBB+11].

MTS can also be viewed as a fragment of mu-calculus that is “graphically repre-

sentable” [BL90]. The graphical representability of a variant of alternating simulation

called covariant-contravariant simulation has been recently studied in [AFdFE+11].

The PRS framework has been introduced in [May00]. Simulation on classes of PRS

tends to be computationally harder than bisimilarity [KM02b]. While e.g. bisimulation

between any PRS and FSM is decidable [KŘS05], simulation with FSM is undecidable

already for PA (see above). Therefore, the decidability is limited to PDA and PN, and we

show that refinement is even harder (undecidability for BPP). Another aspect that could

help to extend the decidability is determinism. For instance, simulation between FSM

and deterministic PA is decidable [KM99]. It is also the case with the abovementioned

[EBHH10] where refinement over “weakly deterministic” modal Petri nets is shown

decidable.

6



Outline of the paper In Section 2, we introduce modal process rewrite systems for-

mally and recall the refinement preorder. In Section 3 and 4, we show undecidability

and decidability results for the refinement. Section 5 concludes.

2 Refinement Problems

In this section, we introduce modal transition systems generated by process rewrite

systems and define the notion of modal refinement. We start with the usual definition

of MTS.

2.1 Modal Transition Systems

Definition 2.1 (Modal transition system). A modal transition system (MTS) over an ac-

tion alphabet Act is a triple (P, 99K,−→), where P is a set of processes and −→ ⊆ 99K ⊆
P × Act× P are must and may transition relations, respectively.

Observe that P is not required to be finite. We often use letters s, t, . . . for processes

of MTS. Whenever clear from the context, we refer to processes without explicitly men-

tioning their underlying MTS.

We proceed with the standard definition of (modal) refinement.

Definition 2.2 (Refinement). Let (P1, 99K1,−→1), (P2, 99K2,−→2) be MTS over the same

action alphabet and s ∈ P1, t ∈ P2 be processes. We say that s refines t, written s ≤m t, if there

is a relationR ⊆ P1 × P2 such that (s, t) ∈ R and for every (p, q) ∈ R and every a ∈ Act:

1. if p
a

99K1 p ′ then there is a transition q
a

99K2 q ′ s.t. (p ′, q ′) ∈ R, and

2. if q a
−→2 q

′ then there is a transition p a
−→1 p

′ s.t. (p ′, q ′) ∈ R.

The ultimate goal of the refinement process is to obtain an implementation, i.e. an MTS

with 99K = −→. Implementations can be considered as the standard labelled transition

systems (LTS). Note that on implementations refinement coincides with strong bisimi-

larity, and on modal transition systems without any must transitions it corresponds to

the simulation preorder, denoted by ≤sim. Further, refinement has a game characteri-

zation [BKLS09] similar to (bi)simulation games, which we often use in the proofs. For

reader’s convenience, we recall the refinement game in Appendix A.
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2.2 Modal Process Rewrite Systems

We now move our attention to infinite-state MTS generated by finite sets of rules. Let

Const be a set of process constants. We define the set of process expressions E by the

following abstract syntax:

E ::= ε | X | E ‖ E | E;E

where X ranges over Const. We often use Greek letters α,β, . . . for elements of E . The

process expressions are considered modulo the usual structural congruence, i.e. the

smallest congruence such that the operator ; is associative, ‖ is associative and com-

mutative and ε is a unit for both ; and ‖. We often omit the ; operator.

Definition 2.3 (Modal process rewrite system). A process rewrite system (PRS) is a finite

relation ∆ ⊆ (E \ {ε})× Act× E , elements of which are called rewrite rules. A modal process

rewrite system (mPRS) is a tuple (∆may, ∆must) where ∆may, ∆must are process rewrite systems

such that ∆must ⊆ ∆may.

An mPRS ∆ = (∆may, ∆must) induces an MTS MTS(∆) = (E , 99K,−→) as follows:

(E, a, E ′) ∈ ∆may

E
a

99K E ′

E
a

99K E ′

E; F
a

99K E ′; F

E
a

99K E ′

E ‖ F a
99K E ′ ‖ F

(E, a, E ′) ∈ ∆must

E
a

−→ E ′

E
a

−→ E ′

E; F
a

−→ E ′; F

E
a

−→ E ′

E ‖ F a
−→ E ′ ‖ F

We consider four distinguished classes of process expressions. Class S stands for

expressions with no ‖ (purely sequential expressions) and class P stands for expressions

with no ; (purely parallel expressions). Further, we use G for the whole E (general ex-

pressions) and 1 for Const (one process constant and no operators). Now restricting the

left and right sides of rules of PRS to these classes yields subclasses of PRS as depicted

in Figure 1 using the standard shortcuts also introduced in Section 1. Each subclass C
has a corresponding modal extension mC containing all mPRS (∆may, ∆must) with both

∆may and ∆must in C. For instance, mFSM correspond to the standard finite MTS and

mPN are modal Petri nets as introduced in [EBHH10]. An example of an mBPP and the

resulting MTS are depicted in Figure 2.

For any classes C, D, we define the following decision problemmC ≤m mD.

Given mPRS ∆1 ∈ mC, ∆2 ∈ mD and process terms δ1, δ2 conforming to left-

hand side restrictions of C,D, respectively, does δ1 ≤m δ2 hold considering δ1, δ2
as processes of MTS(∆1),MTS(∆2)?

8



∆may = { (X, a, X ‖ Y),
(X, c, ε),

(Y, b, ε) }

∆must = { (X, a, X ‖ Y),
(Y, b, ε) }

· · ·

· · ·

a a a

b b b

b b b

c c c

Figure 2: An example of a mBPP and its corresponding (infinite) MTS; the dashed

arrows represent may transitions, the unbroken arrows represent must transitions; as

s
a

−→ t implies s
a

99K t we omit the may transitions where must transitions are also

present

3 Undecidability Results

In this section, we present all the negative results. As already discussed in Sec-

tion 1, simulation—and thus refinement—is undecidable already on BPP [Hüt94] and

BPA [GH94]. When considering the case where one of the two classes is mFSM,

the undecidability holds for mPA [KM99]. Thus we are left with the problems

mFSM≤mmPDA, mPDA≤mmFSM and mFSM≤mmPN, mPN≤mmFSM. On the one

hand, the two former are shown decidable in Section 4 using non-modal methods for

simulation of [KM02b]. On the other hand, the non-modal methods for simulation

of [JM95] cannot be extended to the latter two problems. In this section, we show that

(surprisingly) they are both undecidable and, moreover, even for mBPP.

Theorem 3.1. The problem mBPP≤mmFSM is undecidable.

Proof. We reduce the undecidable problem of simulation between two BPPs (even

normed ones) to the problem mBPP≤mmFSM.

LetA, B be two BPP processes with underlying PRS ∆A and ∆B; w.l.o.g. ∆A∩∆B = ∅.
We transform them as follows. We rename all actions of the underlying PRS of B from a

to a ′. Let Act ′ be the set of these renamed actions and let ∆ ′
B be the modification of ∆B

by renaming the actions. The mBPP is defined as (∆A ∪ ∆ ′
B, ∆

′
B), i.e. the transitions of A

are just may, the (modified) transitions of B are both must and may.

We then build a finite mPRS as follows. The states are {s, u} ∪ {sa | a ∈ Act}.

• s a
99K sa and s

a ′

99K u for all a ∈ Act

• sa
a ′
−→ s for all a ∈ Act (with the corresponding may transition)
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•
A a C b

•
B a ′b ′

s

sa sb u

a b

Act ′

a ′

Act ∪Act ′

b ′

Act ∪Act ′
Act ∪Act ′

Figure 3: A ‖ B ≤m s where the original two BPPs are given by A a
−→ A ‖ C, C b

−→ ε,

B
a

−→ B ‖ B, B b
−→ ε.

• sa
x

99K u for all a ∈ Act and x ∈ Act ∪Act ′

• u x
99K u for all x ∈ Act ∪Act ′

Clearly q ≤m u for any process q. The construction is illustrated in Figure 3.

We now show that A ≤sim B iff A ‖ B ≤m s. In the following, α always denotes

a process of ∆A, while β denotes a process of ∆B. Furthermore, we use the notation

LTS(∆A) to denote the LTS induced by ∆A (similarly for ∆B). We use the refinement

game argumentation, see Appendix A.⇒: Let R = {(α ‖ β, s) | α ≤sim β}. We show that R can be extended to be a modal

refinement relation. Let (α ‖ β, s) ∈ R:

• If the attacker plays α ‖ β a ′

99K α ‖ β ′ (where a ′ ∈ Act ′), the defender can play

s
a ′

99K u and obviously wins.

• If the attacker plays α ‖ β a
99K α ′ ‖ β (where a ∈ Act), the defender has to play

s
a

99K sa. There are two possibilities then:

– if the attacker plays α ′ ‖ β x
99K, the defender can play sa

x
99K u and obviously

wins;

– if the attacker plays sa
a ′
−→ s, the defender can play α ′ ‖ β a ′

−→ α ′ ‖ β ′

where β ′ is a process such that β a
−→ β ′ in LTS(∆B) and α ′ ≤sim β

′. Such β ′

obviously exists due to α ≤sim β. Thus (α ′ ‖ β ′, s) ∈ R.

⇐: We show thatR := {(α,β) | α ‖ β ≤m s} is a simulation. Let (α,β) ∈ R:

• If α a
−→ α ′ in LTS(∆A) then α ‖ β a

99K α ′ ‖ β. This has to be matched by s
a

99K sa.

Furthermore, sa
a ′
−→ s has to be matched by α ′ ‖ β a ′

−→ α ′ ‖ β ′. This means that

β
a

−→ β ′ in LTS(∆B) and that (α ′, β ′) ∈ R.

10



•
A a C

b

•
B a ′

b ′

•
X

Act

Act ∪Act ′
Y

s

sa sb

v

a b

a ′

Act

b ′

Act

Act

Figure 4: s ≤m A ‖ B ‖ X where the original two BPPs are again given by A a
−→ A ‖ C,

C
b

−→ ε, B a
−→ B ‖ B, B b

−→ ε.

Theorem 3.2. The problem mFSM≤mmBPP is undecidable.

Proof. We reduce the undecidable problem of simulation between two BPPs to the prob-

lem mFSM≤mmBPP. The proof is similar to the previous one. However, as the situation

is not entirely symmetric (the requirement that ∆must ⊆ ∆may introduces asymmetry),

we need to modify the construction somewhat.

Let again A, B be two BPP processes with underlying PRS ∆A and ∆B; w.l.o.g. ∆A ∩
∆B = ∅. We rename all actions of ∆B from a to a ′. Let Act ′ be the set of these renamed

actions and let ∆ ′
B be the modification of ∆B. We further create a new PRS as follows:

∆X = {(X, a, Y) | a ∈ Act} ∪ {(Y, x, X) | x ∈ Act ∪Act ′}

The mBPP is defined as (∆A ∪ ∆ ′
B ∪ ∆X, ∆A), i.e. the (modified) transitions of B are just

may, the transitions of A are both must and may, and the new transitions of ∆X are may.

We then build a finite mPRS as follows. The states are {s, v} ∪ {sa | a ∈ Act}.

• s a
−→ sa for all a ∈ Act (with the corresponding may transitions)

• sa
a ′

99K s for all a ∈ Act

• sa
a

−→ v for all a ∈ Act (with the corresponding may transitions)

• v a
−→ v for all a ∈ Act (with the corresponding may transitions)

The construction is illustrated in Figure 4.

We now show that A ≤sim B iff s ≤m A ‖ B ‖ X. As in the previous proof, α denotes

a process of ∆A while β denotes a process of ∆B.
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We first show that v ≤m α ‖ β ‖ V for all V ∈ {X, Y} and all processes α, β. Whenever

the attacker plays a must transition of α, it is matched by v a
−→ v. Whenever the attacker

plays a may transition of v, it is matched either by X
a

99K Y or by Y
a

99K X (α and β are

unaffected).⇒: Let R = {(s, α ‖ β ‖ X) | α ≤sim β}. We show that R can be extended to be

a modal refinement relation. Let (s, α ‖ β ‖ X) ∈ R:

• If the attacker plays s
a

99K sa then the defender can play α ‖ β ‖ X a
99K α ‖ β ‖ Y.

The attacker then has two possibilities:

– if the attacker plays sa
a ′

99K s then the defender can play α ‖ β ‖ Y a ′

99K α ‖ β ‖
X and the game is back inR;

– if the attacker plays α ‖ β ‖ Y a
−→ α ′ ‖ β ‖ Y then the defender can play

sa
a

−→ v and win due to the fact above.

• If the attacker plays α ‖ β ‖ X a
−→ α ′ ‖ β ‖ X then the defender has to play

s
a

−→ sa. The attacker then has three possibilities:

– if the attacker plays α ′ ‖ β ‖ X b
−→ α ′′ ‖ β ‖ X then the defender can play

sa
b

−→ v and win due to the fact above.

– if the attacker plays sa
b

99K v then the defender can play α ′ ‖ β ‖ X b
99K α ′ ‖

β ‖ Y and win due to the fact above.

– if the attacker plays sa
a ′

99K s then the defender plays α ′ ‖ β ‖ X a ′

99K α ′ ‖ β ′ ‖
X where β ′ is a process such that β a

−→ β ′ in LTS(∆B) and α ′ ≤sim β
′. Such

process has to exist due to α ≤sim β. Therefore, (s, α ′ ‖ β ′ ‖ X) ∈ R.

⇐: LetR = {(α,β) | s ≤m α ‖ β ‖ X}. We show thatR is a simulation. Let (α,β) ∈ R.

• If α a
−→ α ′ then α ‖ β ‖ X a

−→ α ′ ‖ β ‖ X. This has to be matched by s a
−→ sa.

Furthermore, sa
a ′

99K s has to be matched by α ′ ‖ β ‖ X a ′

99K α ′ ‖ β ′ ‖ X (note that

neither α ′ nor X can make an a ′-transition). This means that β a
−→ β ′ in LTS(∆B)

and that (α ′, β ′) ∈ R.

4 Decidability Results

We prove that the problems mFSM≤mmPDA and mPDA≤mmFSM are decidable and

EXPTIME-complete like the corresponding simulation problems.
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We modify the result of [KM02b] and show that, in certain classes of mPRS, refine-

ment can be reduced to simulation.

We first need some auxiliary definitions. Let d be the maximal outdegree (we assume

that the input MTS are finitely branching), let k be |Act|, the number of actions. We

assume a fixed ordering of the actions, i.e. Act = {a1, . . . , ak}. Let Λ = {λji | 1 ≤ i ≤
k, 1 ≤ j ≤ d} and ∆ = {δji | 1 ≤ i ≤ k, 1 ≤ j ≤ d} be new actions. Let further γ be a new

action. We define Act ′ = Act ∪ Λ ∪ ∆ ∪ {γ}. Let further mustsucc(s, a) = {t | s
a

−→ t}.

Assume arbitrary, but fixed linear ordering onmustsucc(s, a). Then s(a, j) denotes the

jth process inmustsucc(s, a).

An A-translation of (P, 99K,−→) is an LTS (P ′,−→) together with an injective map-

ping f : P → P ′ satisfying the following conditions:

• If s
a

99K s ′ then f(s) a
−→ f(s ′).

• f(s) λ
−→ f(s ′) for every s ∈ P and λ ∈ Λ.

• For all s ∈ P , 1 ≤ i ≤ k and 1 ≤ j ≤ dwe have the following:

– if j ≤ |mustsucc(s, ai)| then f(s)
δ
j
i−→ f(s(ai, j)).

– if j > |mustsucc(s, ai)| then f(s)
δ
j
i−→ qj where qj is a state that can perform λ.

There are no additional requirements on qj.

• For every s ∈ P the state f(s) has only the transitions admitted above.

For the second translation, we need the notion of a universal process. It is a process u

such that u a
−→ u for all a ∈ Act ′.

A D-translation of (P, 99K,−→) is an LTS (P ′,−→) together with an injective mapping

g : P → P ′ satisfying the following conditions:

• If t
a

99K t ′ then g(t) a
−→ g(t ′).

• g(t) δ
−→ u for every t and δ ∈ ∆, where u is an arbitrary universal process.

• For all t ∈ P , all 1 ≤ i ≤ k and 1 ≤ j ≤ d:

– if j ≤ |mustsucc(t, ai)| then g(t)
λ
j
i−→ ri,j,` for each 1 ≤ ` ≤ d. Here, ri,j,` is

a state of P ′ which has

∗ exactly one δ`i transition ri,j,`
δ`i−→ g(t(ai, j))

13



∗ for every a ∈ Act ′ \ {δ`i} there is a universal process u and a transition

ri,j,`
a

−→ u.

– if j > |mustsucc(t, ai)| then g(t)
λ
j
i−→ uwhere u is a universal process.

• For every t ∈ P the process g(t) has only the transitions admitted above.

The following theorem can be proved similarly to the proof in [KM02b].

Theorem 4.1. Let (P1, 99K1,−→1), (P2, 99K2,−→2) be two MTS, let (P ′
1,−→1) and (P ′

2,−→2)

be their A and D-translations, respectively. Let S ∈ P1, T ∈ P2. We have that S ≤m T iff

f(S) ≤sim g(T).

The applicability of this method is the same (modulo the modal extension) as the

applicability of the original method. Both the A-translation and the D-translation pre-

serve the following subclasses of PRS: PDA, BPA, FSM, nPDA, nBPA and OC. Here,

nPDA and nBPA are the normed variants (every process may be rewritten to ε in fi-

nite number of steps) of PDA and BPA, respectively. OC is the subclass of one-counter

automata, i.e. PDA with only one stack symbol. Furthermore, the A-translation also

preserves determinism.

As a direct corollary of the previous remark and the results of [KM02a], we obtain

the following.

Theorem 4.2. The problem mPDA≤mmFSM is EXPTIME-complete in both ways, even if the

mFSM is of a fixed size. The problem mBPA≤mmFSM is EXPTIME-complete in both ways, but

if the mFSM is of a fixed size, it is PTIME-complete.

4.1 Visibly PDA

We have seen that the refinement relation is undecidable between any two infinite

classes of the hierarchy depicted in Figure 1. However, there are other subclasses where

the refinement is decidable. In this section, we show that the refinement between two

modal visibly PDA is decidable.

Definition 4.3. A PDA is a visibly PDA (vPDA) if there is a partitioning Act = Actc]Actr]
Acti such that every rule pX a

−→ qα satisfies the following:

• if a ∈ Actc then |α| = 2 (call),

• if a ∈ Actr then |α| = 0 (return),
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• if a ∈ Acti then |α| = 1 (internal).

The modal extension (mvPDA) is straightforward; its subclass mvBPA can be de-

fined similarly.

In order to prove decidability, we make use of the idea of [Srb06] for showing that

simulation between two vPDA is decidable. We modify and simplify the method some-

how, as the original method is used to prove decidability of various kinds of equiva-

lences and preorders, while we are only considering the modal refinement.

Theorem 4.4. The problem mvPDA≤mmvPDA is decidable.

Proof. Let (∆may, ∆must) be a mvPDA with a stack alphabet Γ and a set of control statesQ.

Let sA and tB be two processes of the mvPDA. Note that for simplicity we consider two

processes of a single mvPDA. However, as a disjoint union of two mPRS is a mPRS, this

also solves the case of two distinct mvPDA. Our goal is to transform the mvPDA into

a PDA with a distinguished process such that this process satisfies certain µ-calculus

formula if and only if sA ≤m tB.

We create a PDA ∆ ′ with actions Act ′ = {att, def }, stack alphabet Γ ′ = G × G where

G = Γ ∪ (Γ × Γ) ∪ (Γ ×Act) ∪ {ε}, and control states Q ′ = Q×Q. We write Ya instead of

(Y, a) as an element of G.

We use a (stack merging) partial mapping [Xα, Yβ] = (X, Y)[α,β], [ε, ε] = ε. In the

following, we abuse the notation of the rules, as we did in the introduction, and write

e.g. pX
a

99K p ′α instead of (pX, a, p ′α) ∈ ∆may.

The set of rules of ∆ ′ is as follows:

• Whenever pX
a

99K p ′α then

– (p, q)(X, Y)
att
−→ (p ′, q)(α, Ya) for every q ∈ Q and Y ∈ Γ

– (q, p)(β,Xa)
def
−→ (q, p ′)[β,α] for every q ∈ Q and β ∈ Γ × Γ ∪ Γ ∪ {ε}

• Whenever pX a
−→ p ′α then

– (q, p)(Y, X)
att
−→ (q, p ′)(Ya, α) for every q ∈ Q and Y ∈ Γ

– (p, q)(Xa, β)
def
−→ (p ′, q)[α,β] for every q ∈ Q and β ∈ Γ × Γ ∪ Γ ∪ {ε}

Note that [α,β] and [β,α] is always well defined as |α| = |β| is guaranteed (the transi-

tion that created β has to have the same label as the transition that creates α – this is

guaranteed via Xa).
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We now claim that sA ≤m tB iff (s, t)(A,B) |= ϕ where ϕ is an alternation-free

µ-calculus formula: ϕ = νZ.[att]〈def 〉Z. Let us prove both implications.⇒: let F = {(p, q)[α,β] | pα ≤m qβ and |α| = |β|}. We show that F is a fixed point

of the formula. We need to show that for every att-move (p, q)[α,β]
att
−→ c there is a def -

move c
def
−→ (p ′, q ′)[α ′, β ′] such that (p ′, q ′)[α ′, β ′] ∈ F . There are two possibilities.

• (p, q)[α,β]
att
−→ (p ′, q)(α ′, Ya)[γ, δ] due to rule pX

a
99K p ′α ′ where α = Xγ and

β = Yδ. This means that pα
a

99K p ′α ′γ and because pα ≤m qβ, we have that

qβ
a

99K q ′β ′δ due to some rule qY
a

99K q ′β ′ such that pα ′γ ≤m qβ ′δ. Thus also

(p ′, q)(α ′, Ya)[γ, δ]
def
−→ (p ′, q ′)[α ′γ, β ′δ] and (p ′, q ′)[α ′γ, β ′δ] ∈ F .

• (p, q)[α,β]
att
−→ (p, q ′)(Xa, β

′)[γ, δ]. This situation is symmetric and is resolved

similarly to the previous one (only this time, using must transitions instead of

may transitions).

⇐: Let R = {(pα, qβ) | (p, q)[α,β] |= ϕ and |α| = |β|}. We show that R is a modal

refinement. Let (pα, qβ) ∈ R

• Let pα
a

99K p ′α ′. This is due to a rule pX
a

99K p ′α ′′, α = Xγ and α ′ = α ′′γ for some

γ. In the PDA ∆ ′ we thus have a transition (p, q)[α,β]
att
−→ (p ′, q)(α ′′, Ya)[γ, β

′]

where β = Yβ ′. As (p, q)[α,β] satisfies ϕ, there has to be a def -transition

(p ′, q)(α ′′, Ya)[γ, β
′]

def
−→ (p ′, q ′)[α ′′, β ′′][γ, β ′] and also (p ′, q ′)[α ′′, β ′′][γ, β ′] |= ϕ.

This means that qβ
a

99K q ′β ′′β ′ and (p ′α ′, q ′β ′′β ′) ∈ R.

• The other case is again, (almost) symmetric and can be resolved as the previous

case (using must transitions instead of may transitions).

The following theorem can be proved using complexity bounds for µ-calculus model

checking, as in [Srb06].

Theorem 4.5. The problem mvPDA≤mmvPDA is EXPTIME-complete, the problem

mvBPA≤mmvBPA is PTIME-complete.

4.2 Birefinement

Since the refinement is often undecidable, the same holds for refinement equivalence

(≤m ∩ ≥m). Nevertheless, one can consider an even stronger relation that is still use-

ful. We define the notion of birefinement as the modification of refinement where we

require both conditions of Definition 2.2 to be satisfied in both directions, similarly as

bisimulation can be defined as a symmetric simulation.
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Definition 4.6 (Birefinement). A birefinement is a symmetric refinement. We say that α

birefines β (α ∼m β) if there exists a birefinement containing (α,β).

This notion then naturally captures the bisimilarity of modal transition systems. Fur-

thermore, the birefinement problem on MTS can be reduced to bisimulation on LTS in

the following straightforward way. Let (∆may, ∆must) and (Γmay, Γmust) be two mPRS over

the same action alphabet Act. We create a new action a for every a ∈ Act. We then trans-

late the mPRS into ordinary PRS as follows. Let ∆ = ∆may ∪ {(α, a, β) | (α, a, β) ∈ ∆must}

and similarly for Γ . It is then clear that if we take two processes δ of (∆may, ∆must) and γ

of (Γmay, Γmust) then the following holds: δ birefines γ if and only if δ and γ are bisimilar

when taken as processes of ∆ and Γ , respectively.

The decidability and complexity of birefinement is thus identical to that of bisimu-

lation in the non-modal case. Therefore, we may apply the powerful result that bisimi-

larity between any PRS and FSM is decidable [KŘS05] to get the following theorem.

Theorem 4.7. Birefinement between an mFSM and any mPRS is decidable.

This is an important result since it allows us to check whether we can replace an

infinite MTS with a particular finite one, which in turn may allow for checking further

refinements.

5 Conclusions

We have defined a generic framework for infinite-state modal transition systems gen-

erated by finite descriptions. We investigated the corresponding notion of modal re-

finement on important subclasses and determined the decidability border. Although

in some classes it is possible to extend the decidability of simulation to decidability of

refinement, it is not possible always. We have shown that somewhat surprisingly the

parallelism is a great obstacle for deciding the refinement relation. Therefore, the future

work will concentrate on identifying conditions leading to decidability. One of the best

candidates is imposing determinism, which has a remarkable effect on the complexity

of the problem in the finite case [BKLS09] as well as in the only infinite case considered

so far, namely modal Petri nets [EBHH10]. Further, we leave the question whether the

problem becomes decidable in some cases when the refining system is an implementa-

tion open, too. Finally, it remains open to what extent can verification results on finite

MTS, such as [BČK11], be extended to infinite-state MTS.
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Table 1: Summary of the decidability results

decidable mFSM Qm mPDA, mvPDA Qm mvPDA, mFSM ∼m mPRS

undecidable mFSM Qm mBPP, mBPA Qm mBPA
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A Refinement Game

For reader’s convenience, we recall the game characterization of modal refinement. As

a matter of fact, it is a simple extension of the standard game-theoretic characterization

of bisimilarity.

A refinement game on a pair of processes (s, t) is a two-player game between Attacker

and Defender. The game is played in rounds. In each round the players change the current

pair of processes (p, q) (initially p = s and q = t) according to the following rule:

1. Attacker chooses an action a ∈ Act and one of the processes p or q. If he chose

p then he performs a move p
a

99K p ′ for some p ′; if he chose q then he performs

a move q a
−→ q ′ for some q ′.

2. Defender responds by choosing a transition under a in the other process. If At-

tacker chose the move from p, Defender has to answer by a move q
a

99K q ′ for

some q ′; if Attacker chose the move from q, Defender has to answer by a move

p
a

−→ p ′ for some p ′.

3. The new current pair of processes becomes (p ′, q ′) and the game continues with

a next round.

The game is similar to standard bisimulation game with the exception that Attacker

is only allowed to attack on the left-hand side using may transitions (and Defender

answers by may transitions on the other side), while on the right-hand side Attacker

attacks using must transitions (and Defender answers by must transitions in the left-

hand side process).

Any play (of the modal game) thus corresponds to a sequence of pairs of processes

formed according to the above rule. A play (and the corresponding sequence) is finite

if and only if one of the players gets stuck (cannot make a move). The player who got

stuck lost the play and the other player is the winner. If the play is infinite then Defender

is the winner.

The following proposition is by a standard argument in analogy with strong bisim-

ulation games.

Proposition A.1. It holds that s ≤m t iff Defender has a winning strategy in the refinement

game starting with the pair (s, t); and s 6≤m t iff Attacker has a winning strategy.
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