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Abstract

Modal transition systems are a well-established specification formalism for a high-

level modelling of component-based software systems. We present a novel exten-

sion of the formalism called modal transition systems with durations where time

durations are modelled as controllable or uncontrollable intervals. We further equip

the model with two kinds of quantitative aspects: each action has its own running

cost per time unit, and actions may require several hardware components of differ-

ent costs. We ask the question, given a fixed budget for the hardware components,

what is the implementation with the cheapest long-run average reward. We give

an algorithm for computing such optimal implementations via a reduction to a new

extension of mean payoff games with time durations and analyse the complexity of

the algorithm.

1 Introduction and Motivating Example

Modal Transition Systems (MTS) is a specification formalism [15, 2] that aims at pro-

viding a flexible and easy-to-use compositional development methodology for reactive

systems. The formalism can be viewed as a fragment of a temporal logic [1, 8] that at
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the same time offers a behavioural compositional semantics with an intuitive notion of

process refinement. The formalism of MTS is essentially a labelled transition system

that distinguishes two types of labelled transitions: must transitions which are required

in any refinement of the system, and may transitions that are allowed to appear in a re-

fined system but are not required. The refinement of an MTS now essentially consists of

iteratively resolving the presence or absence of may transitions in the refined process.

In a recent line of work [14, 3], the MTS framework has been extended to allow for

the specification of additional constraints on quantitative aspects (e.g. time, power or

memory), which are highly relevant in the area of embedded systems. In this paper we

continue the pursuit of quantitative extensions of MTS by presenting a novel extension

of MTS with time durations being modelled as controllable or uncontrollable intervals.

We further equip the model with two kinds of quantitative aspects: each action has its

own running cost per time unit, and actions may require several hardware components

of different costs. Thus, we ask the question, given a fixed budget for the investment

into the hardware components, what is the implementation with the cheapest long-run

average reward.

Before we give a formal definition of modal transition systems with durations

(MTSD) and the dual-price scheme, and provide algorithms for computing optimal im-

plementations, we present a small motivating example.

Consider the specification S in Figure 1a describing the work of a shuttle bus driver.

He drives a bus between a hotel and the airport. First, the driver has to Wait for the

passengers at the hotel. This can take one to five minutes. Since this behaviour is re-

quired to be present in all the implementations of this specification, it is drawn as a solid

arrow and called a must transition. Then the driver has to Drive the bus to the airport

(this takes six to ten minutes) where he has to do a SmallCleanup, then Wait before he

can Drive the bus back to the hotel. When he returns he can do either a SmallCleanup,

BigCleanup or SkipCleanup of the bus before he continues. Here we do not require a

particular option to be realised in the implementations, hence we only draw the transi-

tions as dashed arrows. As these transitions may or may not be present in the imple-

mentations, they are called may transitions. However, here the intention is to require at

least one option be realised. Hence, we specify this using a propositional formulaΦ as-

signed to the state t over its outgoing transitions as described in [5, 6]. After performing

one of the actions, the driver starts over again. Note that next time the choice in t may

differ.
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Observe that there are three types of durations on the transitions. First, there are

controllable intervals, written in angle brackets. The meaning of e.g. 〈1, 5〉 is that in the

implementation we can instruct the driver to wait for a fixed number of minutes in the

range. Second, there are uncontrollable intervals, written in square brackets. The inter-

val [6, 10] on the Drive transition means that in the implementation we cannot fix any

particular time and the time can vary, say, depending on the traffic and it is chosen

nondeterministically by the environment. Third, the degenerated case of a single num-

ber, e.g. 0, denotes that the time taken is always constant and given by this number. In

particular, a zero duration means that the transition happens instantaneously.

The system S1 is another specification, a refinement of S, where we additionally spec-

ify that the driver must do a SmallCleanup after each Drive. Note that the Wait interval

has been narrowed. The system I1 is an implementation of S1 (and actually also of S)

where all controllable time intervals have already been fully resolved to their final sin-

gle values: the driver must Wait for 5 minutes and do the SmallCleanup for 6 minutes.

Note that uncontrollable intervals remain unresolved in the implementations and the

time is chosen by the environment each time the action is performed. This reflects the

inherent uncontrollable uncertainty of the timing, e.g. of a traffic.

The system S2 is yet another specification and again a refinement of S, where the

driver can always do a BigCleanup in t and possibly there is also an alternative allowed

here of a SmallCleanup. Notice that both SmallCleanup intervals have been restricted

and changed to uncontrollable. This means that we give up the control over the duration

of this action and if this transition is implemented, its duration will be every time chosen

nondeterministically in that range. Finally, I2 is then an implementation of S2 and S.

Furthermore, we develop a way to model cost of resources. Each action is assigned

a running price it costs per time unit, e.g. Drive costs 10 each time unit it is being per-

formed as it can be seen in the left table of Figure 1f. In addition, in order to perform an

action, some hardware may be needed, e.g. a VacuumCleaner for the BigCleanup and its

price is 100 as can be seen on the right. This investment price is paid once only.

Let us now consider the problem of finding an optimal implementation, so that we

spend the least possible amount of money (e.g. the pay to the driver) per time unit while

conforming to the specification S. We call this problem the cheapest implementation prob-

lem. The optimal implementation is to buy a vacuum cleaner if one can afford an invest-

ment of 100 and do the BigCleanup every time as long as possible and Wait as shortly

as possible. (Note that BigCleanup is more costly per time unit than SmallCleanup but
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a ∈ Σ r(a)

Wait 8

Drive 10

SmallCleanup 6

BigCleanup 7

SkipCleanup 0

H = {VacuumCleaner, Sponge}

Ψ(a) =


VacuumCleaner if a = BigCleanup

Sponge ∨ VacuumCleaner if a = SmallCleanup

true otherwise

h ∈ H i(h)

VacuumCleaner 100

Sponge 5

(f) Price Scheme

Figure 1: Example of Dual-Priced Modal Transition Systems with Time Durations
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lasts longer.) This is precisely implemented in I2 and the (worst-case) average cost per

time unit is ≈ 7.97. If one cannot afford the vacuum cleaner but only a sponge, the op-

timal worst case long run average is then a bit worse and is implemented by doing the

SmallCleanup as long as possible and Wait now as long as possible. This is depicted in

I1 and the respective average cost per time unit is ≈ 8.10.
The most related work is [11] where prices are introduced into a class of interface

theories and long-run average objectives are discussed. Our work omits the issue of

distinguishing input and output actions. Nevertheless, compared to [11], this paper

deals with the time durations, the one-shot hardware investment and, most importantly,

refinement of specifications. Further, timed automata have also been extended with

prices [4] and the long-run average reward has been computed in [9]. However, priced

timed automata lack the hardware and any notion of refinement, too.

The paper is organized as follows. We introduce the MTS with the time durations in

Section 2 and the dual-price scheme in Section 3. Section 4 presents the main results on

the complexity of the cheapest implementation problem. First, we state the complexity

of this problem in general and in an important special case and prove the hardness

part. The algorithms proving the complexity upper bounds are presented only after

introducing an extension of mean payoff games with time durations. These are needed

to establish the results but are also interesting on their own as discussed in Section 4.1.

We conclude and give some more account on related and future work in Section 5.

2 Modal Transition Systems with Durations

In order to define MTS with durations, we first introduce the notion of controllable and

uncontrollable duration intervals. A controllable interval is a pair 〈m,n〉wherem,n ∈ N0
and m ≤ n. Similarly, an uncontrollable interval is a pair [m,n] where m,n ∈ N0 and

m ≤ n. We denote the set of all controllable intervals by Ic, the set of all uncontrollable

intervals by Iu, and the set of all intervals by I = Ic ∪ Iu. We also write only m to de-

note the singleton interval [m,m]. Singleton controllable intervals need not be handled

separately as there is no semantic difference to the uncontrollable counterpart.

We can now formally define modal transition systems with durations. In what fol-

lows, B(X) denotes the set of propositional logic formulae over the set X of atomic

propositions, where we assume the standard connectives ∧,∨,¬.
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Definition 2.1 (MTSD). A Modal Transition System with Durations (MTSD) is a tuple

S = (S, T,D,Φ, s0) where S is a set of states with the initial state s0, T ⊆ S × Σ × S is a

set of transitions, D : T → I is a duration interval function, and Φ : S → B(Σ × S) is

an obligation function. We assume that whenever the atomic proposition (a, t) occurs in the

Boolean formulaΦ(s) then also (s, a, t) ∈ T .

We moreover require that there is no cycle of transitions that allows for zero accumulated

duration, i.e. there is no path s1a1s2a2 · · · sn where (si, ai, si+1) ∈ T and sn = s1 such that for

all i, the interval D((si, ai, si+1)) is of the form either 〈0,m〉 or [0,m] for somem.

Note that instead of the basic may and must modalities known from the classical

modal transition systems (see e.g. [2]), we use arbitrary boolean formulae over the out-

going transitions of each state in the system as introduced in [6]. This provides a higher

generality as the formalism is capable to describe, apart from standard modal transition

systems, also more expressive formalisms like disjunctive modal transition systems [16]

and transition systems with obligations [5]. See [6] for a more thorough discussion of

this formalism.

In the rest of the paper, we adapt the following convention when drawing MTSDs.

Whenever a state s is connected with a solid arrow labelled by a to a state s ′, this means

that in any satisfying assignment of the Boolean formula Φ(s), the atomic proposition

(a, s ′) is always set to true (the transition must be present in any refinement of the sys-

tem). Should this not be the case, we use a dashed arrow instead (meaning that the

corresponding transition may be present in a refinement of the system but it can be also

left out). For example the solid edges in Figure 1a correspond to an implicitly assumed

Φ(s) = (a, s ′) where (s, a, s ′) is the (only) outgoing edge from s; in this case we do

not explicitly write the obligation function. The three dashed transitions in the figure

are optional, though at least one of them has to be preserved during any refinement (a

feature that can be modelled for example in disjunctive MTS [16]).

Remark 2.2. The standard notion of modal transition systems (see e.g. [2]) is obtained under

the restriction that the formulae Φ(s) in any state s ∈ S have the form (a1, s1)∧ . . .∧ (an, sn)

where (s, a1, s1), . . . , (s, an, sn) ∈ T . The edges mentioned in such formulae are exactly all must

transitions; may transitions are not listed in the formula and hence can be arbitrarily set to true

or false.

Let by T(s) = {(a, t) | (s, a, t) ∈ T } denote the set of all outgoing transitions from

the state s ∈ S. A modal transition system with durations is called an implementation if
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Φ(s) =
∧
T(s) for all s ∈ S (every allowed transition is also required), and D(s, a, s ′) ∈

Iu for all (s, a, s ′) ∈ T , i.e. all intervals are uncontrollable, often singletons. Figure 1c

shows an example of an implementation, while Figure 1b is not yet an implementation

as it still contains the controllable intervals 〈3, 5〉 and 〈4, 6〉.
We now define a notion of modal refinement. In order to do that, we first need to

define refinement of intervals as a binary relation ≤ ⊆ I× I such that

• 〈m ′, n ′〉 ≤ 〈m,n〉wheneverm ′ ≥ m and n ′ ≤ n, and

• [m ′, n ′] ≤ 〈m,n〉wheneverm ′ ≥ m and n ′ ≤ n.

Thus controllable intervals can be refined by narrowing them, at most until they become

singleton intervals, or until they are changed to uncontrollable intervals. Let us denote

the collection of all possible sets of outgoing transitions from a state s by Tran(s) := {E ⊆
T(s) | E |= Φ(s)} where |= is the classical satisfaction relation on propositional formulae

assuming that E lists all true propositions.

Definition 2.3 (Modal Refinement). Let S1 = (S1, T1, D1, Φ1, s1) and S2 =

(S2, T2, D2, Φ2, s2) be two MTSDs. A binary relation R ⊆ S1 × S2 is a modal refinement

if for every (s, t) ∈ R the following holds:

∀M ∈ Tran(s) : ∃N ∈ Tran(t) :

∀(a, s ′) ∈M : ∃(a, t ′) ∈ N : D1(s, a, s
′) ≤ D2(t, a, t

′) ∧ (s ′, t ′) ∈ R and

∀(a, t ′) ∈ N : ∃(a, s ′) ∈M : D1(s, a, s
′) ≤ D2(t, a, t

′) ∧ (s ′, t ′) ∈ R .

We say that s ∈ S1 modally refines s ′ ∈ S2, denoted by s ≤m s
′, if there exists a modal refinement

R such that (s, s ′) ∈ R. We also write S1 ≤m S2 if s1 ≤m s2.

Intuitively, the pair (s, t) can be in the relation R if for any satisfiable instantiation

of outgoing edges from s there is a satisfiable instantiation of outgoing edges from t so

that they can be mutually matched, possibly with s having more refined intervals, and

the resulting states are again in the relation R.

Observe that in our running example the following systems are in modal refinement:

I1 ≤m S1 ≤m S and thus also I1 ≤m S, and similarly I2 ≤m S2 ≤m S and thus also

I2 ≤m S.

The reader can verify that on the standard modal transition systems (see Remark 2.2)

the modal refinement relation corresponds to the classical modal refinement as intro-

duced in [15].
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3 Dual-Price Scheme

In this section, we formally introduce a dual-price scheme on top of MTSD in order

to model the investment cost (cost of hardware necessary to perform the implemented

actions) and the running cost (weighted long-run average of running costs of actions).

We therefore consider only deadlock-free implementations (every state has at least one

outgoing transition) so that the long-run average reward is well defined.

Definition 3.1 (Dual-Price Scheme). A dual-price scheme over an alphabet Σ is a tuple

P = (r,H,Ψ, i) where

• r : Σ→ Z is a running cost function of actions per time unit,

• H is a finite set of available hardware,

• Ψ : Σ→ B(H) is a hardware requirement function, and

• i : H→ N0 is a hardware investment cost function.

Hence every action is assigned its unit cost and every action can have different hard-

ware requirements (specified as a Boolean combination of hardware components) on

which it can be executed. This allows for much more variability than a possible alter-

native of a simple investment cost Σ → N0. Further, observe that the running cost may

be negative, meaning that execution of such an action actually gains rather than spends

resources.

Let I be an implementation with an initial state s0. A set G ⊆ H of hardware is suf-

ficient for an implementation I, written G |= I, if G |= Ψ(a) for every action a reachable

from s0. The investment cost of I is then defined as

ic(I) = min
G|=I

∑
g∈G

i(g) .

Further, a run of I is an infinite sequence s0a0t0s1a1t1 · · · with (si, ai, si+1) ∈ T and

ti ∈ D(si, ai, si+1). Hence, in such a run, a concrete time duration in each uncontrollable

interval is selected. We denote the set of all runs of I by R(I). The running cost of an

implementation I is the worst-case long-run average

rc(I) = sup
s0a0t0s1a1t1···∈R(I)

lim sup
n→∞

∑n
i=0 r(ai) · ti∑n

i=0 ti
.

Our cheapest-implementation problem is now defined as follows: given an MTSD spec-

ification S together with a dual-price scheme over the same alphabet, and given an
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upper-bound maxic for the investment cost, find an implementation I of S (i.e. I ≤m S)

such that ic(I) ≤ maxic and for every implementation I ′ of S with ic(I ′) ≤ maxic, we

have rc(I) ≤ rc(I ′).
Further, we introduce the respective decision problem, the implementation problem, as

follows: given an MTSD specification S together with a dual-price scheme, and given

an upper-bound maxic for the investment cost and an upper bound maxrc on the running

cost, decide whether there is an implementation I of S such that both ic(I) ≤ maxic and

rc(I) ≤ maxrc.

Example 3.2. Figure 1f depicts a dual-price scheme over the same alphabet Σ =

{Wait, Drive, SmallCleanup, BigCleanup, SkipCleanup} as of our motivating specification

S. The running cost of the implementation I2 is (1 ·8+10 ·10+6 ·6+1 ·8+10 ·10+30 ·7)/(1+
10+6+1+10+30) ≈ 7.97 as the maximum value is achieved when Drive (with running cost

10) takes 10 minutes. On the one hand, this is optimal for S and a maximum investment cost

at least 100. On the other hand, if the maximum investment cost is 99 or less then the optimal

implementation is depicted in I1 and its cost is (5 · 8+ 10 · 10+ 6 · 5)/(5+ 10+ 6) ≈ 8.10.

Remark 3.3. Note that the definition of the dual-price scheme only relies on having durations on

the labelled transition systems. Hence, one could easily apply this in various other settings like

in the special case of traditional MTS (with may and must transitions instead of the obligation

function) or in the more general case of parametric MTS (see [6]) when equipped with durations

as described above.

4 Complexity Results

In this section, we give an overview of the complexity of our problem both in general

and in an important special case. We start with establishing the hardness results. The

matching upper bounds and the outline of their proofs follow. When referring to the

size of MTSDs and the dual-price scheme, we implicitly assume binary encoding of

numbers. We start by observing that the implementation problem is NP-hard even if no

hardware is involved.

Proposition 4.1. The implementation problem is NP-hard even for the hardware requirement

function Ψ that is constantly true for all actions.

Proof. We shall reduce the satisfiability problem of Boolean formulae (SAT) to our prob-

lem. Let ϕ be a Boolean formula over the variables x1, . . . , xn. We define a MTSD S
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over the set of actions Σ = {x1, . . . , xn, ∗} such that the running cost is r(xj) = 1 for

all 1 ≤ j ≤ n and r(∗) = 2 and the duration of all actions is 1. The specification S
has one state s and a self-loop under all elements of Σ with the obligation function

Φ(s) = ϕ ∨ (∗, s). The reason for adding the action ∗ is to make sure that in case ϕ is

not satisfiable then we can still have a deadlock-free, but more running-cost-expensive

implementation. Now we set the hardware to H = ∅ and the hardware requirement

function Ψ(a) constantly true for all a ∈ Σ. It is easy to observe that the formula ϕ is

satisfiable iff S has an implementation I with rc(I) ≤ 1 (and ic(I) = 0).

Note that in the proof we requiredΦ to be a general Boolean formula. If, for instance,

we considered Φ in positive form (i.e. only containing ∧ and ∨ operators and not ¬),

the hardness would not hold. Thus on the one hand, one source of hardness is the

complexity of Φ. On the other hand, even if Φ corresponds to the simplest case of an

implementation (Φ is a conjunction of atomic propositions), the problem remains hard

due to the hardware.

Proposition 4.2. The implementation problem is NP-hard even for specifications that are al-

ready implementations.

Proof. We reduce the NP-complete problem of vertex cover to our problem. Let (V, E)

where E ⊆ V × V be a graph and k ∈ N be an integer. We ask whether there is a

subset of vertices Vk ⊆ V of cardinality k such that for every (v1, v2) ∈ E at least v1 ∈ Vk
or v2 ∈ Vk. Let us construct an MTSD specification S with hardware H = V and the

investment function i(v) = 1 for all v ∈ H, such that S has only one state s and a self-

loop under a single action a that is required (Φ(s) = (a, s)) and where the hardware

requirement function is Ψ(a) =
∧

(u,v)∈E(u ∨ v). There is now a vertex cover in (V, E) of

size k iff S has an implementation I with ic(I) ≤ k. Setting e.g. D(s, a, s) = 1 and the

running cost r(a) = 0 establishes NP-hardness of the implementation problem where

we ask for the existence of an implementation of S with maximum running cost 0 and

maximum investment cost k.

Alternatively, we may introduce a self-loop with a new action name a(u,v) for every

edge (u, v) in the graph such that Ψ(a(u,v)) = u ∨ v, showing NP-hardness even for

the case where the hardware requirement function is a simple disjunction of hardware

components.

In the subsequent sections, we obtain the following matching upper bound which

yields the following theorem.
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Theorem 4.3. The implementation problem is NP-complete.

By analysing the proof of Proposition 4.2, it is clear that we have to restrict the hard-

ware requirement function before we can obtain a more efficient algorithm for the im-

plementation problem. We do so by assuming a constant number of hardware compo-

nents (not part of the input). If we at the same time require the obligation function in

positive form, we obtain a simpler problem as stated in the following theorem.

Theorem 4.4. The implementation problem with positive obligation function and a constant

number of hardware components is polynomially equivalent to mean payoff games and thus it is

in NP ∩ coNP and solvable in pseudo-polynomial time.

The subsequent sections are devoted to proving Theorems 4.3 and 4.4. The algo-

rithm to solve the implementation problem first reduces the dual-priced MTSD into a

mean payoff game extended with time durations and then solves this game. This new

extension of mean payoff games and an algorithm to solve them is presented in Sec-

tion 4.1. The translation follows in Section 4.2. Since this translation is exponential in

general, Section 4.3 then shows how to translate in polynomial time with only local ex-

ponential blow-ups where negations occur. Section 4.4 then concludes and establishes

the complexity bounds.

4.1 Weighted Mean Payoff Games

We extend the standard model of mean payoff games (MPG) [13] with time durations.

Not only is this extension needed for our algorithm, but it is also useful for modelling

by itself. Consider, for instance, energy consumption of 2kW for 10 hours and 10kW for

2 hour, both followed by 10 hours of inactivity. Obviously, although both consumptions

are 20kWh per cycle, the average consumption differs: 1kW in the former case and

20/12kW in the latter one. We also allow zero durations in order to model e.g. discrete

changes of states, an essential part of our algorithm. Another extension of MPGs with

dual-cost was studied in [7].

Definition 4.5. A weighted mean payoff game is G = (V,Vmin, Vmax, E, r, d) where V is

a set of vertices partitioned into Vmin and Vmax, E ⊆ V × V is a set of edges, r : E→ Z is a rate

function, d : E→ N0 is a duration function.

It is assumed that there are no deadlocks (vertices with out-degree 0) and that there

are no zero-duration cycles. The game is played by two players, min and max. The
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play is an infinite path such that each player picks successors in his/her vertices. The

value of a play v0v1v2 · · · is defined as:

ν(v0v1v2 · · · ) = lim sup
n→∞

∑n
i=0 r(vi, vi+1) · d(vi, vi+1)∑n

i=0 d(vi, vi+1)
. (∗)

Playermin tries to minimize this value, whilemax aims at the opposite. Let v(s) denote

the infimum of the valuesmin can guarantee if the play begins in the vertex s, no matter

what the playermax does.

Note that the standard MPGs where edges are assigned only integer weights can

be seen as weighted MPGs with rates equal to weights and durations equal to 1 on all

edges.

We now show how to solve weighted MPGs by reduction to standard MPGs. We

first focus on the problem whether v(s) ≥ 0 for a given vertex s. As the durations are

nonnegative and there are no zero-duration cycles, the denominator of the fraction in

(∗) will be positive starting from some n. Therefore, the following holds for every play

v0v1v2 . . . and every (large enough) n:∑n
i=0 r(vi, vi+1) · d(vi, vi+1)∑n

i=0 d(vi, vi+1)
≥ 0 ⇐⇒ 1

n

n∑
i=0

r(vi, vi+1) · d(vi, vi+1) ≥ 0 .

We may thus solve the question whether v(s) ≥ 0 by transforming the weighted MPG

into a standard MPG, leaving the set of vertices and edges the same and takingw(u, v) =

r(u, v) ·d(u, v) as the edge weight function. Although the value v(s) may change in this

reduction, its (non)negativeness does not.

Further, we may transform any problem of the form v(s) ≥ λ for any fixed constant

λ into the above problem. Let us modify the weighted MPG as follows. Let r ′(u, v) =

r(u, v) − λ and leave everything else the same. The value of a play v0v1v2 · · · is thus

changed as follows.

ν ′(v0v1v2 · · · ) = lim sup
n→∞

∑n
i=0(r(vi, vi+1) − λ) · d(vi, vi+1)∑n

i=0 d(vi, vi+1)
= ν(v0v1v2 · · · ) − λ

It is now clear that v(s) ≥ λ in the original game if and only if v ′(s) ≥ 0 in the modified

game.

Furthermore, there is a one-to-one correspondence between the strategies in the orig-

inal weighted MPG and the constructed MPG. Due to the two equivalences above, this

correspondence preserves optimality. Therefore, there are optimal positional strategies

in weighted MPGs since the same holds for standard MPGs [13]. (A strategy is posi-

tional if its decision does not depend on the current history of the play but only on the

current vertex, i.e. can be described as a function V → V .)
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4.2 Translating Dual-priced MTSD into Weighted MPG

We first focus on the implementation problem without considering the hardware (H =

∅). We show how the implementation problem can be solved by reduction to the

weighted MPGs. The first translation we present is exponential, however, we provide

methods for making it smaller in the subsequent section.

We are given an MTSD S = (S, T,D,Φ, s0) and a dual-price scheme (r,H,Ψ, i) and

assume that there is no state s with ∅ ∈ Tran(s). Let us define the following auxiliary

vertices that will be used to simulate the more complicated transitions of MTSD in the

simpler setting of weighted MPG (by convention all singleton intervals are treated as

uncontrollable).

Tu = {(s, a, t) | (s, a, t) ∈ T ; D(s, a, t) ∈ Iu}

Tc = {(s, a, t) | (s, a, t) ∈ T ; D(s, a, t) ∈ Ic}

T∗ = {(s, a, j, t) | (s, a, t) ∈ T ; j ∈ D(s, a, t)}

We construct the weighted mean-payoff game with Vmin = S ∪ Tc ∪ T∗, Vmax = 2T ∪ Tu

and E defined as follows:

(s, X) ∈ E ⇐⇒ ∃V ∈ Tran(s) : X = {(s, a, t) | (a, t) ∈ V}

(X, (s, a, t)) ∈ E ⇐⇒ (s, a, t) ∈ X

((s, a, t), (s, a, j, t)) ∈ E ⇐⇒ j ∈ D(s, a, t)

((s, a, j, t), t) ∈ E (always)

Further, r((s, a, j, t), t) = r(a), d((s, a, j, t), t) = j and r(−,−) = d(−,−) = 0 otherwise.

Example 4.6. In Figure 2 we show an example of how this translation to weighted MPG works.

For simplicity we only translate a part of the MTSD S shown in Figure 2a. The resulting

weighted MPG is shown in Figure 2b. The diamond shaped states belong tomin and the squared

states belong tomax. In the vertex s,min chooses which outgoing transition are implemented.

Only the choices satisfying Φ(s) are present in the game. Afterwards, max decides which

transition to take. The chosen transition is then assigned by one of the players a time that it is

going to take.

Notice that (s, a, t1) is the only transition controlled by min, because it has a controllable

interval 〈2, 3〉. The remaining transitions with uncontrollable intervals are operated by max

who chooses the time from these intervals. All the “auxiliary” transitions are displayed without

13
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(b) Resulting weighted MPG from translation of S

Figure 2: Translating MTSD to weighted MPG

any labels meaning their duration (and rate) is zero. Thus, only the transitions corresponding

to “real” transitions in MTSDs are taken into account in the value of every play.

We now show how a strategy for player min in the constructed weighted MPG may

be translated into an implementation of the original MTSD. In Section 4.1, we have

shown that there are optimal positional strategies. Hence, we may safely restrict this

translation to positional strategies. Let σ be such a positional strategy. We build the

implementation as I = (S ′, T ′, D ′, Φ ′, s0I) where

• S ′ = {sI | s ∈ S}

• (sI, a, tI) ∈ T ′ if (s, a, t) ∈ Xwhere σ(s) = X

• D ′(sI, a, tI) = D(s, a, t) if D(s, a, t) ∈ Iu

• D ′(sI, a, tI) = j if D(s, a, t) ∈ Ic and σ((s, a, t)) = (s, a, j, t)

• Φ ′(sI) =
∧

(sI,a,tI)∈T ′(a, tI)

The set of states remains the same as in the original MTSD; we change every state s into

sI to be able to reason about the states of the original MTSD and of the implementation

separately. The following two lemmas state that the construction is sound.

Lemma 4.7. The constructed implementation I is an implementation of the original MTSD.

14



Proof. We show that R = {(sI, s) | s ∈ S} is a modal refinement relation. Let (sI, s) ∈ R
and let M ∈ Tran(sI). Clearly M = {(a, tI) | (sI, a, tI) ∈ T ′}. We take N = {(a, t) |

(a, tI) ∈ M}. The fact that N ∈ Tran(s) is clear from the construction. We now need to

show that D ′(sI, a, tI) ≤ D(s, a, t). If D(s, a, t) ∈ Iu then D ′(sI, a, tI) = D(s, a, t) and

the statement holds. If D(s, a, t) ∈ Ic then D ′(sI, a, tI) = j where j ∈ D(s, a, t) due to

the construction. Thus R is a modal refinement relation where sI ≤m s for all s ∈ S and

therefore I ≤m S.

Lemma 4.8. We have rc(I) ≤ λ if and only if the strategy σ ensures a value of at most λ.

Proof. Every run of the implementation corresponds to a play (where player min plays

according to strategy σ) and vice versa. Hence, the worst case of the long run average

over all runs in I is the same as over all plays according to σ.

We conclude the proof of correctness of the reduction by showing its completeness.

Lemma 4.9. For every implementation I of S, there exists a strategy σ for player min such that

σ ensures value of at most rc(I).

Proof. We show how to transform an arbitrary implementation I into a strategy σ :

V∗ → V (depending on the whole prefix of a play where we currently are) for player min

that guarantees the same or smaller value. (Although this is not a positional strategy, we

know there is also a positional strategy ensuring the same or smaller value.) The idea of

the construction is that for each history σ mimics the behaviour of the implementation

at its respective state. In other words, the decision of σ in some history is based on

mapping the history to the implementation and doing what the implementation does.

However, there is a small catch: the implementation may implement more possible

decisions (its branching may be even uncountable). Nonetheless, we may take any of

the decisions, as the resulting strategy then corresponds to a pruning of the original

implementation and the strategy’s worst case long run average is thus either the same

or even smaller.

Let i0 be the initial state of I and s0 the initial state of S ; we have i0 ≤m s0. The

corresponding vertex of the constructed weighted MPG also bears the name s0. We

first define a mapping µ : V∗ → I∗ from paths in the weighted MPG of the form

s0 (s0, N0) (s0, a0, s1) (s0, a0, j0, s1) s1 · · · sn to sequences of states of I inductively as fol-
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lows.

µ(s0) = i0

µ(s0 · · · sn (sn, Nn) (sn, an, sn+1) (sn, an, jn, sn+1) sn+1) = µ(s0 · · · sn)in+1

where in+1 is an arbitrary state satisfying (in, an, in+1) ∈ T and in+1 ≤m sn+1. The image

of µ now defines the desired pruning of I that is still an implementation of S, has at

most the same worst case long run average, and can now be canonically mapped to a

deterministic strategy σ as follows.

Let π = s0 (s0, N0) (s0, a0, s1) (s0, a0, j0, s1) s1 · · · x ∈ V∗ be a prefix of a play with

x ∈ Vmin. Denote sn the last element of S in π and i0 · · · in = µ(s0 · · · sn). We define σ(π)

as follows.

• If x ∈ S, then π = s0 · · · sn and due to in ≤m sn there existsN from the definition of

modal refinement. We set σs(π) = (sn, N).

• If x ∈ Tc, then π = s0 · · · sn (sn, Nn) (sn, an, sn+1) and there exists a unique in+1
such that i0 · · · inin+1 = µ(s0 · · · snsn+1). Here we use the fact that µ does not

depend on which vertices of the form (s, a, j, t) were visited. We set σ(π) =

(sn, an, D(in, an, in+1), sn+1).

• If x ∈ T∗, then x = (sn, an, jn, sn+1) and there exists only one outgoing edge. We set

σ(π) = sn+1.

Now for each play that player min plays according to σ, there is a run in the original

implementation that has the same long-run average. Hence the supremum over all

plays is at most the supremum over all runs.

4.3 Optimizations

We now simplify the construction. The first simplification is summarized by the obser-

vation that the strategies of both players only need to choose the extremal points of the

interval in vertices of the form (s, a, t).

Lemma 4.10. There are optimal positional strategies σ ′, ρ ′ for min and max, respectively, such

that the choice in vertices of the form (s, a, t) is always one of the two extremal points of the

interval D(s, a, t).
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Proof. Let σ and ρ be optimal positional strategies for min and max. We transform them

into σ ′ and π ′. The proof is done by induction on the number of vertices of the form

(s, a, t) from which one of the strategies chooses a non-extremal point of the interval

D(s, a, t).

If there are no such vertices, we are obviously done. Suppose further that there is

at least one such vertex, say (s, a, t). Without loss of generalization, let this vertex be

player min’s vertex. (The other case is handled similarly.) We thus have D(s, a, t) =

〈m,n〉 and σ((s, a, t)) = (s, a, j, t) withm < j < n.

We investigate three cases, depending on the relationship of the rate r(a) and the

value v(s).

• r(a) = v(s). Then the duration of the transition (s, a, t) does not matter and we

may freely change σ into σ ′ by defining σ ′((s, a, t)) = (s, a, n, t) and v(s) remains

the same.

• r(a) > v(s). Clearly, changing σ into σ ′ by defining σ ′((s, a, t)) = (s, a,m, t) may

only decrease v(s) or not change it at all. (As σ is optimal strategy, v(s) remains

the same using σ ′.)

• r(a) < v(s). Using similar argument as in the previous case, we change σ into σ ′

by defining σ ′(s, a, t) = (s, a, n, t) and σ ′ remains optimal.

Repeated use of this argument concludes the proof.

We may thus simplify the construction according to the previous lemma so that

there are at most two outgoing edges for each state of the form (s, a, t) are as follows:

((s, a, t), (s, a, j, t)) ∈ E iff j is an extremal point of D(s, a, t).

We can also optimize the expansion of Tran(s). So far, we have built an exponen-

tially larger weighted MPG graph as the size of Tran(s) is exponential in the out-degree

of s. However, we can do better if we restrict ourselves to the class of MTSD where

all Φ(s) are positive boolean formulae, i.e. the only connectives are ∧ and ∨. Instead

of enumerating all valuations, we can use the syntactic tree of the formula to build a

weighted MPG of polynomial size.

Let sf (ϕ) denote the set of all sub-formulae of ϕ (including ϕ). Let further S∗ =

{(s,ϕ) | s ∈ S; ϕ ∈ sf (Φ(s))}. The weighted MPG is constructed with

• Vmin = {(s,ϕ) ∈ S∗ | ϕ = ϕ1 ∨ϕ2 or (ϕ = (a, t) and D(s, a, t) ∈ Ic)} ∪ T∗
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Figure 3: Result of the improved translation of S in Figure 2a

• Vmax = {(s,ϕ) ∈ S∗ | ϕ = ϕ1 ∧ϕ2 or (ϕ = (a, t) and D(s, a, t) ∈ Iu)}

• E is defined as follows:

((s,ϕ1 ∧ϕ2), (s,ϕi)) ∈ E i ∈ {1, 2}

((s,ϕ1 ∨ϕ2), (s,ϕi)) ∈ E i ∈ {1, 2}

((s, (a, t)), (s, a, j, t)) ∈ E ⇐⇒ j is an extremal point of D(s, a, t)

((s, a, j, t), (t,Φ(t))) ∈ E (always)

• r((s, a, j, t), (t,Φ(t))) = r(a) and r(−,−) = 0 otherwise

• d((s, a, j, t), (t,Φ(t))) = j and d(−,−) = 0 otherwise.

Example 4.11. In Figure 3 we show the result of translating the part of an MTSD from Fig-

ure 2a. This weighted MPG is similar to the one in Figure 2b, but instead of having a vertex

for each satisfying set of outgoing transitions, we now have the syntactic tree of the obligation

formula for each state. Further the vertex (s, b, 2, t2) is left out, due to Lemma 4.10. Note that

the vertices (t1, Φ(t1)), (t2, Φ(t2)) and (t3, Φ(t3)) are drawn as circles, because the player of

these states depends on the obligation formula and the outgoing transitions.

Remark 4.12. Observe that one can perform this optimization even in the general case. In-

deed, for those s where Φ(s) is positive we locally perform this transformation; for s with Φ(s)

containing negations we stick to the original expansion. Thus, the exponential (in out-degree)

blow-up occurs only locally.
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Lemma 4.13. Both optimized translations are correct and on MTSDs where the obligation func-

tion is positive they run in polynomial time.

Proof. A strategy for the playermin of a weighted MPG from a translation utilizing the

optimizations of Section 4.3 can be translated into an implementation of the original

MTSD as follows. Let σ be the strategy. We first define an auxiliary function on the

vertices of the MPG as follows:

f(s, (a, t)) = {(a, t)}

f(s,ϕ∨ψ) = f(σ(s,ϕ∨ψ))

f(s,ϕ∧ψ) = f(s,ϕ) ∪ f(s,ψ)

We then build the implementation as (S ′, T ′, D ′, Φ ′) where

• S ′ = {sI | s ∈ S}

• (sI, a, tI) ∈ T ′ if (a, t) ∈ f(s,Φ(s))

• D ′(sI, a, tI) = D(s, a, t) if D(s, a, t) ∈ Iu

• D ′(sI, a, tI) = j if D(s, a, t) ∈ Ic and σ((s, (a, t))) = (s, a, j, t)

• Φ ′(s) =
∧

(sI,a,tI)∈T ′(a, tI) .

The fact that the constructed implementation is indeed an implementation of the given

MTSD and that the running cost of the implementation starting from state sI is the same

as v((s,Φ(s))) is straightforward and can be proved as in the previous case.

Similarly, one can derive a strategy from an implementation so that its value does

not get worse. We may safely assume that the implementation only implements du-

rations as the extremal points of the controllable intervals. (Indeed, due to the origi-

nal translation, Lemma 4.10, and the transformation back of Lemma 4.9, one can ob-

tain an implementation with only extremal points that have the same or smaller cost.)

The new transformation (strategy σ and mapping µ) is the same as the previous one of

Lemma 4.9, the difference is that for history π ending in (s,ϕ1∨ϕ2) we set σ(π) = (s,ϕj)

for an arbitrary j ∈ {1, 2} such that T(in) |= ϕj where µ(π ′) = i0 · · · in and π ′ is the longest

prefix of π ending with the vertex (s,Φ(s)).

The polynomial running time is clear from the construction.
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4.4 The Algorithm and its Complexity

The algorithm for our problem, given a specification S, works as follows.

1. Nondeterministically choose hardware with the total price at mostmaxic.

2. Create the weighted MPG out of S.

3. Solve the weighted MPG using the reduction to MPG and any standard algorithm

for MPG that finds an optimal strategy for player min and computes the value

v(s0).

4. Transform the strategy to an implementation I.

5. In the case of the cheapest-implementation problem return I;

in the case of the implementation (decision) problem return v(s0) ≤ maxrc.

We can now prove the following result, finishing the proof of Theorem 4.3.

Proposition 4.14. The implementation problem is in NP.

Proof. We first nondeterministically guess the hardware assignment. Due to Section 4.2,

we know that the desired implementation has the same states as the original MTSD and

its transitions are a subset of the transitions of the original MTSD as the corresponding

optimal strategies are positional. The first optimization (Section 4.3) guarantees that

durations can be chosen as the extremal points of the intervals. Thus we can nonde-

terministically guess an optimal implementation and its durations, and verify that it

satisfies the price inequality.

Proposition 4.15. The implementation problem for MTSD with positive obligation function

and a constant number of hardware components is in NP ∩ coNP and solvable in pseudo-

polynomial time.

Proof. With the constant number of hardware components, we get a constant number of

possible hardware configurations and we can check each configuration separately one

by one. Further, by the first and the second optimization in Section 4.3, the MPG graph

is of size O(|T | + |Φ|). Therefore, we polynomially reduce the implementation problem

to the problem of solving constantly many mean payoff games. The result follows by

the existence of pseudo-polynomial algorithms for MPGs [17].

Further, our problem is at least as hard as solving MPGs that are clearly a special

case of our problem. Hence, Theorem 4.4 follows.
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5 Conclusion and Future Work

We have introduced a new extension of modal transition systems. The extension con-

sists in introducing (1) variable time durations of actions and (2) pricing of actions,

where we combine one-shot investment price for the hardware and cost for running it

per each time unit it is active. We believe that this formalism is appropriate to mod-

elling many types of embedded systems, where safety comes along with economical

requirements.

We have solved the problem of finding the cheapest implementation w.r.t. the run-

ning cost given a maximum hardware investment we can afford, and we established the

complexity of the decision problem in the general setting and in a practically relevant

subcase revealing a close connection with mean payoff games.

As for the future work, apart from implementing the algorithm, one may consider

two types of extensions. First, one can extend the formalism to cover the distinction

between input, output and internal actions as it is usual in interface theories [11], and

include even more time features, such as clocks in priced timed automata [4, 9]. Second,

one may extend the criteria for synthesis of the cheapest implementation by an addi-

tional requirement that the partial sums stay within given bounds as done in [10], or

requiring the satisfaction of a temporal property as suggested in [11, 12].
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