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Abstract

Modal transition systems (MTS) is a well established formalism used for specifica-

tion and for abstract interpretation. We consider its disjunctive extension (DMTS)

and we show that refinement problems for DMTS are not harder than in the case

of MTS. There are two main results in the paper. Firstly, we give a solution to the

common implementation and specification problems lowering the complexity from

EXPTIME to PTIME. Secondly, we identify a fundamental error made in previous

attempts at LTL model checking of MTS and provide algorithms for LTL model

checking of MTS and DMTS. Moreover, we show how to apply this result to com-

positional verification and circumvent the general incompleteness of the MTS com-

position.

∗The author has been supported by Czech Grant Agency grant no. GD102/09/H042.
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1 Introduction

Specification and verification of programs is a fundamental part of theoretical computer

science and is nowadays regarded indispensable when designing and implementing

safety critical systems. Therefore, many specification formalisms and verification meth-

ods have been introduced. There are two main approaches to this issue. The behavioural

approach exploits various equivalence or refinement checking methods, provided the

specifications are given in the same formalism as implementations. The logical approach

makes use of specifications given as formulae of temporal or modal logics and relies on

efficient model checking algorithms. In this paper, we combine these two methods.

The specifications are rarely complete, either due to incapability of capturing all the

required behaviour in the early design phase, or due to leaving a bunch of possibilities

for the implementations, such as in e.g. product lines [LNW07]. One thus begins the

design process with an underspecified system where some behaviour is already pre-

scribed and some may or may not be present. The specification is then successively

refined until a real implementation is obtained, where all the behaviour is completely

determined. Of course, we require that our formalism allow for this stepwise refinement.

Furthermore, since supporting the component based design is becoming crucial, we

need to allow also for the compositional verification. To illustrate this, let us consider

a partial specification of a component that we design, and a third party component that

comes with some guarantees, such as a formula of a temporal logic describing the most

important behaviour. Based on these underspecified models of the systems we would

like to prove that their interaction is correct, no matter what the hidden details of the

particular third party component are. Also, we want to know if there is a way to im-

plement our component specification so that the composition fulfills the requirements.

Moreover, we would like to synthesize the respective implementation. We address all

these problems.

Modal transition systems (MTS) is a specification formalism introduced by Larsen

and Thomsen [LT88, AHL+08a] allowing for stepwise refinement design of systems

and their composition. A considerable attention has been recently paid to MTS due

to many applications, e.g. component-based software development [Rac07], interface

theories [RBB+09], or modal abstractions and program analysis [HJS01], to name just

a few.

2



client(a) server database

request query

processing

response answer

(b)

request

processing

response

Figure 1: An example of (a) a modal transition system (b) its implementation

The MTS formalism is based on transparent and simple to understand model of

labelled transition systems (LTS). While LTS has only one labelled transition relation be-

tween the states determining the behaviour of the system, MTS as a specification formal-

ism is equipped with two types of transitions: the must transitions capture the required

behaviour, which is present in all its implementations; the may transitions capture the

allowed behaviour, which need not be present in all implementations. Figure 1 depicts

an MTS that has arisen as a composition of three systems and specifies the following.

A request from a client may arrive. Then we can process it directly or make a query to

a database where we are guaranteed an answer. In both cases we send a response.

Such a system can be refined in two ways: a may transition is either implemented

(and becomes a must transition) or omitted (and disappears as a transition). On the

right there is an implementation of the system where the processing branch is imple-

mented and the database query branch is omitted. Note that an implementation with

both branches realized is also possible. This may model e.g. behaviour dependent on

user input. Moreover, implementations may even be non-deterministic, thus allowing

for modelling e.g. unspecified environment.

On the one hand, specifying may transitions brings guarantees on safety. On the

other hand, liveness can be guaranteed to some extent using must transitions. Never-

theless, at an early stage of design we may not know which of several possible different

ways to implement a particular functionality will later be chosen, although we know

at least one of them has to be present. We want to specify e.g. that either processing

or query will be implemented, otherwise we have no guarantee on receiving response

eventually. However, MTS has no way to specify liveness in this setting. Therefore,

disjunctive modal transition systems (DMTS) (introduced in [LX90] as solutions to process

equations) are the desirable extension appropriate for specifying liveness. This has been

advocated also in [FS05] where a slight modification of DMTS is investigated under the

name underspecified transition systems. Instead of forcing a particular transition, the must

transitions in DMTS specify a whole set of transitions at least one of which must be
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present. In our example, it would be the set consisting of processing and query tran-

sitions. DMTS turn out to be capable of forcing any positive Boolean combination of

transitions, simply by turning it into the conjunctive normal form. Another possible

solution to this issue is offered in [FS08] where one-selecting MTS are introduced with

the property that exactly one transition from the set must be present.

Our contribution. As DMTS is a strict extension of MTS a question arises whether

all fundamental problems decidable in the context of MTS remain decidable for DMTS,

and if so, whether their complexities remain unchanged. We show that this is indeed

the case. The most important problem is deciding whether a system refines another

one. The syntactically defined modal refinement (mentioned above) remains PTIME-

complete. However, there is also a semantic notion of thorough refinement, which is

defined by the respective sets of implementations being in inclusion. As the thorough

refinement is more subtle and cannot be completely characterized by the modal refine-

ment, it is of a higher complexity. In fact, it is EXPTIME-complete over MTS [BKLS09a],

and we extend this result to DMTS. Fortunately, we show that both refinements co-

incide when the refined system is deterministic. In this case the complexity is only

NLOGSPACE, thus allowing for easy parallelization. Therefore, using the more power-

ful DMTS is not more costly than using MTS.

The two main results of the paper are the following. Firstly, we solve the common

implementation (CI) and, even more importantly, the common specification (CS) prob-

lems. In CI one asks whether there is an implementation that refines all specifications in

a given set, i.e. whether they are consistent. In CS one computes the most general speci-

fication refining all given specifications. We show a new perspective on these problems,

namely we give a simple co-inductive characterization yielding a straightforward fix-

point algorithm. This characterization unifies the view not only (i) in the MTS vs. DMTS

aspect, but also (ii) in the cases of number of specifications being fixed or a part of the in-

put, and most importantly (iii) establishes connection between CI and CS. As for CI, its

complexities for various MTS cases have been determined in [AHL+08b, BKLS09b]. In

[JLS] CS is solved for MTS enriched with weights on transitions, however, only for the

deterministic case. We show that for non-deterministic MTS there is no greatest com-

mon specification in general (there are only several maximal ones). As a matter of fact,

one needs DMTS in order to express the greatest one. Our new view provides a solution

for DMTS and yields algorithms for the aforementioned cases with the respective com-

plexities being the same as for CI over MTS. Moreover, our construction of the common
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specification is complete also with respect to the thorough refinement. Previous results

on CS over DMTS [LX90] yield only an EXPTIME algorithm. Moreover, in order to de-

cide CI using this approach one has to check for consistency, which is EXPTIME-hard.

Our algorithm runs in PTIME both for CS and CI for any fixed number of specifications

on input.

Secondly, as already mentioned we would like to supplement the refinement based

framework of (D)MTS with model checking methods. Since a specification induces

a set of implementations, we apply the approach of generalized model checking of

Kripke structures with partial valuations [BG00, GP09] in our setting. Thus a speci-

fication either satisfies a formula ϕ if all its implementations satisfy ϕ; or refutes it

if all implementations refute it; or neither of the previous holds, i.e. some of the im-

plementations satisfy and some refute ϕ. This classification has also been adopted in

[AHL+08a] for CTL model checking MTS. Similarly, [UBC09] provides a solution to LTL

model checking over deadlock-free MTS, which was implemented in the tool support

for MTS [DFCU08]. However, as the second main result of this paper, we identify a fun-

damental error in this LTL solution and provide correct model checking algorithms.

The erroneous algorithm for the deadlock-free MTS was running in PSPACE, never-

theless, we show that this problem is 2-EXPTIME-complete by reduction to and from

LTL games. The generalized model checking problem is equivalent to solving the prob-

lems (i) whether all implementation satisfy the given formula and if they do not then

(ii) whether there exists an implementation satisfying the formula. We provide algo-

rithms for both the universal and the existential case, and moreover, for the cases of

MTS, deadlock-free MTS and DMTS, providing different complexities. Due to our re-

duction, the resulting algorithm can be also used for synthesis, i.e. if there is a satisfying

implementation, we automatically receive it. Not only is the application in the speci-

fication area clear, but there is also an important application to abstract interpretation.

End-users are usually more comfortable with linear time logic and the analysis of path

properties requires to work with abstractions capturing over- and under-approximation

of a system at once. MTS are perfect model for this task, as may and must transitions can

capture over- and under-approximations, respectively [HJS01]. Our results thus allow

for LTL model-checking of system abstractions, including counterexample generation

(for refinements, see above).

Finally, we show how the model checking approach can help us getting around the

fundamental problem with the composition. As there are MTSs S and T , where the
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composed MTS S ‖ T contains more implementations than what can be obtained by

composing implementations of S and T , the composition is not complete with respect

to the semantic view. Some conditions to overcome this difficulty were identified in

[BKLS09b]. Here we show the general completeness of the composition with respect to

the LTL formulae satisfaction.

Outline of the paper. After providing basic definitions in Section 2 and results on

refinements in Section 3, the solution to the common implementation and specification

problems follow in Section 4. The results on LTL model checking and its relation to the

composition can be found in Section 5. Section 6 concludes and discusses future work.

Due to space limitations the proofs are omitted and can be found in Appendix.

2 Definitions

In this section we define the specification formalism of disjunctive modal transition

systems (DMTS). A DMTS can be gradually refined until we get a labelled transition

system (LTS) where all the behaviour is fully determined. The semantics of a DMTS will

thus be the set of its implementations, i.e. the respective LTSs. The following definition

is a slight modification of the original definition in [LX90].

Definition 2.1. A disjunctive modal transition system (DMTS) over an action alphabet Σ

and a set of propositions Ap is a tuple (P, 99K,−→, ν) where P is a set of processes, 99K ⊆
P × Σ × P and −→ ⊆ P × 2Σ×P are may and must transition relations, respectively, and

ν : P → 2Ap is a valuation. We write S
a
99K T meaning (S, a, T) ∈ 99K, and S −→ T meaning

(S, T ) ∈ −→. We require that whenever S −→ T then (i) T 6= ∅ and (ii) for all (a, T) ∈ T we

have also S
a
99K T .

The original definition of DMTS does not include the two requirements, thus allowing

for inconsistent DMTS, which have no implementations. Due to the requirements, our

DMTS guarantee that all must obligations can be fulfilled. Hence, we do not have to

expensively check for consistency1 when working with our DMTS. And there is yet

another difference to the original definition. Since one of our aims is model checking

state and action based LTL, we not only have labelled transitions, but we also equip

DMTS with valuation over states.
1Checking consistency is an EXPTIME-complete problem. It is polynomial [LX90] only under an as-

sumption that all “conjunctions” of processes are also present in the given DMTS which is very artificial

in our setting. For more details, see Appendix D.
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Figure 2: DMTS S, MTSM and an implementation I such that I CM ≤m S

Clearly, the must transitions of DMTS can be seen as a positive boolean formula

in conjunctive normal form. Arbitrary requirements expressible as positive boolean

formulae can be thus represented by DMTS, albeit at the cost of possible exponential

blowup, as commented on in [BK10].

Example 2.2. Figure 2 depicts three DMTSs. The may transitions are drawn as dashed arrows,

while each must transition of the form (S, T ) is drawn as a solid arrow from S branching to all

elements in T . Due to requirement (ii) it is redundant to draw the dashed arrow when there is

a solid arrow and we never depict it explicitly.

While in DMTS we can specify that at least one of the selected transitions has to

be present, in modal transition systems (MTS) we can only specify that a particular

transition has to be present, i.e. we need to know from the beginning which one.

Definition 2.3. A DMTS S = (P, 99K,−→, ν) is an MTS (with valuation) if S −→ T
implies that T is a singleton. We then write S a

−→ T for T = {(a, T)}. If moreover S
a
99K T

implies S a
−→ T , then S is an implementation.

A DMTS S = (P, 99K,−→, ν) is deterministic if for every process S and action a there is

at most one process T with S
a
99K T .

Since in implementations the may and must transition relations coincide, implementa-

tions can be identified with labelled transition systems (with valuation).

For the sake of readable notation, when speaking of a process, we often omit the un-

derlying DMTS if it is clear from the context. Moreover, since disjoint union of DMTSs

is a DMTS, abusing the notation we say that I is an implementation (deterministic, MTS,

etc.) meaning that the DMTS on processes reachable from I is an implementation (deter-

ministic, MTS, etc.) as in Fig. 2. Similarly, when analyzing the complexity we assume we

are given finite processes, meaning that the reachable parts of their underlying DMTSs

are finite.

When refining a specification, we need to satisfy two conditions: (1) the respective

refining states cannot allow any new behaviour not allowed earlier; and (2) if there is
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a requirement to implement an action by choosing among several options, the refining

system can only have more restrictive set of these options.

Definition 2.4 (Modal refinement). Let (P, 99K,−→, ν) be a DMTS. Then R ⊆ P × P is

called a modal refinement relation if for all (A,B) ∈ R

• ν(A) = ν(B), and

• whenever A
a
99K A ′ then B

a
99K B ′ for some B ′ with (A ′, B ′) ∈ R, and

• whenever B −→ B ′ then A −→ A ′ for some A ′ such that for all (a,A ′) ∈ A ′ there is

(a, B ′) ∈ B ′ with (A ′, B ′) ∈ R.

We say that Smodally refines T , denoted by S ≤m T , if there exists a modal refinement relation

R with (S, T) ∈ R.

Note that since union of modal refinement relations is a modal refinement relation, the

relation≤m is the greatest modal refinement relation. Also note that on implementations

the modal refinement coincides with bisimulation.

We now define the semantics of a DMTS as a set of implementations that are refining

it. The defined notion of thorough refinement is a semantic counterpart to the syntactic

notion of modal refinement.

Definition 2.5 (Thorough refinement). Let I, S, T be processes. We say that I is an imple-

mentation of S, denoted by I C S, if I is an implementation and I ≤m S. We say that S

thoroughly refines T , denoted by S ≤t T , if J C S implies J C T for every implementation J.

3 Refinements

We investigate the relationship of the syntactic notion of modal refinement and the se-

mantically defined notion of thorough refinement. While the syntactic characterization

is sound, it is not complete since it is incomplete already for MTS. However, complete-

ness can be achieved on a reasonable subclass. The following propositions are proved

similarly as in [BKLS09b].

Proposition 3.1. Let S and T be processes. Then S ≤m T implies S ≤t T .

Proposition 3.2. Let S and D be processes, D deterministic. Then S ≤t D implies S ≤m D.
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Proposition 3.3. Deciding≤m when restricted to the refined (i.e. right-hand-side) process being

deterministic is NLOGSPACE-complete.

Proposition 3.4. Deciding ≤m is PTIME-complete.

We now characterize the complexity of the thorough refinement. In order to prove the

following theorem significant modifications of the approach of [BKLS09a] are needed.

Theorem 3.5. Deciding ≤t is EXPTIME-complete.

We show how to decide A 6≤t B in exponential time. One might be tempted to reduce

this problem to the existence of common implementation of A and the complement of

B. However, (D)MTS are not closed under complementation and we have to handle

the complements symbolically. We give an inductive characterization via a set Avoid ⊆
P×2P of avoidable pairs. Each avoidable pair of the form (A,B) ∈ Avoid means that there

is an implementation ofA not refining any B ∈ B, thus “avoiding” all B’s . In particular,

A 6≤t B if and only if there is (A,B) ∈ Avoid with B ∈ B.

Intuitively, every B differs from A because either A has a may transition that is not

allowed in B (we put them into disallowed), or A need not realize some must transition

of B (these “forbidden” transitions are in unrealized).

Checking the avoidability is done in two steps. Firstly, we check that none of the

must transitions of A has to realize the forbidden transitions of B’s. Secondly, we check

that A can realize the disallowed transitions, but we need to make sure that adding

these transitions does not accidentally realize any previously forbidden transitions.

Definition 3.6 (Avoidable sets). Let (P, 99K,−→, ν, L) be a DMTS over an action alphabet

Σ. The set of avoidable pairs is the smallest set Avoid ⊆ P × 2P such that (A,B) ∈ Avoid

whenever B = ∅ or there are sets disalloweda, unrealizeda and mustsuccAa ⊆ {A ′ | A
a
99K

A ′} for every a ∈ Σ such that

• ∀A −→ A ′ ∃(a,A ′) ∈ A ′ with A ′ ∈ mustsuccAa,

• ∀B ∈ B either

(i) ν(B) 6= ν(A), or

(ii) for some a ∈ Σ we have B ∈ disalloweda, or

(iii) for some B −→ B ′ and every (a, B ′) ∈ B ′ we have B ′ ∈ unrealizeda,

• ∀a ∈ Σ both
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(1) ∀A ′ ∈ mustsuccAa we have (A ′,unrealizeda) ∈ Avoid, and

(2) ∀B ∈ disalloweda ∃A
a
99K AB with (AB, {B

′ | B
a
99K B ′} ∪ unrealizeda) ∈ Avoid.

Lemma 3.7. Given a process A and a set B of processes, there exists an implementation I such

that I ≤m A and I 6≤m B for all B ∈ B if and only if (A,B) ∈ Avoid.

The corresponding least fixed point algorithm is obvious. The complexity follows

from Avoid ⊆ P × 2P and checking the condition of Definition 3.6 in exponential time.

4 Common Implementation and Specification Problems

In the following, we study the common implementation (CI) and the common specifi-

cation (CS) problems. The former problem is to decide whether a given set of processes

has a common implementation, the latter is to find a process that is the greatest lower

bound for such set of processes w.r.t. the modal refinement.

Theorem 4.1. The common implementation and common specification problems are EXPTIME-

complete with the number of specifications being a part of the input. The problems are PTIME-

complete if the number of specifications is fixed.

We first give a coinductive syntactic characterization of the problem and proceed by

constructing the greatest lower bound.

Definition 4.2 (Consistency relation). Let (P, 99K,−→, ν) be a DMTS and n ≥ 2. Then

C ⊆ Pn is called a consistency relation if for all (A1, . . . , An) ∈ C

• ν(A1) = ν(A2) = . . . = ν(An), and

• whenever there exists i such that Ai −→ Bi, then there is some (a, Bi) ∈ Bi such that

there exist Bj for all j 6= i with Aj
a
99K Bj and (B1, . . . , Bn) ∈ C.

In the following, we will assume an arbitrary, but fixed n. Clearly, arbitrary union of

consistency relations is also a consistency relation, we may thus assume the existence of

the greatest consistency relation for given DMTS. We now show how to use this relation

to construct a DMTS that is the greatest lower bound with regard to modal refinement

(taken as a preorder).

Definition 4.3. Let S = (P, 99K,−→, ν) be a DMTS and Con its greatest consistency relation.

We define a new DMTS SCon = (Con, 99KCon,−→Con, νCon), where
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S1 S2 (S1, S2)

a
a

b, c

a a

b c b c

M1 M2

a a a a

b c b c

Figure 3: MTSs S1, S2, their greatest lower bound (S1, S2), and their two maximal MTS

lower boundsM1,M2

• νCon((A1, . . . , An)) = ν(A1),

• (A1, . . . , An)
a
99KCon (B1, . . . , Bn) whenever ∀i : Ai

a
99K Bi, and

• whenever ∃j : Aj −→ Bj, then (A1, . . . , An) −→Con B where

B = {(a, (B1, . . . , Bn)) | (a, Bj) ∈ Bj and (A1, . . . , An)
a
99KCon (B1, . . . , Bn)}.

Clearly, the definition gives a correct DMTS due to the properties of Con, notably, B is

never empty. The following two theorems state the results about the CI and CS prob-

lems, respectively. The second theorem also states that the actual result is stronger than

originally intended.

Theorem 4.4. Let S1, . . . , Sn be processes. Then S1, . . . , Sn have a common implementation if

and only if (S1, . . . , Sn) ∈ Con.

Theorem 4.5. Let (S1, . . . , Sn) ∈ Con. Then the set of all implementations of (S1, . . . , Sn) is ex-

actly the intersection of the sets of all implementations of all Si. In other words, I C (S1, . . . , Sn)

if and only if I C Si for all i. Therefore, (S1, . . . , Sn) as a process of SCon is the greatest lower

bound of S1, . . . , Sn with regard to the modal as well as the thorough refinement.

Note that if S1, . . . , Sn were MTSs, (S1, . . . , Sn) might not be an MTS. Indeed, there exist

MTSs without a greatest lower bound that is also an MTS; there may only be several

maximal lower bounds, see Fig. 3. However, if the MTSs are also deterministic, then the

greatest lower bound is also a deterministic MTS [JLS].

The greatest consistency relation can be computed using standard greatest fixed

point computation, i.e. we start with all ntuples of processes and eliminate those that

violate the conditions. One elimination step can be clearly done in polynomial time.

As the number of all ntuples is at most |P |n, this means that the common implementa-

tion problem may be solved in PTIME, if n is fixed; and in EXPTIME, if n is a part of
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the input. The problem is also PTIME/EXPTIME-hard, which follows from (a) PTIME-

hardness of bisimulation of two LTSs and (b) EXPTIME-hardness of the common imple-

mentation problem for ordinary MTS [AHL+08b]. The statement of Theorem 4.1 thus

follows.

5 LTL Model Checking

This section discusses the model checking problem for linear temporal logic (LTL)

[Pnu77] and its application on compositional verification. The following definition of

state and action based LTL is equivalent to that of [CCO+04], with a slight difference in

syntax.

Definition 5.1 (LTL syntax). The formulae of state and action based LTL (LTL in the following)

are defined as follows.

ϕ ::= tt | p | ¬ϕ | ϕ∧ϕ | ϕUϕ | Xϕ | Xaϕ

where p ranges over Ap and a ranges over Σ.

Definition 5.2 (LTL semantics). Let I be an implementation. A run of I is a maximal (finite or

infinite) alternating sequence of state valuations and actions π = ν(I0), a1, ν(I1), a2, . . . such

that I0 = I and Ii−1
ai−→ Ii for all i > 0. If a run π is finite, we denote by |π| the number of state

valuations in π, we set |π| = ∞ if π is infinite. We also define ith action of π as `(π, i) = ai, ith

state valuation of π as π(i) = ν(Ii) and ith subrun of π as πi = ν(Ii), ai, ν(Ii+1), . . . Note that

these definitions only make sense when i < |π|. The set of all runs of I is denoted as R∞(I), the

set of all infinite runs is denotedRω(I).
The semantics of LTL on runs is then defined as follows:

π |= tt always

π |= p ⇐⇒ p ∈ π(0)

π |= ¬ϕ ⇐⇒ π 6|= ϕ

π |= ϕ∧ψ ⇐⇒ π |= ϕ and π |= ψ

π |= ϕUψ ⇐⇒ ∃ 0 ≤ k < |π| : πk |= ψ and ∀ 0 ≤ j < k : πj |= ϕ

π |= Xϕ ⇐⇒ |π| > 1 and π1 |= ϕ

π |= Xaϕ ⇐⇒ |π| > 1, `(π, 0) = a and π1 |= ϕ

12



We say that an implementation I satisfies ϕ on infinite runs, denoted as I |=ω ϕ, if for all

π ∈ Rω(I), π |= ϕ. We say that an implementation I satisfies ϕ on all runs, denoted as

I |=∞ ϕ, if for all π ∈ R∞(I), π |= ϕ.

The use of symbolsω and ∞ to distinguish between using only infinite runs or all runs

is in accordance with standard usage in the field of infinite words.

It is common to define LTL over infinite runs only. In that respect, our definition

of |=ω matches the standard definition. In the following, we shall first talk about this

satisfaction relation only, and comment on |=∞ afterwards.

The generalized LTL model checking problem for DMTS can be split into two sub-

problems – deciding whether all implementations satisfy a given formula, and deciding

whether at least one implementation does. We therefore introduce the following nota-

tion: we write S |=ω
∀ ϕ to mean ∀I C S : I |=ω ϕ and S |=ω

∃ ϕ to mean ∃I C S : I |=ω ϕ ;

similarly for |=∞.

Note that |=ω
∃ contains a hidden alternation of quantifiers, as it actually means ∃I C

S : ∀π ∈ Rω(I) : I |=ω ϕ. No alternation is present in |=ω
∀ . This observation hints

that the problem of deciding |=ω
∀ is easier than deciding |=ω

∃ . Our first two results show

that indeed, deciding |=ω
∀ is no harder than the standard LTL model checking whereas

deciding |=ω
∃ is 2-EXPTIME-complete.

Theorem 5.3. The problem of deciding |=ω
∀ over DMTS is PSPACE-complete.

Sketch. All implementations of S satisfy ϕ if and only if the may structure of S satis-

fies ϕ.

Theorem 5.4. The problem of deciding |=ω
∃ over DMTS is 2-EXPTIME-complete.

Sketch. We show the reduction to and from the 2-EXPTIME-complete problem of decid-

ing existence of a winning strategy in an LTL game [PR89]. An LTL game is a two player

positional game over a finite Kripke structure. The winning condition is the set of all

infinite plays (sequences of states) satisfying a given LTL formula.

Thus, an LTL game may be seen as a special kind of DMTS over unary action al-

phabet. Here the processes are the states of the Kripke structure, the may structure is

the transition relation of the Kripke structure, and the must structure is built as follows.

Every process corresponding to a state of Player I has one must transition spanning all

may-successors; every process corresponding to a state of Player II has several must
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Figure 4: No deadlock-free implementation of S satisfies G Xa tt

transitions, one to each may-successor. The implementations of such DMTS now corre-

spond to strategies of Player I in the original LTL game. Thus follows the hardness part

of the theorem.

The containment part of the proof constructs a Kripke structure, with states assigned

to the two players, out of given DMTS. This construction bears some similarities to the

construction transforming Kripke MTS into alternating tree automata in [DN05].

There are constructive algorithms for solving LTL games, i.e. not only do they decide

whether a winning strategy exists, but they can also synthesize such a strategy. Further-

more, our reduction effectively transforms a winning strategy into an implementation

satisfying the given formula. We can thus synthesize an implementation of a given

DMTS satisfying a given formula in 2-EXPTIME.

Although the general complexity of the problem is very high, various subclasses of

LTL have been identified in [AT04] for which the problem is computationally easier.

These complexity results can be easily carried over to generalized model checking of

DMTS.

Interestingly enough, deciding |=ω
∃ is much easier over MTS.

Theorem 5.5. The problem of deciding |=ω
∃ over MTS is PSPACE-complete.

Sketch. The proof is similar to the proof of Theorem 5.3, only instead of checking the

may structure of S, we check the must structure of S.

However, despite its lower complexity, |=ω
∃ over MTS is not a very useful satisfaction

relation. As we only considered infinite runs, an MTS may (and frequently will) possess

trivial implementations without infinite runs. The statement S |=ω
∃ ϕ then holds vacu-

ously for all ϕ. Two natural ways to cope with this issue are (a) using |=∞
∃ (see below)

and (b) considering only deadlock-free implementations, i.e. with infinite runs only.

The deadlock-free approach has been studied in [UBC09] and the proposed solution

was implemented in the tool MTSA [DFCU08]. However, the solution given in [UBC09]
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is incorrect. In particular, existence of a deadlock-free implementation satisfying a given

formula is claimed even in some cases where no such implementation exists. A simple

counterexample is given in Fig. 4. Clearly, S has no deadlock-free implementation that

satisfies G Xa tt (where Gϕ is the standard shorthand for ¬(tt U ¬ϕ)). Yet the method

of [UBC09] as well as the tool [DFCU08] claim that such implementation exists.

Furthermore, there is no hope that the approach of [UBC09] could be easily fixed to

provide correct results. The reason is that this approach leads to a PSPACE algorithm,

whereas we prove again by reduction from LTL games that finding a deadlock-free

implementation of a given MTS is 2-EXPTIME-hard. For more details see Appendix E.

Proposition 5.6. The problem of deciding the existence of a deadlock-free implementation of

a given MTS satisfying a given LTL formula, is 2-EXPTIME-complete.

We now turn our attention to all (possibly finite) runs and investigate the |=∞ satis-

faction. Checking properties even on finite runs is indeed desirable when considering

(D)MTS used for modelling non-reactive systems. We show that deciding |=∞
∃ and |=∞

∀

over DMTS has the same complexity as deciding |=ω
∃ and |=ω

∀ over DMTS, respectively.

We also show that contrary to the case of infinite runs, the problem of deciding |=∞
∃

remains 2-EXPTIME-hard even for standard MTS.

Theorem 5.7. The problem of deciding |=∞
∃ over (D)MTS is 2-EXPTIME-complete, the problem

of deciding |=∞
∀ over (D)MTS is PSPACE-complete.

Although we have so far considered the more general state and action based LTL,

this costs no extra overhead when compared to state-based or action-based LTL.

Proposition 5.8. The complexity of deciding |=?
∃ and |=?

∀ for ? ∈ {ω,∞} remains the same if the

formula ϕ is a purely state-based or a purely action-based formula.

The results of this section are summed up in Table 1. We use |=df to denote that only

deadlock-free implementations are considered. Recall that the surprising result for |=ω
∃

over MTS is due to the fact that the formula may hold vacuously.

The best known time complexity bounds with respect to the size of system |S| and

the size of LTL formula |ϕ| are the following. In all PSPACE-complete cases the time

complexity is O(|S| · 2|ϕ|); in all 2-EXPTIME-complete cases the time complexity is

O(|S|2O(|ϕ|) · 22O(|ϕ| log|ϕ|)
). The latter upper bound is achieved by translating the LTL for-

mula into a deterministic Rabin automaton, thus changing the LTL game into a Rabin

game. State of the art algorithm for solving Rabin games can be found e.g. in [PP06].
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Table 1: Complexities of generalized LTL model checking

|=∀ |=∃

MTS |=ω PSPACE-complete PSPACE-complete

MTS |=df PSPACE-complete 2-EXPTIME-complete

MTS |=∞ PSPACE-complete 2-EXPTIME-complete

DMTS PSPACE-complete 2-EXPTIME-complete

5.1 Composition

We conclude this section with an application to compositional verification.

In [AHL+08a] the composition of MTS is shown to be incomplete, i.e. there are pro-

cesses S1, S2 such that their composition S1 ‖ S2 has an implementation I that does not

arise as a composition I1 ‖ I2 of any two implementations I1 C S1, I2 C S2. Complete-

ness can be achieved only under some restrictive conditions [BKLS09b]. Here we show

that composition is sound and complete with respect to LTL satisfiability and validity.

We now define the straightforward extension of ‖ from MTS to DMTS. Let Γ ⊆ Σ

be a synchronizing alphabet. For processes S1 and S2 we define the behaviour of the new

composed process S1 ‖ S2 as follows. We start with the may transition relation.

• For a ∈ Γ , we set S1 ‖ S2
a
99K S ′1 ‖ S ′2 whenever S1

a
99K S ′1 and S2

a
99K S ′2.

• For a ∈ Σ \ Γ , we set S1 ‖ S2
a
99K S ′1 ‖ S2 whenever S1

a
99K S ′1, and similarly

S1 ‖ S2
a
99K S1 ‖ S ′2 whenever S2

a
99K S ′2.

We continue with defining the must transition relation. For a process S, let Succ(S) ⊆
2Σ×P denote the set of all sets S of transitions from S such that for every S −→ S ′ there

is (a, S ′) ∈ S ′ with (a, S ′) ∈ S . The set Succ(S) thus consists of all possible choices

of successors of S that realize all must obligations. Composing Succ(S1) and Succ(S2)

in the same manner as may transitions above generates a new set. We denote this set

Succ(S1 ‖ S2). Note that Succ(S) can be written equivalently in the form of a set of must

transitions. Indeed, must transition relation corresponds to conjunctive normal form of

the obligations while Succ corresponds to disjunctive normal form. We thus define

the must transitions of the composition S1 ‖ S2 to be the corresponding counterpart to

Succ(S1 ‖ S2).
As for valuations, we can consider any function f : 2Ap × 2Ap → 2Ap to define ν(S1 ‖

S2) = f(ν(S1), ν(S2)), such as e.g. intersection or union.
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The completeness of composition with respect to LTL holds for all discussed cases:

both for MTS and DMTS, both for infinite and all runs, and both universally and ex-

istentially. The results imply that although the composition is incomplete with respect

to thorough refinement no new behaviour arises in the composition. In fact, the only

spurious implementations are sums of legal implementations.

Theorem 5.9. Let S1, S2 be processes, ϕ an LTL formula, and ? ∈ {ω,∞}. Then S1 ‖ S2 |=?
∀ ϕ

if and only if I1 ‖ I2 |=? ϕ for all I1 C S1 and I2 C S2.

Theorem 5.10. Let S1, S2 be processes, ϕ an LTL formula, and ? ∈ {ω,∞}. Then S1 ‖ S2 |=?
∃ ϕ

if and only if there exist I1 C S1 and I2 C S2 such that I1 ‖ I2 |=? ϕ.

6 Conclusion and Future Work

We have shown that refinement problems on DMTS are not harder than for MTS and we

have given a general solution to the common implementation and specification prob-

lems. We have solved the LTL model checking and synthesis problems and shown how

the model checking approach helps overcoming difficulties with the composition.

There are several possible extensions of DMTS such as the mixed variant (where

must transition need not be syntactically under the may transitions) or systems with

partial valuation on states [AHL+08a]. Yet another modification adds weights on tran-

sitions [JLS]. It is not clear whether all results of this paper can be extended to these

systems and whether the respective complexities remain the same.
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A Appendix: Proofs from Section 3

PROPOSITION 3.1. Let S and T be processes. Then S ≤m T implies S ≤t T .

Proof. For I C S we have I ≤m S ≤m T , hence I ≤m T since ≤m is obviously transitive.

Thus I C T .

The converse of Proposition 3.1 does not hold, i.e. there are processes S, T such that

S ≤t T , but 6≤m T . This is already the case for MTS, see e.g. [BKLS09b]. In [BKLS09b], it

is also shown that the converse holds if the right-hand side MTS is deterministic. We show

that this is also the case with DMTS.

The gist of this result as well as the further results about complexity of deciding≤t in

the deterministic case lie in the following definition of one-sided modal refinement which

can be shown to be equivalent to the standard modal refinement if the right-hand side

process is deterministic.

Definition A.1 (One-way modal refinement). Let (P, 99K,−→, ν) be a DMTS. Then R ⊆
P × P is called a one-way modal refinement relation if for all (A,B) ∈ R

• ν(A) = ν(B), and

• whenever A
a
99K A ′ then B

a
99K B ′ for some B ′ such that (A ′, B ′) ∈ R, and

• whenever B −→ B ′ then A −→ A ′ for some A ′ such that act(A ′) ⊆ act(B ′) where

act(T ) = {a | (a, T) ∈ T }

We say that S one-way modally refines T , denoted by S ≤1m T , if there exists a one-way modal

refinement relation R with (S, T) ∈ R.

Here, the third condition is weakened. Nonetheless, ≤1m is equivalent to ≤m if the right-

hand side process is deterministic.

Lemma A.2. Let S, D be processes, D deterministic. Then S ≤1m D if and only if S ≤m D.

Proof. Clearly, S ≤m D implies S ≤1m D as every modal refinement relation is also

an one-way modal refinement relation. We thus only need to show the ‘only-if’ part.

Let R be an one-way modal refinement relation such that (S,D) ∈ R. We create a new

modal refinement relation R ′ as follows:

R ′ = {(T, E) | (T, E) ∈ R; E is deterministic}
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Clearly, (S,D) ∈ R ′. We need to show that R ′ satisfies the conditions of Definition 2.4.

Let (T, E) ∈ R ′.

• Clearly, ν(T) = ν(E) as (T, E) ∈ R.

• If T
a
99K T ′ then E

a
99K E ′ and (T ′, E ′) ∈ R due to the conditions of Definition A.1.

Thus also (T ′, E ′) ∈ R ′.

• Suppose that E −→ E ′. Due to Definition A.1, we have that T −→ T ′ with

act(T ′) ⊆ act(E ′). Let now (a, T ′) ∈ T ′. Then T
a
99K T ′ and due to Definition A.1,

E
a
99K E ′ and (T ′, E ′) ∈ R. But there can be only one such E ′ as E is deterministic.

This, together with act(T ′) ⊆ act(E ′), implies that (a, E ′) ∈ E ′. As (T ′, E ′) ∈ R, also

(T ′, E ′) ∈ R ′ and thus the third condition of Definition 2.4 is satisfied.

The power of this characterization lies in having only one co-inductive condition

(instead of two in the general definition). All the other conditions can be checked locally.

Therefore, it can be checked more easily, the complexity is lower in this case (see below),

and it guarantees that both refinements coincide.

PROPOSITION 3.2. Let S andD be processes,D deterministic. Then S ≤t D implies S ≤m D.

Proof. Assume that S ≤t D and that D is deterministic. We define a one-way modal

refinement relation R as R = {(T, E) | T ≤t E; E is deterministic}. We first show that if

(T, E) ∈ R, T
a
99K T ′ and E

a
99K E ′, then (T ′, E ′) ∈ R. Suppose that I ′ is an arbitrary

implementation of T ′. Then there exists some implementation I C T such that I a
−→ I ′.

But as T ≤t E, I is also an implementation of E. Therefore, as E is deterministic, I ′ is

an implementation of E ′, thus T ′ ≤t E
′. We can now check that R indeed satisfies the

conditions of Definition A.1. Let (T, E) ∈ R and thus T ≤t E.

(i) Clearly, ν(T) = ν(E).

(ii) Suppose that T
a
99K T ′. Then, there exists an implementation I C T that has an a

−→
transition. As T ≤t E, I is also an implementation of E and therefore E

a
99K E ′ for

some E ′. By the previous observation, (T ′, E ′) ∈ R.

(iii) Suppose that E −→ E ′. Then, all implementations of E are forced to have an a
−→

transition for some a ∈ act(E ′). As T ≤t E, this implies that all implementations

of T have an a
−→ transition for some a ∈ act(E ′). Therefore, T −→ T ′ for some T ′

such that act(T ′) ⊆ act(E ′).
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We have thus proved that S ≤1m D. Due to Lemma A.2, S ≤m D.

PROPOSITION 3.3. Deciding ≤m when restricted to the refined (i.e. right-hand-side) process

being deterministic is NLOGSPACE-complete.

In order to prove the above proposition, let S be an arbitrary process and let D be

a deterministic one. We show that the problem of deciding S 6≤m D is in NLOGSPACE

by reduction to the NLOGSPACE-complete problem of graph reachability. This poses

no problem, as the NLOGSPACE complexity class is closed under complement. The

reduction relies on the fact that there is only one co-inductive condition in the charac-

terization of the one-way modal refinement; and on Lemma A.2. That is, we actually

show the problem of deciding S 6≤1m D.

The graph is constructed in the following way. The nodes of the graph are all pairs

(T, E) where T is a process reachable from S and E is a process reachable from D. There

are four kinds of nodes, three of them considered marked. The marked nodes have no

outgoing edges.

(i) Nodes (T, E) such that ν(T) 6= ν(E) are marked.

(ii) Nodes (T, E) such that T
a
99K and E 6a99K for some action a are marked.

(iii) Nodes (T, E) such that E −→ E ′ and there is no T ′ such that T −→ T ′with act(T ′) ⊆
act(E ′) are marked.

(iv) Nodes (T, E) which do not satisfy any of the conditions (i)–(iii) are unmarked and

there is an edge from (T, E) to (T ′, E ′) whenever T
a
99K T ′ and E

a
99K E ′ for some

action a.

An example illustrating the reduction is given in Fig. 5. The following lemma proves

the correctness of the reduction and thus finishes the proof.

Lemma A.3. We have S 6≤m D if and only if a marked node is reachable from the node (S,D).

Proof. For the if case, we first observe that whenever (T, E) is marked then T 6≤1m E and

thus T 6≤m E. This is clear from the construction. We then suppose that there is a marked

node reachable from (S,D), i.e. there exists a path (S,D) = (T0, E0), (T1, E1), . . . , (Tn, En)

where (Tn, En) is marked. Suppose that S = T0 ≤m E0 = D. Then also T1 ≤m E1 due to

the second requirement of Definition 2.4 (the modal refinement relation definition). By
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D1

D2
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(S1, D1)(S2, D2)

(S3, D2)(S4, D1)

(S5, D1)(S4, D2)

Figure 5: An example of two DMTSs and the corresponding graph reachable from

(S1, D1) (marked nodes are in a box)

induction, also T2 ≤m E2, . . . , Tn ≤m En. However, that last statement cannot be true, as

(Tn, En) is marked.

For the only if case, suppose that no marked nodes are reachable from (S,D). We

show a relation R that satisfies the conditions of Definition A.1. The relation R is defined

as

R = {(T, E) | (T, E) is reachable from (S,D) in the graph}.

Clearly, (S,D) ∈ R. Now suppose that (T, E) ∈ R. That ν(T) = ν(E) is straightforward.

If T
a
99K T ′ then also, as (T, E) is unmarked, E

a
99K E ′ and moreover, (T ′, E ′) ∈ R due

to the definition of the graph. For the other condition, suppose that E −→ E ′. Then,

again because (T, E) is unmarked, also T −→ T ′ for some T ′ such that act(T ′) ⊆ act(E ′).
Therefore, S ≤1m D and due to Lemma A.2, S ≤m D.

Since modal refinement is defined co-inductively, it can be computed in P by the

standard greatest fixed-point computation, similarly as in the case of strong bisimula-

tion. We thus obtain the following proposition.

PROPOSITION 3.4. Deciding ≤m is PTIME-complete.

LEMMA 3.7. Given a process A and a set B of processes, there exists an implementation I such

that I ≤m A and I 6≤m B for all B ∈ B if and only if (A,B) ∈ Avoid.

Proof. We prove both directions by induction.

‘If ’ part (soundness of the construction). As Avoid is defined as the smallest set, let

Avoid0, Avoid1, Avoid2, . . . denote the nondecreasing sequence of sets according to in

which round the elements (avoidable pairs) where added to Avoid. So Avoid0 contains
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exactly all the avoidable pairs (A, ∅), Avoid1 contains Avoid0 and all the avoidable pairs

that were added to Avoid0 in one iteration of the definition, etc.

We prove by induction on n that whenever (A,B) ∈ Avoidn then there exists an

implementation I such that I C A and I 6C B for all B ∈ B.

The base case n = 0 is trivial. For the induction step assume that (A,B) ∈ Avoidn+1.

Then for every a ∈ Σ, we have sets mustsuccAa, disalloweda and unrealizeda with the

properties from Definition 3.6. From the clause (1), it follows from the induction hy-

pothesis that for every A ′ ∈ mustsuccAa there exists IA ′ such that IA ′ C A ′ and IA ′ 6C B ′

for all B ′ ∈ unrealizeda. Similarly, from the clause (2), it follows from the induction

hypothesis that for every B ∈ disalloweda there exists A
a
99K AB and an implementation

IAB
such that IAB

C AB and IAB
6C B ′ for all B ′ with B

a
99K B ′ or B ′ ∈ unrealizeda.

Now we define an implementation I witnessing the correctness of (A,B) ∈ Avoid.

Let I be defined by ν(I) = ν(A) and the following transitions for each a ∈ Σ:

1. for every A ′ ∈ mustsuccAa we have I a
−→ IA ′ , and

2. for every B ∈ disalloweda we have I a
−→ IAB

.

It is straightforward to prove that I C A and I 6C B for all B ∈ B.

Let us first establish I C A. Clearly, ν(I) = ν(A). Assume that A −→ A ′, then there

is (a,A ′) ∈ A ′ with A ′ ∈ mustsuccAa. Hence I a
−→ IA ′ will provide the match. For

the other direction, first let I
a
99K IA ′ . Then there is A ′ ∈ mustsuccAa hence A

a
99K A ′

provides the match. Second, let I
a
99K IAB

. Then A
a
99K AB provides the match.

To see that I 6C B for B ∈ B, we distinguish three cases. Either (i) ν(B) 6= ν(A) and

hence ν(B) 6= ν(I), or (ii) B ∈ disalloweda for some a, then I
a
99K IAB

cannot be matched

by any B
a
99K B ′, or (iii) there is B −→ B ′ and for all a ∈ Σ and (a, B ′) ∈ B ′ we have

B ′ ∈ unrealizeda, thus B −→ B ′ can be matched by neither I a
−→ IA ′ nor I a

−→ IAB
.

‘Only-if ’ part (completeness of the construction). Let us define I Cn T if either n = 0

or (i) whenever I
a
99K I ′ then T

a
99K T ′ with I ′ Cn−1 T ′ and (ii) whenever T −→ T ′

then I a
−→ I ′ with I ′ Cn−1 T ′ and (a, T ′) ∈ T ′. Hence the relation Cn is a natural

generalization of the classical bisimulation approximants to modal refinement of DMTS

by an implementation, and clearly (on finite DMTS) we have that I C T iff I Cn T for all

n.

We prove by induction on n that whenever there exists an implementation I such

that I C A and I 6Cn B for all B ∈ B then (A,B) ∈ Avoid.
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As for the base case n = 0, it holds that ν(B) 6= ν(A), i.e. the condition (i), for all B ∈
B. Hence the choice disalloweda = unrealizeda = ∅ and mustsuccAa = {A ′ | A

a
99K A ′}

for all a ∈ Σ yields (A,B) ∈ Avoid.

For the induction step assume for some I that I C A and I 6Cn+1 B for all B ∈ B. We

define the following sets of processes.

• Cond(i) = {B ∈ B | ν(B) = ν(A)},

• Cond(ii)(a) = {B ∈ B | ∃I a
99K I ′ ∀B a

99K B ′ I ′ 6Cn B ′}, for every a ∈ Σ,

• Cond(iii) = {B ∈ B | ∃B −→ B ′B ∀(a, B ′) ∈ B ′B ∀I a
−→ I ′ I ′ 6Cn B ′}.

Note that Cond(i)∪
⋃
a∈Σ Cond(ii)(a)∪Cond(iii) = B. We set disalloweda = Cond(ii)(a) and

unrealizeda = {B ′ | ∃B ∈ Cond(iii) ∃(a, B ′) ∈ B ′B} which satisfies the second condition

of Definition 3.6. To satisfy the first condition, we set mustsuccAa = {A ′ | A −→ A ′ 3
(a,A ′), I

a
−→ I ′ C A ′}. It is now straightforward to check the third condition.

As for clause (1), for every A ′ ∈ mustsuccAa there is I a
−→ I ′ where I ′ C A ′ and

by definition of Cond(iii) also I ′ 6C B ′ for B ′ ∈ unrealizeda. By induction hypothesis

(A ′,unrealizeda) ∈ Avoid. As for clause (2), for every B ∈ disalloweda we have I
a
99K I ′

(hence I ′ C A ′ for some A
a
99K A ′) with I ′ 6Cn B ′ for all B

a
99K B ′ by definition of

Cond(ii)(a). Since also I ′ 6Cn B ′ ∈ unrealizeda using definition of Cond(iii), induction

hypothesis guarantees (A ′, {B ′ | B
a
99K B ′} ∪ unrealizeda) ∈ Avoid.

It follows that the sets disalloweda, unrealizeda, and mustsuccAa provide the evi-

dence required by the definition to conclude that (A,B) ∈ Avoid.

B Appendix: Proofs from Section 4

The following lemmata state the correctness of the construction given in Section 4.

Lemma B.1. Let S1, . . . , Sn have a common implementation. Then there is a consistency relation

containing (S1, . . . , Sn).

Proof. We define C = {(A1, . . . , An) | ∃I : I C A1, . . . , I C An} and prove that C is

a consistency relation. The first condition of Definition 4.2 is clearly satisfied. To show

the validity of the second condition, suppose that we have (A1, . . . , An) ∈ C and that

there is some i such that Ai −→ Bi. We know that there is some I that is a common

implementation of A1, . . . , An. Due to the must transition of Ai, there has to be some
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(a, Bi) ∈ Bi and some J such that I a
−→ J with J C Bi. However, as I C Aj for all j,

there have to be Bj for all j 6= i such that Aj
a
99K Bj with J C Bj. Thus (B1, . . . , Bn) ∈ C

as J is their common implementation. This is then exactly the second condition from

Definition 4.2. This means that C is a consistency relation.

Lemma B.2. Let T , S1, . . . , Sn be processes such that T ≤m Si for all i. Then (S1, . . . , Sn) ∈ Con

and T ≤m (S1, . . . , Sn).

Proof. The fact that (S1, . . . , Sn) ∈ Con comes from Lemma B.1 and the fact that in our

setting, every process has an implementation. We then define the relation R as R =

{(U, (A1, . . . , An)) | (A1, . . . , An) ∈ Con and ∀i : U ≤m Ai} and prove that R is a modal

refinement relation.

• If U
a
99K V then due to the fact that U ≤m Ai we have that Ai

a
99K Bi and V ≤m

Bi for all i. This means that (B1, . . . , Bn) ∈ Con due to Lemma B.1. Thus also

(A1, . . . , An)
a
99KCon (B1, . . . , Bn) and (V, (B1, . . . , Bn)) ∈ R.

• If (A1, . . . , An) −→Con B then there is some j such that Aj −→ Bj and the relation

between B and Bj is as in Definition 4.3. As U ≤m Aj there has to be some V such

thatU −→ V and for all (a, V) ∈ V there exists some (a, Bj) ∈ Bj such that V ≤m Bj.

Let (a, V) ∈ V be arbitrary. We need to show the existence of (a, (B1, . . . , Bn)) ∈ B
such that (V, (B1, . . . , Bn)) ∈ R. But as U

a
99K V and U ≤m Ai for all i, there have to

exist Bi with Ai
a
99K Bi and V ≤m Bi for all i 6= j. Clearly then (a, (B1, . . . , Bn)) ∈ B

and (V, (B1, . . . , Bn)) ∈ R.

Lemma B.3. Let (S1, . . . , Sn) be a process of SCon. Then (S1, . . . , Sn) ≤m Si for all i.

Proof. Let i be arbitrary. We define a relation Ri and prove that it is a modal refinement

relation. We take the obvious choice of Ri = {((A1, . . . , An), Ai) | (A1, . . . , An) ∈ Con}.

We now prove the conditions of Definition 2.4.

• νCon((A1, . . . , An)) = ν(A1) = ν(Ai) by Definition 4.2.

• If (A1, . . . , An)
a
99KCon (B1, . . . , Bn) then Ai

a
99K Bi by Definition 4.3 and

((B1, . . . , Bn), Bi) ∈ Ri by definition of Ri.

• If Ai −→ Bi then (A1, . . . , An) −→Con B where B is defined as in Definition 4.3.

Clearly, for all (a, (B1, . . . , Bn)) ∈ B there is some (a, Bj) ∈ Bj due to the definition

of B.

The theorems 4.4 and 4.5 now follow as straightforward corollaries to the three lemmata.
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THEOREM 4.4. Let S1, . . . , Sn be processes. Then S1, . . . , Sn have a common implementation if

and only if (S1, . . . , Sn) ∈ Con.

Proof. The “only-if” part is the statement of Lemma B.1. The “if” part follows from

Lemma B.3 and the fact that our definition of DMTS guarantees that every DMTS has

an implementation.

THEOREM 4.5. Let (S1, . . . , Sn) ∈ Con. Then the set of all implementations of (S1, . . . , Sn)

is exactly the intersection of the sets of all implementations of all Si. In other words, I C

(S1, . . . , Sn) if and only if for all i, I C Si. Therefore, (S1, . . . , Sn) as a process of SCon is the

greatest lower bound of S1, . . . , Sn with regard to the modal as well as the thorough refinement.

Proof. We prove the first statement of the theorem. All implementations of (S1, . . . , Sn)

are also implementations of all Si due to Lemma B.3 and Proposition 3.1. Let now I C Si

for all i. Then I ≤m Si for all i and due to Lemma B.2, I C (S1, . . . , Sn). Thus I C

(S1, . . . , Sn) if and only if I C Si for all i. This also proves that (S1, . . . , Sn) is the greatest

lower bound of all Si with regard to the thorough refinement.

The fact that (S1, . . . , Sn) is the greatest lower bound of all Si with regard to the modal

refinement is again a direct corollary to Lemmata B.3 and B.2.

C Appendix: Proofs from Section 5

C.1 Derived LTL Operators

In the following, we use several derived operators. For the sake of better readability, we

present their definitions in this subsection.

ϕ∨ψ = ¬(¬ϕ∧ ¬ψ) ϕ⇒ ψ = ¬ϕ∨ψ

Fϕ = tt Uϕ Gϕ = ¬F¬ϕ

XAϕ =
∨
a∈A

Xaϕ X¬aϕ = XΣ\{a}ϕ

Note that we measure the size of the formula as the size of the directed acyclic graph

(dag) representation of the formula. Thus, any formula written using the derived op-

erators is linear in the size of equivalent (unpacked) formula using only the original

operators of Definition 5.1.
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C.2 Proof of Theorem 5.3

THEOREM 5.3. The problem of deciding |=ω
∀ over DMTS is PSPACE-complete.

Proof. First, note that PSPACE-hardness follows from PSPACE-hardness of ordinary

LTL model checking. Let now S be a process of a DMTS, ϕ be an LTL formula. Let

us define Imax as the implementation of S that is created by promoting all may tran-

sitions of S into must transitions. That is, we can see Imax as the same process as S,

only instead of having (P, 99K,−→, ν) as the underlying DMTS, Imax has (P, 99K, 99K, ν).
We can then make the observation that for all I C S, Rω(I) ⊆ Rω(Imax). Thus,

Imax |=ω ϕ ⇐⇒ ∀I C S : I |=ω ϕ. The problem whether S |=ω
∀ ϕ can be thus solved by

running the classical LTL model checking algorithm on the may structure of S. This not

only gives us the containment in PSPACE, but also proves that deciding |=ω
∀ for DMTS

can be done in time linear in the size of the DMTS’s may relation and exponential in the

size of the formula.

C.3 Proof of Theorem 5.4

THEOREM 5.4. The problem of deciding |=ω
∃ over DMTS is 2-EXPTIME-complete.

We prove the theorem by showing both reductions between our problem and the

problem of finding a winning strategy in an LTL game, which is known to be 2-

EXPTIME-complete [PR89].

An LTL game consists of a finite Kripke structure whose states are partitioned be-

tween two players, the Protagonist and the Antagonist, and an LTL formula ϕ. A play

consist of starting in a designated initial state and moving according to whichever

player owns the current state. If the play is infinite, it thus forces an infinite run in

the LTS and we can whether the play satisfies ϕ. The goal of the game is to determine

whether the Protagonist has a strategy that ensures satisfaction ofϕ. If the play is finite,

the Protagonist wins.

Thus, an LTL game may be seen as a special kind of DMTS over unary action alpha-

bet, where the processes are the states of the Kripke structure, the may structure is the

transition relation of the Kripke structure, and the must structure is built as follows. For

every process A corresponding to a state owned by the Antagonist, we set A −→ {A ′}

if and only if A 99K A ′. For every process B corresponding to a state owned by the

Protagonist, we set B −→ {B ′ | B 99K B ′}. The reduction from LTL games to the problem
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of deciding |=ω
∃ over DMTS is thus straightforward. As an implementation of the above

DMTS has no choice in processes corresponding to states of the Antagonist, strategies

of the Protagonist correspond to implementations and vice versa. Thus, deciding |=ω
∃ is

2-EXPTIME-hard.

To show the containment in 2-EXPTIME we modify the DMTS into the above form.

We proceed in two steps. Firstly, since we are interested in |=ω
∃ , we may safely remove

all may transitions that are not backed up by some must transition, i.e. we are not forced

to realize them. Secondly, we transform the DMTS into a DMTS of the above form with

the same implementations up to some auxiliary actions. These dummy actions can be

taken care of easily. Thirdly, we transform this new DMTS into a game with only state

atomic propositions. The label of a transition will be encoded into the valuation of its

target state.

First step: We remove every S
a
99K T if there is no S −→ T with (a, T) ∈ T . We thus

get a new DMTS. Let S ′ be the process of the new DMTS that corresponds to S in the

original one. The following lemma states the correctness of this step.

Lemma C.1. There exists I C S with I |=ω ϕ iff there exists I ′ C S ′ with I ′ |=ω ϕ.

Proof. Clearly, S ′ ≤t S and thus the ‘if’ part of the lemma holds. For the other direction,

let us take I C S such that I |=ω ϕ. We then create I ′ by eliminating transitions from I that

are not allowed in S ′. Clearly, I ′ only has less infinite runs than I and thus I ′ |=ω ϕ.

Second step: Let S = (P, 99K,−→, ν) be a DMTS with all may transitions backed up

by some must transition. We define a new DMTS Sτ = (Pτ, 99Kτ,−→τ, ντ) as follows.

Every must transition is changed into a must transition leading to exactly one new state

with one must transition spanning all original may successors. Formally,

• Pτ = {Sτ | S ∈ P} ∪ {(S,U) | S ∈ P, S −→ U }
• for every S ∈ P and S −→ U we set

– Sτ
τ

−→τ (S,U), and ντ(Sτ) = ν(S),

– for every (a,U) ∈ U we set (S,U) a
99Kτ Uτ,

(S,U) −→τ {(a,Uτ) | (S,U)
a
99Kτ Uτ} and ντ((S,U)) = ν(S).

To handle the dummy τ steps we adapt the formula. For a formula ϕ, we define

T(ϕ) as the result of the following substitution performed on ϕ:
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• T(p) = p

• T(¬ϕ) = ¬T(ϕ)

• T(ϕ∧ψ) = T(ϕ)∧ T(ψ)

• T(ϕUψ) = T(ϕ) U T(ψ)

• T(Xϕ) = Xτ X T(ϕ)∨ X¬τ T(ϕ)

• T(Xaϕ) = Xτ Xa T(ϕ)∨ Xa T(ϕ)

Recall (from C.1) that we measure the size of the formula as the size of its dag represen-

tation. In that sense, this transformation is linear in the size of ϕ.

Also note that the transformation preserves various LTL fragments, such as LTL(X),

LTL(F), LTL(G), LTL(U), etc.

Lemma C.2. Let π = ν0, a1, ν1, a2, . . . be an infinite run such that ai 6= τ for all i, let σ =

ν0, τ, ν0, a1, ν1, τ, ν1, a2, . . . be an infinite run created from π by inserting τ steps not changing

state valuations at every odd position. Let ϕ be a formula not containing Xτ. Then π |= ϕ iff

σ |= T(ϕ).

Proof. We actually prove a stronger statement, namely that for all m, πm |= ϕ iff σ2m |=

T(ϕ) iff σ2m+1 |= T(ϕ). The proof is done by induction on the formulaϕ. The interesting

cases are that of U, X and Xa.

• Let πm |= ϕUψ. Then there is some k such that πk+m |= ψ and for all j < k, πk+j |=

ϕ. Due to the induction hypothesis, σ2k+2m |= T(ψ) and for all j < k, σ2j+2m |= T(ϕ)

and σ2j+2m+1 |= T(ϕ). Therefore, σ2m |= T(ϕUψ) and σ2m+1 |= T(ϕUψ).

• Let σ2m |= T(ϕUψ). Then there is some k such that σ2m+k |= T(ψ) and for all j < k,

σ2m+j |= T(ϕ). Due to the induction hypothesis, we may assume that k is even. (If

it were odd we could take k− 1 instead of k.) This means that πm+k/2 |= ψ and for

all l < k/2, πm+l |= ϕ. Thus, πm |= ϕUψ.

• The case with σ2m+1 |= T(ϕ U ψ) is similar to the previous item; we may assume

that k is odd in this case.

• Let πm |= Xaϕ. This means that πm = νm, a, νm+1, . . . and thus σ2m =

νm, τ, νm, a, νm+1, . . . Therefore σ2m |= Xτ Xa T(ϕ) and σ2m+1 |= Xa T(ϕ). Both σ2m

and σ2m+1 satisfy T(Xaϕ).
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• Let σ2m |= T(Xaϕ) = Xτ Xa T(ϕ) ∨ Xa T(ϕ). Clearly, as σ2m always starts with a τ

action, it cannot satisfy Xa T(ϕ) for a 6= τ (this holds because of the premise in the

lemma). Therefore, σ2m |= Xτ Xa T(ϕ). This means that σ2m = νm, τ, νm, a, νm+1, . . .

and σ2m+2 |= T(ϕ). Due to the induction hypothesis and the construction of σ,

πm |= Xaϕ.

• The case with σ2m+1 is again similar to the previous one. Clearly σ2m+1 cannot

satisfy Xτ Xa T(ϕ) due to the fact that am+1 6= τ and has to satisfy Xa T(ϕ).

• The X operator can be dealt with similarly to the previous three items.

Lemma C.3. There exists I C S with I |=ω ϕ iff there exists Iτ C Sτ with Iτ |=ω T(ϕ).

Proof. Suppose that I C S and I |=ω ϕ. We create Iτ by a modification of I, inserting a τ

action between every two successive actions. For every run π of I there now exists a run

σ of Iτ with the structure as in Lemma C.2 and due to the same lemma Iτ |=ω T(ϕ). The

fact that Iτ C Sτ is clear from the construction.

On the other hand, suppose that Iτ C Sτ and Iτ |=ω T(ϕ). Due to the construction of

Sτ, for every process reachable from Iτ either all or none of its outgoing transitions are

labelled with τ. Furthermore, there are no τ loops. We create I from Iτ by the following

modification: For every Jτ reachable from Iτ, whenever Jτ
τ

−→ Kτ
a

−→ Lτ, then J a
−→ L.

The runs of I are thus the runs of Iτ with all τ transitions removed. Again, due to

Lemma C.2, I |=ω ϕ, and that I C S is clear from the construction.

Third step: We now modify the DMTS into a DMTS with only one action “•”. The set

of processes is changed from P into P × Σ. Whenever S
a
99K T in the original DMTS,

then (S, x)
•
99K (T, a) for all x; similarly for must transitions. The valuation is then

ν((S, a)) = ν(S) ∪ {a}.

We then change the LTL formula such that all subformulae of the form Xaϕ are

changed to X(a∧ϕ). We thus get a new formula act(ϕ).

Lemma C.4. Let π = ν0, a1, ν1, a2, . . . and σ = ν0 ∪ {x}, •, ν1 ∪ {a1}, •, . . . where x is an arbi-

trary action. Then π |= ϕ if and only if σ |= act(ϕ).

Proof. The proof is done by induction on the formula. The only interesting case here is

that of Xaϕ.

Let π |= Xaϕ. Then `(π, 1) = a and π1 |= ϕ (i.e. π = ν0, a, ν1, a2, . . .); this means that

σ1 |= a and σ1 |= act(ϕ) (i.e. σ = ν0 ∪ {x}, •, ν1 ∪ {a}, •, . . .). Therefore, σ |= X(a∧ act(ϕ)).

The other direction is similar.
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Lemma C.5. There exists I C S with I |=ω ϕ iff there exists I ′ C (S, x) with I ′ |=ω act(ϕ)

where x is an arbitrary action.

Proof. Let I C S with I |=ω ϕ. We then create I ′ = (I, x) from I using the same construc-

tion we created (S, x) from S. Clearly I ′ C (S, x) and for every run π of I there is a run σ

of I ′ of the form described in Lemma C.4. Due to the same lemma, I ′ |=ω act(ϕ).

On the other hand, let I ′ C (S, x) with I ′ |=ω act(ϕ). We then create I by reversing

the previous construction. That is, for every J ′, K ′ reachable from I ′ such that a ∈ ν(K ′)
and J ′ −→ K ′ we set J a

−→ K, ν(J) = ν(J ′) \ Σ, ν(K) = ν(K ′) \ Σ. Again, I C S and for

every run σ of I ′ we have a run π of Iwith the relationship as in Lemma C.4.

We now have a DMTS that can be easily changed into an LTL game. We build the

Kripke structure from the may structure of the DMTS, the states of the Kripke structure

being the processes of the DMTS. Whenever a process had only singleton must tran-

sitions, we assign the corresponding state to the Antagonist. Whenever a process had

only one must transition to more that one target, we assign the corresponding state to

the Protagonist.

Clearly, a strategy for the Protagonist in such a game induces an implementation of

the original DMTS and vice versa. A strategy is winning for formula ϕ if and only if its

induced implementation satisfies ϕ. We have thus shown that the problem of deciding

|=ω
∃ is in 2-EXPTIME. Moreover, it is known that the strategy for the Protagonist requires

finite history, at most doubly exponential in the size of the formula and linear in the size

of the Kripke structure. This means that we can synthesise a finite implementation of

a given finite DMTS satisfying ϕ.

C.4 Proof of Theorem 5.5

THEOREM 5.5. The problem of deciding |=ω
∃ over MTS is PSPACE-complete.

Proof. The proof is similar to the proof of Theorem 5.3, only instead of Imax we now de-

fine Imin to be the implementation of S that is created by removing all may transitions

without corresponding must transitions. (Recall that in MTS must transitions are sin-

gletons and the must transition corresponding to S
a
99K T is S a

−→ T , or, S −→ (a, T).)

Clearly for all I C S,Rω(Imin) ⊆ Rω(I), and thus Imin |=ω ϕ ⇐⇒ ∃I C S : I |=ω ϕ.

C.5 Proof of Proposition 5.6
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PROPOSITION 5.6. The problem of deciding the existence of a deadlock-free implementation of

a given MTS satisfying a given LTL formula, is 2-EXPTIME-complete.

To prove the containment in 2-EXPTIME, we show the existence of a DMTS whose

implementations are exactly the deadlock-free implementations of a given MTS. The

containment in 2-EXPTIME then follows from Theorem 5.4.

To prove the 2-EXPTIME-hardness, we show a reduction from finding a winning

strategy in LTL games into deciding the existence of a deadlock-free implementation.

Let now (P, 99K,−→, ν) be an MTS, S ∈ P . Our first task is to create a DMTS SD such

that implementations of SD are exactly the deadlock-free implementations of S. We first

need an auxiliary definition of deadlock-free processes. Those will be the processes

from P that have a deadlock-free implementation. Such processes can be characterised

as follows. Let DF be the maximal subset of P satisfying the following:

• whenever T 699K then T 6∈ DF,

• if T a
−→ U for some a and U 6∈ DF then T 6∈ DF, and

• if for all a and U such that T
a
99K U, U 6∈ DF, then T 6∈ DF.

Clearly, DF exactly captures the deadlock-free processes and can be computed in linear

time. We now define the DMTS (PD, 99KD,−→D, νD) as follows:

• PD = {TD | T ∈ DF}.

• νD(TD) = ν(T).

• Whenever T
a
99K U and T,U ∈ DF, then TD

a
99KD UD.

• Whenever T a
−→ U and T ∈ DF (thus also U ∈ DF from the construction of DF),

then TD −→D {(a,UD)}.

• Whenever T ∈ DF has no must-successors, then TD −→D {(a,UD) | TD
a
99KD UD}.

The following lemma is straightforward.

Lemma C.6. Let S be an MTS, SD a DMTS as constructed above. Then for all I, I is a deadlock-

free implementation of S if and only if I C SD.

We can now come to the hardness part of the proof. This is done similarly to the

hardness part of the proof in Section C.3. An LTL game can be transformed into a MTS

33



over unary action alphabet, where the processes are the states of the Kripke structure,

the may structure is the transition relation of the Kripke structure, and the must struc-

ture is built as follows. For every process A corresponding to a state owned by the

Antagonist, we set A −→ A ′ if and only if A 99K A ′. Processes corresponding to states

owned by the Protagonist have no must transitions. Now, the strategies of the Protag-

onist correspond to deadlock-free implementations and vice versa. Thus follows the

statement of the proposition.

(A small note: The above statement about strategies of Protagonist corresponding to

deadlock-free implementations does not hold if the Kripke structure of the LTL game

has deadlocks, i.e. states with no outgoing transitions. However, every such LTL game

can be easily modified into a game with no deadlocks.)

C.6 Proof of Theorem 5.7

THEOREM 5.7. The problem of deciding |=∞
∃ over (D)MTS is 2-EXPTIME-complete, the prob-

lem of deciding |=∞
∀ over (D)MTS is PSPACE-complete.

We first show that the problem of finding a winning strategy in an LTL game can be

reduced to the problem of deciding |=∞
∃ over MTS (the hardness for DMTS then easily

follows). The LTL game can be seen as a MTS. The processes are the states of the Kripke

structure, the may structure is given by the transitions in the Kripke structure. For every

process A corresponding to a state belonging to the Antagonist, we set A a
−→ A ′ if and

only if A
a
99K A ′. Every process corresponding to a state belonging to the Protagonist

has no outgoing must transitions. We then change the formula ϕ into G X tt ⇒ ϕ.

Clearly, there exists an implementation satisfying this formula if and only if there exists

a winning strategy in the LTL game.

We can now show the reduction from |=∞
∃ over DMTS into |=ω

∃ over DMTS, thus

showing the containment in 2-EXPTIME (the containment for MTS easily follows). In

the following we assume that e is a new action, e 6∈ Σ. Let S be a process. We modify

its underlying DMTS as follows. For each process T reachable from S such that T 6−→
we add a may transition T

e
99K Te where Te is a new process such that Te

e
99K Te and

ν(Te) = ν(T).

We then change the formula ϕ inductively into e(ϕ) as follows:

• e(p) = p

• e(¬ϕ) = ¬e(ϕ)
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• e(ϕ∧ψ) = e(ϕ)∧ e(ψ)

• e(ϕUψ) = e(ϕ) U e(ψ)

• e(Xϕ) = X¬e e(ϕ)

• e(Xaϕ) = Xa e(ϕ)

We also define the extension of π, denoted as ext(π) as identical to π if |π| = ∞,

otherwise ext(π) = π(eν)ω where ν is the last state valuation on π.

We now have to prove several lemmata.

Lemma C.7. Let π be a run not containing action e, let σ = ext(π). Let ϕ be an LTL formula

that does not contain Xe. Then π |= ϕ iff σ |= e(ϕ).

Proof. The proof is done by induction. The cases of p, ¬ϕ andϕ∧ψ are straightforward.

The other cases are the following:

• π |= ϕ U ψ. Then πk |= ψ and |π| > k. Thus also σk |= e(ψ) and for all j < k,

σj |= e(ϕ) due to the induction hypothesis. Therefore, σ |= e(ϕUψ).

• σ |= e(ϕ U ψ). Then σk |= e(ψ). We need to show that k < |π|. This is trivial if π

is infinite, so let us suppose that π is finite. But then σi = σ|π|−1 for all i ≥ |π|, so

we may assume that k < |π| w.l.o.g. Using the induction hypothesis, we get that

πk |= ψ and for all j < k, πj |= ϕ. Thus, π |= ϕUψ.

• π |= Xϕ. Then |π| > 1 and thus `(π, 0) is well defined and not equal to e. Therefore,

σ |= X¬e e(ϕ).

• σ |= e(Xϕ) = X¬e e(ϕ). Then `(σ, 0) 6= e and thus |π| > 1. Clearly then π |= Xϕ.

• Xa is dealt with similarly.

The following lemma states that the above modification preserves all implementa-

tions.

Lemma C.8. Let S be a process, S ′ a modification of S as stated previously. Then for each I C S

there exists some I ′ C S ′ such that ext(R∞(I)) = Rω(I ′).

Proof. We take I and modify it as follows. Whenever there is a deadlock J reachable

from I, we add a new transition J e
−→ J. Clearly, as originally J C T , it also holds that

J C T in the new DMTS.
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Unfortunately, the converse is not true, the new process S ′ may have more imple-

mentations that just those from S extended. We can, however, prove two weaker state-

ments that suffice for |=∞
∃ and |=∞

∀ , respectively.

Lemma C.9. Let S be a process, S ′ a modification of S as stated previously, and let I ′ C S ′.

Then there exists an implementation I C S such that ext(R∞(I)) ⊆ Rω(I ′).

Proof. We simply remove all e transitions from reachable processes of I ′ and obtain thus

a new implementation I. The statement of the lemma is then straightforward.

Lemma C.10. Let S be a process, S ′ a modification of S as stated previously, let I ′ C S ′ and let

σ ∈ Rω(I ′). Then there exists and implementation I of S such that σ = ext(π) and π ∈ R∞(I).

Proof. If σ does not contain e, then we remove all e transitions from reachable processes

of I ′ and thus obtain I. If σ contains e, we take π as the prefix of σ before first e. We

then build I by taking π and adding transitions as needed. Again, the statement is then

straightforward.

The statement of the theorem is now a corollary to all previous lemmata. We already

proved the 2-EXPTIME-hardness of |=∞
∃ for MTS. The following corollary states the con-

tainment of |=∞
∃ for DMTS, thus establishing 2-EXPTIME-completeness of |=∞

∃ for both

MTS and DMTS.

Corollary C.11. The problem of deciding |=∞
∃ over DMTS is in 2-EXPTIME.

Proof. Let S be a DMTS, ϕ an LTL formula. Let S ′ be the modification of S as described

earlier. Suppose that there exists I C S with I |=∞ ϕ. Due to Lemma C.8 there exists

I ′ C S ′ withRω(I ′) = ext(R∞(I)). This means that I ′ |=∞ e(ϕ) due to Lemma C.7.

On the other hand, let I ′ C S ′ with I ′ |=∞ e(ϕ). Due to Lemma C.9, there exists I C S

with ext(R∞(I)) ⊆ Rω(I ′). This means that I |= ϕ again due to Lemma C.7.

We thus have a reduction from deciding |=∞
∃ to deciding |=ω

∃ . Therefore, deciding

|=∞
∃ is in 2-EXPTIME.

The last corollary establishes the containment of |=∞
∀ for DMTS in PSPACE. The

PSPACE-hardness follows straightforwardly from the PSPACE-hardness of ordinary

LTL model checking.

Corollary C.12. The problem of deciding |=∞
∀ over DMTS is in PSPACE.
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Proof. Let S be a DMTS, ϕ an LTL formula, let S ′ be the modification of S as described

earlier. Suppose that for all I C S, I |=∞ ϕ. Take an arbitrary I ′ C S ′ such that Rω(I ′) 6=
∅ (such I ′ has to exist due to the construction) and an arbitrary σ ∈ Rω(I ′). Due to

Lemma C.10, there exists some implementation I and a run π ∈ R∞(I) such that σ =

ext(π). But as I |=∞ ϕ, also π |= ϕ and thus σ |= e(ϕ) due to Lemma C.7.

On the other hand, suppose that for all I ′ C S ′, I ′ |=ω e(ϕ). Take an arbitrary I C S.

Due to Lemma C.8, there exists some I ′ C S ′ such that Rω(I ′) = ext(R∞(I)). Therefore,

I |=∞ ϕ due to Lemma C.7.

We thus have a reduction from deciding |=∞
∀ to deciding |=ω

∀ . Therefore, deciding

|=∞
∀ is in PSPACE.

This concludes the proof of Theorem 5.7.

C.7 Proof of Proposition 5.8

An LTL formulaϕ is called purely state-based if it does not contain the Xa operator. A for-

mula is called purely action-based if it does not contain atomic propositions. (Recall that

tt is a part of the syntax, so eliminating atomic propositions does make sense, as we can

still use Xa tt.)

PROPOSITION 5.8. The complexity of deciding |=?
∃ and |=?

∀ for ? ∈ {ω,∞} remains the same if

the formula ϕ is a purely state-based or a purely action-based formula.

The proof of the proposition is done by reduction from the general problem for LTL

into that for state- or action-based LTL. The first reduction (encoding actions into states)

has already been done as a part of the proof of Theorem 5.4, see Lemma C.4 and pre-

ceding construction.

We can thus continue with the second reduction, encoding state valuations into ac-

tions. Note that the straightforward reduction from states into actions (i.e. simply mov-

ing the whole valuation onto outgoing transitions) is not a polynomial one, as then

|Σ| ≥ |2Ap|. We thus present a different reduction.

Let (P, 99K,−→, ν) be the original DMTS. Let Ap be the finite set of atomic proposi-

tions with an arbitrary ordering, i.e. Ap = {p1, p2, . . . , pn}. Also, assume that 0, 1, and .

are new symbols not in Σ. The new DMTS is then (P × {0, . . . , n, .}, 99K,−→, ν ′) over an

alphabet Σ ′ = Σ ∪ {0, 1, .}, where

• ν ′(X) = ∅ for all X,
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• (S, .)
.

−→ (S, 0) for all S ∈ P ,

• (S, i)
1

−→ (S, i+ 1) for all S ∈ P such that pi+1 ∈ ν(S),

• (S, i)
0

−→ (S, i+ 1) for all S ∈ P such that pi+1 6∈ ν(S),

• (S, n)
a
99K (T, 0) whenever S

a
99K T , and

• (S, n) −→ {(a, (T, 0)) | (a, T) ∈ T } for all T such that S −→ T .

Let now Γ = Σ ∪ {.} = Σ ′ \ {0, 1}. For every LTL formula ϕ, we define a new formula

A(ϕ) inductively as follows:

• A(pi) = Xi X1 tt

• A(¬ϕ) = ¬A(ϕ)

• A(ϕ∧ψ) = A(ϕ)∧A(ψ)

• A(ϕUψ) = (XΓ tt ⇒ A(ϕ)) U (XΓ tt ∧A(ψ))

• A(Xϕ) = Xn+1A(ϕ)

• A(Xaϕ) = Xn+1(Xa tt ∧A(ϕ))

Here, we use the notation X1ϕ = Xϕ, Xk+1ϕ = Xk Xϕ for k > 0.

Let π be an infinite run ν0, a1, ν1, a2, . . .. We create a run σ as follows (all valuations

are ∅ and are omitted):

σ = ., [p1 ∈ ν0], [p2 ∈ ν0], . . . , [pn ∈ ν0], a1, [p1 ∈ ν1], [p2 ∈ ν1], . . . , [pn ∈ ν1], a2, . . .

where [pi ∈ νj] = 1 if pi ∈ νj, and 0 otherwise.

Lemma C.13. Let π, σ be as just stated. Let ϕ be an LTL formula, A(ϕ) its modification as in

previous. Then π |= ϕ iff σ |= A(ϕ).

Proof. We first observe that σs |= XΓ tt iff s is a multiple of (n+1) as symbols from Γ only

appear on σ every (n+ 1) steps.

We then prove that πm |= ϕ iff σm(n+1) |= A(ϕ) by induction.

• πm |= pi iff `(σ,m(n+ 1) + i+ 1) = 1, and that holds iff σm(n+1) |= A(pi).

• The cases of ¬ϕ and ϕ∧ψ are evident.
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• πm |= ϕ U ψ. Then there is some k with πm+k |= ψ and for all j < k, πm+j |= ϕ.

Due to the induction hypothesis, σ(m+k)(n+1) |= A(ψ) and for all j < k, σ(m+j)(n+1) |=

A(ϕ). Clearly, σ(m+k)(n+1) |= XΓ tt ∧ A(ψ) due to the earlier observation. That

σl |= XΓ tt ⇒ A(ϕ) for all m(n + 1) ≤ l < (m + k)(n + 1) also follows from the

earlier observation, as for all multiples of (n+1) fromm(n+1) to (m+k−1)(n+1),

A(ϕ) holds and for all other subruns, XΓ tt does not hold, thus the implication

holds trivially. Altogether σm(n+1) |= (XΓ tt ⇒ A(ϕ)) U (XΓ tt ∧A(ψ)) = A(ϕUψ).

• σm(n+1) |= A(ϕUψ) = (XΓ tt ⇒ A(ϕ)) U (XΓ tt ∧A(ψ)). Then there is some k with

σm(n+1)+k |= (XΓ tt ∧ A(ψ)) and for all j < k, σm(n+1)+j |= (XΓ tt ⇒ A(ϕ)). Clearly

k has to be a multiple of (n + 1) as otherwise XΓ tt would not hold for σm(n+1)+k.

Therefore k = h(n + 1) and πm+h |= ψ. Clearly also πm+l |= ϕ for all l < h as in

σ(m+l)(n+1), XΓ tt holds and thus also A(ϕ) has to hold.

• πm |= Xϕ iff πm+1 |= ϕ iff σ(m+1)(n+1) |= A(ϕ) iff σm(n+1) |= Xn+1A(ϕ).

• πm |= Xaϕ iff πm+1 |= ϕ and `(π,m + 1) = a iff σ(m+1)(n+1) |= A(ϕ) and `(σ, (m +

1)(n + 1)) = a iff σm(n+1) |= Xn+1A(ϕ) and σm(n+1) |= Xn+1 Xa tt iff σm(n+1) |=

Xn+1(Xa tt ∧A(ϕ)).

We now need to prove that the construction preserves implementations.

Lemma C.14. Let S be a process, (S, .) a new process as in previous. Then the implementations

of S and (S, .) have the same runs, modulo the transformation above. Formally, for all I C

S there exists (I, .) C (S, .) such that every run π of I corresponds to a run σ of (I, .) as

constructed above, and similarly, every run σ of (I, .) corresponds to a run π of I; and for all

(I, .) C (S, .) exists I C S with the same property.

Proof. Let I C S. We can then apply the transformation to I and thus straightforwardly

obtain an implementation of (S, .).

The other direction is more involved, as an implementation I of (S, .) may branch ar-

bitrarily before coming into a process that refines (S, n). Nonetheless, all these branches

have to be the same. We may thus modify I into I ′ as follows: I ′ b1−→ I ′1
b2−→ · · · bn−→ I ′n

where I ′n is the sum of all implementations of I reachable in exactly n steps. We may

then apply the transformation in reverse direction and the lemma easily follows.

This concludes the proof of Proposition 5.8.
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C.8 Proofs from Section 5.1

Recall that a composition has a may transition under a synchronizing action (an action

from Γ ) if both components have one, and a may transition under a non-synchronizing

action (an action from Σ \ Γ ) if at least one component has one. The must transition

relation forces exactly the options induced by composing possible implementations.

The following lemma proves the soundness of the composition.

Lemma C.15. Let I1 C S1 and I2 C S2. Then I1 ‖ I2 C S1 ‖ S2.

Proof. This lemma essentially amounts to completeness of the may transition relation

and soundness of the must transition relation in the composition.

We prove that R = {(J1 ‖ J2, T1 ‖ T2) | J1 ≤m T1, J2 ≤m T2} is a modal refinement

relation. Let (J1 ‖ J2, T1 ‖ T2) ∈ R. Clearly ν(J1 ‖ J2) = ν(T1 ‖ T2).
Firstly, let J1 ‖ J2

a
99K J ′1 ‖ J ′2. We distinguish the following cases.

• If a ∈ Γ then J1
a
99K J ′1 and J2

a
99K J ′2. By definition of R, T1

a
99K T ′1 with J ′1 ≤m T

′
1 and

T2
a
99K T ′2 with J ′2 ≤m T

′
2 . Hence T1 ‖ T2

a
99K T ′1 ‖ T ′2 with (J ′1 ‖ J ′2, T ′1 ‖ T ′2) ∈ R.

• If a ∈ Γ, J1
a
99K J ′1, J2 = J ′2 then T1

a
99K T ′1 with J ′1 ≤m T

′
1 . Hence T1 ‖ T2

a
99K T ′1 ‖ T2

with (J ′1 ‖ J2, T ′1 ‖ T2) ∈ R.

• The case a ∈ Γ, J1 = J ′1, J2
a
99K J ′2 follows from symmetry.

Secondly, let T1 ‖ T2 −→ T ′. By the definition of Succ(T1 ‖ T2) there are either a ∈
Γ, (a, T ′1 ‖ T ′2) ∈ T ′ with Ji

a
−→ J ′i ≤m T ′i for i = 1, 2, or a ∈ Σ \ Γ, (a, T ′1 ‖ T ′2) ∈ T ′

with J1
a

−→ J ′1 ≤m T
′
1 and T ′2 = T2, or symmetrically. In all cases J1 ‖ J2

a
−→ J ′1 ‖ J ′2 with

(J ′1 ‖ J2, T ′1 ‖ T ′2) ∈ R.

We now turn to completeness of the composition.

THEOREM 5.9. Let S1, S2 be processes,ϕ an LTL formula, and ? ∈ {ω,∞}. Then S1 ‖ S2 |=?
∀ ϕ

if and only if for all I1 C S1 and I2 C S2 it holds I1 ‖ I2 |=? ϕ.

Proof. ‘Only-if ’ part follows directly from Lemma C.15.

‘If ’ part essentially amounts to proving the soundness of the may transition relation

in the composition. Firstly, we define an implementation that captures all possibilities

where may transitions are/are not realized. Formally, for every process S and S ′ ∈
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Succ(S), let us define an implementation (S,S ′) and set (S,S ′) a
−→ (S ′,S ′′) whenever

(a, S ′) ∈ S ′ and S ′′ ∈ Succ(S ′). We will prove that for every I C S1 ‖ S2 we have

R∞(I) ⊆ R∞((S1,
⋃

Succ(S1)) ‖ (S2,
⋃

Succ(S2))) ∪ {ν(S1 ‖ S2)}. (1)

As (1) implies also Rω(I) ⊆ Rω((S1,
⋃

Succ(S1)) ‖ (S2,
⋃

Succ(S2))), this concludes the

proof for ? = ω. Further, if {ν(S1 ‖ S2)} ∈ R∞(I) then {ν(S1 ‖ S2)} = R∞(I) and there

is no must transition leading from S1 ‖ S2 and thus there are I1 C S1 and I2 C S2 with

R∞(I1 ‖ I2) = {ν(S1 ‖ S2)} which concludes the proof for ? = ∞.

In order to prove the trace inclusion (1), observe that considered as labelled

transition systems (S1 ‖ S2,
⋃

Succ(S1 ‖ S2)) is bisimilar to (S1,
⋃

Succ(S1)) ‖
(S2,

⋃
Succ(S2)), therefore their sets of runs are equal. In addition, R∞(I) ⊆ R∞((S1 ‖

S2,S ′)) for some S ′ ∈ Succ(S1 ‖ S2). If S ′ 6= ∅ then R∞((S1 ‖ S2,S ′)) ⊆ R∞((S1 ‖
S2,

⋃
Succ(S1 ‖ S2))). And if S ′ = ∅ then R∞(I) = {ν(S1 ‖ S2)} which concludes the

proof of (1).

THEOREM 5.10. Let S1, S2 be processes, ϕ an LTL formula, and ? ∈ {ω,∞}. Then S1 ‖ S2 |=?
∃

ϕ if and only if there exist I1 C S1 and I2 C S2 such that I1 ‖ I2 |=? ϕ.

Proof. ‘If ’ part follows directly from Lemma C.15.

‘Only-if ’ part essentially amounts to proving the completeness of the must transition

relation in the composition. Let I C S1 ‖ S2, it is sufficient to find I1 C S1 and I2 C S2
such thatR?(I1 ‖ I2) ⊆ R?(I).

Since I need not be directly decomposable into two implementations, we construct

an implementation Ī C S1 ‖ S2 such that R?(Ī) ⊆ R?(I) and then decompose Ī. We

define Ī to be minimal in the following sense. We have Succ(I) = {I} and Succ(S1 ‖
S2) = {S1, . . . ,Sm}. Since I ≤m S1 ‖ S2, there is Sk (we now fix it) such that for every

(a, S ′) ∈ Sk there is a fixed (a, I ′) ∈ I with I ′ C S ′. Let SuccI be the set of these fixed

transitions (a, I ′). This way we compute SuccJ for every implementation J and define

J̄
a

−→ J̄ ′ if (a, J ′) ∈ SuccJ.

Clearly, Ī C S1 ‖ S2 and R?(Ī) ⊆ R?(I). Moreover, Succ(Ī) contains exactly the

transitions corresponding to those in SuccI, which realize exactly the transitions from

Succ(S1 ‖ S2). Therefore, we get by definition the decomposition of Succ(S1 ‖ S2) into

an element from Succ(S1) and an element from Succ(S2), and thus a decomposition of

Ī into I1 and I2 with I1 C S1 and I2 C S2.
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D Appendix: Complexity of the Previous Solution to

CI/CS

The goal of this appendix is to give more insight into the complexity of the common

implementation and specification problems solutions provided in [LX90]. Recall that

the definition in [LX90] does not require the specifications to be consistent, i.e. the re-

quirements (i) and (ii) of Definition 2.1 need not be fulfilled.

First of all, conjunctions of processes are introduced as follows:

S −→ S ′
S∧ T −→ S ′ T −→ T ′

S∧ T −→ T ′
S

a
99K S ′ T

a
99K T ′

S∧ T
a
99K S ′ ∧ T ′

This leads to a solution to the common specification problem. Indeed, S1 ∧ · · · ∧ Sn is

the greatest lower bound of S1, . . . , Sn. Therefore, the complexity of the construction

is the same as in our setting, i.e. it is PTIME if n is fixed and EXPTIME if n is a part

of the input. However, the greatest lower bound may be vacuous, as it need not have

any implementations. Therefore, a consistency check is needed to decide the common

implementation problem. Checking consistency is EXPTIME-hard even for mixed tran-

sition systems [AHL+08b], which is a syntactic subclass of DMTS of [LX90]. To sum-

marize, this yields an EXPTIME solution to CI even for the case with fixed number of

specifications.

Note that in [LX90] the authors claim that checking consistency can be done in

PTIME. This is only true under the assumption that all conjunctions of processes (of ar-

bitrary arity) are already given in the input. This assumption was reasonable in [LX90]

as the ultimate goal of that paper was solving process equations and the additional

conjunctions arose in the preprocessing phase.

E Appendix: Errors in the Previous Attempt at LTL Model

Checking over MTS

The goal of this appendix is to explain the error made in [UBC09] when dealing with

generalized model checking of MTS.

The logic that is used by [UBC09] is the Fluent LTL, which bears some differences

to our state and action based LTL. Nonetheless, both Fluent LTL and our LTL (as used
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throughout this paper) contain the action-based LTL as a fragment. We thus only use

action-based LTL in the following to explain our claim. (Note that the syntax is slightly

different, e.g. [UBC09] use a where we write Xa tt, �ϕ where we write Gϕ, etc. This

does not influence our claim.)

We start by quoting from [UBC09, p. 6]:

If a property evaluates to true in M, it is true in all deadlock-free imple-

mentations of M, and if a property evaluates to false in M, it is false in all

deadlock-free implementations of M. Furthermore, if a property evaluates

to maybe in M, it is true in some deadlock-free implementations of M and

false in others.

[. . . ]

Definition 16: (3-valued semantics of FLTL) The function ‖·‖M : FLTL→ 3 is

defined as follows:

‖ϕ‖M = t , ∀π ∈ POSTR∞(M) · π |= ϕ

‖ϕ‖M = f , (∃π ∈ REQTR∞(M) · π 6|= ϕ)∨

(∀π ∈ POSTR∞(M) · π 6|= ϕ)

‖ϕ‖M = ⊥ , ¬(‖ϕ‖M = t)∧ ¬(‖ϕ‖M = f)

A formula ϕ is true in M (denoted ‖ϕ‖M = t or M |= ϕ) if every trace

in POSTR∞(M) satisfies ϕ. A formula ϕ is false in M (denoted ‖ϕ‖M = f

or M 6|= ϕ) if there is a trace in REQTR∞(M) that refutes ϕ or if all traces

in POSTR∞(M) refute ϕ. Otherwise, a formula ϕ evaluates to maybe in M

(denoted ‖ϕ‖M = ⊥).

(In the following, whenever we write Definition 16, we mean the definition

from [UBC09] as quoted above.)

Here, POSTR∞(M) and REQTR∞(M) are earlier in the paper defined as the set of

all infinite traces of M consisting of may or must transitions only, respectively. The

trouble with Definition 16 here is that it does not correspond to the intuitive meaning as

explained in the paragraph preceding it. Indeed, take the example from page 14, also

redrawn here as Fig. 6.

Here REQTR∞(M) = ∅ while POSTR∞(M) = {a} · {a, b}ω. Let ϕ = �a (in our LTL

syntax ϕ = G Xa tt). Then, according to Definition 16 in the quotation above, ‖ϕ‖M = ⊥
as it does not hold that ∀π ∈ POSTR∞(M) : π |= ϕ (taking π = abω), it does not hold that
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M a
a

b

Figure 6: No deadlock-free implementation ofM satisfies G Xa tt

∃π ∈ REQTR∞(M) : π 6|= ϕ (as REQTR∞(M) is empty), and it does not hold that ∀π ∈
POSTR∞(M) : π 6|= ϕ (taking π = aω). Thus the formulaϕ evaluates to maybe inM. This,

according to the paragraph preceding Definition 16, should mean that there are some

implementations of M that satisfy the formula and some implementations of M that

refute the formula. Yet, it may be clearly verified that no deadlock-free implementation

ofM satisfying ϕ exists (as there is only one, up to bisimilarity).

The problem is more fundamental. Were Definition 16 correct (or easily fixable),

the approach of [UBC09] would give a PSPACE algorithm. However, as we know

from Proposition 5.6, deciding whether there exists a deadlock-free implementation of

a given MTS satisfying a given formula is 2-EXPTIME-complete, a strictly harder com-

plexity.
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