
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Access Rights in Enterprise Full-text Search
Searching Large Intranets Effectively Using Virtual Terms

by

Jan Kasprzak
Michal Brandejs

Matěj Čuhel
Tomáš Obšívač

FI MU Report Series FIMU-RS-2010-08

Copyright c© 2010, FI MU 06 2010

Copyright c© 2010, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Access Rights in Enterprise Full-text Search

Jan Kasprzak Michal Brandejs Matěj Čuhel

Tomáš Obšívač

Faculty of Informatics, Masaryk University

Brno, Czech Republic

{kas,brandejs,cuhel,obsivac}@fi.muni.cz

July 7, 2010

Abstract

One of the toughest problems to solve when deploying an enterprise-wide full-text

search system is to handle the access rights of the documents and intranet web

pages correctly and effectively. Post-processing the results of general-purpose full-

text search engine (filtering out the documents inaccessible to the user who sent the

query) can be an expensive operation, especially in large collections of documents.

We discuss various approaches to this problem and propose a novel method which

employs virtual tokens for encoding the access rights directly into the search in-

dex. We then evaluate this approach in an intranet system with several millions of

documents and a complex set of access rights and access rules. 1

1 Introduction

Many enterprises have put effort in developing web-based authenticated systems, cov-

ering many aspects of internal processes, called intranet systems. Some intranets provide

not only access to various structured pieces of information (such as list of members of

some work group, or a list of occupied time slots of a meeting room), but also unstruc-

tured text documents (such as study materials for the university courses, whitepapers,

internal product documentation, etc.).

1This paper has been presented at the 12th International Conference on Enterprise Information Sys-

tems (ICEIS 2010, http://www.iceis.org/), and it is also available in the conference proceedings.

1

It is often difficult for users to navigate inside a large web-based intranet system.

Full-text search can provide an alternative (or even primary) means of navigation

[Zhu et al., 2007]. The task of searching the intranet system effectively has many prob-

lems which are completely different to the problems of searching the publicly-available

world-wide-web [Hawking, 2004].

An important problem is to be able to follow the access rights of the web pages

and documents effectively: the intranet systems often contain documents and pages,

which are not permitted to be read by every authenticated user, so it is not possible to

allow them to be discovered using a full-text search system. In this paper we propose a

solution to the access rights problem in the enterprise full-text search, and we evaluate

this approach on Masaryk University Information System [IS MU, 2010], a large intranet

system for study administration.

The rest of this paper is organized as follows: in Section 2 we discuss related work,

in Section 3 we present an overview of general-purpose full-text search engines, es-

pecially with respect to our proposed method. In Section 4 we discuss access rights

management. The main contribution of this paper is in Section 5, where we propose a

novel method of incorporating security features to the full-text search system. We fur-

ther evaluate this method on a real world intranet system with tens of thousands users

and several milion documents and pages in Section 6. Finally, the Section 7 contains

conclusions.

2 Related Work

Several authors have attempted to deal with issues concerning full-text search in in-

tranet systems, where the access rights to documents have to be taken into account.

In [Bailey et al., 2006], the two architectures of enterprise systems are presented. In

the first one the search engine is not involved in security policies or access rights: users

communicate with a repository, which forwards the query to the search engine, and then

filters out the documents inaccessible to the user. In the second approach the search

engine handles the access control by querying an external service such as LDAP. The

cost of security checks in the second approach grows linearly with the number of results

to check, leading to query times of 100 seconds when the number of candidate results

reaches 1 million documents, even when caching the access control data.

2

In [Hurley, 2009], the author realizes that filtering out the results in the post-

processing phase may have negative impact on the search performance. A different

approach is presented, where the users’ credentials are calculated for every user when

the document is being indexed. A per-user view of the index is created, and subse-

quently used for evaluation of user’s queries. To be able to maintain consistent copy of

access control lists, quick check to the directory service is performed before each query.

Two implementations are presented: PrivaSearch1, where each user has specific view

of the corpus, and PrivaSearch2, where the membership in groups is also reflected. As

a result of this method each user is provided with a separate index. Three types of

document distributions are discussed: disjoint, overlapping, and hierarchical. The im-

plementation is tested on data sets of 2,000 to 20,000 documents. For larger data sets,

the author suggests to distribute the index. We consider this approach (per-user in-

dexes) completely feasible only for a limited range of systems where users have access

to disjoint sets of documents (e.g. e-mail messages).

Google Search Appliance [GSA, 2009] is as a widely known commercial black box so-

lution for intranet or website full-text search. It performs on-line access control checks

for each document from the result set. Standardized SAML [SAML, 2005] identity

provider (or specialized one for batch processing) has to be present or implemented

on the customer side.

The post-processing approaches have limitations on large scale systems. For ex-

ample, when there is a thousand of higher-ranked documents matching the query, but

inaccessible to a given user, the system will need to check the access rights to all of those

documents before finally discovering a lower-ranked document accessible to that user.

3 Full Text Search Engines

The full-text search systems are often constructed as a software, which maintains the

index of the documents to be searched, and executes queries against this index. We refer

to [Zobel and Moffat, 2006] for possible approaches for creating and using the index.

3.1 Index

For the method we propose, it is sufficient to view the full-text search engine as a main-

tainer and user of an inverted index, consisting of lexicon of all words from the set of

3

documents, and mapping of each of those words to the list of document IDs, listing the

documents which contain that word.

These lists are often sorted by the document ID, allowing to store them differen-

tially, and compressed using e.g. Elias delta encoding [Elias, 1975]. They also might be

accompanied by weights of the given word in a particular document.

For evaluating multi-word proximity and phrase queries, it may be useful to allow

fast forward searching of these lists, which can be done e.g. by accompanying larger

lists with skip-lists for semi-direct access.

The index also contains other data structures, which are not relevant to this paper

(forward index, lists of word positions, etc.).

3.2 Query Format

The query itself is usually entered by user as a sequence of words, meaning “find the

documents which contain all of those words, preferably near to each other” (i.e. the

implicit AND/NEAR operator). Many search engines allow also the NOT operator,

and some of them support also the OR operator. The support for exact phrase searches

is common as well.

The OR operator—even when not available directly to the end user—is often used

internally for handling lemmatization, inflections, diacritics, acronyms, and so on. For

example, the query “Citroën cars” can be internally transformed as follows:

(citroën OR citroen) AND (cars OR car)

For our purposes, it will be sufficient when the search engine can efficiently handle

the queries in the above format—i.e. the logical conjunction (AND) of the logical dis-

junctions (OR). More precisely formulated, the expected query format is the following:

(token1,1 OR token1,2 OR token1,3 OR · · ·)

AND (token2,1 OR token2,2 OR token2,3 OR · · ·)

AND (token3,1 OR token3,2 OR token3,3 OR · · ·)
... (1)

4

4 Access Rights

The availability of a document (or, more generally, object) to some user (i.e. subject) is of-

ten described by a matrix with per-subject rows, per-object columns, and cells contain-

ing the actual permissions settings (a subset of “can read”, “can write”, “can delete”,

etc.). For the full-text search, only the read permission is significant. Note, however,

that some systems (e.g. LDAP) can have a separate “can read” and “can search” levels

of access.

Storing the matrix as a whole is often impractical, so the systems (be it web-based

intranets or operating systems) often store the parts of the matrix either as rows, often

called capabilities (e.g.: “user root can read every file”, or “the teacher can read all of the

study materials of his own courses”), or as columns, called access control lists (ACLs)

in the Chapter 5 of [Anderson, 2008]—e.g. “this document can be read by members of

group staff”, or “this document can be read by all present and past students of the course

‘UNIX’”.

Some systems store the access rights information explicitly (e.g. filesystems), while

other systems have some of the implicit rules hardcoded inside the system (this is the

case of many enterprise systems).

To reduce the size of the access rights matrix (stored either as capabilities or ACLs),

subjects are often organized into groups (e.g. group staff, or “students of the course

‘UNIX’” from the above examples).

For the approach we propose in Section 5 it is sufficient to be able to evaluate the

following two lists:

• the list of groups a given user belongs to,

• and the list of groups which can read a given document.

As a last resort, if no smarter method of grouping is available, it is possible to put

every user in his own separate group.

5 Proposed Method

The high-level view of the proposed system architecture can be seen in Figure 1. Some

components are present in general intranet systems as well:

5

SQL database stores structured data of the intranet system. It is often encapsulated by

a middleware layer.

Document storage. Large static text and multimedia files are usually stored outside the

database.

HTTP front end. This is the system which the user’s browser communicates with. It

handles authentication, parsing the HTTP requests, and computing the resulting

pages.

The following components are added for the purpose of full-text search:

Crawler/indexer downloads the static documents from the document storage, and ei-

ther downloads the dynamically generated pages from the HTTP server, or con-

structs them from data in the database the same way as the HTTP server does. The

documents are then parsed and added to the index.

Search index. Contains the data structures described in Section 3.1.

Search server. Receives the pre-parsed queries from the HTTP server, executes them

using the precomputed index, and sends the results back to the HTTP server,

which then formats them to the user.

Note that the search server does not communicate with the SQL database, so the pre-

parsed query can be executed using the search index as the only source of information.

5.1 Virtual Tokens

We propose to enhance the search engine with support for what we call virtual tokens:

virtual token is a special word, added to the inverted index, as if it was a part of the

indexed document itself. The difference between words an virtual tokens is the follow-

ing:

• The virtual token has no position within the document. It is thus excluded from

either the proximity or exact phrase searches.

• It has no weight, so the search results cannot be sorted using the weight of a virtual

token. Another (non-virtual) token has to be present in a query.

6

SQL database

Search indexSearch server

User HTTP front end
Document storage

Crawler/indexer

Figure 1: Architecture of an intranet search system.

• The virtual token in one document cannot be an ordinary word in another docu-

ment. This is easily satisfied by adding a character which can never be a part of a

word. We use the colon (:) for this purpose.

The above requirements allow us to handle the virtual tokens inside the inverted in-

dex differently: the list of document IDs for a virtual token does not need to include any-

thing beyond the (differentially-encoded and delta-compressed) document IDs them-

selves. No pointer to the list of positions and no weight of a word in a given document

is needed.

5.2 Access Rights Encoding

The access rights (be it ACLs or capabilities) are then named and encoded as groups

of users (e.g. “teachers of the ‘UNIX’ course” or “students of the ‘Informatics’ study

programme”).

The permissions of a given document are represented as a set of groups which have

the read access to the given document. This set can be then encoded into the inverted

7

index as virtual tokens—derived for example from the name or the number of a given

group (e.g. “p:teachers_UNIX”, or “p:programme_Informatics”; the “p:” prefix we reserve

for virtual tokens describing the access rights). For each group, members of which can

read a given document, we add a virtual token with the group identification for this

document to the inverted index.

When the document should be accessible without authentication (i.e. when it is

world-readable), we add a reserved virtual token “p:noauth” to it. When the document

should be available to any authenticated user, we add another virtual token “p:auth” to

it.

5.3 Query Execution

The user’s query is parsed by the HTTP server to the format (1). To limit the search

results to the documents which the user has permission to read, the HTTP server com-

putes the list of all groups the user belongs to (for non-authenticated user, the list con-

sists of the single group “noauth”). It then modifies the query by adding another OR-list

the following way:

The_preparsed_query

AND (p:group
1

OR p:group
2

OR · · ·) (2)

With this part added, the search server returns only those documents matching the

user’s query, which are also readable by this user.

5.4 Expected Performance

The proposed system has three places, in which the overall performance is affected by

adding the access rights:

Indexing the document. This part of the system runs in a batch mode, so the interac-

tive latency of the system is not affected. As for overall performance, we expect

the evaluation of the document’s access rights to have negligible cost relative to

e.g. tokenizing the text or converting the document from formats like PDF or DOC.

Evaluating the per-user group list. This can be either very fast or relatively expensive

operation, depending on the format of the source data. For example, fetching the

8

list of groups from the UNIX /etc/group table or from LDAP can be fast, while

computing the list from the implicit intranet data can be expensive (for example,

for study materials, a separate group for each course and possibly semester has to

be created, and the list of courses the user has ever enrolled in should be evalu-

ated). Should this operation be expensive, we can cache the resulting list of groups

for a given user for some time (a day, or possibly an hour). We can even precom-

pute the list on background after displaying the full-text search form in order to

improve the latency.

Executing the query. The impact in this part can potentially be very high: the search

server needs to process many and/or long additional lists of document IDs for

many virtual tokens. However, with some optimizations, the search can theoreti-

cally be even faster than without the access rights. For example, when the search

server processes the OR-list with the lowest number of matching documents first,

executing the query for a very frequent word can be faster for users which can

read only a small number of documents. On the other hand, when the query is

executed on behalf of user who can access large portion of the available document

base, we can optimize the query execution by adding skip-lists to the large lists of

document IDs. The impact is further lowered by simplified lists for virtual tokens,

as described in Section 5.1.

The main advantage of this system is that it does not require the access rights of

the individual documents to be evaluated in the query results post-processing. This

helps especially when the search results contain lots of documents which are highly

relevant, but inaccessible to a given user. With our approach, we are able to filter out

the inaccessible documents during the query execution phase the same way multi-word

queries work.

5.5 Drawbacks and Limitations

The system we have just described—like many other computing systems—contains a

tradeoff between the efficiency and accuracy. We will try to identify and describe the

possible drawbacks of using such a system:

The permissions are “cached” in the index. This means that the system can some-

times allow the document to be found even after the access for a given user has

9

been revoked. From our point of view the problem is not so critical: for urgent

cases (such as when the user can no longer be trusted) the common approach is to

revoke the access to the intranet system as a whole, so the full-text search system

is also no longer accessible.

For revoking the permissions for a given group, the situation is the same as when

removing a part of the document in a new version of the document: we do not

expect the immediate reindexing the document when modifying its contents, so

we should not expect the immediate revoking of the rights as well. In our experi-

ence, it is feasible to invoke the reindexing of the modified documents frequently

(e.g. every minute), so the delay of propagation of modified access rights can be

kept relatively low. Also note that in this case we are trying to deny a read access

to something which could have been readable for a long time now.

Negative access rights. Some systems of access rights can use the group membership

also to lower the permissions for a given user. For example, the classical UNIX

access rights allow the file to have permissions set to rw----r--, which means

that the file is readable and writable by its owner, and readable by everybody

except the members of the group the file belongs to. This can be mapped to our

approach only by a new virtual token/group “all users except members of the group

XY”.

Tree-like rights are not straightforward. It is also possible for documents to be orga-

nized in a directory tree, in which not only the permissions of the document itself

are evaluated, but also the permissions of the directories in the path from the doc-

ument to the root of the tree. The problem arises when the subdirectory or a file

has permissions, which are not a subset of the permissions of the upper directory.

For example, the directory can be readable by a group “students of the programme

‘Informatics’”, and the document in it can be readable by a group “students who

have enrolled in the course ‘UNIX’”. Since the first group is not necessarily a super-

set of the second one, we should effectively provide the access only to the users

which are members of both of the above groups. This also can be solved by cre-

ating another virtual token/group “students of the programme ‘Informatics’, who also

have enrolled in the course ‘UNIX’”. This approach requires additional work when

evaluating the list of groups for a given user, but it can be implemented.

10

Despite the above drawbacks, we believe that our approach is usable for many in-

tranet systems, as it can be faster than on-line verification of the access rights.

5.6 Other Uses of Virtual Tokens

Virtual tokens as described in Section 5.1 can be used for other purposes beyond access

rights: the document date can be encoded into virtual tokens, and then user can specify

the time range. For example, the following query can select the time span of 13 months

starting with January 2009:

The_preparsed_query AND (d:2009 OR d:201001)

It can also be used for improving the search engine relevance: we can add weight to

the documents containing a given virtual token instead of filtering them out when the

required virtual token is not present. It is then possible to give preference to the study

materials of courses attended by student, even when other courses may have their study

materials publicly accessible.

Advanced search forms can specify additional search criteria like increased weights

for documents in a given subtree. Another possible use of virtual tokens is in search log

evaluation (e.g. finding terms most searched by students of the ‘UNIX’ course).

6 Case Study

We have tested our approach on a real-world intranet system with relatively compli-

cated system of access rights.

6.1 About IS MU

The Masaryk University Information System [IS MU, 2010] is a study administration

and e-learning system. It has been developed since 1999. More than 130,000 users—

present and past students and employees of the university—can access the system. As

of January 2010, the system is accessed by more than 30,000 unique users daily, and han-

dles more than 2,000,000 authenticated HTTPS requests per day. The document storage

contains over 20,000,000 objects (documents in various formats, images, multimedia

data, theses, e-mails, etc.).

11

6.2 Access Rights System

The system of access rights in IS MU consists of the explicit access rights, which can be set

by the owner of the document (e.g. “this document can be read by the students of the course

“UNIX’”), and implicit access rights, which are mostly hardcoded in the applications or

PL/SQL procedures. This includes things like “the study materials of a given course are

irrevocably readable by all teachers of that course”, or “the permissions of the discussion forum

posts cannot be set at all, the permissions are derived from the top-level node (representing the

forum itself)”, etc. There are several types of explicit rules (based on the course, study

programme, workgroup membership of an employee, faculty, alumni status, type of

study, etc.).

6.3 Testing Platform

We have implemented the access rights handling method as described in Section 5 into

the IS MU full-text search system. The searcher and indexer run on a single server SGI

Altix XE (a rebranded SuperMicro) with dual Xeon E5472 CPUs at 3.0 GHz (8 cores

total), 64 GB RAM. The system runs 64-bit version of Fedora Linux.

The tokenization of documents (including evaluating the access rights) has been im-

plemented in Perl, creating the partial inverted index, merging indexes, and searching

were implemented in plain C with Judy arrays [Judy, 2010] for storing associative data

such as lexicon. The HTTP front-end applications are written in Perl: pre-parsing the

queries including evaluation and caching the per-user list of groups runs there.

The index is segmented into 8 parts of similar size (per-document split), and during

the query execution each CPU core works on top of its own part of index. The partial

results are then merged together.

6.4 Users

We have decided to test the system on a subset of users, who have used the system

during October 2009 (October is one of the busiest months of a year for the system,

because of the start of semester). There are 51,022 such users, which form 768,442 differ-

ent groups. Each user is in at least two groups (“all authenticated users”, and a per-user

group). The median is 178 groups per user, mean is 210, and the maximum is 9,942

groups per user. The histogram of the number of users with a particular number of

12

groups (without the long tail of users which are members of more than 800 groups) is

in Figure 2.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 u

se
rs

Number of groups

Users and Groups

Figure 2: Number of users with a given number of groups.

The median of the time for evaluating the per-user list of groups was 0.028 s, mean

0.048 s, and maximum was 1.415 s (we have took the minimum from five runs). The tests

were run on a production database without exclusive access to the computing resources.

6.5 Documents

As a testing set we have used 1,370,200 documents from various agendas, both static

(e.g. theses and study materials), and dynamically generated (e.g. personal home

pages). The documents are accessible by 60,493 different groups (this number is much

smaller than the total number of groups for all users, because e.g. some courses con-

tain no study materials at all). The largest number of documents a single group can

access is 1,129,995. Another important groups are “non-authenticated users” which is

the third with 398,391 documents, and “all authenticated users” pseudo-group (14th,

107,520 documents).

Further optimizations of the group memberships in IS MU are possible, but are out-

side of the scope of this article.

The performance of the indexer depends highly on the document size. For example,

for theses, the system can tokenize 9 documents per second on average, while for the

rest of the testing set (including the study materials) the speed is around 80 documents

13

per second. The tokenizing and generating the inverted index of the whole document

set takes slightly more than 6 hours. This time does not include converting various

foreign formats (DOC, PDF) to plain text.

The resulting index occupies about 18.3 GB. The data relevant for our test (lexicons

and document lists for all words) occupy 2.7 GB. The biggest part of the index is forward

index for generating document snippets (7.8 GB) and word position lists for phrase

searches (7.7 GB).

The overhead of adding the virtual tokens is in the lexicon, where it adds 60,493 more

words to the 16,868,473 words which were already present, and in the lists of document

IDs for those words, where it costs additional 8,449,607 list entries to the already existing

932,424,699 entries. We can say the index size overhead is less than 1 %.

6.6 Search Performance

In this section we evaluate the performance of the search server as described in Figure 1.

One of the most computing-intensive parts of the query execution is decoding the lists

of document IDs. We have measured that with our implementation, a single core of the

search server can decode about 55 millions of differentially-encoded delta-compressed

numbers (with up to 64-bit size) per second.

We have tried to measure the pre-parsed query execution times for various single-

word queries with and without applying the access rights. We do not include multi-

word and phrase queries here for brevity.

Another difference from the production use is that the search server did not generate

the text snippets of the resulting documents, as this part is not relevant to the measure-

ment of the access rights overhead.

We have chosen a set of words such that the words are present in approximately

power-of-two number of documents, and are English words, because of the language of

this paper. The most frequent word is ‘a’, which is present in 1,221,642 documents. The

other words in descending frequency are 7, on, role, both, party, speech, warning, movies,

broadest, peptides, initiators, prefect, realigning, prescript, and finally noncyclic, which is

present in 32 documents.

We have measured the query execution time for the above words for a sample set of

users. Firstly—as a baseline—we have the search without applying the access rights at

all (superuser access), then a non-authenticated search (i.e. limited to the group “non-

authenticated requests”), and then as users with 93, 178, 295, 1811, and 9942 groups (first

14

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 100 1000 10000 100000 1e+06 1e+07

T
im

e
[s

ec
on

ds
]

Word frequency [docs]

Query Execution Time

root
noauth (1)

1st quartile (93)
median (178)

3rd quartile (295)
last percentile (1811)

maximum (9942)

Figure 3: Query execution times for various users and terms of a given frequency.

quartile, median, third quartile, last percentile, and maximum; from the users with sim-

ilar number of groups the ones with maximum number of accesses during October

2009 have been chosen, in order to simulate the real-world performance for more ac-

tive users). We took the lowest time from 10 runs for each query. Note that generating

the per-user group lists, as described and measured in Section 6.4, is not included in

these times.

The Figure 3 shows the execution times of queries. Figure 4 shows the same graph

with limited range of the vertical axis to highlight the details. Finally the Figure 5 shows

the overhead relative to the search without applying the access rights.

6.7 Discussion of the Results

The cost of generating per-user group lists in IS MU is non-trivial and introduces a sig-

nificant latency. We have therefore added caching of the lists for a day to the production

system. However, the system is not typical because of large number of groups and

complicated evaluation of group membership.

15

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 100 1000 10000 100000 1e+06

T
im

e
[s

ec
on

ds
]

Word frequency [docs]

Query Execution Time

root
noauth (1)

1st quartile (93)
median (178)

3rd quartile (295)
last percentile (1811)

Figure 4: Detailed view on the query execution times.

The measurements of pre-parsed query execution times show visible overhead of

evaluating the access rights. We can see that the overhead stays within 200 % over the

baseline for every user except the last percentile. And even then, the maximum mea-

sured overhead is 400 % more than the baseline of searching without the access rights.

For frequent words, however, there is a negative overhead of the access rights evalua-

tion, because of restricting the documents to evaluate to those accessible by the user. The

reason of such behaviour is that decoding of long list of document IDs is fast enough

(and it can be made even faster using skip-lists), and what does matter is how many

times the decoding has to be interrupted in order to look at another list (for another

word/virtual token).

We expect the overhead will be even lower for phrase and multi-word queries, which

are prevalent: their cost is already much higher because of evaluating the positions of

words, and the access rights evaluation time would remain about the same.

16

-100
-50

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 100 1000 10000 100000 1e+06 1e+07

O
ve

rh
ea

d
[%

]

Word frequency [docs]

Access Rights Overhead

root (0)
noauth (1)

1st quartile (93)
median (178)

3rd quartile (295)
last percentile (1811)

maximum (9942)

Figure 5: The overhead of following the access rights.

7 Conclusions

We have proposed a novel method for handling the access rights within an intranet

full-text search engine by extending a general-purpose search engine with additional

support for virtual tokens, which can be processed more efficiently than ordinary words

during the query execution. This extension can be used for many other purposes apart

from access rights encoding (such as social search, date/time limiting, subtree limiting,

per-agenda search, etc.).

Many systems of the access rights can be translated to the search engine data as

virtual tokens representing groups of users or individual users. There are some cases

where this representation is not straightforward, such as a set complement of the group,

or intersection of two arbitrary groups.

We have implemented the proposed system, indexing static documents and

dynamically-generated content of a large intranet system with a complex system of ac-

cess rights and rules. The measurements proved that the overhead of evaluating the

access rights for a given data set is under 200 % for 99 % of users, and at most 400 % for

the worst case.

17

The main drawback of the proposed method is that caching of the access rights of

the documents is an integral part of the system, so the permissions cannot be revoked

except by reindexing the document again or marking it as deleted. The caching of per-

user access rights is, on the other hand, purely optional.

Further improvements are possible: the most promising one is to use skip-lists for

large lists of document IDs.

Acknowledgements

The authors would like to thank Pavel Šmerk and Mirka Kramáreková for careful proof-

reading of this paper.

References
[Anderson, 2008] Anderson, R. J. (2008). Security Engineering: A Guide to Building Dependable

Distributed Systems. Wiley Publishing.

[Bailey et al., 2006] Bailey, P., Hawking, D., and Matson, B. (2006). Secure search in enterprise
webs: tradeoffs in efficient implementation for document level security. In CIKM ’06: Proceed-
ings of the 15th ACM international conference on Information and knowledge management, pages
493–502, New York, NY, USA. ACM.

[Elias, 1975] Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE
Trans. Inform. Theory, pages 194–203.

[GSA, 2009] GSA (2009). Google Search Appliance. http://code.google.com/intl/en/
/apis/searchappliance/documentation/.

[Hawking, 2004] Hawking, D. (2004). Challenges in enterprise search. In ADC ’04: Proceedings
of the 15th Australasian database conference, pages 15–24, Darlinghurst, Australia, Australia.
Australian Computer Society, Inc.

[Hurley, 2009] Hurley, J. (2009). Preventing information leakage in the search engine. Master’s
thesis, University of Tromsø.

[IS MU, 2010] IS MU (1999–2010). Masaryk University Information System.
http://is.muni.cz/.

[Judy, 2010] Judy (2002–2010). Judy Arrays Web Page. http://judy.sourceforge.net/.

[SAML, 2005] SAML (2005). Security Assertion Markup Language.
http://docs.oasis-open.org/security/saml/ /v2.0/saml-core-2.0-os.pdf.

[Zhu et al., 2007] Zhu, H., Raghavan, S., Vaithyanathan, S., and Löser, A. (2007). Navigating the
intranet with high precision. In WWW ’07: Proceedings of the 16th international conference on
World Wide Web, pages 491–500, New York, NY, USA. ACM.

18

[Zobel and Moffat, 2006] Zobel, J. and Moffat, A. (2006). Inverted files for text search engines.
ACM Comput. Surv., 38(2):6.

19

