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Abstract

We consider a two-player infinite game with zero-reachability objectives played on

a 2-dimensional vector addition system with states (VASS), the states of which are

divided between the two players. Brázdil, Jančar, and Kučera (2010) have shown

that for k > 0, deciding the winner in a game on k-dimensional VASS is in (k − 1)-

EXPTIME. In this paper, we show that, for k = 2, the problem is in P, and thus

improve the EXPTIME upper bound.

1 Introduction

Vector addition systems with states (VASS) are an abstract computational model equiv-

alent to Petri nets [5] which is well suited for modelling and analysis of distributed

concurrent systems. Roughly speaking, a k-dimensional VASS, where k > 0 is an au-

tomaton with a finite control and k unbounded counters which can store non-negative

integers. It can be represented as a finite k-weighted directed graph G = (V, E,w). For

simplicity, the weights of the edges are restricted to vectors from the set {−1, 0, 1}k. At

the beginning of the computation, a token is placed on one of the vertices. In each step

∗This work has been partially supported by the Grant Agency of the Czech Republic grants No.

201/09/1389, 102/09/H042.
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of the computation, a VASS can move the token to one of the destination vertices of the

edges emanating from the current vertex with the token. This also updates the vector of

current counter values by adding the weight of the traversed edge. Since the counters

cannot become negative, transitions which attempt to decrease a zero counter are dis-

abled. Configurations of a given VASS are written as pairs (v,−→n ), where v is the current

vertex and −→n ∈ Nk
0 is a vector of the current counter values.

Brázdil, Jančar, and Kučera [1] extended VASS in two respects. First, the set of ver-

tices is divided between two players, named � and ♦, and so we get a turn-based two-

player game where the choice of an outgoing edge is upon the player who owns the cur-

rent vertex with the token. Second, the weights of edges may contain symbolic compo-

nents (denoted byω) whose intuitive meaning is “add an arbitrarily large non-negative

integer to the appropriate counter”. Edges with symbolic components represent infinite

number of transitions. This two-fold extension of a VASS is called a game on k-dim VASS

and it has been shown in [1] to be capable of modelling interesting systems.

Various problems on games on k-dim VASS have been considered in [1]. In particu-

lar, the Z-reachability problem is the problem of deciding whether for a given starting

configuration (v,−→n ), the player� has a strategy that ensures that not one of the k coun-

ters is ever equal zero, which is the complement of the problem of deciding whether

the player ♦ has a strategy that ensures that eventually at least one of the counters is

zero, i.e., a configuration (v ′, (n ′
1, . . . , n

′
k)) such that (∃i ∈ {1, . . . , k})(n ′

i = 0) is reached.

This problem was shown in [1] to belong to the complexity class (k − 1)-EXPTIME. In

particular, for k = 1 and k = 2, the problem is in P and EXPTIME, respectively.

Our Contribution. In this paper, we show that 2-dimensional VASS games with Z-

reachability objectives are solvable in polynomial time, and thus improve the EXPTIME

upper bound given in [1]. More precisely, we show that the winner in 2-dim VASS

games can be decided in polynomial time, and a finite description of winning starting

configurations of both players is also computable in polynomial time. This contrasts

sharply with the previous results about VASS (or, equivalently, Petri nets) where the un-

decidability/intractability border usually lies between one and two counters. For exam-

ple, k-dim VASS are equivalent to Petri nets with k unbounded places, and it has been

shown that the bisimilarity problem is decidable for Petri nets with one unbounded

place and undecidable for Petri nets with two or more unbounded places [3, 4]. The Z-

reachability problem for games on 2-dim VASS also seems to be harder than the 1-dim

case, because unlike for the games on 1-dim VASS, in games on 2-dim VASS, if we add

2



an arbitrarily small rational number to some element of some edge-weight, then the set

of vertices of Gwhich are part of some winning configuration for �may change.

An interesting open question is whether the techniques presented in this paper can

be extended to three- (or even more-) dimensional VASS games. Since the presented

results about 2-dimensional VASS are relatively complicated (despite investing some

effort, we did not manage to find any substantial simplifications), we suspect this prob-

lem as difficult.

The Z-reachability problem for games on k-dim VASS can be also thought of as a

problem of deciding the winner in an ordinary two-player reachability game with infi-

nite arena. The arena consists of all possible configurations (v,−→n ) ∈ V × Nk
0 and it is

divided between � and ♦ according to the first component of the configurations. The

set of target configurations is the set Z = {(v, (n1, . . . , nk)) | (∃i ∈ {1, . . . , k})(ni = 0)}. �

wants to avoid the set Z while ♦ wants to reach it. We note that the game is upward-

closed in the sense that if � has a strategy to win from a configuration (v,−→n ) ∈ V ×Nk
0 ,

then the same strategy also wins each play starting from (v,−→n
′

) ∈ V × Nk
0 such that

−→n
′

≥ −→n . Therefore, there is a finite set of minimal winning starting configurations.

Acknowledgement.

I would like to thank to Tomáš Brázdil, Petr Jančar, and Antonín Kučera for fruitful

consultations and advice.

2 Preliminaries

For technical convenience, we will define the game in a slightly different way than in

Section 1, and then we will show how the properties of the modified game imply ex-

istence of a polynomial algorithm for solving the original game. The properties of the

modified game are proved in Section 3, the main part of this paper.

A game on 2-dim vector addition system with states (VASS) is a tuple Γ = (G,V�, V♦),

where G = (V, E,w) is a finite two-weighted directed graph such that V is a disjoint

union of the sets V� and V♦, E ⊆ V2, w : E → {−1, 0, 1}2, and each vertex has at least

one outgoing edge. For each e ∈ E,w1(e) is the first component ofw(e) andw2(e) is the

second component ofw(e), i.e.,w(e) = (w1(e), w2(e)). The graph G can also be thought

of as a 2-dim VASS [2]. The game is played by two opposing players, named � and ♦.

A play starts by placing a token on some given vertex and the players move the token
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along the edges of G ad infinitum. If the token is on vertex v ∈ V�, � moves it. If the

token is on vertex v ∈ V♦, ♦ moves it. This way an infinite path p
∞

= (v0, v1, v2, . . .) is

formed. The path p
∞
is also called a play. The play is winning for�, if both components

of the sum of the weights of the traversed edges are above some constant K ∈ Z during

the whole play, i.e., (∃K ∈ Z)(∀k ∈ N0)(
∑k−1

i=0 w(vi, vi+1) ≥ (K, K))where the sum and the

inequality are element-wise. The play is winning for ♦, if for any constant K ∈ Z, there

is a point in the play where at least one of the components of the sum of the traversed

edges is below K, i.e., (∀K ∈ Z)(∃k ∈ N0)(
∑k−1

i=0 w1(vi, vi+1) < K∨
∑k−1

i=0 w2(vi, vi+1) < K).

Please note that the initial vector of counter values is (0, 0) and the counters are allowed

to go negative.

A strategy of � is a function σ : V∗ · V� → V such that for each finite path p =

(v0, . . . , vk) with vk ∈ V�, it holds that (vk, σ(p)) ∈ E. Recall that each vertex has out-

degree at least one, and so the definition of a strategy is correct. The set of all strategies

of � in Γ is denoted by ΣΓ . We say that an infinite path p
∞

= (v0, v1, v2, . . .) agrees with

the strategy σ ∈ ΣΓ if for each vi ∈ V�, σ(v0, . . . , vi) = vi+1. A strategy π of Min is

defined analogously. The set of all strategies of Min in Γ is denoted by ΠΓ . Given an

initial vertex v ∈ V , the outcome of two strategies σ ∈ ΣΓ and π ∈ ΠΓ is the (unique)

infinite path outcomeΓ(v, σ, π) = (v = v0, v1, v2, . . .) that agrees with both σ and π.

The set V can be partitioned into two sets, W� and W♦, so that if the play starts at

some vertex v ∈ W�, then � has a strategy that ensures that he will win, and if the play

starts at some vertex v ∈ W♦, then ♦ has a strategy that ensures that she will win [1].

Formally:

v ∈ W� ⇔ (∃σ ∈ ΣΓ )(∀π ∈ ΠΓ)

( outcomeΓ(v, σ, π) = (v = v0, v1, v2, . . .)∧

(∃K ∈ Z)(∀k ∈ N0)(
∑k−1

i=0 w(vi, vi+1) ≥ (K, K)) )

(1)

To solve the game is to determine the sets W� and W♦. In this paper, we will show

that there is a constant Kmin ∈ Z of polynomial size with respect to |V | such that for each

v ∈ W�, the constant K in (1) can always be chosen so that K ≥ Kmin. By the statement

thatKmin ∈ Z is of polynomial size with respect to |V |, wemean that the absolute value of

Kmin can be bounded by a fixed polynomial, i.e., |Kmin| ≤ l · |V |k for some fixed constants

k, l ∈ N.

The polynomial size of Kmin implies that the values of both counters in all mini-

mal winning configurations of � in the original reachability game with infinite arena
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is of polynomial size with respect to |V | (cf. Appendix Section 4.2). It follows that we

can obtain the solution of the original game by solving only a restricted game, where

the values of both counters are bounded by a number of polynomial size with respect

to |V |. Since a reachability game can be solved in polynomial time with respect to the

number of its configurations, we have a polynomial-time algorithm for solving the orig-

inal reachability game with infinite arena. Our definition of the game on 2-dim VASS

does not consider edge-weights with the symbolic component ω. We outline how to

extend the proofs to games with symbolic components in edge-weights in Appendix

Section 4.3. Before we can get to the proof of the existence of Kmin, we need a few addi-

tional definitions.

Simple cycle in G is a cycle with no repeated vertex. In this paper, we will work

only with simple cycles, and so we will often omit the adjective “simple”. If c =

(v0, . . . , vk−1, vk = v0) is a cycle, thenw(c) is the sum of the weights of its edges, element-

wise, i.e., w(c) = (
∑k−1

i=0 w1(vi, vi+1),
∑k−1

i=0 w2(vi, vi+1)). The terms w1(c) and w2(c) have

the intuitive meaning. Because of the limitations on the weights of the edges, it always

holds that |w1(c)|, |w2(c)| ≤ |V |, for each cycle c in G. The weight of a path (v0, . . . , vk) is

defined analogically.

The cycles of G can be partitioned into four sets. The first set, P, is the set of cycles

c such that w1(c) ≥ 0 ∧ w2(c) ≥ 0. The second set, N, is the set of cycles c such that

(w1(c) ≤ 0∧w2(c) < 0)∨ (w1(c) < 0 ∧w2(c) ≤ 0). The third set, A, is the set of cycles

c such that w1(c) > 0∧w2(c) < 0. Finally, the fourth set, B, is the set of cycles such that

w1(c) < 0∧w2(c) > 0.

The ratio of the weights of a cycle c is the fraction w1(c)

w2(c)
. We will use R to denote

the set of all possible ratios of weights of the cycles from A ∪ B, i.e., R = {a
b

| a ∈

{−|V |, . . . ,−1} ∧ b ∈ {1, . . . , |V |}}. For each X ∈ {A,B}, ∼∈ {<,≤,=,≥, >}, and R ∈ R, we

will use X∼R to denote the set of cycles {c ∈ X |
w1(c)

w2(c)
∼ R}.

Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS such that W� 6= ∅, and let

v ∈ W�. We can define the following finite directed tree rooted at v. T Γ,v = (T Γ,v
V , T Γ,v

E ),

where

T Γ,v
V = {p = (v = v0, v1, . . . , vk) | p is a path in G∧

(∀0 ≤ i < j < k)(vi 6= vj)∧

(∀0 ≤ i < k)(vi ∈ W�)∧

(vk ∈ W♦ ∨ (∃0 ≤ i < k)(vi = vk)) }
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That is, the set of nodes of the tree is the set of paths in G starting from v and ending

either at the first repeated vertex or at the first vertex from ♦’s winning region. If p =

(v0, . . . , vk) ∈ T Γ,v
V , then last(p) = vk. We define depth of a node p = (v0, . . . , vk) ∈ T Γ,v

V as

h(p) = k.

There is an edge ((v0, . . . , vk), (u0, . . . , ul)) ∈ T Γ,v
E if and only if l = k + 1, for each

i ∈ {0, . . . , k}, vi = ui, and (vk, ul) ∈ E. If the game Γ is clear from the context, then the

tree is denoted simply T v. The set of nodes, T v
V , is divided into inner nodes and leaves.

The leaves of the tree are the nodes with no successors.

Let q = (v0, . . . , vk) be a leaf. If last(q) /∈ W♦, then ce(q) = (vi, . . . , vk), rh(q) = i, and

ph(q) = (v0, . . . , vi), where i < k such that vi = vk. That is, ce(q) is the cycle closed at

vk, rh(q) is the depth of the node at which the closed cycle starts, and ph(q) is the path

from the root to the starting vertex of the cycle. It holds that rh(q) = h(ph(q)).

For the whole paper, let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. The

elements of V will be called vertices. For each v ∈ W�, the elements of T v
V will be called

nodes, inner nodes, leaves, or, when it is convenient, paths, because they are paths in G.

We suppose that |V | > 1. For |V | = 1 the game is very simple to solve: There is only one

vertex vwith a self-loop, and so v ∈ W� if and only if the self-loop is in the set P.

3 The Proof

We prove that if v ∈ W�, then � has a strategy σ such that for each play start-

ing from the vertex v and agreeing with σ, (v = v0, v1, v2, . . .), it holds that (∀k ∈

N0)(
∑k−1

i=0 w(vi, vi+1) ≥ (Kmin, Kmin)), where Kmin is of polynomial size with respect to

|V |. Therefore, we can reduce the problem of solving a game on 2-dim VASS to solving

a reachability game with finite arena of polynomial size with respect to |V |, as described

in Appendix Section 4.2. For reachability games there are polynomial-time algorithms.

We first give an outline of the proof and then prove it formally.

3.1 Proof Outline

Each prefix pk
∞

= (v0, . . . , vk) of an infinite path p
∞

= (v0, v1, v2, . . .) in G can be parti-

tioned using the following procedure: Start at v0 and go along the path until an already

visited vertex is encountered, then remove the closed cycle, leaving only the first vertex

of the cycle, and continue in the same fashion. This way, pk
∞

is partitioned into a set of

cycles c1, . . . , cl and remaining path with no repeated vertex. If for each i ∈ {0, . . . , k},
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it holds that vi ∈ W�, then the partitioning corresponds to a traversal of the tree T v0

in the following sense. The traversal starts at (v0) ∈ T v0
V . When a leaf q is reached,

ce(q) is added to the set of traversed cycles and the traversal continues at ph(q) until a

node p ∈ T v0
V such that last(p) = vk is reached. The path p is the remaining path. The

partitioning of paths into simple cycles plays a crucial role in our proof.

It is easy to see that if � can ensure that only simple cycles from P are traversed,

then he can win. However, this is not the only way he can win. � can also win if he

is able to balance the cycles from A and B. The cycles from A increase the first counter

and decrease the second counter, and the cycles from B decrease the first counter and

increase the the second counter. What is important are the ratios of the first and the

second weights of the simple cycles. If c1 ∈ A and c2 ∈ B are the only simple cycles

that can be traversed, and � is able to alternate them arbitrarily, then he can win if and

only if w1(c1)

w2(c1)
≤ w1(c2)

w2(c2)
, or, equivalently w1(c1)w2(c2) ≥ w1(c2)w2(c1). Moreover, he can

alternate the cycles in such a way that both counters are always greater or equal to −|V |.

Please note, that the set of all possible ratios of cycles in G from A and B is a subset of

R, and so it has at most |V |2 elements.

If v ∈ W�, then for each R ∈ R, for a play starting at v, � can ensure that only cycles

from A≤R ∪ B≥R ∪ P are traversed. This does not mean that � can ensure that all these

three types of cycles are traversed, we only claim that � can ensure that each traversed

cycle is from A≤R or B≥R or P. For example, consider the following situation winning

for �. In this situation, � can force only two cycles c1 and c2 such that w(c1) = (1,−1),

w(c2) = (−1, 1), and these cycles have a common vertex so that � is able to alternate

between them. In this example,� is not able to force a cycle from P and the ratio of both

c1 ∈ A and c2 ∈ B is −1. Now, consider three cases: R = −1, R < −1, and R > −1. If

R = −1, then � is able to force a cycle from A≤R, namely, the cycle c1, and he is also able

to force a cycle from B≥R, namely, the cycle c2. If R < −1, he is able to force a cycle only

from B≥R, and if R > −1, then he is able to force a cycle only from A≤R. To sum up, in all

the three cases, � can ensure that only cycles from A≤R ∪ B≥R ∪ P are traversed. To see

why the claim holds in general, recall that each play in Γ starting at v corresponds to a

traversal of the tree T v.

Let v ∈ W� and R ∈ R, then � can ensure that all reached leaves in T v correspond

to cycles from A≤R ∪ B≥R ∪ P, because if ♦ could ensure that a leaf q such that ce(q) ∈

A>R ∪ B<R ∪ N is reached, then she would be able to ensure that all reached leaves

correspond to a cycle from ce(q) ∈ A>R ∪B<R ∪N (Recall that if a leaf q is reached, then
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the play continues at ph(q)). Therefore, if the play is long enough, then at least one of

the counters goes below arbitrary constant. We omitted the possibility that a leaf q such

that last(q) ∈ W♦ is reached, because if such a leaf is reached, then ♦ can also win.

Unfortunately, the strategy of �, σv
R, that ensures that all traversed cycles are from

A≤R ∪ B≥R ∪ P may not be the sought strategy, because it may not be winning for �.

The reason is that he may not be able to alternate the cycles from A≤R and B≥R so that

both counters are always above some constant. For example, ♦ may be able to ensure

that out of the cycles from A≤R ∪ B≥R ∪ P, only cycles from A≤R are traversed, and so

the second counter goes to −∞. However, the sought strategy for � can be assembled

from the strategies σv
R for all v ∈ W� and R ∈ R, albeit we may have to select much

less number than −|V | as the constant Kmin, but still polynomial with respect to |V |. The

sought strategy is assembled in the following way.

Let v ∈ W� be the starting vertex. We select R ∈ R arbitrarily, and start using the

strategy σv
R. We are using the strategy σv

R until there is a certain “disbalance” between

the cycles from A≤R and the cycles from B≥R. Let u be the current vertex when the

disbalance occurs. If too many cycles from A≤R were traversed, then we change the

current strategy to σu
R ′ such that the disbalance was caused by cycles from A=R ′ where

R ′ < R, and if too many cycles from B≥R were traversed, then we change the current

strategy to σu
R ′′ such that the disbalance was caused by cycles from B=R ′′ where R ′′ >

R. The precise definition of the disbalance (it must be polynomial somehow) and the

precise rules for selecting the new ratio will be given later. Before we get to the formal

proof, one additional point has to be discussed.

From the previous paragraph, it follows that it is not enough that the strategy σv
R

traverses only cycles from A≤R ∪ B≥R ∪ P. It must also be able to balance the cycles

from A=R and B=R, so that a disbalance between A≤R and B≥R is never caused by the

cycles from A=R or B=R. Therefore, the strategy σv
R we will define guarantees that only

cycles from A≤R ∪ B≥R ∪ P are traversed and the traversed cycles from A=R or B=R are

kept in balance. The balance will not be the best possible as if we were able to alternate

the cycles arbitrarily, but it will be such that the sum of the weights of the traversed

cycles from A=R ∪ B=R is always greater or equal to (−2 · |V |2,−2 · |V |2). This “balancing

property” also ensures that if R = minR, then only the cycles from B>R can cause a

disbalance, and if R = maxR, then only the cycles from A<R can cause a disbalance.
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3.2 Formal Proof

We will first define the “local” strategies for each v ∈ W� and R ∈ R, and then we will

assemble the “global” strategy from the local strategies. So let v ∈ W�, R ∈ R, and

consider the tree T v.

We define values of the nodes of the tree T v: value : T v
V → {−1, 0, . . . , |V |}2 ∪ {0, 1}.

The values are defined recursively. The values of leaves are defined as follows. Let

q = (v0, . . . , vk) ∈ T v
V be a leaf.

value(p) =






0 if last(q) ∈ W♦

0 if last(q) ∈ W� ∧ ce(q) ∈ N ∪A>R ∪ B<R

1 if last(q) ∈ W� ∧ ce(q) ∈ P ∪A<R ∪ B>R

(rh(q),−1) if last(q) ∈ W� ∧ ce(q) ∈ A=R

(−1, rh(q)) if last(q) ∈ W� ∧ ce(q) ∈ B=R

(2)

To define the value of an inner node p = (v0, . . . , vk) ∈ T v
V , we introduce some nota-

tion:

amin(p) = min{a | (∃(p, q) ∈ T v
E)(value(q) = (a, b))}

bmin(p) = min{b | (∃(p, q) ∈ T v
E)(value(q) = (a, b))}

amax(p) = max{a | (∃(p, q) ∈ T v
E)(value(q) = (a, b))}

bmax(p) = max{b | (∃(p, q) ∈ T v
E)(value(q) = (a, b))}

If there is no successor of p with value from {−1, 0, . . . , |V |}2, i.e., all successors have

the value 0 or 1, then amin(p) = bmin(p) = ∞ and amax(p) = bmax(p) = −∞. If

last(p) ∈ V�, then value(p) is defined as follows.

value(p) =






0 if (∀(p, q) ∈ T v
E)(value(q) 6= 1)∧

(amin(p) ≥ h(p)∨ bmin(p) ≥ h(p))

(amin(p), bmin(p)) if (∀(p, q) ∈ T v
E)(value(q) 6= 1)∧

amin(p) < h(p)∧ bmin(p) < h(p)

1 if (∃(p, q) ∈ T v
E)(value(q) = 1)

(3)

If last(p) ∈ V♦, then value(p) is defined as follows.
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value(p) =






1 if (∀(p, q) ∈ T v
E)(value(q) = 1)

(amax(p), bmax(p)) if (∀(p, q) ∈ T v
E)(value(q) 6= 0)∧

−∞ < amax(p), bmax(p) < h(p)

0 if (∃(p, q) ∈ T v
E)(value(q) = 0)∨

amax(p) ≥ h(p)∨ bmax(p) ≥ h(p)

(4)

The cycles from N ∪ A>R ∪ B<R are called bad cycles. The cycles from P ∪ A<R ∪ B>R

are called good cycles. The cycles from A=R ∪ B=R are not given any special name.

We will show that the value of the root (v) ∈ T v
V is either 1 or (−1,−1) (Please note

that if value((v)) = (a, b), then the condition a, b < h((v)) = 0 implies a = b = −1). We

will show this by proving that if value((v)) = 0, then ♦ has a winning strategy, which

is in contradiction with v ∈ W�. From the fact that the root has value 1 or (−1,−1), we

will infer a strategy for � that ensures that only cycles from A≤R∪B≥R∪P are traversed,

and the cycles from A=R and B=R are kept in balance. So, let’s first prove that the value

of the root cannot be 0. We will only give a sketch of the proof, the whole formal proof

is in Appendix Section 4.1.

We will use a proof by contradiction. We will suppose that value((v)) = 0 and show

that ♦ has a strategy that ensures that for each K ∈ Z, the first counter or the second

counter will eventually go below K. The strategy is outlined below.

If value((v)) = 0, then ♦ has a strategy that ensures that only cycles from A≥R ∪

B≤R ∪N are traversed or a leaf q ∈ T v
V such that last(q) ∈ W♦ is reached. Moreover, she

can choose the strategy in such a way that whenever a node p such that value(p) = 0

is visited, then either the strategy ensures that if the next reached leaf r has ce(r) ∈

A=R ∪ B=R, then ce(r) ∈ A=R ∧ rh(r) ≥ h(p), or the strategy ensures that if the next

reached leaf r has ce(r) ∈ A=R ∪ B=R, then ce(r) ∈ B=R ∧ rh(r) ≥ h(p). This allows ♦

to prevent � from alternating cycles from A=R and B=R. We note that � may be able

to perform a few alternations, because he can sometimes prevent ♦ from forcing the

chosen kind of cycle, but only at the cost of visiting another node with value 0 that

is deeper, and since the maximal depth is |V |, this cannot be repeated infinitely many

times. Actually, � may be able to perform infinite number of alternations, but at the

cost of traversing a bad cycle infinitely many times.

To sum up, ♦ has a strategy that ensures that exactly one of the following four things

happens. First, a leaf q such that last(q) ∈ W♦ is reached. Second, only leaves q corre-

sponding to bad cycles or cycles fromA=R∪B=R are reached, and a bad cycle is traversed
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Figure 1: Example tree valuation: (a) example game, (b) tree T v0

infinitely many times. Third, there is a point from which onwards all reached leaves q

have ce(q) ∈ A=R. Fourth, there is a point from which onwards all reached leaves q

have ce(q) ∈ B=R. For the last three possibilities, at least one of the counters goes be-

low arbitrary constant. For the first possibility, ♦ can apply her winning strategy from

last(q) ∈ W♦, and so at least one of the counters goes below arbitrary constant too. The

whole formal proof is in Appendix Section 4.1. Therefore, there are only two possibil-

ities for the value of the root: 1 and (−1,−1). Let’s now define the strategy for � and

show that it has the desired properties. We will start with some intuition.

The intuitive meaning of the node value 1 is that � has a strategy to reach a leaf

corresponding to a good cycle. The meaning of the node value (a, b) is more complex.

If a node p has the value (a, b), then � has a strategy to reach a leaf corresponding

to a good cycle or a cycle from A=R ∪ B=R. Moreover, the strategy can be chosen in such

a way that if the reached leaf q has ce(q) ∈ A=R, then rh(q) ≤ a, or the strategy can

be chosen in such a way that if the reached leaf q has ce(q) ∈ B=R, then rh(q) ≤ b. In

particular, if a = −1, then � can force a good cycle or a cycle from B=R, and if b = −1,

then � can force a good cycle or a cycle from A=R. The rules for assigning values to

nodes stipulate that a < h(p) and b < h(p). This is important for balancing the cycles

from A=R and B=R.

The player �may not be able to alternate the cycles from A=R and B=R arbitrarily, as

Figure 1 shows. In Figure 1 (a), there is a game on 2-dim VASS. Squares are �’s vertices

and the diamond is a ♦’s vertex. The pairs of numbers are weights of the edges depicted

as arrows. In this game, � can win from all vertices. Let R = −1, then all cycles in the

figure are from A=R ∪ B=R. In Figure 1 (b), there is the tree T v0 . The pairs of numbers are

11



values of the nodes and the dashed arrows emanating from leaves show, for each leaf,

where the game (projected on the tree) continues when it reaches the leaf.

If the play starts from v0, then at the beginning, � is able to traverse a cycle from

A=R arbitrary number of times (the cycle (v0, v0)), after that he is able to traverse a cycle

from B=R arbitrary number of times (the cycle (v1, v1)). However, after that he is not able

to start traversing cycles from A=R immediately. The value of the node (v0, v1) ∈ T v0
V at

depth 1 is (−1, 0), which indicates that � is able to force a cycle from B=R, but not from

A=R. However, � has a strategy that ensures that if ♦ forces a cycle from B=R, then the

play returns to a node at smaller depth, namely, the depth 0. At the depth 0,� is, again,

able to force a cycle from A=R.

In general, we claim that � has a strategy that ensures that only good cycles and

cycles from A=R ∪ B=R are traversed. Moreover, the strategy also ensures that both the

sum of the first weights of the cycles from A=R ∪B=R and the sum of the second weights

of the cycles from A=R ∪ B=R is always greater or equal to −2 · |V |2.

In the case where value((v)) = 1, � has a strategy to traverse only the good cycles

and the claim obviously holds.

The second case is that value((v)) = (−1,−1). In this case, � has a strategy that

ensures that only nodes p with value 1 or value (a, b) ∈ {−1, . . . , |V |}2 are visited. This

alone implies that only good cycles and cycles from A=R ∪ B=R are traversed. Moreover,

he is able to choose the strategy in such a way that it balances the cycles from A=R and

B=R. When a disbalance between the cycles from A=R and B=R occurs, let’s say that too

many cycles from A=R have been traversed, then � aims to traverse cycles from B=R

or good cycles. If the current node p has the value 1, then � can ensure that the next

traversed cycle is a good cycle, which does not worsen the disbalance. If p has the value

(a, b) and a 6= −1, ♦ can force a cycle from A=R, but if she does, � can ensure that

the play returns to the depth a or smaller, and since a < h(p), we return to a smaller

depth than the depth of p. We can continue using the same reasoning and conclude

that after traversing at most |V | − 1 (maximal depth of an inner tree node) “unwanted”

cycles from A=R, we get to the root, where � can force cycles from B=R or good cycles.

Therefore, he can alleviate the disbalance caused by the cycles from A=R. Of course, the

case when a disbalance is caused by cycles from B=R is symmetric. Formal definition of

this “balancing” strategy of � is as follows.

A general strategy of� is a function σ : V∗ ·V → V , i.e., it decides based on the whole

history of the play. However, the strategy we define now will decide only based on the

12



current node of the tree T v
V (which consists of fragments of the whole history) and some

additional memory which could be computed from the complete history of the play.

Apart from the current node, the player � keeps a triple (x, y, z) ∈ {−2 ·

|V |2, . . . , 0, . . . , 2 · |V |2}2 × {0, 1}, where x is the sum of the first weights of the traversed

cycles from A=R ∪ B=R, y is the sum of the second weights of the traversed cycles from

A=R ∪ B=R, and z is the mode of the strategy: z = 0 means that the strategy aims to

traverse cycles from A=R, and z = 1means that the strategy aims to traverse cycles from

B=R. The memory plays a crucial role in keeping the traversed cycles from A=R and B=R

in balance.

The strategy of � visits only nodes p of the tree T v with value(p) = 1 or value(p) =

(a, b) (recall that a, b < h(p)). The play starts at the root (v). It holds that h((v)) = 0,

and value((v)) = 1 or value((v)) = (−1,−1). Initial state of the memory is (0, 0, 0). Let’s

consider a general situation where we are at the inner node p such that last(p) ∈ V�,

value(p) = 1 or value(p) = (a, b) such that a, b < h(p), and the current state of memory

is (x, y, z), then the strategy of �, denoted by σ, works as follows. Please note that the

strategy does not have to consider leaves, because at each leaf q, the play automatically

returns to the inner node ph(q). First, how a successor is chosen:

σ(p, (x, y, z)) =






q if (p, q) ∈ TE ∧ value(p) = 1∧ value(q) = 1

q if (p, q) ∈ TE ∧ value(p) = (a, b)∧ z = 0∧ value(q) = (a ′, b)

q if (p, q) ∈ TE ∧ value(p) = (a, b)∧ z = 1∧ value(q) = (a, b ′)

(5)

Please note that for a node pwith value(p) = (a, b), the existence of a successor with

value (a ′, b) and the existence of a successor with value (a, b ′) follows from (3). It is

also possible that these are not two distinct successors but only one with value (a, b).

Second, how the memory is updated. The memory is updated only when a leaf is

reached, so let’s suppose that we have reached the leaf q. Then the memory (x, y, z) is

updated to:
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(x, y, z) if ce(q) is a good cycle

(x+w1(ce(q)), y+w2(ce(q)), z) if ce(q) ∈ A=R ∪ B=R ∧

z = 0∧

( x+w1(ce(q)) < 0∨

( x +w1(ce(q)) ∈ [−|V |2, |V |2]∧

y+w2(ce(q)) ∈ [−|V |2, |V |2] ) )

(x+w1(ce(q)), y+w2(ce(q)), z) if ce(q) ∈ A=R ∪ B=R ∧

z = 1∧

( y+w2(ce(q)) < 0∨

( x +w1(ce(q)) ∈ [−|V |2, |V |2]∧

y+w2(ce(q)) ∈ [−|V |2, |V |2] ) )

(x+w1(ce(q)), y+w2(ce(q)), 1) if ce(q) ∈ A=R ∪ B=R ∧

z = 0∧

x+w1(ce(q)) ≥ 0∧

( |x +w1(ce(q))| > |V |2 ∨

|y+w2(ce(q))| > |V |2 )

(x+w1(ce(q)), y+w2(ce(q)), 0) if ce(q) ∈ A=R ∪ B=R ∧

z = 1∧

y+w2(ce(q)) ≥ 0∧

( |x +w1(ce(q))| > |V |2 ∨

|y+w2(ce(q))| > |V |2 )

(6)

We note again that if a leaf q is reached, then the play automatically continues at

node ph(q), and so the play is infinite. Let’s now take a closer look at the memory

updates.

While x, y ∈ [−|V |2, |V |2], the strategy does not change the type of cycles it aims for,

z is not changed (first 3 items in (6)). When |x| or |y| exceeds |V |2, z = 0, and x ≥ 0, it

means that too many cycles from A=R have been traversed. Therefore z is changed to

1, and so the strategy aims for cycles from B=R (4th item in (6)). As described before,

even after this action, some cycles from A=R may be traversed before cycles from B=R,

but there can be at most |V |− 1 of these unwanted cycles, therefore x and y do not leave

the interval [−2 · |V |2, 2 · |V |2]. The situation where too many cycles from B=R have been

traversed is dealt with analogously (5th item in (6)).
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The following two lemmas show that the strategy σ satisfies the desired properties.

An intuition why they hold was already given. Their formal proofs are in Appendix.

Lemma 3.1 Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. Let further v ∈ W�

be the starting vertex, R ∈ R, and let the strategy σ be defined as in (5). Then the following

holds. If the value of the root (v) of the tree T v is value((v)) = 1, then the strategy σ ensures

that only nodes p with value(p) = 1 are visited. If the value of the root (v) of the tree T v is

value((v)) = (−1,−1), then the strategy σ ensures that only nodes p with value(p) = 1 or

value(p) = (a, b) such that a, b < h(p) are visited. �

Lemma 3.1 implies that only good cycles and cycles from A=R ∪ B=R are traversed.

The next lemma states that the cycles from A=R and B=R are kept in balance.

Lemma 3.2 Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. Let further v ∈ W�

be the starting vertex, R ∈ R, let the root (v) of the tree T v have the value 1 or (−1,−1), and

let the strategy σ be defined as in (5). Let � use the strategy σ, let ♦ use arbitrary strategy.

The outcome of these two strategies corresponds to a sequence of nodes (p0, p1, p2, . . .). Let

(q0, q1, q2, . . .) be the subsequence of the sequence containing all reached leaves corresponding

to cycles from A=R ∪ B=R. In particular, for each i ∈ N0, ce(qi) ∈ A=R ∪ B=R. Then for each

k ∈ N0, it holds that |
∑k

i=0 wj(ce(qi))| ≤ 2 · |V |2 where j = 0, 1. �

For technical convenience, let’s number the elements of the set of the cycle ratios,

namely, let R = {R1, . . . , R|R|} where R1 < · · · < R|R|. It holds that |R| ≤ |V |2. By

Lemma 3.2, for each v ∈ W� and Rk such that k ∈ {1, . . . , |R|}, the player � has the

strategy σv
k that ensures that only cycles from P ∪A≤Rk

∪ B≥Rk
are traversed. Moreover,

the cycles from A=Rk
and B=Rk

are balanced in the sense that the absolute value of both

components of the sum of their weights never exceeds 2 · |V |2. Also, when using the

strategy σv
k, the play never leaves the setW�.

Using the above facts, we will now assemble a global strategy σ of � such that there

is a constant Kmin ∈ Z of polynomial size with respect to |V | such that whatever strategy

π the opponent ♦ uses, the resulting infinite play outcomeΓ(v0, σ, π) = (v0, v1, v2, . . .)

satisfies the following. For each k ∈ N0,
∑k−1

i=0 w1(vi, vi+1) ≥ Kmin and
∑k−1

i=0 w2(vi, vi+1) ≥

Kmin. The strategy σ will be assembled from the strategies σv
k where v ∈ W� and k ∈

{1, . . . , |R|}. So, let’s describe how this is done.

Each strategy σv
k has the three-component memory as described before. Let k ∈

{1, . . . , |R|}. For each v ∈ W�, the strategy σv
k balances the cycles from A=Rk

and B=Rk
.
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We will let all the strategies with the same k use the same three-component memory.

Therefore, the global strategy σwill have |R| three-component memories, one for each k.

For a specific k ∈ {1, . . . , |R|}, the tree-componentmemorywill be denoted by (xk, yk, zk).

Apart from that, σwill have additional memory that consists of two |R|-tuples. The first

|R|-tuple will be (a1, . . . , a|R|) ∈ {0, . . . , 4 · |V |4 + 3 · |V |}|R| and it will store the sums of

the first weights of the traversed cycles from A, separately for each ratio. The second

|R|-tuple will be (a ′
1, . . . , a

′
|R|) ∈ {−4 · |V |4 − |V |, . . . , 0}|R| and it will store the sums of the

first weights of the traversed cycles from B, separately for each ratio. However, when

using the strategy σv
k, only traversed cycles from A and B with ratios Ri such that i 6= k

will be recorded in the additional memory. The traversed cycles with the ratio Rk will

be recorded only in the three-component memory (xk, yk, zk). The global strategy σwill

also remember which strategy σv
k it is currently using by remembering the vertex v and

the integer k. The strategy σ is defined as follows.

We will not describe (again) how the three-component memories are used and up-

dated, we will only describe how the two additional |R|-tuples are handled. The current

tree that the strategy is working with is denoted by T v = (T v
V , T

v
E) where (v) is the root

of the tree. Let v, k, (a1, . . . , a|R|), (a
′
1, . . . , a

′
|R|) be the current state of the additional

memory, and let p be the current inner node in the current tree T v. We will first describe

how the strategy decides and then how the memory is updated. The strategy decides

as follows:

σ(p, v, k, (a1, . . . , a|R|), (a
′
1, . . . , a

′
|R|)) = σv

k(p) (7)

Now, let us describe how the memory is updated. The initial state of the memory

is (v, 1, (0, . . . , 0), (0, . . . , 0)) where v is the vertex the play starts from, and so the first

tree the strategy σ works with is the tree T v rooted at v, and the first used substrategy

is σv
1. The two |R|-tuples in the memory play a crucial role in keeping the traversed

cycles from A and B in balance. As was already mentioned, the first |R|-tuple records

the sums of the first weights of the traversed cycles from A. There are two bounds that

bound the elements of the tuple from above: a soft bound and a hard bound. The soft

bound is equal to 4 · |V |4 + 2 · |V | and we denote it by CA. If some element ai exceeds

the soft bound, then the strategy takes some actions so that ai is not increased further

and it never exceeds the hard bound C̄A which is equal to 4 · |V |4 + 3 · |V |. Similarly,

there is a soft bound and a hard bound for the second |R|-tuple. The second |R|-tuple

records the sums of the first weights of the traversed cycles from B. Unlike for the first
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tuple, the bounds for the second tuple bound the elements of the tuple from below. The

soft bound is CB = −4 · |V |4, and the hard bound is C̄B = −4 · |V |4 − |V |. Before explain-

ing the actions the strategy takes to ensure that the hard bounds are never exceeded,

we describe precisely how the memory is updated. It is updated only when a leaf in

the current tree is reached, so let’s suppose that we have reached the leaf q. Then the

memory (v, k, (a1, . . . , a|R|), (a
′
1, . . . , a

′
|R|)) is updated to:

(v, k, (a1, . . . , a|R|),

(a ′
1, . . . , a

′
|R|))

if ce(q) ∈ P ∪A=Rk
∪ B=Rk

(v, k, (a1, . . . , ai +w1(ce(q)), . . . , a|R|),

(a ′
1, . . . , a

′
|R|))

if ce(q) ∈ A=Ri
∧

i < k∧

ai +w1(ce(q)) ≤ CA

(v, k, (a1, . . . , a|R|),

(a ′
1, . . . , a

′
j +w1(ce(q)), . . . , a ′

|R|))

if ce(q) ∈ B=Rj
∧

j > k∧

a ′
j +w1(ce(q)) ≥ CB

(v, k, (a1, . . . , ai − ai, . . . , a|R|),

(a ′
1, . . . , a

′
j − a ′

j , . . . , a
′
|R|)

if ce(q) ∈ A=Ri
∧

i < k∧

ai +w1(ce(q)) > CA ∧

j > i∧ a ′
j < CB

(v, k, (a1, . . . , ai − ai, . . . , a|R|),

(a ′
1, . . . , a

′
j − a ′

j , . . . , a
′
|R|)

if ce(q) ∈ B=Rj
∧

j > k∧

a ′
j +w1(ce(q)) < CB ∧

i < j∧ ai > CA

(last(q), i, (a1, . . . , ai +w1(ce(q)), . . . , a|R|),

(a ′
1, . . . , a

′
|R|))

if ce(q) ∈ A=Ri
∧

i < k∧

ai +w1(ce(q)) > CA ∧

(∄j > i)(a ′
j < CB)

(last(q), j, (a1, . . . , a|R|),

(a1, . . . , a
′
j +w1(ce(q)), . . . , a ′

|R|))

if ce(q) ∈ B=Rj
∧

j > k∧

a ′
j +w1(ce(q)) < CB ∧

(∄i < j)(ai > CA)

(8)

We note that if a leaf q is reached, then there are two possibilities as to which node

the play continues at. The first case is when σ does not change the substrategy σv
k (first

5 items in (8)). In this case the play continues at node ph(q). The second case is when σ
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does change the substrategy σv
k (last 2 items in (8)). In this case the play continues at the

root (last(q)) of the new tree T last(q).

Before getting to formal proofs we will describe how the definition of the strategy σ

corresponds to what was said in Section 3.1.

While using the substrategy σv
k, only cycles from P ∪ A≤Rk

∪ B≥Rk
are traversed.

Moreover, by Lemma 3.2, the effects of the cycles from A=Rk
and B=Rk

are balanced. The

additional memory of the global strategy σ is used to detect a disbalance between the

cycles from A<Rk
and B>Rk

. A disbalance is suspected when some ai such that i < k goes

aboveCA = 4· |V |4+2· |V |, or some a ′
j such that j > k goes belowCB = −4· |V |4. However,

this does not necessarily imply a disbalance. Wewill look only at the first case, the other

one is symmetric. If some ai such that i < k goes above CA, and there is also some j > i

such that a ′
j is below CB, then there is no disbalance. The effects of the corresponding

cycles from A=Ri
and B=Rj

balance each other. The bounds were selected so that the sum

of the weights of these cycles is greater or equal to (|V |, |V |), which justifies the zeroing

of the appropriate elements of the memory (4th item in (8)) and also compensates for

the possibly negative simple paths that are “lost” when switching a substrategy.

A substrategy is changed when there is no a ′
j that would compensate for ai, and

so a disbalance occurs. The substrategy is changed to σu
i where u is the current vertex

when the disbalance occurred (6th item in (8)). It holds that u = last(q) where q is the

appropriate leaf in the tree T v, the visit of which caused the disbalance. The substrategy

is changed to ensure that ai is not further increased. The substrategy σu
i works with the

tree Tu, and so the path ph(q) from v to u is lost in the sense that it is reflected neither

in the local nor in the global memory. However, as mentioned above this lost paths are

compensated for, and so the global memory together with the local memories gives a

lower bound on the first counter, and indirectly also on the second counter. Since all the

components of the memories are of polynomial size, so are the lower bounds.

The following theorem makes the above arguments precise. Its formal proof is in

Appendix.

Theorem 3.3 Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. Let further v ∈ W�

be the starting vertex, and let � use the strategy σ as defined in (7). Let ♦ use an arbitrary

strategy π, and let outcomeΓ(v, σ, π) = (v = v0, v1, v2, . . .) be the resulting play. Let k be the

state of the play after k steps, i.e., we are at the vertex vk. Let (v
′, l, (a1, . . . , a|R|), (a

′
1, . . . , a

′
|R|))

be the state of the global memory, and let (xi, yi, zi)i∈{1,...,|R|} be the state of the local memories of

the substrategies. Then the following holds:
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∑k−1
i=0 w1(vi, vi+1) ≥

∑
i∈{1,...,|R|}(ai + a ′

i + xi) − |V |3 − 2 · |V |

∑k−1
i=0 w2(vi, vi+1) ≥

∑
i∈{1,...,|R|}(−|V |ai −

1
|V |
a ′
i + yi) − |V |3 − 2 · |V |

�

For each i ∈ {1, . . . , |R|}, it holds that 0 ≤ ai ≤ C̄A = 4 · |V |4+3 · |V |, and−4 · |V |4− |V | =

C̄B ≤ a ′
i ≤ 0, and xi, yi ∈ [−2 · |V |2, 2 · |V |2]. Therefore, by Theorem 3.3, if we set Kmin to,

for example, −100 · |V |7, then for each play (v0, v1, v2, . . .) with v0 ∈ W�, agreeing with

the strategy σ, it holds that (∀k ∈ N0)(
∑k−1

i=0 w(vi, vi+1) ≥ (Kmin, Kmin)).
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4 Appendix

Proof: [Proof of Lemma 3.1] We will show the lemma by showing that it holds for

all prefixes of the infinite play, and we will show it by induction on the length of the

prefixes. We will prove only the more complicated case where value((v)) = (−1,−1),

the case where value((v)) = 1 can be proved similarly.

We consider the play as a sequence of nodes of the tree T v. For k = 0 the claim

obviously holds because the play starts from the root (v) and value((v)) = (−1,−1). It

remains to show that if the claim holds for a prefix of length k, then it also holds for a

prefix of length k+ 1.

Let’s denote the prefix of length k by (p0, . . . , pk), where p0, . . . , pk is the sequence of

visited nodes. Let’s first suppose that pk is not a leaf and consider two cases: last(pk) ∈

V� and last(pk) ∈ V♦.

last(pk) ∈ V�. If value(pk) = 1, then by (5), the next node pk+1 has value(pk+1) = 1

and the claim holds. If value(pk) = (a, b), then also by (5), the next node pk+1 has

value(pk+1) = (a ′, b) or value(pk+1) = (a, b ′) such that a, b, a ′, b ′ < h(pk+1). The last

inequality follows from the fact that h(pk+1) = h(pk) + 1 and the fact that by (3) and (4)

it is impossible for a node with a two-component value to have one component of the

value greater or equal to its depth.

last(pk) ∈ V♦. If value(pk) = 1, then by (4), there are only successors with value

equal to 1, and so the claim holds. If value(pk) = (a, b), then also by (4), there are only

successors with value equal to 1 or a two-component value with the first component

less or equal to a and the second component less or equal to b. Since a successor of pk

is one level deeper than pk, the claim holds.

It remains to consider the case where pk is a leaf. In this case the play automatically

returns to the node ph(pk). This node has already been visited, and so the claim holds

for it. �

(2, 2) (0, 0) (0, 0) (0, 0)(2,−1) (2,−1) 1 1 1 1 (0,−1) (0,−1)(−1,−1) (−1, 0)(−1,−1)

(a0
0, b

0
0) (a0

2, b
0
2) (a1

0, b
1
0)(a0

1, b
0
1) (a3

0, b
3
0) (a3

1, b
3
1) (a3

2, b
3
2) (a3

3, b
3
3) (a4

0, b
4
0) (a4

1, b
4
1) (a5

0, b
5
0)

Figure 2: Example node sequence

Proof: [Proof of Lemma 3.2] We note that if from some point onwards, cycles from

A=R ∪ B=R are not traversed, then the sequence (q0, q1, q2, . . .) is finite. Then k ∈ N0
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in the claim of the lemma should be changed to k ∈ {0, . . . , kmax − 1} where kmax is the

number of elements of the sequence. The proof applies also to the finite case.

The play starts from the root (v) ∈ TV and the initial state of the memory of � is

(0, 0, 0). The third component of the memory being 0 indicates that the strategy aims

to reach leaves corresponding to cycles from A=R. Let’s consider two cases. First case

is that value((v)) = 1. By Lemma 3.1, in this case, � has a strategy to reach only leaves

corresponding to good cycles, so the claim of the lemma obviously holds. The second

case is that value((v)) = (−1,−1). In the following, we will use (x, y, z) to refer to the

current state of �’s memory.

In the case of the root having the value (−1,−1), while z = 0, σ ensures that only

nodes p with value(p) = (a,−1) or value(p) = 1 are reached where a ∈ {−1, 0, . . . , |V |},

which means that only leaves corresponding to good cycles or cycles from A=R are

reached. The sum of the first weights of the traversed cycles from A=R is stored in

x and the sum of the second weights of the traversed cycles from A=R is stored in y.

When the absolute value of either of the sums exceeds |V |2, z is set to 1 and σ now aims

to reach leaves corresponding to cycles from B=R. In this situation, the play just reached

a leaf r and continues at node p = ph(r) with value(p) = (a, b) such that a, b < h(p).

It follows from Lemma 3.1 and the fact that update to z takes place only when a leaf

corresponding to a cycle from A=R ∪ B=R is reached.

While z = 1, σ ensures the following property. Let

(a0
0, b

0
0), . . . , (a

0
k0−1, b

0
k0−1), (a

1
0, b

1
0), . . . , (a

1
k1−1, b

1
k1−1), . . .

be the sequence of values of all visited nodes having two-component value, and let

p0
0, . . . , p

0
k0−1, p

1
0, . . . , p

1
k1−1, . . .

be the corresponding sequence of visited nodes. In Figure 2 is an example of such se-

quence. Squares are nodes with the last vertex from V� and diamonds are nodes with

the last vertex from V♦. Filled nodes are leaves. The upper index indicates how many

leaves have been reached since z was set to 1, so the sequence pi
0, . . . , p

i
ki−1 is the se-

quence of the nodes with two-component values visited after the i-th and until the

(i + 1)-th leaf-visit. For i = 0, the sequence pi
0, . . . , p

i
ki−1 is the sequence of the nodes

with two-component values which have been visited since the beginning (the moment

when z was set to 1) until the first leaf-visit. For i > 0, it is possible that ki = 0, which

indicates that no node with two-component value was reached between the i-th and
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the (i + 1)-th leaf-visit. In Figure 2, k2 = 0. Please note that σ ensures that if a node

with value 1 is reached, then until a leaf is visited, all subsequent nodes have value 1

(including the leaf).

For each i ∈ N0, it holds that ai
0 ≥ · · · ≥ ai

ki−1. This is ensured by the strategy σ:

for nodes pwith last(p) ∈ V�, σ selects a successor node with the same first component

of the value, and for nodes p with last(p) ∈ V♦, there are only successors with smaller

or equal first component of the value or the value 1. Let’s now examine the relation of

values with different upper index, i.e., values of nodes preceding different leaf-visits.

We will prove the following claim.

(i) For each i ∈ N0, if ki+1 > 0, then ai+1
0 < h(pj

0) where j is the greatest number less

than i + 1 such that kj−1 > 0 and pj−1
kj−1−1 is a leaf such that ce(pj−1

kj−1−1) ∈ A=R. If no

such number exists, then j = 0. Moreover, if ki > 0 and pi
ki−1 is a leaf such that

ce(pi
ki−1) ∈ A=R, then h(pi+1

0 ) < h(pj
0).

To prove (i), let i ∈ N0 such that ki+1 > 0, let j be as defined in (i) and consider the

sequence rj, . . . , ri of leaves reached between pj
0 and pi+1

0 . Please note that we use the

fact that kj > 0, which will be proved later. Then, for each d ∈ {j, . . . , i− 1}, it holds that

ce(rd) is either a good cycle or a cycle from B=R. The cycle ce(ri) is a good cycle or a

cycle from A=R∪B=R. Let’s first consider the case where ce(ri) is either a good cycle or a

cycle from B=R. We will show by induction on d = j, . . . , i+ 1 that for each f ∈ {j, . . . , d},

it holds that either kf = 0 or af
0 < h(pj

0).

d = j. From the fact that either j = 0 or kj−1 > 0 and pj−1
kj−1−1 is a leaf such that

ce(pj−1
kj−1−1) ∈ A=R, it follows that kd > 0, and ad

0 < h(pj
0) follows from Lemma 3.1. This

completes the induction base. The induction step follows.

j < d ≤ i+1. If kd = 0, then we are done. If kd > 0, then we consider two cases. First,

h(pd
0) < h(pj

0). By Lemma 3.1, ad
0 < h(pd

0), and so ad
0 < h(pj

0). Second, h(pd
0) ≥ h(pj

0),

then pd
0 = pf

g where f ∈ {j, . . . , d − 1} such that kf > 0 and g ∈ {0, . . . , kf − 1}. By

induction hypothesis, af
0 < h(pj

0). By properties of σ, af
0 ≥ af

g. Together, we have

h(pj
0) > af

0 ≥ af
g = ad

0 . This completes the induction step.

To complete the proof of (i) it remains to consider the case where ce(ri) ∈ A=R. If

ce(ri) ∈ A=R, then ki+1 > 0, ki > 0, and h(pi+1
0 ) = ai

ki−1 ≤ ai
0. From the proof by

induction above, it follows that ai
0 < h(pj

0), and so h(pi+1
0 ) < h(pj

0). The claim (i) is

proved.

Given the claim (i) it is now easy to prove the claim of the lemma. From (i), it follows

that if a leaf r such that ce(r) ∈ A=R is visited, then h(ph(r)) < h(p), where p = ph(r ′)
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where r ′ is the previous leaf such that ce(r ′) ∈ A=R, visited after z was set to 1, or if no

other cycle from A=R than ce(r) was traversed, then p = p0
0. Therefore, while z = 1, a

cycle from A=R can be traversed at most (|V |−1)-times, because after at most (|V |−1)-th

traversal of a cycle from A=R, we return to the root, which has the value (−1,−1), and

so σ ensures that only good cycles and cycles from B=R are traversed. Just after zwas set

to 1, y ≥ −|V |2 − |V |, and so after a cycle from A=R is traversed (|V | − 1)-times, it holds

that y ≥ −2 · |V |2. Traversing cycles from B=R then increases y and decreases x. Recall

that the cycles from A=R and B=R have the same ratio of first and second weight, which

implies that x > 0 if and only if y < 0, and x < 0 if and only if y > 0. Therefore, even if x

goes below −|V |2 before y gets to |V |2, it holds that y ≥ 0, and so z is set to 0 and we can

repeat the arguments we used for the situation after z was set to 1. Together, we have

that [−2 · |V |2, 2 · |V |2] is a sufficient interval for x and y. The lemma is proved. �

Lemma 4.1 Let a, b, a ′, b ′ ∈ Z be such that a, b ′ > 0, b, a ′ < 0, a
b
, a ′

b ′
∈ R = {a

b
| a ∈

{−|V |, . . . ,−1}∧b ∈ {1, . . . , |V |}}, and a
b
< a ′

b ′
. Let further 4 · |V |4+2 · |V | < a ≤ 4 · |V |4+3 · |V |

and −4 · |V |4 − |V | ≤ a ′ < −4 · |V |4. Then a+ a ′ ≥ |V |, and b+ b ′ ≥ |V |.

Proof: Proving a+ a ′ ≥ |V | is trivial, let’s prove that b+ b ′ ≥ |V |.

The fact that a
b
, a ′

b ′
∈ R implies that also b

a
, b ′

a ′
∈ R, and the fact that a

b
< a ′

b ′
implies

that b
a
> b ′

a ′
, and since b

a
, b ′

a ′
∈ R, it holds that that b

a
> b ′

a ′
+ 1

|V |2
, which can be developed

into a ′b < ab ′+ 1
|V |2

aa ′. From the assumptions of the lemma it also follows that a+a ′ ≤

3|V |, which can be developed into ab + a ′b ≥ 3|V |b, and so ab + ab ′ + 1
|V |2

aa ′ ≥ 3|V |b.

The last inequality can be developed into a(b + b ′) ≥ 3|V |b − 1
|V |2

aa ′, and further into

b + b ′ ≥ 3|V |b
a
− 1

|V |2
a ′. Since b

a
∈ R, it holds that b

a
≥ −|V |. Together with the fact that

a ′ < −4|V |4, it follows that 3|V |b
a
− 1

|V |2
a ′ ≥ −3|V |2 + 1

|V |2
4|V |4 = 4|V |2 − 3|V |2 = |V |2 ≥ |V |.

Therefore b+ b ′ ≥ |V |. �

Lemma 4.2 Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. Let further v ∈ W�

be the starting vertex, and let � use the strategy σ as defined in (7). Then, every time the

substrategy of σ is changed to σv
k for some v ∈ W� and k ∈ {1, . . . , |R|}, i.e., the second element

of the memory is changed to k, the following holds. Let (v, k, (a1, . . . , a|R|), (a
′
1, . . . , a

′
|R|)) be

the state of the memory right after the change. Then, for each i ∈ {1, . . . , |R|} such that i < k, it

holds that 0 ≤ ai ≤ 4 · |V |4 + 2 · |V |, and for each j ∈ {1, . . . , |R|} such that j > k, it holds that

−4 · |V |4 ≤ a ′
j ≤ 0.

Proof: We will prove the lemma by induction on the number of times the substrategy

was changed. We will denote the number by t.
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t = 0. Right after the 0-th change of the substrategy, i.e., at the very beginning of the

play, the state of the memory is (v, 1, (0, . . . , 0), (0, . . . , 0)). Therefore, the claim of the

lemma is satisfied. This finishes the induction base.

t > 0. From the induction hypothesis, it follows that right after the (t− 1)-th change

of the substrategy, the strategy σ started to use the substrategy σv
k such that for the

state of the memory (v, k, (a1, . . . , a|R|), (a
′
1, . . . , a

′
|R|)), the following held. For each i ∈

{1, . . . , |R|} such that i < k, 0 ≤ ai ≤ 4 · |V |4+2 · |V |, and for each j ∈ {1, . . . , |R|} such that

j > k, −4 · |V |4 ≤ a ′
j ≤ 0.

While the strategy σv
k was used, each traversed cycle fromAwas also fromA≤Rk

, and

each traversed cycle from Bwas also from B≥Rk
. The traversed cycles from A=Rk

∪ B=Rk

did not affect the memory, and so the only parts of the memory that could have been

changed while the strategy σv
k was used were: ai for i < k and a ′

j for j > k. Therefore,

if some element exceeded its soft bound, and it is was not the case when the element

was zeroed together with its “complementary” element (cf. (8), items 4–5), and so the

substrategy σv
k was changed to some other substrategy σv ′

k ′ (this is the t-th change of the

substrategy), then the following held. If k ′ > k, then the element a ′
k ′ exceeded its soft

bound, i.e., −4 · |V |4 − |V | ≤ a ′
k ′ < −4 · |V |4. If k ′ < k, then the element ak ′ exceeded

its soft bound, i.e., 4 · |V |4 + 2 · |V | < ak ′ ≤ 4 · |V |4 + 3 · |V |. Without loss of generality,

let k ′ > k. Let’s consider the moment right after the t-th change of the substrategy and

let’s prove the claim of the lemma.

For j > k ′, it holds that −4 · |V |4 ≤ a ′
j ≤ 0, because k ′ > k, and so while the previous

strategy σv
k was used, the elements a ′

j with j > k ′ never exceeded their soft bounds with-

out being zeroed immediately. Otherwise, the substrategy would have been changed

earlier.

For i < k ′, it holds that 0 ≤ ai ≤ 4 · |V |4 + 2 · |V |, because if for some i < k ′, it held

that ai > 4 · |V |4 + 2 · |V |, then the substrategy would have not been changed to σv ′

k ′ and

the elements ai and a ′
k ′ would have been zeroed instead, according to (8), item 5. This

finishes the induction step, and the lemma is proved. �

Corollary 4.3 While the strategy σ is used, the memory (v, k, (a1, . . . , a|R|), (a
′
1, . . . , a

′
|R|))

satisfies that for each i ∈ {1, . . . , |R|}, it holds:

0 ≤ ai ≤ 4 · |V |4 + 3 · |V |

−4 · |V |4 − |V | ≤ a ′
i ≤ 0
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Proof: By Lemma 4.2, only elements ai such that 0 ≤ ai ≤ 4 · |V |4 + 2 · |V | are increased,

and only elements a ′
j such that −4 · |V |4 ≤ a ′

j ≤ 0 are decreased. �

Proof: [Proof of Theorem 3.3] Consider a continuous subpath sp of the infinite play

corresponding to the use of some substrategy σu
i . That is, the subpath sp starts at the

point where the substrategy of σ was changed to σu
i , and ends at the point where the

substrategy was changed to some other strategy. The subpath sp consists of cycles from

A≤Ri
∪ B≥Ri

∪ P and some remaining “tail” tsp, which is a path in G with no repeated

vertex. Since tsp can contain at most |V | vertices. It holds that w1(tsp) ≥ −|V | and

w2(tsp) ≥ −|V |. When the substrategy is changed, the tail is lost in the sense that it

is not reflected in the memories. However, by the definition of σ and Lemma 3.2 and

Corrolary 4.3, these tails and also the cycles from P are the only parts of the infinite play

that are reflected neither in the global memory nor in the local memories. The cycles

from P are not a problem, because they have both weights non-negative. Therefore, we

have to prove that the tails are somehow compensated. We will use Lemma 4.1 for this

purpose.

By Lemma 4.1, when the elements of the memory ai and a ′
j such that i < j are

zeroed, then the sum of the first weights of the corresponding cycles is greater or equal

to |V | and the sum of the second weights of the corresponding cycles is also greater or

equal to |V |. This justifies the zeroing of these elements, and also compensates for at

least one lost tail. So it remains to prove that the tails do not pile up faster than they are

compensated.

A tail is lost only when the substrategy of σ is changed. The change of the sub-

strategy indicates that some element ai or some element a ′
j exceeded its soft bound,

and there is no “complementary” element. There is no other way for an element ai to

be decreased than the zeroing. Similarly, there is no other way for an element a ′
j to

be increased than the zeroing. Therefore, the number of not yet compensated tails is

equal to the number of elements of the memory that exceeded their soft bounds and

have not been zeroed yet. Since |R| ≤ |V |2, Lemma 4.2 implies, that there can be at

most |V |2 + 1 not yet compensated tails at each moment of the play. We also have to

take into account the path corresponding to the current node p in the current tree T v the

strategy σ is using. This path may also have negative weight, but it is, again, bounded:

w1(p) ≥ −|V | ∧ w2(p) ≥ −|V |. All in all, the total weight that is not reflected in the

memories is, at each moment, greater or equal to −(|V |2 + 1) · |V | − |V | = −|V |3 − 2 · |V |,

in both components of the weight. The first part of the claim of the theorem:
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k−1∑

i=0

w1(vi, vi+1) ≥
∑

i∈{1,...,|R|}

(ai + a ′
i + xi) − |V |3 − 2 · |V |

follows immediately. The second part of the claim also follows easily. For a cycle

c ∈ A is holds that w2(c) ≥ −|V | · w1(c), and for a cycle c ∈ B, it holds that w2(c) ≥

− 1
|V |
w1(c). Therefore:

k−1∑

i=0

w2(vi, vi+1) ≥
∑

i∈{1,...,|R|}

(−|V |ai −
1

|V |
a ′
i + yi) − |V |3 − 2 · |V |

�

Corollary 4.4 Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. Let further v ∈ W�

be the starting vertex, and let � use the strategy σ as defined in (7). Let ♦ use an arbitrary

strategy π, and let outcomeΓ(v, σ, π) = (v = v0, v1, v2, . . .) be the resulting play. Let k be the

state of the play after k steps, i.e., we are at the vertex vk. Then the following holds:

∑k−1
i=0 w1(vi, vi+1) ≥ −4 · |V |6 − 2 · |V |4 − 2 · |V |3 − 2 · |V |

∑k−1
i=0 w2(vi, vi+1) ≥ −4 · |V |7 − 5 · |V |4 − |V |3 − 2 · |V |

Proof: The corollary follows from Theorem 3.3 and the following facts. For each i,

0 ≤ ai ≤ 4 · |V |4 + 3 · |V |, and −4 · |V |4 − |V | ≤ a ′
i ≤ 0, by Corollary 4.3, and −2 · |V |2 ≤

xi, yi ≤ 2 · |V |2, by Lemma 3.2. �

We note, that since the roles of the two weights are symmetric, the tighter bound in

Corollary 4.4 holds for both weights. We could prove it directly by changing the strategy

σ so that its global memory stores the second weights instead of the first weights.

4.1 Proof That for v ∈ W�, The Value of the Root of the Tree T
v cannot

be 0

Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. Let further v ∈ W� be the

starting vertex, and let R ∈ R.

In this section, we prove that the value of the root (v) ∈ T v
V of the tree T v cannot be

0. For the sake of contradiction, we suppose that value((v)) = 0 and show that ♦ has a

strategy π that ensures that for each K ∈ Z, the sum of the first weights of the traversed

edges or the sum of the second weights of the traversed edges will eventually go below

K, which is a contradiction with the fact that v ∈ W�. The strategy is defined below.
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Let’s consider a general situation, where we are at the node p = (v = v0, . . . , vk) such

that last(p) ∈ V♦ and p is not a leaf. Let further s = (v0, . . . , vi) such that i = max{j | j ≤

k∧ value((v0, . . . , vj)) = 0}. Since value((v)) = 0, such i must exist. In the following, we

will use the notation s = deepestzero(p). At nodes with value 0 such that ♦ cannot force

a successor with value 0, she has to make a choice whether to force a cycle from A=R or

B=R. Moreover, at the same node she always has to make the same choice, because she

wants to prevent � from alternating cycles from A=R and B=R. She also has to stick to

the choice until a node with different deepestzero() is visited. Therefore, at p, ♦ makes

decisions based on s = deepestzero(p). Let’s consider two cases.

First case, last(s) ∈ V�. In this case, s has no successors with value 1 and (i) all

the successors have the value 0 or (ii) all the successors with two-component value

have the first component greater or equal to h(s) or (iii) all the successors with two-

component value have the second component greater or equal to h(s). All these facts

follow from (3). We define the following evaluation procedure of s:

eval�(s) =






(i) if (∀(s, q) ∈ TE)(value(q) = 0)

(ii) if (∃(s, q) ∈ TE)(value(q) 6= 0)∧

(∀(s, q) ∈ TE)(value(q) = (a, b) ⇒ a ≥ h(s))

(iii) if (∃(s, q) ∈ TE)(value(q) 6= 0)∧

(∃(s, q) ∈ TE)(value(q) = (a, b)∧ a < h(s))∧

(∀(s, q) ∈ TE)(value(q) = (a, b) ⇒ b ≥ h(s))

(9)

Second case, last(s) ∈ V♦. In this case, (i) there is a successor with value 0 or (ii)

there is a successor with two-component value such that the first component is greater

or equal to h(s) or (iii) there is a successor with two-component value such that the

second component is greater or equal to h(s). All these facts follow from (4). We define

the following evaluation procedure of s:

eval♦(s) =






(i) if (∃(s, q) ∈ TE)(value(q) = 0)

(ii) if (∄(s, q) ∈ TE)(value(q) = 0)∧

(∃(s, q) ∈ TE)(value(q) = (a, b)∧ a ≥ h(s))

(iii) if (∄(s, q) ∈ TE)(value(q) = 0)∧

(∄(s, q) ∈ TE)(value(q) = (a, b)∧ a ≥ h(s))∧

(∃(s, q) ∈ TE)(value(q) = (a, b)∧ b ≥ h(s))

(10)

General evaluation procedure of s is defined as follows:
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eval(s) =

{
eval�(s) if last(s) ∈ V�

eval♦(s) if last(s) ∈ V♦

(11)

The sought strategy of ♦, π, then works in the following way.

π(p) =






q if (p, q) ∈ TE ∧ eval(s) = (i)∧ value(q) = 0

q if (p, q) ∈ TE ∧ eval(s) = (ii)∧ value(q) = (a, b)∧ a ≥ h(s)

q if (p, q) ∈ TE ∧ eval(s) = (iii)∧ value(q) = (a, b)∧ b ≥ h(s)

(12)

Please note that for a node p such that last(p) ∈ V♦ and value(p) = 0, the existence

of a successor with value 0 or value (a, b) such that a ≥ h(s) or b ≥ h(s) follows

from (3) and (4) and the fact that on the way from s to p, π decides based on s.

We note again that if a leaf q corresponding to a cycle is reached, then the play

automatically continues at node ph(q). There is also a possibility that a leaf q not cor-

responding to a cycle is reached, which means that last(q) ∈ W♦. In this case ♦ has a

strategy to send at least one of the counters towards −∞. However, we would have to

extend the strategy π to vertices fromW♦ to deal with this case. For simplicity, knowing

that such extension is possible, we stop the play at q and consider the play winning for

♦. If no leaf with last vertex inW♦ is reached, then the play stays in the tree ad infinitum.

The following three lemmas prove that the strategy π has the desired properties.

Lemma 4.5 Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. Let further v ∈ W�

be the starting vertex, R ∈ R, let the root (v) of the tree T v have the value 0, and let the strategy

π be defined as in (12). Then, the strategy π ensures that exactly one of the following claims

holds.

(I) A leaf r such that last(r) ∈ W♦ is reached.

(II) Only bad cycles and cycles from A=R ∪ B=R are traversed, and a bad cycle is traversed

infinitely many times.

(III) There is a point from which onwards all traversed cycles are from A=R.

(IV) There is a point from which onwards all traversed cycles are from B=R.

Proof: The claims (I)-(IV) are obviously mutually exclusive, and so we don’t have to

bother with the “exactly one” part of the claim of the lemma.
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Let’s first prove that it is impossible that a good cycle is traversed. This is easy

because the root (v) ∈ TV has value((v)) = 0. Strategy π always chooses a successor with

value 0 or a two-component value. When it is �’s call to choose a successor, he cannot

choose a node with value 1, because no successor of a node p such that last(p) ∈ V� and

value(p) = 0 or value(p) = (a, b) can have value 1, it follows from (3). Therefore, since

traversing a good cycle corresponds to reaching a leaf with value 1, if ♦ uses π, then no

good cycle can be traversed.

If a leaf r such that last(r) ∈ W♦ is reached, or a leaf corresponding to a bad cycle

is reached infinitely many times, then we are done. Otherwise, the play is infinite and

there is a point from which onwards only leaves corresponding to cycles from A=R∪B=R

are reached. After the last bad cycle was traversed, we are at an inner node p such that

value(p) = 0 or value(p) = (a, b) such that a ≥ deepestzero(p) or b ≥ deepestzero(p).

From p onwards, only leaves corresponding to cycles from A=R ∪ B=R are reached. We

will prove that the play stays at levels greater or equal to h(deepestzero(p)), and only

cycles from A=R or only cycles from B=R are traversed, until an inner node with value 0

at a deeper level than h(deepestzero(p)) is visited. This implies that � can alternate the

cycles from A=R and B=R only finitely many times. So let’s prove this claim.

Let s = deepestzero(p). If eval(s) = (i), then π ensures that the successor of s has

the value 0, and so it must be the case that s = p. Therefore, we will visit a node with

value 0 at a deeper level in the next step, and so the claim holds. If eval(s) = (ii) or

eval(s) = (iii), then let’s suppose, without loss of generality, that eval(s) = (ii). Let

further (s = p0, . . . , pk) be the sequence of visited nodes from s to the first leaf, i.e., pk

is a leaf. The fact that s = deepestzero(p) implies, that there is i ∈ {0, . . . , k − 1} such

that pi = p and for each j ∈ {1, . . . , i}, pj has a two-component value. If for some j ∈ {i+

1, . . . , k− 1}, it holds that value(pj) = 0, we are done. Otherwise, let (a1, b1), . . . , (ak, bk)

be the sequence of values of nodes p1, . . . , pk. Please note that the leaf pk has a two-

component value, because we suppose that no bad cycles are traversed. The strategy

π ensures that a1, . . . , ak ≥ h(s), and so ce(pk) ∈ A=R, and h(ph(pk)) = ak ≥ h(s).

Therefore, only cycles from A=R are traversed until an inner node with value 0 at a

deeper level than h(s) is visited. The claim is proved.

When an inner node p ′ such that value(p ′) = 0 and h(p ′) > h(s) is visited, we can

repeat the arguments and prove that the play stays at level h(p ′) and deeper, and only

cycles from A=R or only cycles from B=R are traversed, until an inner node with value 0

at a deeper level than h(p ′) is visited. The maximal depth of a node is |V |, and so there
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must be a point from which onwards only cycles from A=R or only cycles from B=R are

traversed. Therefore, if claims (I) and (II) of the lemma are not satisfied, then one of the

claims (III) and (IV) is. �

Lemma 4.6 Let a, b, a ′, b ′ ∈ Z; |a|, |b|, |a ′|, |b ′| > 0; a
b
< a ′

b ′
, and let b and b ′ have the same

sign. Then a
b
< a+a ′

b+b ′
< a ′

b ′
.

Proof: Since a
b
< a ′

b ′
, it holds that ab ′ < a ′b. So, (a + a ′)b = ab + a ′b > ab + ab ′ =

a(b+ b ′). Therefore, a
b
< a+a ′

b+b ′
.

The second inequality is proved similarly: (a + a ′)b ′ = ab ′ + a ′b ′ < a ′b + a ′b ′ =

a ′(b+ b ′). Therefore, a+a ′

b+b ′
< a ′

b ′
. �

Lemma 4.7 Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. Let further v ∈ W�

be the starting vertex, R ∈ R, let the root (v) of the tree T v have the value 0, and let the strategy

π be defined as in (12). Let ♦ use the strategy π, let � use arbitrary strategy. The outcome of

these two strategies corresponds to a sequence of nodes (p0, p1, p2, . . .). Let (r0, r1, r2, . . .) be

the subsequence of the sequence containing all reached leaves, and let K ∈ Z. Then, either the

sequence is finite, i.e., the last leaf rk has last(rk) ∈ W♦, or the sequence is infinite and there is

k ∈ N0 such that
∑k−1

i=0 w1(ce(ri)) < K∨
∑k−1

i=0 w2(ce(ri)) < K.

Proof: To prove the lemma, wewill use Lemma 4.5. If claim (I) of Lemma 4.5 holds, then

we are done. If claim (III) of Lemma 4.5 holds, then there is i ∈ N0 such that for each

j ≥ i, ce(rj) ∈ A=R, and so the sum of the first weights increases and, more importantly,

the sum of the second weights decreases. Therefore, the sum of the second weights

will eventually go below K, and so we are done too. The case where the claim (IV) of

Lemma 4.5 holds is symmetric. It remains to examine the case where the claim (II) of

Lemma 4.5 holds.

LetN1 ⊆ N be the set of cycles c such that w1(c) = 0∧w2(c) < 0.

LetN2 ⊆ N be the set of cycles c such that w1(c) < 0∧w2(c) = 0.

LetN3 ⊆ N be the set of cycles c such that w1(c) < 0∧w2(c) < 0.

Let A>R ⊆ A be the set of cycles c such that w1(c) > 0∧w2(c) < 0∧ w1(c)

w2(c)
> R.

Let B<R ⊆ B be the set of cycles c such that w1(c) < 0∧w2(c) > 0∧ w1(c)

w2(c)
< R.

Please note that N1 ∪N2 ∪N3 ∪A>R ∪ B<R is the set of all possible bad cycles.

Let (r0, . . . , rk) be a prefix of (r0, r1, r2, . . .) such that there are at least 10 · |V |3 · (|K|+1)

bad cycles in the prefix. Since a bad cycle is traversed infinitely many times, such prefix

must exist. Now, let:
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(a1, b1) be the sum of the weights of the bad cycles from N1 in the prefix, and let n1

be their number.

(a2, b2) be the sum of the weights of the bad cycles from A>R in the prefix, and let n2

be their number.

(a3, b3) be the sum of the weights of the cycles from A=R ∪ B=R in the prefix.

(a4, b4) be the sum of the weights of the bad cycles from B<R in the prefix, and let n4

be their number.

(a5, b5) be the sum of the weights of the bad cycles from N2 in the prefix, and let n5

be their number.

(a6, b6) be the sum of the weights of the bad cycles from N3 in the prefix, and let n6

be their number.

Please note that (a1 + a2 + a3 + a4 + a5 + a6, b1 + b2 + b3 + b4 + b5 + b6) is the sum

of the weights of all the cycles in the prefix, and n1 + n2 + n4 + n5 + n6 ≥ 10 · |V |3 ·

(|K| + 1). It follows, that at least one of the numbers n1, n2, n4, n5, n6 is greater or equal

to 2 · |V |3 · (|K| + 1). Let’s consider two cases. Case 1: n6 ≥ 2 · |V |3 · (|K| + 1). Case 2:

n6 < 2 · |V |3 · (|K|+ 1). Let’s first look closer at case 1:

We will prove that if a1 +a2 +a3 +a4 +a5 ≥ 0, then b1 +b2 +b3 +b4 +b5 ≤ 0. Since

there are at least 2 · |V |3 · (|K|+1) cycles of typeN3, if a1+a2+a3+a4+a5 ≤ 0∨b1+b2+

b3+b4+b5 ≤ 0, then a1+a2+a3+a4+a5+a6 < K∨b1+b2+b3+b4+b5+b6 < K. Without

loss of generality, let’s suppose that a3 ≥ 0, and let a = a1 + a2 + a3; b = b1 + b2 + b3;

a ′ = a4 + a5; b
′ = b4 + b5. If a = 0, then since a ′ ≤ 0, we are done. If b ′ = 0, then

since b ≤ 0, we are done too. So let’s suppose that a > 0 and b ′ > 0. It follows that

b < 0 and a ′ < 0. By Lemma 4.6, and the fact that cycles of type N1 increase the ratio

of cycles of type A and cycles of type N2 decrease the ratio of cycles of type B, it holds

that a
b
> a ′

b ′
, and so ab ′ < a ′b. Therefore, if we develop the inequality a + a ′ ≥ 0 into

the inequality ab+ a ′b ≤ 0, we can see that ab+ ab ′ < 0, which can be developed into

b + b ′ < 0 and we are done. This ends case 1. Let’s now look at case 2, the case where

n6 < 2 · |V |3 · (|K|+ 1):

We will prove that if a1 + a2 + a3 + a4 + a5 + a6 ≥ K, then b1 + b2 + b3 + b4 + b5 +

b6 < K. Actually, we will prove a stronger claim: if a1 + a2 + a3 + a4 + a5 ≥ K, then

b1+b2+b3+b4+b5 < K. Without loss of generality, let’s again suppose that a3 ≥ 0, and

let a = a1+a2+a3; b = b1+b2+b3; a
′ = a4+a5; b

′ = b4+b5. Since n6 < 2 · |V |3 ·(|K|+1),

it must hold that b ≤ −2 · |V |3 · (|K|+ 1)∨ a ′ ≤ −2 · |V |3 · (|K|+ 1). If a = 0∧ b ′ = 0, then

we are done. Let’s now examine the three remaining cases.
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a = 0 ∧ b ′ > 0. It follows that a ′ < 0. By Lemma 4.6, and the fact that cycles of type

N2 decrease the ratio of cycles of type B, and the fact that the greatest possible ratio is

− 1
|V |
, it holds that − 1

|V |
≥ a ′

b ′
, and so − 1

|V |
b ′ ≥ a ′. Therefore, if a ′ = a + a ′ ≥ K, then

− 1
|V |
b ′ ≥ K, and so we can see that b ′ ≤ −K|V |. The inequality a ′ ≥ K also implies that

b ≤ −2 · |V |3 · (|K|+ 1), and so b+ b ′ < K and we are done.

a > 0 ∧ b ′ = 0. It follows that b < 0. We will prove the implication a + a ′ ≥

K ⇒ b + b ′ < K by proving the equivalent implication b + b ′ ≥ K ⇒ a + a ′ < K. By

Lemma 4.6, and the fact that cycles of typeN1 increase the ratio of cycles of type A, and

the fact that the smallest possible ratio is −|V |, it holds that −|V | ≤ a
b
, and so − 1

|V |
a ≥ b.

Therefore, if b = b + b ′ ≥ K, then − 1
|V |
a ≥ K, and so we can see that a ≤ −K|V |. The

inequality b ≥ K also implies that a ′ ≤ −2 · |V |3 · (|K|+ 1), and so a+ a ′ < K and we are

done.

a > 0 ∧ b ′ > 0. It follows that b < 0 and a ′ < 0. By Lemma 4.6, and the fact that

cycles of typeN1 increase the ratio of cycles of type A and cycles of typeN2 decrease the

ratio of cycles of type B, and the fact that two different ratios differ by more than 1
|V |2

, it

holds that a
b
> a ′

b ′
+ 1

|V |2
, and so ab ′ < a ′b+ 1

|V |2
bb ′. Therefore, if we develop the inequality

a+a ′ ≥ K into the inequality ab ′+a ′b ′ ≥ Kb ′, we can see that a ′b+a ′b ′+ 1
|V |2

bb ′ ≥ Kb ′,

which can be developed into b + b ′ ≤ b ′

a ′

(

K− 1
|V |2

b
)

. If b ≤ −2 · |V |3 · (|K| + 1), then

b ′

a ′

(

K− 1
|V |2

b
)

≤ − 1
|V |

(

−|K| + 1
|V |2

2|V |3(|K|+ 1)
)

< − 1
|V |
(|V |(|K| + 1)) < −|K| ≤ K and we

are done. Otherwise, a ′ ≤ −2 · |V |3 · (|K|+ 1), so let’s prove this last case.

From a
b
> a ′

b ′
, it follows that b

a
< b ′

a ′
. Since two different inverse ratios also differ

by more than 1
|V |2

, it holds that b ′

a ′
> b

a
+ 1

|V |2
, and so ab ′ < a ′b + 1

|V |2
aa ′. We will

prove the implication a + a ′ ≥ K ⇒ b + b ′ < K by proving the equivalent implication

b + b ′ ≥ K ⇒ a + a ′ < K. If we develop the inequality b + b ′ ≥ K into the inequality

ab + ab ′ ≥ Ka, we can see that a ′b + ab + 1
|V |2

aa ′ ≥ Ka, which can be developed into

a ′ + a ≤ a
b

(

K− 1
|V |2

a ′

)

. Since a ′ ≤ −2 · |V |3 · (|K| + 1), it holds that a
b

(

K− 1
|V |2

a ′

)

≤

− 1
|V |

(

−|K| + 1
|V |2

2|V |3(|K|+ 1)
)

≤ − 1
|V |
(|V |(|K| + 1)) < −|K| ≤ K and we are done.

We have proved that if the claim (II) of Lemma 4.5 holds, then at least one of the

sums goes below K where K is an arbitrary integer. �
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4.2 Minimal Winning Configurations for � in a Reachability Game

Corresponding to a Game on 2-dim VASS

Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. The main part of this paper is

aimed at proving that there is a constant Kmin ∈ Z of polynomial size with respect to |V |

such that in the corresponding reachability game, the configuration (v, (|Kmin|, |Kmin|))

is winning for �. In this section, we will show that all minimal winning configurations

(v, (a, b)) have both counter values of polynomial size with respect to |V |.

The configuration (v, (|Kmin|, |Kmin|)) is a winning starting configuration of �, and

|Kmin| ∈ N0 is of polynomial size with respect to |V |. Let (v, (a, b)) be a winning starting

configuration such that a < |Kmin|. We will show that (v, (a, (|V | + 1) · |Kmin|)) is also

a winning starting configuration. By symmetry, this implies that if b < |Kmin|, then

(v, ((|V | + 1) · |Kmin|, b)) is a winning starting configuration. Together, we will have

that all minimal winning starting configurations have counter values of polynomial size

with respect to |V |. So, let’s show that (v, (a, (|V | + 1) · |Kmin|)) is a winning starting

configuration. To this end we will propose a different valuation for the tree T v than in

the Section 3.2.

Let q = (v = v0, . . . , vk) ∈ T v
V be a leaf of the tree T v, then

value2(p) =






0 if vk ∈ W♦

0 if vk ∈ W� ∧ ce(q) ∈ N ∪ B

0 if vk ∈ W� ∧ ce(q) ∈ A ∪ P ∧mini∈{0,...,k}w1(v0, . . . , vi) + a < 0

1 if vk ∈ W� ∧ ce(q) ∈ A ∪ P ∧mini∈{0,...,k}w1(v0, . . . , vi) + a ≥ 0

The value of an inner node p ∈ T v
V is defined in the following way.

value2(p) =






0 if last(p) ∈ V� ∧

(∀(p, q) ∈ T v
E)(value2(q) = 0)

0 if last(p) ∈ V♦ ∧

(∃(p, q) ∈ T v
E)(value2(q) = 0)

1 if last(p) ∈ V� ∧

(∃(p, q) ∈ T v
E)(value2(q) = 1)

1 if last(p) ∈ V♦ ∧

(∀(p, q) ∈ T v
E)(value2(q) = 1)

It must be the case that the value of the root (v) is value2((v)) = 1, because if

value2((v)) = 0, then the following holds.
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The player ♦ can ensure that each reached leaf q has last(q) ∈ W♦, or it corresponds

to a cycle from N ∪ B, or a cycle from A ∪ P such that the first weight of some prefix of

q is smaller than −a. This is in contradiction with the fact that (v, (a, b)) is a winning

starting configuration, because ♦ can ensure that the first counter is decreased by more

than a, or, in case cycles c from N such that w1(c) = 0 ∧w2(c) < 0 are traversed, ♦ can

ensure that the second counter is decreased by more than b. Therefore, it must be the

case that value2((v)) = 1.

The fact that the root has the value 1 implies that� can win either by traversing only

cycles from P, or he can “pump” the content of the second counter to the first counter by

traversing cycles fromA. Each cycle c ∈ A hasw1(c) ≥ 1 andw2(c) ≥ −|V |. Therefore, if

we start with counter values (a, (|V |+1)·|Kmin|), we can reach a configuration (v ′, (a ′, b ′))

such that a ′, b ′ ≥ |Kmin|. By properties of |Kmin|, this is a winning configuration, and so

(a, (|V |+ 1) · |Kmin|) is also a winning configuration. Together, we have that all minimal

winning configurations for � have counter values of polynomial size with respect to

|V |. More specifically, the counter values of all minimal winning configurations are less

or equal to ((|V | + 1) · |Kmin|, (|V | + 1) · |Kmin|). This can be used to prove that there is a

polynomial time algorithm for solving the original reachability game corresponding to

Γ .

The original reachability game is defined as

M = (V × N2
0,→, V� × N2

0, V♦ × N2
0)

where the components are: the set of configurations, transition relation, configurations

belonging to �, and configurations belonging to ♦, respectively. The transition relation

is defined as follows: (v,−→n ) → (v ′,−→n
′

) if and only if

(v, v ′) ∈ E∧

−→n ,−→n
′

≥ (0, 0)∧
−→n

′

= −→n +w(v, v ′)

We can define the following restriction ofM:

M ′ = (V × X2,→ ′, V� × X2, V♦ × X2)

where X = {0, . . . , (|V | + 1) · |Kmin|} and the components are: the set of configurations,

transition relation, configurations belonging to �, and configurations belonging to ♦,
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respectively. The transition relation is defined as follows: (v, (n1, n2)) → ′ (v ′, (n ′
1, n

′
2)) if

and only if

(v, v ′) ∈ E∧

(0, 0) ≤ (n1, n2), (n
′
1, n

′
2) ≤ ((|V | + 1) · |Kmin|, (|V | + 1) · |Kmin|)∧

(n ′
1, n

′
2) = (min(n1 +w1(v, v

′), (|V | + 1) · |Kmin|),min(n1 +w1(v, v
′), (|V |+ 1) · |Kmin|))

In particular, each increase of either counter above (|V | + 1) · |Kmin| is truncated to

(|V | + 1) · |Kmin|.

Since the counter values of all minimal winning configurations are less or equal to

((|V |+ 1) · |Kmin|), (|V |+ 1) · |Kmin|), M
′ contains all the minimal winning configurations

of the whole reachability gameM, and so the solution ofM ′ directly gives a solution of

the original gameM (Recall that the game is upward-closed). Since a reachability game

can be solved in polynomial time with respect to the number of its configurations, the

polynomial size of |Kmin| implies a polynomial time algorithm for the solution of M.

4.3 Game on 2-dim VASS with Symbolic Edge-Weights

Let Γ = (G = (V, E,w), V�, V♦) be a game on 2-dim VASS. Central to our proofs is the

division of the simple cycles of G into the sets N, P, A, and B, and further division of

the cycles from the sets A and B. In this section, we will describe how to incorporate

the cycles with symbolic edge-weights into the division. So, now the weight function is

w : E → {−1, 0, 1,ω}2.

Let a1, . . . , ak ∈ {−1, 0, 1,ω}. For simplicity, we will define
∑k

i=1 ai = ω if some

ai = ω. Now let c be a simple cycle in G. If w1(c) 6= ω∧w2(c) 6= ω, then c is classified

as usual. Ifw1(c) = ω∧w2(c) 6= ω∧w2(c) ≥ 0 orw1(c) 6= ω∧w1(c) ≥ 0∧w2(c) = ω or

w1(c) = ω∧w2(c) = ω, then c is classified as a cycle from P. It remains to consider the

cycles with one component negative and the other one equal toω. We will first consider

the case where w1(c) = ω∧w2(c) < 0.

The cycle c with w1(c) = ω ∧ w2(c) < 0 is classified as a cycle from A. Important

property of the cycles from A is the ratio of w1(c) and w2(c). The smaller the ratio, the

better it is for player �. It is obvious that the cycle c is better than all the cycles from

A without symbolic edge-weights. Therefore, we introduce a new ratio R0 = −|V | −

1. Please note that −|V | is the best possible ratio of A cycles without symbolic edge-

weights. Let’s now consider the case where w1(c) < 0∧w2(c) = ω.
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The cycle c with w1(c) < 0 ∧ w2(c) = ω is classified as a cycle from B. Important

property of the cycles from B is the ratio of w1(c) and w2(c). The bigger the ratio, the

better it is for player �. It is obvious that the cycle c is better than all the cycles from

B without symbolic edge-weights. Therefore, we introduce a new ratio R|R|+1 = − 1
|V |+1

.

Please note that− 1
|V |

is the best possible ratio of B cycles without symbolic edge-weights.

Now that the cycles with ω weights have been classified, the proofs work just as

well as for the case where w : E → {−1, 0, 1}2 (Only some bounds have to be adjusted,

but they still remain polynomial). From the above, it also follows that if we replace each

occurrence of ω with |V | · (|V | + 1), the sets W� and W♦ remain the same. To keep the

edge-weights in {−1, 0, 1}2, we can replace the edges with some component equal to ω

by an appropriate number (polynomial with respect to |V |) of new edges and vertices

such that the weight of each new edge is in {−1, 0, 1}2.

36


