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Abstract

We design a novel algorithm for solving Mean-Payoff Games (MPGs). Besides solv-

ing anMPG in the usual sense, our algorithm computes more information about the

game, information that is important with respect to applications. The weights of the

edges of an MPG can be thought of as a gained/consumed energy – depending on

the sign. For each vertex, our algorithm computes the minimum amount of initial

energy that is sufficient for player Max to ensure that in a play starting from the

vertex, the energy level never goes below zero. Our algorithm is not the first algo-

rithm that computes the minimum sufficient initial energies, but according to our

experimental study it is the fastest algorithm that computes them. The reason is that

it utilizes the strategy improvement technique which is very efficient in practice.

1 Introduction

A Mean-Payoff Game (MPG) [11, 14, 18] is a two-player infinite game played on a finite

weighted directed graph, the vertices of which are divided between the two players. A

play starts by placing a token on some vertex and the players, named Max and Min,

move the token along the edges of the graph ad infinitum. If the token is on Max’s

vertex, he chooses an outgoing edge and the token goes to the destination vertex of that

edge. If the token is on Min’s vertex, it is her turn to choose an outgoing edge. Roughly

∗This work has been partially supported by the Grant Agency of the Czech Republic grants No.

201/09/1389, 102/09/H042.
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speaking, Max wants to maximize the average weight of the traversed edges whereas

Min wants to minimize it. It was proved in [11] that each vertex v has a value, denoted

by ν(v), which each player can secure by a positional strategy, i.e., strategy that always

chooses the same outgoing edge in the same vertex. To solve an MPG is to find the

values of all vertices, and, optionally, also strategies that secure the values.

In this paper we deal with MPGs with other than the standard average-weight goal.

Player Max now wants the sum of the weights of the traversed edges, plus some initial

value (initial “energy”), to be non-negative at each moment of the play. He also wants

to know the minimal sufficient amount of initial energy that enables him to stay non-

negative. For different starting vertices, the minimal sufficient initial energy may be

different and for starting vertices with ν < 0, it is impossible to stay non-negative with

arbitrarily large amount of initial energy.

The problem of computation of the minimal sufficient initial energies has been stud-

ied under different names by Chakrabarti et al. [4], Lifshits and Pavlov [16], and Bouyer

et al. [2]. In [4] it was called the problem of pure energy interfaces, in [16] it was called

the problem of potential computation, and in [2] it was called the lower-bound problem. The

paper [2] also contains the definition of a similar problem – the lower-weak-upper-bound

problem. An instance of this problem contains, besides anMPG, also a bound b. The goal

is the same, Max wants to know how much initial energy he needs to stay non-negative

forever, but now the energy level is bounded from above by b and during the play, all

increases above this bound are immediately truncated.

Various resource scheduling problems for which the standard solution of an MPG

is not useful can be formulated as the lower-bound or the lower-weak-upper-bound

problems, which extends the applicability of MPGs. For example, an MPG can be used

to model a robot in a hostile environment. The weights of edges represent changes in the

remaining battery capacity of the robot – positive edges represent recharging, negative

edges represent energy consuming actions. The bound b is the maximum capacity of

the battery. Player Max chooses the actions of the robot and player Min chooses the

actions of the hostile environment. By solving the lower-weak-upper-bound problem,

we find out if there is some strategy of the robot that allows him to survive in the hostile

environment, i.e., its remaining battery capacity never goes below zero, and if there is

such a strategy, we also get the minimum initial remaining battery capacity that allows

him to survive.
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The first algorithm solving the lower-bound problem was proposed by Chakrabarti

et al. [4] and it is based on value iteration. The algorithm can also be easily modified

to solve the lower-weak-upper-bound problem. The value iteration algorithm was later

improved by Chaloupka and Brim [6], and independently by Doyen, Gentilini, and

Raskin [10], extended version of [6, 10] was recently submitted [3]. Henceforward we

will use the term “value iteration” (VI) to denote only the improved version from [6, 10].

The algorithms of Bouyer et al. [2] that solve the two problems are essentially the same

as the original algorithm from [4]. However, [2] focuses mainly on other problems than

the lower-bound and the lower-weak-upper-bound problems for MPGs. Different ap-

proach to solving the lower-bound problem was proposed by Lifshits and Pavlov [16],

but their algorithm has exponential space complexity, and so it is not appropriate for

practical use. VI seems to be the best known approach to solving the two problems.

In this paper, we design a novel algorithm based on the strategy improvement tech-

nique, suitable for practical solving of the lower-bound and the lower-weak-upper-

bound problems for large MPGs. The use of the strategy improvement technique for

solving MPGs goes back to the algorithm of Hoffman and Karp from 1966 [15]. Their al-

gorithm can be used to solve only a restricted class of MPGs, but strategy improvement

algorithms for solving MPGs in general exist as well [1, 17, 9]. However, all of them

solve neither the lower-bound nor the lower-weak-upper-bound problem (cf. Section 4,

first part, last paragraph), our algorithm is the first. Another contribution of this paper

is a further improvement of VI.

The shortcoming of VI is that it takes enormous time on MPGs with at least one

vertex with ν < 0. Natural way to alleviate this problem is to find the vertices with

ν < 0 by some fast algorithm and run VI on the rest. Based on our previous experience

with algorithms for solving MPGs [5], we selected two algorithms for computation of

the set of vertices with ν < 0. Namely, the algorithm of Björklund and Vorobyov [1]

(BV), and the algorithm of Schewe [17] (SW). This gives us two algorithms: VI + BV

and VI + SW. However, the preprocessing is not helpful on MPGs with all vertices with

ν ≥ 0, and it is also not helpful for solving the lower-weak-upper-bound problem for

small bound b. Therefore, we also study the algorithm VI without the preprocessing.

Our new algorithm based on the strategy improvement technique that we propose

in this paper has the complexity O(|V | · (|V | · log |V | + |E|) · W), where W is the maximal

absolute edge-weight. It is slightly worse than the complexity of VI, the same as the

complexity of VI + BV, and better than the complexity of VI + SW.We call our algorithm
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“Keep Alive Strategy Improvement” (KASI). It solves both the lower-bound and the

lower-weak-upper-bound problem. Moreover, as each algorithm that solves the lower-

bound problem also divides the vertices of an MPG into those with ν ≥ 0 and those

with ν < 0, which can be used to compute the exact ν values of all vertices, KASI can be

thought of as an algorithm that also solves MPGs in the usual sense. As a by-product

of the design of KASI, we improved the complexity of BV and proved that Min may

not have positional strategy that is also optimal with respect to the lower-weak-upper-

bound problem. Moreover, we describe a way to construct an optimal strategy for Min

with respect to the lower-weak-upper-bound problem.

To evaluate and compare the algorithms VI, VI + BV, VI + SW, and KASI, we imple-

mented them and carried out an experimental study. According to the study, KASI is

the best algorithm.

2 Preliminaries

A Mean-Payoff Game (MPG) [11, 14, 18] is given by a triple Γ = (G, VMax, VMin), where

G = (V, E, w) is a finite weighted directed graph such that V is a disjoint union of the

sets VMax and VMin, w : E → Z is the weight function, and each v ∈ V has out-degree at

least one. The game is played by two opposing players, named Max and Min. A play

starts by placing a token on some given vertex and the players then move the token

along the edges of G ad infinitum. If the token is on vertex v ∈ VMax, Maxmoves it. If the

token is on vertex v ∈ VMin, Min moves it. This way an infinite path p = (v0, v1, v2, . . .)

is formed. Max’s aim is to maximize his gain: lim infn→∞
1
n

∑n−1

i=0 w(vi, vi+1), and Min’s

aim is to minimize her loss: lim sup
n→∞

1
n

∑n−1

i=0 w(vi, vi+1). For each vertex v ∈ V , we

define its value, denoted by ν(v), as the maximal gain that Max can ensure if the play

starts at vertex v. It was proved that it is equal to the minimal loss that Min can ensure.

Moreover, both players can ensure ν(v) by using positional strategies defined below

[11].

A (general) strategy of Max is a function σ : V∗ · VMax → V such that for each finite

path p = (v0, . . . , vk) with vk ∈ VMax, it holds that (vk, σ(p)) ∈ E. Recall that each vertex

has out-degree at least one, and so the definition of a strategy is correct. The set of all

strategies of Max in Γ is denoted by ΣΓ . We say that an infinite path p = (v0, v1, v2, . . .)

agrees with the strategy σ ∈ ΣΓ if for each vi ∈ VMax, σ(v0, . . . , vi) = vi+1. A strategy π of

Min is defined analogously. The set of all strategies of Min in Γ is denoted by ΠΓ. Given
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an initial vertex v ∈ V , the outcome of two strategies σ ∈ ΣΓ and π ∈ ΠΓ is the (unique)

infinite path outcomeΓ(v, σ, π) = (v = v0, v1, v2, . . .) that agrees with both σ and π.

The strategy σ ∈ ΣΓ is called a positional strategy if σ(p) = σ(p ′) for all finite paths

p = (v0, . . . , vk) and p ′ = (v ′

0, . . . , v
′

k′) such that vk = v ′

k′ ∈ VMax. For the sake of

simplicity, we think of a positional strategy of Max as a function σ : VMax → V such that

(v, σ(v)) ∈ E, for each v ∈ VMax. The set of all positional strategies of Max in Γ is denoted

by ΣΓ
M. A positional strategy π of Min is defined analogously. The set of all positional

strategies of Min in Γ is denoted by ΠΓ
M. We define Gσ, the restriction of G to σ, as the

graph (V, Eσ, wσ), where Eσ = {(u, v) ∈ E | u ∈ VMin ∨ σ(u) = v}, and wσ = w ↾ Eσ.

That is, we get Gσ from G by deleting all the edges emanating from Max’s vertices that

do not follow σ. Gπ for a strategy π of Min is defined analogously. For σ ∈ ΣΓ
M, we also

define Γσ = (Gσ, VMax, VMin), and for π ∈ ΠΓ
M, Γπ = (Gπ, VMax, VMin).

The lower-bound problem for an MPG Γ = (G = (V, E, w), VMax, VMin) is the problem of

finding lbΓ(v) ∈ N0 ∪ {∞} for each v ∈ V , such that:

lbΓ(v) = min{x ∈ N0 | (∃σ ∈ ΣΓ)(∀π ∈ ΠΓ)

( outcomeΓ(v, σ, π) = (v = v0, v1, v2, . . .) ∧

(∀n ∈ N)(x +
∑n−1

i=0 w(vi, vi+1) ≥ 0) ) }

where minimum of an empty set is ∞. That is, lbΓ(v) is the minimal sufficient

amount of initial energy that enables Max to keep the energy level non-negative for-

ever, if the play starts from v. If lbΓ(v) = ∞, which means that ν(v) < 0, then we say

that Max loses from v, because arbitrarily large amount of initial energy is not sufficient.

If lbΓ(v) ∈ N0, then Max wins from v.

The strategy σ ∈ ΣΓ is an optimal strategy of Max with respect to the lower-bound problem,

if it ensures that for each v ∈ V such that lbΓ(v) 6= ∞, lbΓ(v) is a sufficient amount of

initial energy. Formally:

lbΓ(v) ≥ min{x ∈ N0 | (∀π ∈ ΠΓ)

( outcomeΓ(v, σ, π) = (v = v0, v1, v2, . . .) ∧

(∀n ∈ N)(x +
∑n−1

i=0 w(vi, vi+1) ≥ 0) ) }

The strategy π ∈ ΠΓ is an optimal strategy of Min with respect to the lower-bound problem,

if it ensures that for each v ∈ V such that lbΓ(v) 6= ∞, Max needs at least lbΓ(v) units of

initial energy, and for each v ∈ V such that lbΓ(v) = ∞, Max loses. Formally:
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lbΓ(v) ≤ min{x ∈ N0 | (∃σ ∈ ΣΓ)

( outcomeΓ(v, σ, π) = (v = v0, v1, v2, . . .) ∧

(∀n ∈ N)(x +
∑n−1

i=0 w(vi, vi+1) ≥ 0) ) }

The lower-weak-upper-bound problem for an MPG Γ = (G = (V, E, w), VMax, VMin) and a

bound b ∈ N0 is the problem of finding lwubΓ
b(v) ∈ N0 ∪ {∞} for each v ∈ V , such that:

lwubΓ
b(v) = min{x ∈ N0 | (∃σ ∈ ΣΓ)(∀π ∈ ΠΓ)

( outcomeΓ(v, σ, π) = (v = v0, v1, v2, . . .) ∧

(∀n ∈ N)(x +
∑n−1

i=0 w(vi, vi+1) ≥ 0) ∧

(∀n1, n2 ∈ N0)(n1 < n2 ⇒
∑n2−1

i=n1
w(vi, vi+1) ≥ −b) ) }

where minimum of an empty set is ∞. That is, lwubΓ
b(v) is the minimal sufficient

amount of initial energy that enables Max to keep the energy level non-negative for-

ever, if the play starts from v, under the additional condition that the energy level is

truncated to b whenever it exceeds the bound. The additional condition is equivalent

to the condition that the play does not contain a segment of weight less than −b. If

lwubΓ
b(v) = ∞, then we say that Max loses from v, because arbitrarily large amount of

initial energy is not sufficient. If lwubΓ
b(v) ∈ N0, then Max wins from v. Optimal strate-

gies for Max andMin with respect to the lower-weak-upper-bound problem are defined

in the same way as for the lower-bound problem.

It was proved in [2] that both for the lower-bound problem and the lower-weak-

upper-bound problem Max can restrict himself only to positional strategies, i.e., he al-

ways has a positional strategy that is also optimal. Therefore, we could use the set ΣΓ
M

instead of the set ΣΓ in the definitions of both the lower-bound problem and the lower-

weak-upper-bound problem.

In the rest of the paper, wewill focus only on the lower-weak-upper-bound problem,

because it includes the lower-bound problem as a special case. The reason is that for

each v ∈ V such that lbΓ(v) < ∞, it holds that lbΓ(v) ≤ (|V | − 1) · W, where W is

the maximal absolute edge-weight in G. It was proved in [2]. Therefore, if we choose

b = (|V | − 1) · W, then for each v ∈ V , lbΓ(v) = lwubΓ
b(v).

Let G = (V, E, w) be a weighted directed graph, let p = (v0, . . . , vk) be a path in

G, and let c = (u0, . . . , ur−1, ur = u0) be a cycle in G. Then w(p), the weight of p,

l(p), the number of edges in p, w(c), the weight of c, and l(c), the number of edges
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in c, are defined in the following way: w(p) =
∑k−1

i=0 w(vi, vi+1), l(p) = k, w(c) =
∑r−1

i=0 w(ui, ui+1), l(c) = r.

The set of all (finite) paths in G is denoted by pathG, the set of all cycles in G is

denoted by cycleG, and finally the set of all infinite paths in G is denoted by pathG
∞ .

A suffix of a path p = (v0, . . . , vk) ∈ pathG is a path (vi, . . . , vk), where i ∈ {0, . . . , k}.

The set of all suffixes of p is denoted by suffix(p). A prefix of p is a path (v0, . . . , vi),

where i ∈ {0, . . . , k}. The set of all prefixes of p is denoted by prefix(p). Finally, a segment

of p is a path (vi, . . . , vj), where i, j ∈ {0, . . . , k} and i ≤ j. The set of all segments of p

is denoted by segment(p). The definitions of segments and prefixes naturally extend to

infinite paths. A suffix of a path p = (v0, v1, v2, . . .) ∈ pathG
∞ is a path (vi, vi+1, vi+2, . . .),

where i ∈ N0.

Let c = (u0, . . . , ur−1, u0) ∈ cycleG. If uj ∈ c, then uj+1 is the vertex following uj in c.

In particular, j + 1 is taken modulo r. A segment of c is a path (ui, ui+1, . . . , uj), where

i, j ∈ {0, . . . , r − 1}. Please note that we do not require i ≤ j, because there is a path in c

between any two vertices in c. The set of all segments of c is denoted by segment(c).

Let Γ = (G = (V, E, w), VMin, VMax) be an MPG and let D ⊆ V . Then G(D) is the

subgraph of G induced by the set D. Formally, G(D) = (D, E ∩ D × D, w ↾ D × D).

We also define the restriction of Γ induced by D. Since some vertices might have zero

out-degree in G(D), we define Γ(D) = (G ′(D), VMin ∩ D, VMax ∩ D), where G ′(D) =

(D, (E∩D×D)∪L, (w ↾ D×D)∪wL), where L = {(v, v) | v ∈ D∧ (∄u ∈ D)((v, u) ∈ E)},

and wL : L → Z such that for each e ∈ L, w(e) = −1. That is, we make the vertices with

zero out-degree in G(D) losing for Max in Γ(D) with respect to the the lower-weak-

upper-bound problem.

Let G = (V, E, w) be a graph and let B, A ⊆ V . If we say that “p is a path from

v to B” we mean a path with the last vertex and only the last vertex in B, formally:

p = (v = v0, . . . , vk) ∈ pathG, where v0, . . . , vk−1 ∈ V \ B ∧ vk ∈ B. We denote the set

of all paths from v to B by pathG(v, B). Furthermore, a path from A to B is a path from

v to B such that v ∈ A. We denote the set of all paths from A to B by pathG(A, B). The

term “longest” in connection with paths always refers to the weights of the paths, not

the numbers of edges.

Operations on vectors of the same dimension are element-wise. For example, if d0

and d1 are two vectors of dimension |V |, then d0 < d1 means that for each v ∈ V ,

d0(v) ≤ d1(v), and for some v ∈ V , d0(v) < d1(v).
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For the whole paper let Γ = (G = (V, E, w), VMax, VMin) be an MPG and let W be the

maximal absolute edge-weight in G, i.e., W = maxe∈E |w(e)|.

3 The Algorithm

High-level description of our Keep Alive Strategy Improvement algorithm (KASI) for

the lower-weak-upper-bound problem is as follows. Let (Γ, b) be an instance of the

lower-weak-upper-bound problem. KASI maintains a vector d ∈ (Z∪ {−∞})V such that

−d ≥ 0 is always a lower estimate of lwubΓ
b, i.e., −d ≤ lwubΓ

b. The vector d is gradually

decreased, and so −d is increased, until −d = lwubΓ
b. The algorithm also maintains a set

D of vertices such that about the vertices in V\D it already knows that they have infinite

lwubΓ
b value. Initially, d = 0 and D = V . KASI starts with an arbitrary strategy π ∈ ΠΓ

M

and then iteratively improves it until no improvement is possible. In each iteration, the

current strategy is first evaluated and then improved. The strategy evaluation examines

the graph Gπ(D) and updates the vector d so that for each v ∈ D, it holds

−d(v) = lwubΓπ(D)

b (v)

That is, it solves the lower-weak-upper-bound problem in the restricted game Γπ(D),

where Min has no choices. This explains why the restricted game was defined the way

it was, because if a vertex from D has outgoing edges only to V \ D, then it is losing for

Max in Γ . The vertices with the d value equal to −∞ are removed from the set D. Since

the strategy π is either the first strategy or an improvement of the previous strategy, the

vector d is always decreased by the strategy evaluation and we get a better estimate of

lwubΓ
b. To improve the current strategy the algorithm checks whether for some (v, u) ∈ E

such that v ∈ VMin and d(v) > −∞ it holds that d(v) > d(u) + w(v, u). This is called

a strategy improvement condition. Such an edge indicates that −d(v) is not a sufficient

initial energy at v, because traversing the edge w(v, u) and continuing from u costs at

least −w(v, u) − d(u) units of energy, which is greater than −d(v) (Recall that −d is a

lower estimate of lwubΓ
b). If there are edges satisfying the condition, the strategy π is

improved in the following way. For each vertex v ∈ VMin such that there is an edge

(v, u) ∈ E such that d(v) > d(u) + w(v, u), π(v) is switched to u. If v has more than one

such edge emanating from it, any of them is acceptable. Then, another iteration of KASI

is started. If no such edge exists, the algorithm terminates, because it holds that each

vertex v ∈ V has −d(v) = lwubΓ
b(v). Detailed description of the algorithm follows.

8



In Figure 1 is a pseudo-code of the strategy evaluation part of our algorithm. The

input to the procedure consists of four parts. The first and the second part form the

lower-weak-upper-bound problem instance that the main algorithm KASI is solving,

the MPG Γ and the bound b ∈ N0. The third part is the strategy π ∈ ΠΓ
M that we want

to evaluate and the fourth part of the input is a vector d−1 ∈ (Z ∪ {−∞})V. The vector

d−1 is such that −d−1 is a lower estimate of lwubΓ
b, computed for the previous strategy,

or, in case of the first iteration of KASI, set by initialization to a vector of zeros. Let

A = {v ∈ V | d−1(v) = 0} and D = {v ∈ V | d−1(v) > −∞}, then the following conditions

hold.

i. (∀c ∈ cycleGπ(D\A))(w(c) < 0),

ii. (∀v ∈ D \ A)(d−1(v) < 0 ∧ (∀(v, u) ∈ Eπ)(d−1(v) ≥ d−1(u) + w(v, u))).

From these technical conditions it follows that −d−1 is also a lower estimate of

lwubΓπ(D)

b and the purpose of the strategy evaluation procedure is to decrease the vector

d−1 so that the resulting vector d satisfies −d = lwubΓπ(D)

b . To see why from (i.) and

(ii.) it follows that −d−1 ≤ lwubΓπ(D)

b , consider a path p = (v0, . . . , vk) from D \ A to A

in Gπ(D). From (ii.) it follows that for each j ∈ {0, . . . , k − 1}, it holds that d−1(vj) ≥

d−1(vj+1) + w(vj, vj+1). If we sum the inequalities, we get d−1(v0) ≥ d−1(vk) + w(p).

Since vk ∈ A, d−1(vk) = 0 and the inequality becomes d−1(v0) ≥ w(p). Therefore, each

infinite path in Gπ(D) starting from v ∈ D and containing a vertex from A has a prefix

of weight less or equal to d−1(v0). Furthermore, if the infinite path does not contain a

vertex from A, weights of its prefixes cannot even be bounded from below, because by

(i.), all cycles in Gπ(D \ A) are negative. All in all, −d−1 is a lower estimate of lwubΓπ(D)

b .

The conditions (i.) and (ii.) trivially hold in the first iteration of the main algorithm,

for d−1 = 0. In each subsequent iteration, d−1 is taken from the output of the previous

iteration and an intuition why the conditions hold will be given below.

The output of the strategy evaluation procedure is a vector d ∈ (Z ∪ {−∞})V such

that for each v ∈ D, it holds that −d(v) = lwubΓπ(D)

b (v). Recall that D = {v ∈ V | d−1(v) >

−∞}.

The strategy evaluation works only with the restricted graph Gπ(D) and it is based

on the fact that if we have the set Bz = {v ∈ D | lwubΓπ(D)

b (v) = 0}, i.e., the set of vertices

where Max does not need any initial energy to win, then we can compute lwubΓπ(D)

b of

the remaining vertices by computing longest paths to the set Bz. More precisely:
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(∀v ∈ D \ B)(lwubΓπ(D)

b (v) = −max{w(p) | p ∈ pathGπ(D)(v, Bz) ∧

(∀pf ∈ suffix(p))(w(pf) ≥ −b) }

To get some idea about why this holds consider a play winning for Max. The energy

level never drops below zero in the play, and so there must be a moment from which

onwards the energy level never drops at all. Therefore, Max does not need any initial

energy to win a play starting from the appropriate vertex (Please note that Min has no

choices in Γπ(D)), and so Bz is not empty. For the vertices in D \ Bz, in order to win,

Max has to get to some vertex in Bz without exhausting all of his energy. So the minimal

sufficient energy to win is the minimal energy that Max needs to get to some vertex in

Bz. All paths from D \ Bz to Bz must be negative (otherwise Bz would be larger), and so

the minimal energy to get to Bz is the absolute value of the weight of a longest path to

Bz such that the weight of each suffix of the path is greater or equal to −b. If no path to

Bz exists or all such paths have suffixes of weight less than −b, Max cannot win.

Initially, the procedure over-approximates the set Bz by the set B0 of vertices v with

d−1(v) = 0 that have an edge (v, u) such that w(v, u) − d−1(v) + d−1(u) ≥ 0 emanating

from them (line 2), and then iteratively removes vertices from the set until it arrives at

the correct set Bz. The vector −di is always a lower estimate of lwubΓπ(D)

b , i.e., it always

holds that −di ≤ lwubΓπ(D)

b . Therefore, only vertices v with di(v) = 0 are candidates for

the final set Bz. However, the vertices v with di(v) = 0 such that for each edge (v, u),

it holds that w(v, u) − di(v) + di(u) < 0 are removed from the set of candidates. The

reason is that since di(v) = 0, the inequality can be developed to −w(v, u) − di(u) > 0,

and so if the edge (v, u) is chosen in the first step, then more than zero units of initial

energy are needed at v. During the execution of the procedure, di decreases, and so −di

increases, until −di = lwubΓπ(D)

b .

In each iteration, the procedure uses a variant of the Dijkstra’s algorithm to compute

longest paths from all vertices to Bi on line 4. Since Bi is an over-approximation of Bz,

the absolute values of the weights of the longest paths are a lower estimate of lwubΓπ(D)

b .

The weights of the longest paths are assigned to di. In particular, for each v ∈ Bi, di(v) =

0. Dijkstra’s algorithm requires all edge-weights be non-positive (Please note that we are

computing longest paths). Since edge-weights are arbitrary integers, we apply potential

transformation on them to make them non-positive. As vertex potentials we use di−1,

which contains the longest path weights computed in the previous iteration, or, in case

i = 0, is given as input. Transformed weight of an edge (x, y) is w(x, y) − di−1(x) +
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1 proc EVALUATESTRATEGY(Γ, b, π, d−1)

2 i := 0; B0 := {v ∈ V | d−1(v) = 0 ∧ max(v,u)∈Eπ
(w(v, u) − d−1(v) + d−1(u)) ≥ 0}

3 while i = 0 ∨ Bi−1 6= Bi do

4 di := DIJKSTRA(Gπ, b, Bi, di−1)

5 i := i + 1

6 Bi := Bi−1 \ {v | max(v,u)∈Eπ
(w(v, u) − di−1(v) + di−1(u)) < 0}

7 od

8 return di−1

9 end

Figure 1: Evaluation of strategy

di−1(y), which is always non-positive for the relevant edges. In the first iteration of

the main algorithm it follows from the condition (ii.), and in the subsequent iterations

it follows from properties of longest path weights and the fact that only vertices with

all outgoing edges negative with the potential transformation are removed from the

candidate set.

The Dijkstra’s algorithm is also modified so that it assigns −∞ to each v ∈ D such

that each path from v to Bi has a suffix of weight less than −b. Therefore, the vertices

from which Bi is not reachable or is reachable only via paths with suffixes of weight less

than −b have di equal to −∞. Also, vertices from V \D have di equal to −∞. A detailed

description of DIJKSTRA() is in Appendix Section 6.1.

On line 5, the variable i is increased (thus the current longest path weights are now

in di−1), and on line 6, we remove from Bi−1 each vertex v that does not have an outgoing

edge (v, u) such that w(v, u) − di−1(v) + di−1(u) ≥ 0. Another iteration is started only if

Bi 6= Bi−1. If no vertex is removed on line 6, then Bi = Bi−1 and the algorithm finishes

and returns di−1 as output. The following theorem establishes the correctness of the

algorithm. An intuition why the theorem holds was given above. Its formal proof is in

Appendix Section 6.2.

Theorem 3.1 Let (Γ, b) be an instance of the lower-weak-upper-bound problem. Let further

π ∈ ΠΓ
M be a positional strategy of Min, and finally let d−1 ∈ (Z ∪ {−∞})V be such that for

A = {v ∈ V | d−1(v) = 0} and D = {v ∈ V | d−1(v) > −∞}, the conditions (i.) and

(ii.) hold. Then for d := EVALUATESTRATEGY(Γ, b, π, d−1) it holds that for each v ∈ D,

d(v) = −lwubΓπ(D)

b (v).
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1 proc LOWERWEAKUPPERBOUND(Γ, b)

2 i := 0; π0 := Arbitrary strategy from ΠΓ
M

3 d−1 := 0

4 improvement := true

5 while improvement do

6 di := EVALUATESTRATEGY(Γ, b, πi, di−1)

7 improvement := false

8 i := i + 1

9 πi := πi−1

10 foreach v ∈ VMin do

11 if di−1(v) > −∞ then

12 foreach (v, u) ∈ E do

13 if di−1(v) > di−1(u) + w(v, u) then

14 πi(v) := u; improvement := true

15 fi

16 od

17 fi

18 od

19 od

20 return − di−1

21 end

Figure 2: Solving the lower-weak-upper-bound problem

The complexity of EVALUATESTRATEGY() is O(|V | · (|V | · log |V | + |E|)). The term

(|V | · log |V | + |E|) is for DIJKSTRA() and the number of iterations of the while loop on

lines 3–7 is at most |V |, because Bi ⊆ V loses at least one element in each iteration.

In Figure 2 is a pseudo-code of our strategy improvement algorithm for solving the

lower-weak-upper-bound problem using EVALUATESTRATEGY(). The input to the al-

gorithm is a lower-weak-upper-bound problem instance (Γ, b). The output of the algo-

rithm is the vector lwubΓ
b. The pseudo-code corresponds to the high-level description of

the algorithm given at the beginning of this section.

The algorithm proceeds in iterations. It starts by taking an arbitrary strategy from

ΠΓ
M on line 2, and initializing the vector d−1 to vector of zeros on line 3. The vector −di
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is always a lower estimate of lwubΓ
b, i.e., it always holds that −di ≤ lwubΓ

b. During the

execution of the algorithm, di decreases, and so −di increases, until −di = lwubΓ
b.

In each iteration of the main while-loop on lines 5–19, the current strategy πi ∈ ΠΓ
M

is first evaluated and then improved, if possible. The strategy πi is evaluated by the

procedure EVALUATESTRATEGY() on line 6. By Theorem 3.1, for the strategy evaluation,

the vector di, it holds that for each v ∈ Di−1, −di(v) = lwub
Γπi

(Di−1)

b (v), where Di−1 =

{v ∈ V | di−1(v) > −∞}. In other words, for each v ∈ Di−1, −di(v) is the minimal

amount of initial energy that Max needs to keep the energy level non-negative in a play

starting from v in the MPG Γ(Di−1), if Min uses the strategy πi. On line 8, the variable i

is increased, so the current strategy evaluation in now the vector di−1.

The vector di−1 is used to improve Min’s strategy on lines 10–18. All Min’s vertices

are examined to see whether for some v ∈ VMin, she can choose an outgoing edge that

makes −di−1(v) insufficient amount of initial energy for Max at the vertex v. That is why

−di, computed in the subsequent iteration, is greater. Min’s strategy is updated for all

vertices for which the strategy improvement condition is satisfied. If some update takes

place, another iteration is started. Otherwise, we have the input lower-weak-upper-

bound problem instance solved and so the algorithm finishes. It holds that for each

v ∈ V , −di−1(v) = lwubΓ
b(v), hence the command on line 20. The whole algorithm

KASI is illustrated on Example 3.2. The following lemmas and theorem establish the

correctness of the algorithm.

Example 3.2 In Figure 3 is an example of a run of our algorithm KASI on a simple MPG. The

MPG is in Figure 3 (a). Circles are Max’s vertices and the square is a Min’s vertex. Let’s denote

the MPG by Γ , let b = 15 and consider a lower-weak-upper-bound problem given by (Γ, b). Min

has only two positional strategies, namely, π1 and π2, where π1(v3) = v1 and π2(v3) = v4. Let

π = π2 be the first selected strategy. For simplicity, we will use the symbols π, d, B, and D

without indices, although in pseudo-codes these symbols have indices, and the set D of vertices

with finite d value is not even explicitly used. Also, if we speak about a weight of an edge, we

mean the weight with the potential transformation by d. Initially, d = 0 andD = {v1, v2, v3, v4}.

There are three vertices in Gπ(D) with non-negative edges emanating from them, namely,

v1, v2, v3, and so EVALUATESTRATEGY() takes {v1, v2, v3} as the first set B. After the vector

d is updated so that it contains longest path weights to B (Figure 3 (b)), all vertices in B still

have non-negative edges, and so the strategy evaluation finishes and the strategy improvement

phase is started. The strategy improvement condition is satisfied for the edge (v3, v1) and so π is
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Figure 3: Example of a Run of KASI

improved so that π = π1. This completes the first iteration of KASI and another one is started to

evaluate and possibly improve the new strategy π.

Now the vertex v3 does not have a non-negative edge emanating from it, so it is removed from

the set B and the longest path weights are recomputed (Figure 3 (c)). Please note that the only

path from v4 to B has a suffix of weight less than −b, and so d(v4) = −∞ and v4 is removed

from the set D. The update to d causes that v2 does not have a non-negative edge, thus it is also

removed from the set B and the vector d is recomputed again (Figure 3 (d)). This finishes the

strategy evaluation and strategy improvement follows. The strategy improvement condition is

satisfied for the edge (v3, v4), and so the strategy π2 is selected as the current strategy π again.

However, this is not the same situation as at the beginning, because the set D is now smaller.

Evaluation of the strategy π results in the d vector as depicted in Figure 3 (e). The vertex v3 has

d(v3) = −∞, because v3 cannot reach the set B, which also results in removal of v3 from D. No

further improvement of π is possible, and so lwubΓ
b = −d = (0, 12, ∞, ∞).

Lemma 3.3 Every time line 6 of LOWERWEAKUPPERBOUND() is reached, Γ , b, πi, and di−1

satisfy the assumptions of Theorem 3.1. Every time line 7 of LOWERWEAKUPPERBOUND() is

reached and i > 0, it holds that di < di−1.

A formal proof of Lemma 3.3 is in Appendix Section 6.2. The proof uses the follow-

ing facts. The first one we have already used: If p is a path from v to u such that for
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each edge (x, y) in the path it holds that d(x) ≥ d(y)+w(x, y), then d(v) ≥ d(u)+w(p),

and if for some edge the inequality is strict, then d(v) > d(u) + w(p). The second

fact is similar: If c is a cycle such that for each edge (x, y) in the cycle it holds that

d(x) ≥ d(y) + w(x, y), then 0 ≥ w(c), and if for some edge the inequality is strict, then

the cycle is strictly negative. Using these facts we can now give an intuition why the

lemma holds.

The assumptions of Theorem 3.1, conditions (i.) and (ii.), are trivially satisfied in

the first iteration of LOWERWEAKUPPERBOUND(), as was already mentioned. During

the execution of EVALUATESTRATEGY(), conditions (i.) and (ii.) remain satisfied, for the

following reasons. The d values of vertices from D are weights of longest paths to B, and

so each edge (x, y) emanating from a vertex from D \ B satisfies d(x) ≥ d(y) + w(x, y).

Only vertices with all outgoing edges negative with the potential transformation are

removed from the set B, i.e., only the vertices with each outgoing edge (x, y) satisfying

d(x) > d(y) + w(x, y). Using the facts from the previous paragraph, we can conclude

that all newly formed cycles in Gπ(D \ B) are negative and the weights of longest paths

to B cannot increase. So to complete the intuition, it remains to showwhy the conditions

still hold after the strategy improvement and why the strategy improvement results in

decrease of the d vector. This follows from the fact that the new edges introduced by

the strategy improvement are negative with the potential transformation.

Lemma 3.4 The procedure LOWERWEAKUPPERBOUND() always terminates.

Proof: By Lemma 3.3, di decreases in each iteration. For each v ∈ V , di(v) is bounded

from below by the term −(|V | − 1) · W, because it is the weight of some path in G with

no repeated vertices (Except for the case when di(v) = −∞, but this is obviously not a

problem). Since di is a vector of integers, infinite chain of improvements is not possible,

and so termination is guaranteed. �

The next theorem is the main theorem of this paper which establishes the correctness

of LOWERWEAKUPPERBOUND(). Its proof is in Appendix Section 6.2. The key idea

of the proof is to define strategies for both players with the following properties. Let

ds := LOWERWEAKUPPERBOUND(Γ, b). Max’s strategy that we will define ensures that

for each vertex v ∈ V , ds(v) is a sufficient amount of initial energy no matter what

his opponent does, and Min’s strategy that we will define ensures that Max cannot do

with smaller amount of initial energy. In particular, for vertices with ds(v) = ∞, the

strategy ensures that Max will eventually go negative or traverse a path segment of
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weight less than −b with arbitrarily large amount of initial energy. From the existence

of such strategies it follows that for each v ∈ V , ds(v) = lwubΓ
b(v), and both strategies

are optimal with respect to the lower-weak-upper-bound problem.

The optimal strategy of Max is constructed from the final longest path forest com-

puted by EVALUATESTRATEGY() and the non-negative (with potential transformation)

edges emanating from the final set B. The optimal strategy of Min is more complicated.

There is a theorem in [2] which claims that Min can restrict herself to positional

strategies. Unfortunately, this is not true. Unlike Max, Min sometimes needs memory.

Example 3.2 is a proof of this fact, because none of the two positional strategies of Min

guarantees that Max loses from the vertex v3. However, Min can play optimally using

the sequence of positional strategies computed by our algorithm. In Example 3.2, to

guarantee that Max loses from v3, Min first sends the play from v3 to v4 and when it

returns back to v3, she sends the play to v1. As a result, a path of weight −20 is traversed

and since b = 15, Max loses.

In general, let π0, π1, . . . be the sequence of positional strategies computed by the

algorithm. Min uses the sequence in the following way: if the play starts from a vertex

with finite final d value and never leaves the set of vertices with finite final d value,

then Min uses the last strategy in the sequence, and it is the best she can do, as stated

by Theorem 3.1. If the play starts or gets to a vertex with infinite final d value, she uses

the strategy that caused that the d value of that vertex became −∞, but only until the

play gets to a vertex that was made infinite by some strategy with lower index. At that

moment Min switches to the appropriate strategy. In particular, Min never switches to

a strategy with higher index.

Theorem 3.5 Let ds := LOWERWEAKUPPERBOUND(Γ, b), then for each v ∈ V , ds(v) =

lwubΓ
b(v).

The algorithm has a pseudopolynomial time complexity: O(|V |2·(|V |·log |V |+|E|)·W).

It takes O(|V |2 ·W) iterations until the while-loop on lines 5–19 terminates. The reason is

that for each v ∈ V , if d(v) > −∞, then d(v) ≥ −(|V | − 1) ·W, because d(v) is the weight

of some path with no repeated vertices, and so the d vector can be improved at most

O(|V |2 ·W) times. Each iteration, if considered separately, takes O(|V | ·(|V | · log |V |+ |E|)),

so one would say that the overall complexity should be O(|V |3 · (|V | · log |V | + |E|) · W).

However, the number of elements of the set Bi in EVALUATESTRATEGY() never in-

creases, even between two distinct calls of the evaluation procedure, hence the amor-
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tized complexity of one iteration is only O(|V | · log |V | + |E|). Therefore, the overall

complexity is better by a factor of |V |.

The algorithm can even be improved so that its complexity is O(|V |·(|V |·log |V |+ |E|)·

W). This is accomplished by efficient computation of vertices which which will update

their d value in the next iteration so that computational time is not wasted on vertices

whose d value is not going to change. Interestingly enough, the same technique can be

used to improve the complexity of the algorithm of Björklund and Vorobyov so that the

complexities of the two algorithms are the same. Detailed description of the technique

is in Appendix Section 6.3.

4 Experimental Evaluation

Our experimental study compares four algorithms for solving the lower-bound and the

lower-weak-upper-bound problems. The first is value iteration [6, 10] (VI). The second

and the third are combinations of VI with other algorithm. Finally, the fourth algorithm

is our algorithm KASI. We will now briefly describe the algorithms based on VI.

Let (Γ, b) be an instance of the lower-weak-upper-bound problem. VI starts with

d0(v) = 0, for each v ∈ V , and then computes d1, d2, . . . according to the following rules.

di+1(v) =






x = min(v,u)∈Emax(0, di(u) − w(v, u)) if v ∈ VMax ∧ x ≤ b

x = max(v,u)∈Emax(0, di(u) − w(v, u)) if v ∈ VMin ∧ x ≤ b

∞ otherwise

It is easy to see that for each v ∈ V and k ∈ N0, dk(v) is the minimum amount of

Max’s initial energy that enables him to keep the sum of traversed edges, plus dk(v),

greater or equal to zero in a k-step play. The computation continues until two con-

secutive d vectors are equal. The last d vector is then the desired vector lwubΓ
b. If

b = (|V | − 1) · W, the algorithm solves the lower-bound problem. The complexity of

the straightforward implementation of the algorithm is O(|V |2 · |E| · W), which was im-

proved in [6, 10] to O(|V | · |E| · W), which is slightly better than the complexity of KASI.

The shortcoming of VI is that it takes enormous time before the vertices with infinite

lbΓ and lwubΓ
b value are identified. That’s why we first compute the vertices with ν < 0

by some fast MPG solving algorithm and then apply VI on the rest of the graph. For

the lower-bound problem, the vertices with ν < 0 are exactly the vertices with infinite

lbΓ value. For the lower-weak-upper-bound problem, the vertices with ν < 0 might
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be a strict subset of the vertices with infinite lwubΓ
b value, but still the preprocessing

sometimes saves a lot of time in practice. It is obvious that on MPGs with all vertices

with ν ≥ 0 the preprocessing does not help at all. It is also not helpful for the lower-

weak-upper-bound problem for small bound b.

According to our experiments, which were partly published in [5], the fastest algo-

rithms in practice for dividing the vertices of an MPG into those with ν ≥ 0 and ν < 0

are the algorithm of Björklund and Vorobyov [1] (BV) and the algorithm of Schewe [17]

(SW). The fact that they are the fastest does not directly follow from [5], because that

paper focuses on parallel algorithms and computation of the exact ν values.

The original algorithm BV is a sub-exponential randomized algorithm. To prove that

the algorithm is sub-exponential, some restrictions had to be imposed. If these restric-

tions are not obeyed, BV runs faster. Therefore, we decided not to obey the restrictions

and use only the “deterministic part” of the algorithm. We used only the modified BV

algorithm in our experimental study. We even improved the complexity of the deter-

ministic algorithm from O(|V |2 · |E| · W) to O(|V | · (|V | · log |V | + |E|) · W) using the same

technique as for the improvement of the complexity of KASI which is described in Ap-

pendix Section 6.3. Since the results of the improved BV were significantly better on all

input instances included in our experimental study, all results of BV in this paper are

the results of the improved BV.

The complexity of SW is O(|V |2 · (|V | · log |V | + |E|) · W). It might seem that this is in

contradiction with the title of Schewe’s paper [17], because if some algorithm is optimal,

one would expect that there are no algorithms with better complexity. However, the

term “optimal” in the title of the paper refers to the strategy improvement technique.

SW is also a strategy improvement algorithm, and the strategy improvement steps in

SW are optimal in a certain sense.

We note that any algorithm that divides the vertices of anMPG into those with ν ≥ 0

and those ν < 0 can be used to solve the lower-bound and the lower-weak-upper-bound

problem with the help of binary search, but it requires introduction of auxiliary edges

and vertices into the input MPG and repeated application of the algorithm. According

to our experiments, BV and SW run no faster than KASI. Therefore, solving the two

problems by repeated application of BV and SW would lead to higher runtimes than

the runtimes of KASI. If we use the reduction technique from [2], then BV/SW has to be

executed Θ(|V | · log(|V | ·W)) times to solve the lower-bound problem, and Θ(|V | · log b)

times to solve the lower-weak-upper-bound. That’s why we compared KASI only with
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the algorithm VI and the two combined algorithms: VI + BV and VI + SW. Both the

complexity of BV and the complexity of SW exceed the complexity of VI, and so the

complexities of the combined algorithms are the complexities of BV and SW.

4.1 Input MPGs

We experimented with completely random MPGs as well as more structured synthetic

MPGs and MPGs modeling simple reactive systems. The synthetic MPGs were gener-

ated by two generators, namely SPRAND [8] and TOR [7], downloadable from [13]. The

outputs of these generators are only directed weighted graphs, and so we had to divide

vertices between Max and Min ourselves. We divided them uniformly at random. The

MPGs modeling simple reactive systems we created ourselves.

SPRAND was used to generate the “randx” MPG family. Each of these MPGs con-

tains |E| = x· |V | edges and consist of a randomHamiltonian cycle and |E|− |V | additional

random edges, with weights chosen uniformly at random from [1, 10000]. Tomake these

inputs harder for the algorithms, in each of them, we subtracted a constant from each

edge-weight so that the ν value of each vertex is close to 0.

TOR was used for generation of the families “sqnc”, “lnc”, and “pnc”. The sqnc and

lnc families are 2-dimensional grids with wrap-around, while the pnc family contains

layered networks embedded on a torus. We also created subfamilies of each of the

three families by adding cycles to the graphs. For more information on these inputs we

refer you to [12] or [5]. Like for the SPRAND generated inputs, we adjusted each TOR

generated MPG so that the ν value of each vertex is close to 0.

As for the MPGs modeling simple reactive systems, we created three parameterized

models. The first is called “collect” and models a robot on a ground with obstacles

which has to collect items occurring at different locations according to certain rules.

Moving and even idling consumes energy, and so the robot has to return to its docking

station from time to time to recharge. By solving the lower-bound, or the lower-weak-

upper-bound problem for the correspondingMPG, depending onwhether there is some

upper bound on the robot’s energy, we find out from which initial configurations the

robot has a strategy which ensures that it will never consume all of its energy outside

the docking station, and we also get some strategy which ensures it. For each “good”

initial configuration, we also find out the minimal sufficient amount of initial energy.

We note that the energy is not a part of the states of the model. If it was, the problem

would be much simpler. We could simply compute the set of states from which Min
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has a strategy to get the play to a state where the robot has zero energy and it is not

in the docking station. However, making the energy part of the states would cause an

enormous increase in the number of states and make the model unmanageable.

The second model is called “supply” and models a truck which delivers material to

various locations the selection of which is beyond its control. The goal is to never run

out of the material so that the truck is always able to satisfy each delivery request. We

also want to know the minimal sufficient initial amount of the material.

The third model is called “taxi” and models a taxi which transports people at their

request. Its operation costs money and the taxi also earns money. The goal is to never

run out of money, and we also want to know the minimal sufficient initial amount of

money.

To get MPGs of manageable size, the models are, of course, very simplified, but they

are still much closer to real world problems than the synthetic MPGs.

4.2 Results

The experiments were carried out on a machine equipped with two dual-core Intel r©

Xeon r© 2.00GHz processors and 16GB of RAM, running GNU/Linux kernel version

2.6.26. All algorithms were implemented in C++ and compiled with GCC 4.3.2 with

the “-O2” option.

Table 1 gives the results of our experiments. The first column of the table contains

names of the input MPGs. Numbers of vertices and edges, in thousands, are in brackets.

The MPGs prefixed by “sqnc”, “lnc”, and “pnc” were generated by the TOR generator.

They all contain 218 vertices. The MPGs prefixed by “rand” were generated by the

SPRAND generator. Both for the rand5 and rand10 family, we experimented with three

sizes of graphs, namely, with 218 vertices – no suffix, with 219 vertices – suffix “b”, and

with 220 vertices – suffix “h”. Finally, the MPGs prefixed by “collect”, “supply”, and

“taxi” are the models of simple reactive systems created by ourselves. For each model,

we tried two different values of parameters.

Each MPG used in the experiments has eight columns in the table. Each column

headed by a name of an algorithm contains execution times of that algorithm in seconds,

excluding the time for reading input. The term “n/a” means more than 10 hours. The

first four columns contain results for the lower-bound problem, the last four columns

contain the results for the lower-weak-upper-bound problem, which contains a bound

b as a part of the input. If the bound is too high, the algorithms essentially solve the
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lower-bound lower-weak-upper-bound

MPG VI VI + BV VI + SW KASI VI VI + BV VI + SW KASI

sqnc01 (262k 524k) n/a 31.22 55.40 17.83 13.28 19.41 43.54 9.06

sqnc02 (262k 524k) n/a 13.30 20.14 11.01 2.88 10.70 17.52 3.57

sqnc03 (262k 525k) n/a 3.18 3.54 1.58 0.75 3.20 3.55 1.07

sqnc04 (262k 532k) n/a 9.34 11.49 8.48 1.65 8.55 10.70 2.53

sqnc05 (262k 786k) n/a 10.45 14.24 4.89 1.20 10.17 13.95 1.72

lnc01 (262k 524k) 60.79 67.89 111.32 11.31 17.49 27.85 71.19 5.99

lnc02 (262k 524k) 57.63 63.99 93.89 10.34 14.68 24.04 53.87 5.06

lnc03 (262k 525k) n/a 3.30 4.39 1.48 0.73 3.34 4.41 1.03

lnc04 (262k 528k) n/a 21.05 25.28 10.63 3.53 11.65 15.64 4.24

lnc05 (262k 786k) n/a 10.89 11.30 4.77 1.17 10.64 11.03 1.65

pnc01 (262k 2097k) n/a 24.27 16.08 3.80 1.41 24.31 16.08 1.98

pnc02 (262k 2097k) n/a 25.49 15.37 3.80 1.43 25.55 15.38 1.98

pnc03 (262k 2098k) n/a 23.48 17.66 3.86 1.48 23.53 17.66 2.04

pnc04 (262k 2101k) n/a 26.36 25.24 3.91 1.49 26.34 25.23 2.05

pnc05 (262k 2359k) n/a 27.09 29.69 4.71 1.97 27.15 29.69 2.51

rand5 (262k 1310k) n/a 19.16 20.42 4.55 1.65 19.27 20.54 2.39

rand5b (524k 2621k) n/a 36.29 33.06 10.09 3.53 36.52 33.24 5.17

rand5h (1048k 5242k) n/a 86.55 59.01 21.35 7.45 87.16 59.48 11.07

rand10 (262k 2621k) n/a 39.30 36.96 5.60 2.37 39.39 37.00 3.68

rand10b (524k 5242k) n/a 105.69 43.43 14.54 5.07 105.97 43.45 7.98

rand10h (1048k 10485k) n/a 140.46 110.68 29.27 11.38 140.57 110.82 17.52

collect1 (636k 3309k) 996.08 1027.12 1032.55 5.68 531.40 544.77 563.78 4.89

collect2 (636k 3309k) 338.56 352.45 367.12 5.70 181.35 189.17 208.52 4.89

supply1 (363k 1014k) 6956.23 16.03 109.72 1.79 7.72 8.87 102.97 1.85

supply2 (727k 2030k) 28046.54 65.08 449.47 3.64 30.84 33.31 418.88 3.77

taxi1 (509k 979k) 11.64 12.85 13.16 1.29 0.70 1.49 2.17 1.38

taxi2 (509k 979k) 6.00 7.03 7.51 1.29 0.70 1.49 2.17 1.38

Table 1: Runtimes of the experiments (in seconds)
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lower-bound problem, and so the runtimes are practically the same as for the lower-

bound problem. If the bound is too low, all vertices in our inputs have infinite lwubΓ
b

value, and they become very easy to solve. We tried various values of b, and for this

paper, we selected as b the average lbΓ value of the vertices with finite lbΓ value divided

by 2, which seems to be a reasonable amount so that the results provide insight. We note

that smaller b makes the computation of VI and KASI faster. However, the BV and SW

parts of VI + BV andVI + SW always perform the samework, and so for b ≪ (|V |−1)·W,

the combined algorithms are often slower than VI alone.

The table shows that the algorithm KASI was the fastest on all inputs for the lower-

bound problem. For the lower-weak-upper-bound problem it was never slower than

the fastest algorithm by more than a factor of 2, and for some inputs it was significantly

faster. This was true for all values of b that we tried. Therefore, the results clearly

suggest that KASI is the best algorithm. In addition, there are several other interesting

points.

VI is practically unusable for solving the lower-bound problem for MPGs with some

vertices with ν < 0. Except for lnc01–02, collect1–2, and taxi1–2, all input MPGs had

vertices with ν < 0. The preprocessing by BV and SW reduces the execution time by

orders of magnitude for these MPGs. On the other hand, for the lower-weak-upper-

bound problem for the bound we selected, VI is often very fast and the preprocessing

slows the computation down in most cases. VI was even faster than KASI on a lot of

inputs. However, the difference was never significant, and it was mostly caused by

the initialization phase of the algorithms, which takes more time for the more complex

algorithm KASI. Moreover, for some inputs, especially from the “collect” family, VI is

very slow. VI makes a lot of iterations for the inputs from the collect family, because

the robot can survive for quite long by idling, which consumes a very small amount of

energy per time unit. However, it cannot survive by idling forever. The i-th iteration of

VI computes the minimal sufficient initial energy to keep the energy level non-negative

for i time units, and so until the idling does not consume at least as much energy as

the minimal sufficient initial energy to keep the energy level non-negative forever, new

iterations have to be started. We believe that this is a typical situation for this kind of

application. Other inputs for which VI took a lot of time are: sqnc01, lnc01–02, supply1–

2.
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Finally, we comment on scalability of the algorithms. As the experiments on the

SPRAND generated inputs suggest, the runtimes of the algorithms increase no faster

than the term |V | · |E|, and so they are able to scale up to very large MPGs.

5 Conclusion

Weproposed a novel algorithm for solving the lower-bound and the lower-weak-upper-

bound problems for MPGs. Our algorithm, called Keep Alive Strategy Improvement

(KASI), is based on the strategy improvement technique which is very efficient in prac-

tice. To demonstrate that the algorithm is able to solve the two problems for largeMPGs,

we carried out an experimental study. In the study we compared KASI with the value

iteration algorithm (VI) from [6, 10], which we also improved by combining it with the

algorithm of Björklund and Vorobyov [1] (BV) and the algorithm of Schewe (SW). KASI

is the clear winner of the experimental study.

Two additional results of this paper are the improvement of the complexity of BV,

and characterization of Min’s optimal strategies w.r.t. the lower-weak-upper-bound

problem.
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6 Appendix

6.1 Modified Dijkstra’s Algorithm

1 proc DIJKSTRA(Gπ = (V, Eπ,w), b, X, dp)

2 S = {v ∈ V | dp(v) > −∞}

3 foreach v ∈ S do key(v) := −∞ od

4 foreach v ∈ X do

5 key(v) := 0

6 q.enqueue(v)

7 queued(v) := true

8 od

9 [q is a maximum priority queue of vertices, where the priority of vertex v is key(v)]

10 while ¬q.empty() do

11 u := q.dequeue()

12 foreach (v, u) ∈ Eπ do

13 if v ∈ S ∧ v /∈ X then

14 tmp := key(u) + w(v, u) − dp(v) + dp(u)

15 if dp(v) + tmp ≥ −b ∧ tmp > key(v) then

16 key(v) := tmp

17 if ¬queued(v) then q.enqueue(v); queued(v) := true fi

18 fi

19 fi

20 od

21 od

22 foreach v ∈ S do do(v) := dp(v) + key(v) od

23 foreach v ∈ V \ S do do(v) = −∞ od

24 return do

25 end

Figure 4: Modified Dijkstra’s algorithm

In Figure 4 is the pseudocode of the modified Dijkstra’s algorithm used in the strat-

egy evaluation procedure EVALUATESTRATEGY(). The input to DIJKSTRA() consists of

four parts. The first part is a directed graph Gπ. The graph is denoted by Gπ to em-

phasize which graph the main algorithm KASI computes longest paths in. The second

part of the input is a bound b, the third part is a set X, to which the algorithm computes
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longest paths, and finally the fourth part is a vector of integers dp used for potential

transformation of edge-weights. The vector dp contains longest path weights computed

in different setting. DIJKSTRA() computes the difference between dp and the longest

path weights in the current setting and then adds the difference to dp, thus obtaining

the current longest path weights, which are returned as output.

DIJKSTRA() works only with the vertices in the set S computed on line 2. The set S

contains vertices from V with finite dp value. On line 3, the tentative distance key(v)

of each vertex v ∈ S is initialized to −∞. The algorithm computes longest paths to the

set X, and so the initialization phase on lines 4–8 sets key(v) of each vertex v ∈ X to the

(final) value 0. Each vertex from X is also put to the maximum priority queue q and

its presence in the queue is recorded in the vector queued. The input to DIJKSTRA()

always guarantees that X ⊆ S. The priority of a vertex v in the maximum priority queue

q is key(v).

The main loop on lines 10–21 differs from the standard Dijkstra’s algorithm only in

the following. For each v ∈ S, the updates of key(v) that do not lead to path weight

greater or equal to −b are ignored.

On line 22, the longest pathweight do(v) for each v ∈ S is computed as dp(v)+key(v).

Please note that key(v) might be equal to −∞, and so do(v) is set to −∞ too. These are

the vertices for which there is no path to X in G(S) or each such path has a suffix of

weight less than −b.

On line 23, for each vertex v ∈ V \ S (dp(v) = −∞), do(v) is simply set to −∞. The

vector do is then returned as output on line 24.

6.2 Proofs

Lemma 6.1 Let (Γ, b) be an instance of the lower-weak-upper-bound problem. Let further

π ∈ ΠΓ
b, and finally let d−1 ∈ (Z ∪ {−∞})V be such that for A = {v ∈ V | d−1(v) = 0}

and D = {v ∈ V | d−1(v) > −∞}, the conditions (i.) and (ii.) hold. Then in

EVALUATESTRATEGY(Γ, b, π, d−1), the following is an invariant of the while-loop on lines 3–7.

The invariant holds just after line 4 of the algorithm. That is after DIJKSTRA() was executed

and before the variable i is incremented. Let

Di = {v ∈ D | di(v) > −∞}

then the following holds.
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1. (∀v ∈ D)(di(v) = max{w(p)| p ∈ pathGπ(D)(v, Bi) ∧

(∀pf ∈ suffix(p))(w(pf) ≥ −b) }

2. di ≤ di−1 ∧ ((∃v ∈ Di−1)(∀(v, u) ∈ Eπ)(di−1(v) > di−1(u) + w(v, u)) ⇒ di < di−1)

3. (∀v ∈ Bi)(di(v) = 0)

4. (∀v ∈ Di \ Bi)(di(v) < 0)

5. (∀v ∈ Di \ Bi)(∀(v, u) ∈ Eπ)(di(v) ≥ di(u) + w(v, u))

6. (∀c ∈ cycleG(Di\Bi))(w(c) < 0)

7. (∀v ∈ D \ Di)(∀p ∈ pathGπ(D)(v, Bi))(∃pf ∈ suffix(p))(w(pf) < −b)

8. (∀c ∈ cycleG(D\Bi))(w(c) ≥ 0 ⇒ (∃ps ∈ segment(c))(w(ps) < −b))

9. (∀v ∈ V \ D)(di(v) = −∞)

Proof: In the whole proof, all references to lines in pseudocode are references to lines in

pseudocode of EVALUATESTRATEGY() in Figure 1. We will prove the lemma by induc-

tion on i. For technical convenience, we define B−1 = {v ∈ V | d−1(v) = 0} and start the

induction from −1.

i = −1. We do not require that the property 1 holds for i = −1, and so we are not

allowed to use it when we invoke induction hypothesis. Also, property 2 cannot be

proved, because neither d−2 nor D−2 is defined. However, the remaining properties are

satisfied. It holds that D−1 = D and B−1 = A, and so the properties 3–6 follow directly

from the assumptions of the lemma, the properties 7–8 hold trivially, and the property 9

follows from the definition of the set D.

i > −1. Let’s suppose that the invariant holds for i − 1. We now show that it

holds also for i. Recall that D−1 = D. To show the property 1, we have to prove that

DIJKSTRA() on line 4 terminates and gives correct longest path weights. DIJKSTRA()

works only with the graph Gπ(Di−1), where the di−1 value of each vertex is finite. For

each vertex v ∈ V \ Di−1, it simply assigns −∞ to di(v). This immediately implies that:

Di ⊆ Di−1

Therefore, to prove that DIJKSTRA() gives correct results, we need to show that for

each vertex v ∈ D \ Di−1, each path from v to Bi has a suffix of weight less than −b,
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and for each v ∈ Di−1 \ Bi, each edge (v, u) emanating from v is non-positive with the

potential transformation, i.e., w(v, u) − di−1(v) + di−1(u) ≤ 0.

If v ∈ Di−1\Bi−1, then by the induction hypothesis, part 5, we havew(v, u)−di−1(v)+

di−1(u) ≤ 0 for each edge (v, u) emanating from v. Because of the way Bi is computed

(see line 2 and line 6 of the pseudocode) it holds that:

Bi ⊆ Bi−1

For v ∈ Bi−1 \ Bi, we even have strict inequality w(v, u) − di−1(v) + di−1(u) < 0 for

each edge (v, u) emanating from v. For i = 0 this follows from way B0 was computed

on line 2 of the pseudocode. For i > 0 the inequality follows from the way Bi was

computed on line 6. To complete the proof of correct termination of DIJKSTRA(), we

show that for v ∈ D \ Di−1, each path from v to Bi contains a suffix of weight less than

−b.

Let v ∈ D \ Di−1. Let p = (v = v0, . . . , vk) ∈ pathGπ(D)(v, Bi), and let pf = (vf, . . . , vk)

be the longest suffix of p with all di−1 values of vertices finite. Let further vs be the

first vertex in pf such that vs ∈ Bi−1. Since Bi ⊆ Bi−1, there must be such a vertex. Let

ps = (vs, . . . , vk). Please note that ps must be entirely in Di−1. Therefore, from what

was proved above it follows that for each j ∈ {s, s + 1, . . . , k − 1}, w(vj, vj+1) − di−1(vj) +

di−1(vj+1) ≤ 0. If we sum the inequalities, we get w(ps) − di−1(vs) + di−1(vk) ≤ 0, and

since vk ∈ Bi ⊆ Bi−1, di−1(vk) = 0, and so w(ps) ≤ di−1(vs).

By the induction hypothesis, part 3–4, di−1(vs) ≤ 0, and so w(ps) ≤ 0. By the choice

of pf, di−1(vf−1) = −∞, which means that vf−1 ∈ D \ Di−1, and so by the induction hy-

pothesis, part 7, each path from vf−1 to Bi−1 has a suffix of weight less than −b. In partic-

ular, the path (vf−1, vf, . . . , vs) has a suffix of weight less than −b, and since w(ps) ≤ 0,

so does does the path (vf−1, vf, . . . , vs, . . . , vk). Therefore, since pf is a suffix of p, also p

has a suffix of weight less than −b. Together we have that DIJKSTRA() terminates and

gives us the vector di such that the property 1 holds.

Let’s now prove the properties 2–9. The property 3 follows directly from the prop-

erty 1. We now show the property 2. More specifically, we will show that for each

v ∈ V \ X, di(v) ≤ di−1(v), and for each v ∈ X, di(v) < di−1(v), where X = {v ∈ V |

(∀(v, u) ∈ Eπ)(di−1(v) > di−1(u) + w(v, u))}.

It holds that X ⊆ Di−1, because for each v ∈ V \ Di−1, di−1(v) = −∞, and so there

cannot be an edge (v, u) such that di−1(v) > di−1(u)+w(v, u). Therefore, for v ∈ V \Di−1

29



we need to prove just the inequality di(v) ≤ di−1(v). This is easy, because DIJKSTRA()

assigns −∞ to di(v).

It also holds that X ∩ Bi = ∅, because for each v ∈ Bi there is an edge (v, u) such that

w(v, u) − di−1(v) + di−1(u) ≥ 0. Therefore, for v ∈ Bi we also need to prove just the

inequality di(v) ≤ di−1(v). By the property 3, di(v) = 0, and since Bi ⊆ Bi−1, di−1(v) = 0

holds by the induction hypothesis, part 3, and so di(v) ≤ di−1(v). It remains to show

that di(v) ≤ di−1(v) holds for v ∈ Di−1 \ X, and for v ∈ X, it holds di(v) < di−1(v).

Let v ∈ Di−1 \ X. If there is no path from v to Bi in Di−1, then di(v) = −∞, and so

di(v) ≤ di−1(v). If there is a path from v to Bi in Di−1, then let p = (v = v0, . . . , vk) ∈

pathGπ(Di−1)(v, Bi). If vj ∈ p ∩ X, then w(vj, vj+1) − di−1(vj) + di−1(vj+1) < 0. If vj ∈

p∩(Di−1\X), thenw(vj, vj+1)−di−1(vj)+di−1(vj+1) ≤ 0. So together we havew(vj, vj+1)−

di−1(vj) + di−1(vj+1) ≤ 0 for all j ∈ {0, . . . , k − 1}. By summing the inequalities we

get w(p) − di−1(v) + di−1(vk) ≤ 0, and since vk ∈ Bi ⊆ Bi−1, di−1(vk) = 0, and so

w(p) ≤ di−1(v). Moreover, if some vertex in p other than vk is from X, then we have

strict inequality w(p) < di−1(v). Therefore, the weight of a longest path from v to Bi

cannot exceed di−1(v), and so di(v) ≤ di−1(v).

Let finally v ∈ X. Then the inequality di(v) < di−1(v) follows from the previous

paragraph, because each path from v to Bi contains a vertex from X which is not the last

vertex in the path, namely the vertex v. This completes the proof of the property 2. We

can now prove also the property 4.

It holds that Bi−1 \ Bi ⊆ X, it follows from the way Bi was computed. Therefore, for

each v ∈ Bi−1 \ Bi, di(v) < di−1(v) = 0. Since di(v) ≤ di−1(v) holds for each v ∈ V ,

for v ∈ Di \ Bi−1 we have di(v) ≤ di−1(v) < 0. The inequality di−1(v) < 0 holds by the

induction hypothesis, part 4, because Di ⊆ Di−1. Together we have di(v) < 0 for each

v ∈ Di \ Bi, hence the property 4 is proved.

The property 5 follows from the property 1, because of the properties of weights of

longest paths. We will now prove the property 6.

Let c = (v0, . . . , vk−1, v0) ∈ cycleG(Di\Bi). If c is in Di \ Bi−1, then it is also in Di−1 \

Bi−1 and its negativeness follows from the induction hypothesis, part 6. Otherwise, it

contains a vertex from Bi−1 \ Bi. If vj ∈ c ∩ (Bi−1 \ Bi), then w(vj, vj+1) − di−1(vj) +

di−1(vj+1) < 0. If vj ∈ c ∩ (Di \ Bi−1), then w(vj, vj+1) − di−1(vj) + di−1(vj+1) ≤ 0. So

together we have that w(vj, vj+1) − di−1(vj) + di−1(vj+1) ≤ 0 for all j ∈ {0, . . . , k − 1}

and for at least one vertex the inequality is strict. By summing the inequalities for each
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vj ∈ c, we get that w(c) < 0. Therefore, the cycle c is negative and the property 6 is

proved.

The property 7 follows from the property 1, because for each v ∈ D\Di, di(v) = −∞.

Let’s now show the property 8.

Let c = (v0, . . . , vk−1, v0) ∈ cycleG(D\Bi). If c is completely in D\Bi−1, then the desired

properties follow from the induction hypothesis, part 8, so let’s assume that c contains

a vertex from Bi−1 \ Bi. Let’s further assume that the cycle is in Di−1, and so for each

vj ∈ c, di−1(vj) is finite. If vj ∈ Bi−1 \ Bi then w(vj, vj+1) − di−1(vj) + di−1(vj+1) < 0. If

vj ∈ Di−1 \ Bi−1, then w(vj, vj+1) − di−1(vj) + di−1(vj+1) ≤ 0. So together we have that

w(vj, vj+1)−di−1(vj)+di−1(vj+1) ≤ 0 for all j ∈ {0, . . . , k−1} and for at least one vertex the

inequality is strict. By summing the inequalities for each vj ∈ c, we get that w(c) < 0.

Now let’s assume that some vj ∈ c has di−1(vj) = −∞. It follows that vj ∈ D \ Di−1.

The cycle c contains a vertex from Bi−1 \ Bi, so let vs be the first such vertex following vj

in c. Then by induction hypothesis, part 7, the path ps = (vj, vj+1, . . . , vs) ∈ segment(c)

has a suffix of weight less than −b. The suffix is also a segment of c, and so c contains a

segment of weight less than −b, which completes the proof of the property 8.

Finally, the property 9 follows from the fact that DIJKSTRA() works only with the

graph Gπ(Di−1) and for each v ∈ V \ Di−1, it simply assigns −∞ to di(v). Therefore,

since V \ D ⊆ V \ Di−1, it holds that for each v ∈ V \ D, di(v) = −∞. �

Lemma 6.2 Let (Γ, b) be an instance of the lower-weak-upper-bound problem. Let further π ∈

ΠΓ
M, and finally let d−1 ∈ (Z∪{−∞})V be such that forA = {v ∈ V | d−1(v) = 0} andD = {v ∈

V | d−1(v) > −∞}, the conditions (i.) and (ii.) hold. Then EVALUATESTRATEGY(Γ, b, π, d−1)

terminates and for d := EVALUATESTRATEGY(Γ, b, π, d−1) it holds that for each v ∈ B = {v ∈

V | d(v) = 0}, there is (v, u) ∈ Eπ such that w(v, u) − d(v) + d(u) ≥ 0.

Proof: Let’s first prove that EVALUATESTRATEGY(Γ, b, π, d−1) terminates. In the while

loop on lines 3–7 of EVALUATESTRATEGY(), no elements are added to the set Bi and

when no element is removed, the while-loop terminates, which terminates the whole

strategy evaluation algorithm. The set Bi can have at most |V | elements, and so the only

thing that can cause that EVALUATESTRATEGY() does not terminate is the procedure

DIJKSTRA(). However, there is only one loop that can prevent DIJKSTRA() from termi-

nating. Namely, the while-loop on lines 10–21. This loop terminates when the priority

queue q is empty, and since each vertex can be put to q only once and in each iteration

one vertex is removed from q, the termination of the loop is guaranteed. Therefore,

DIJKSTRA() (and so also EVALUATESTRATEGY()) always terminates.
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After the termination of the while loop on lines 3–7 of EVALUATESTRATEGY(), it

holds that B = Bi = Bi−1, and d = di−1. The set Bi was computed by removing all

vertices v with the following property from Bi−1. There is no edge (v, u) ∈ Eπ such that

w(v, u) − di−1(v) + di−1(u) ≥ 0. Therefore, since no vertex was removed in the last

iteration and since d = di−1 and B = Bi, the claim of the lemma holds. �

Lemma 6.3 Let G = (V, E, w) be a graph and let b ∈ N0 such that

(∀c ∈ cycleG)(w(c) ≥ 0 ⇒ (∃ps ∈ segment(c))(w(ps) < −b))

Then each infinite path p = (v0, v1, v2, . . .) ∈ pathG
∞ satisfies at least one of the following

properties.

1. (∀x ∈ N0)(∃n ∈ N)(
∑n−1

i=0 w(vi, vi+1) < x)

2. (∃n1, n2 ∈ N0)(n1 < n2 ∧
∑n2−1

i=n1
w(vi, vi+1) < −b)

Proof: Let G and b satisfy the assumptions of the lemma and let p = (v0, v1, v2, . . .) ∈

pathG
∞ .

It is possible to partition each prefix pf of p into a set of cycles plus some path with

at most |V | − 1 vertices. We can do it in the following way: Start from v0 and go along

pf until an already visited vertex is encountered, remove the found cycle from the path,

leaving only the first vertex of the cycle, and start over. Continue this process until we

are left with a path with no repeated vertex.

Let W = maxe∈E |w(e)|, x ∈ N0, and let pf be a long enough prefix of p, namely

l(pf) > (|V |− 1)+ (W · (|V |− 1)+x+ 1) · |V |. Then there are at least (W · (|V |− 1)+x+ 1)

cycles in the partition of pf. If all the cycles are negative, then w(pf) < x. The reason is

that the weight of the remaining path in the partition is at most W ·(|V |−1) and the total

weight of (W · (|V | − 1)+ x + 1) negative cycles is less than (W · (|V | − 1) + x). Therefore,

if all the cycles are negative, then the property 1 is satisfied.

If there is some non-negative cycle c in the partition, then, by assumptions of the

lemma, it must have a segment of weight less than −b. However, this does not trivially

imply that pf contains a segment of weight less than −b, because the cycle might be

scattered across the path. More precisely, c = (vi0 , . . . , vik−1
, vik) where vi0 = vik , and

for each j ∈ {0, . . . , k − 1}, it holds that ij < ij+1 ∧ (ij+1 = ij + 1 ∨ vij+1−1 = vij). If for

some path of the form pij = (vij , vij+1, . . . , vij+1−1) it holds that l(pij) > 0, then the path

pij “breaks” the cycle c in pf. However, since vij+1−1 = vij , the path pij itself is a cycle
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and by the assumptions of the lemma, pij is negative or it contains a segment of weight

less than −b. In the latter case, the property 2 follows. If all the “breaking” paths of c

are negative, then since c contains a segment of weight −b, so does the segment of pf

starting from vi0 and ending at vik , and so the property 2 is also satisfied. �

Proof: [Proof of Theorem 3.1] In the whole proof, all references to lines in pseudocode

are references to lines in pseudocode of EVALUATESTRATEGY() in Figure 1. The proce-

dure EVALUATESTRATEGY(Γ, b, π, d−1) terminates by Lemma 6.2. Let’s now prove that

d(v) = −lwubΓπ(D)

b (v) holds for each v ∈ D.

Let d := EVALUATESTRATEGY(Γ, b, π, d−1), and let

xv = −min{ x ∈ N0 |

(∃p = (v = v0, v1, v2, . . .) ∈ pathGπ(D)
∞ )

( (∀n ∈ N)(x +
∑n−1

j=0 w(vj, vj+1) ≥ 0) ∧

(∀n1, n2 ∈ N0)(n1 < n2 ⇒
∑n2−1

j=n1
w(vj, vj+1) ≥ −b) ) }

We will first prove that xv = −lwubΓπ(D)

b for each v ∈ D, and then we will prove that

d(v) = xv for each v ∈ D. Recall that, by definition:

lwubΓπ(D)

b (v) = min{x ∈ N0 | (∃σ ∈ ΣΓπ(D))(∀π ∈ ΠΓπ(D))

( outcomeΓπ(D)(v, σ, π) = (v = v0, v1, v2, . . .) ∧

(∀n ∈ N)(x +
∑n−1

j=0 w(vj, vj+1) ≥ 0) ∧

(∀n1, n2 ∈ N0)(n1 < n2 ⇒
∑n2−1

j=n1
w(vj, vj+1) ≥ −b) ) }

Also, recall that the game graph of Γπ(D) may be different from Gπ(D). Namely,

self-loops of weight −1 are added to vertices with zero out-degree in Gπ(D). However,

for each infinite path containing such a vertex it holds that the weights of its prefixes

cannot be bounded from below. Moreover, there is only one strategy of Min in Γπ(D).

Namely, the strategy

π ′(v) =

{
π(v) if π(v) ∈ D

v if π(v) /∈ D

Therefore, for each p = (v0, v1, v2, . . .) ∈ pathGπ(D)
∞ , there is a strategy σ ∈ ΣΓπ(D) such

that outcomeΓπ(D)(v0, σ, π ′) = p. Also, for each u ∈ D and each σ ∈ ΣΓπ(D) such that the

infinite path outcomeΓπ(D)(u, σ, π ′) = (u = u0, u1, u2, . . .) satisfies
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(∃x ∈ N0)(∀n ∈ N)(x +

n−1∑

j=0

w(uj, uj+1) ≥ 0)

and

(∀n1, n2 ∈ N0)(n1 < n2 ⇒
n2−1∑

j=n1

w(uj, uj+1) ≥ −b)

it holds that outcome(u, σ, π ′) ∈ pathGπ(D)
∞ . Together, we have xv = −lwubΓπ(D)

b (v) for

each v ∈ D. Let’s now prove that d(v) = xv for each v ∈ D.

Let B = {v ∈ D | d(v) = 0} and v ∈ D. We will first prove that d(v) ≥ xv. Let

p = (v = v0, v1, v2, . . .) ∈ pathGπ(D)
∞ . If the path p does not contain any vertex from B

then by Lemma 6.1, part 6 and part 8, and by Lemma 6.3, the weights of prefixes of p

cannot be bounded from below or p has a segment of weight less than −b, and so p does

not contribute to xv.

If p contains a vertex from B, then let vf be the first vertex from B in the path p, and

let pf = (v = v0, v1, . . . , vf). Let further D ′ = {v ∈ D | d(v) > −∞} and let’s consider two

cases.

The first case is that there is some j ∈ {0, . . . , f − 1} such that vj /∈ D ′. Then by

Lemma 6.1, part 7, the path p contains a segment of weight less than −b, and so p does

not contribute to xv.

The second case is that for all j ∈ {0, . . . , f − 1}, it holds that d(vj) > −∞. Then by

Lemma 6.1, part 5, it holds that w(pf) − d(v) + d(vf) ≤ 0, and by Lemma 6.1, part 3, the

inequality simplifies to w(pf) ≤ d(v).

So far, we have proved that for each p = (v = v0, v1, v2, . . .) ∈ pathGπ(D)
∞ , at least one

of the following properties hold.

1. (∀x ∈ N0)(∃n ∈ N)(
∑n−1

j=0 w(vj, vj+1) < x)

2. (∃n1, n2 ∈ N0)(n1 < n2 ∧
∑n2−1

j=n1
w(vj, vj+1) < −b)

3. (∃n ∈ N)(
∑n−1

j=0 w(vj, vj+1) ≤ d(v))

Therefore, for each v ∈ D, d(v) ≥ xv. Let’s now prove that it also holds that d(v) ≤ xv,

hence d(v) = xv. If v /∈ D ′, then d(v) = −∞, and so d(v) ≤ xv holds trivially. For v ∈ D ′,

we will prove the inequality by finding an infinite path starting from v such that it does

not contain a segment of weight less than −b and the weight of each prefix of the path

is greater or equal to d(v).
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Let v ∈ D ′. We will construct the desired path inductively. Let pk = (v =

v0, . . . , vk) ∈ pathGπ(D) be an already constructed path, we will lengthen it by one vertex

using the following procedure:

• If vk ∈ D ′ \ B, then, by Lemma 6.1, part 1, there is a vertex u ∈ D ′ such that

(vk, u) ∈ Eπ and d(vk) = d(u) + w(vk, u). We set vk+1 = u.

• If vk ∈ B, then, by Lemma 6.2, there is a vertex u ∈ D ′ such that (vk, u) ∈ Eπ and

d(vk) ≤ d(u) + w(vk, u). We set vk+1 = u.

This way we form an infinite path p = (v = v0, v1, v2, . . .) such that for each j ∈ N0, it

holds that d(vj) ≤ d(vj+1) + w(vj, vj+1). Therefore, for each prefix pk = (v = v0, . . . , vk)

of p, it holds that d(v) ≤ d(vk) + w(pk), and since by Lemma 6.1, part 3 and part 4,

d(vk) ≤ 0, we have d(v) ≤ w(pk). It remains to show that p does not contain a segment

of weight less than −b.

Let n1, n2 ∈ N0 such that n1 < n2. By the same reasoning as in the previous

paragraph, we get that d(vn1
) ≤ d(vn2

) +
∑n2−1

j=n1
w(vj, vj+1), and so d(vn1

) − d(vn2
) ≤

∑n2−1

j=n1
w(vj, vj+1). By Lemma 6.1, part 1, 3, and 4, it holds that −b ≤ d(vn1

), d(vn2
) ≤ 0.

Therefore, d(vn1
) − d(vn2

) ≥ −b, and the theorem is proved. �

Proof: [Proof of Lemma 3.3] In the whole proof, all references to lines in pseudocode

are references to lines in pseudocode of LOWERWEAKUPPERBOUND() in Figure 2. We

will proceed by induction on i.

If i = 0, then we have to prove only the first part of the lemma. Since d−1 = (0)v∈V, it

holds that both the set A = {v ∈ V | d−1(v) = 0} and the set D = {v ∈ V | d−1(v) > −∞}

are be equal to V , i.e., A = D = V . Therefore, each vertex from D \ A and each cycle

from cycleGπ0
(D) satisfies whatever we want, because there is no such vertex and no

such cycle, and so conditions (i.) and (ii.) hold. The assumptions of Theorem 3.1 is

satisfied. Let now i > 0 and suppose the lemma holds for i − 1.

By the induction hypothesis, Γ , b, πi−1, and di−2 satisfy the assumptions of The-

orem 3.1 (and also Lemma 6.1). Therefore, by Lemma 6.1, the following holds for

di−1 returned by EVALUATESTRATEGY(). Let A ′ = {v ∈ V | di−1(v) = 0}, and

D ′ = {v ∈ V | di−1(v) > 0}. Then for each c ∈ cycleGπi−1
(D′\A′), w(c) < 0, by Lemma 6.1,

part 6. Also, for each v ∈ D ′ \ A ′, di−1(v) < 0, by Lemma 6.1, part 4, and for each edge

(v, u) ∈ Eπi−1
emanating from v, di−1(v) ≥ di−1(u) + w(v, u), by Lemma 6.1, part 5. We

will now show that the above holds also for the graph Gπi
(D ′ \ A ′), which will prove

the first part of the lemma.
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The strategy πi−1 is modified on lines 10–18 to form the new strategy πi. πi may

differ from πi−1 only on vertices from D ′ ∩ VMin . For each v ∈ D ′ ∩ VMin such that

πi(v) 6= πi−1(v), it holds that di−1(v) > di−1(πi(v)) + w(v, πi(v)). It will be important

later that another iteration of the main while-loop on lines 5–19 is started only if there

is some vertex with the above property.

It is obvious that the vertices for which Min’s strategy was improved do not violate

property (ii.) from the assumptions of Theorem 3.1. To see that property (i.) is also not

violated consider a newly formed cycle c = (v0, . . . , vk−1, v0) ∈ cycleGπi
(D′\A′). For each

j ∈ {0, . . . , k − 1}, it holds that di−1(vj) ≥ di−1(vj+1) + w(vj, vj+1), and since the cycle was

not inGπi−1
(D ′\A ′), for at least one j, the inequality is strict. Therefore, by summing the

inequalities, we get 0 > w(c) and the property (i.) from the assumptions of Theorem 3.1

holds. Together, we have that Γ , b, πi, and di−1 satisfy the assumptions of Theorem 3.1.

Thus, the first part of the lemma is proved. Since the assumptions of Theorem 3.1 (and

also Lemma 6.1) are satisfied, we can use Lemma 6.1 to prove the second part of the

lemma.

As was already mentioned there is a vertex v ∈ V , such that there is (v, u) ∈ Eπi

such that di−1(v) > di−1(u) + w(v, u). We can take any vertex at which πi differs from

πi−1 as v, and πi differs from πi−1, because otherwise the algorithm would have already

terminated. Therefore, by repeated application on Lemma 6.1, part 2, it holds that the

vector di returned by EVALUATESTRATEGY() satisfies di < di−1. This completes the

proof of the lemma. �

Proof: [Proof of Theorem 3.5] In the whole proof, all references to lines in pseudocode

are references to lines in pseudocode of LOWERWEAKUPPERBOUND() in Figure 2. By

Lemma 3.4, the procedure LOWERWEAKUPPERBOUND(Γ, b) terminates and gives us the

vector ds. We will show that there is a positional strategy of Max σ ∈ ΣΓ
M and there is a

strategy of Min π ∈ ΠΓ such that the following holds for each v ∈ V .

ds(v) ≥ min{x ∈ N0 | (∀π ′ ∈ ΠΓ)

( outcomeΓ(v, σ, π ′) = (v = v0, v1, v2, . . .) ∧

(∀n ∈ N)(x +
∑n−1

j=0 w(vj, vj+1) ≥ 0) ∧

(∀n1, n2 ∈ N0)(n1 < n2 ⇒
∑n2−1

j=n1
w(vj, vj+1) ≥ −b) ) }

(1)
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ds(v) ≤ min{x ∈ N0 | (∃σ ′ ∈ ΣΓ)

( outcomeΓ(v, σ ′, π) = (v = v0, v1, v2, . . .) ∧

(∀n ∈ N)(x +
∑n−1

j=0 w(vj, vj+1) ≥ 0) ∧

(∀n1, n2 ∈ N0)(n1 < n2 ⇒
∑n2−1

j=n1
w(vj, vj+1) ≥ −b) ) }

(2)

The inequality (1) says that if Max uses the strategy σ, then ds(v) is a sufficient

amount of initial energy for plays starting from v. The inequality (2) says that if Min

uses the strategy π, then Max needs at least ds(v) units of initial energy. By putting (1)

and (2) together, we get that ds(v) = lwubΓ
b(v). Let’s first find the strategy σ.

Let’s consider the situation just after termination of the main while-loop. In this

situation it holds that ds = −di−1. Let Dj = {v ∈ V | dj(v) > −∞}, for each j ∈

{−1, 0, . . . , i − 1}. Please not that, by Lemma 3.3,

D−1 ⊇ D0 ⊇ · · · ⊇ Di−1

Let further B = {v ∈ V | di−1(v) = 0} and let σ ∈ ΣΓ
M be the following strategy of Max.

For v ∈ VMax∩(V \Di−1), let σ(v) be an arbitrary successor of v. For v ∈ (VMax \B)∩Di−1,

let σ(v) = u such that (v, u) ∈ E and di−1(v) = w(v, u) + di−1(u). Such a vertex u exists

by Lemma 6.1, part 1. And finally, for v ∈ B∩VMax, let σ(v) = u such that (v, u) ∈ E and

w(v, u) − di−1(v) + di−1(u) ≥ 0. Such a vertex u exists by Lemma 6.2.

Since the main while-loop on lines 5–19 terminated, there is no vertex in VMin ∩Di−1

that satisfies the strategy improvement condition, hence for each v ∈ VMin ∩ Di−1, it

holds that for each (v, u) ∈ E, w(v, u) − di−1(v) + di−1(u) ≥ 0. This implies that in the

graph Gσ, there is no edge from Di−1 (vertices with finite di−1 value) to V \Di−1 (vertices

with infinite di−1 value). Therefore, for each v ∈ Di−1 and π ′ ∈ ΠΓ, outcomeΓ(v, σ, π ′) =

(v = v0, v1, v2, . . .) satisfies the following. Let’s denote the outcome by p.

(∀j ∈ N0)(di−1(vj) ≤ di−1(vj+1) + w(vj, vj+1))

It follows that for each prefix pk = (v = v0, . . . , vk) of p, it holds that di−1(v) ≤

di−1(vk) + w(pk), and since by Lemma 6.1, part 3 and part 4, di−1(vk) ≤ 0, we have

di−1(v) ≤ w(pk). To prove (1), it remains to show that p does not contain a segment of

weight less than −b.

Let n1, n2 ∈ N0 such that n1 < n2. By the same reasoning as in the previous

paragraph, we get that di−1(vn1
) ≤ di−1(vn2

) +
∑n2−1

j=n1
w(vj, vj+1), and so di−1(vn1

) −
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di−1(vn2
) ≤

∑n2−1

j=n1
w(vj, vj+1). By Lemma 6.1, part 1, 3, and 4, it holds that −b ≤

di−1(vn1
), di−1(vn2

) ≤ 0. Therefore, di−1(vn1
) − di−1(vn2

) ≥ −b, and the inequality (1) is

proved. Let’s now find the strategy π.

For each path p = (v0, . . . , vk) ∈ pathG such that vk ∈ VMin, π(p) = πj(vk), where j =

min(i − 1,min{x ∈ {0, . . . , i − 1} | (∃y ∈ {0, . . . , k})(dx(vy) = −∞)}). That is, the strategy

π makes the same choice as the first positional strategy from the sequence (π0, . . . , πi−1)

that is responsible for making one of the vertices in p losing for Max. If there is no vertex

in p with infinite di−1 value, then π makes the same choice as the strategy πi−1.

Please note that, by Theorem 3.1, ds = lwub
Γπi−1

(Di−2)

b . That is, if Min uses the strat-

egy π, the play starts from v ∈ Di−2, and stays in Di−2 (and so π follows the strategy

πi−1), then Max needs at least ds(v) units of initial energy. Therefore, if we show that

each play that leaves Di−2 is losing for Max, then the inequality (2), and hence the theo-

rem, will be proved.

Let v ∈ V and σ ′ ∈ ΣΓ such that the outcome outcomeΓ(v, σ, π ′) = (v = v0, v1, v2, . . .)

contains a vertex from V \ Di−2. Let’s denote the outcome by p and let’s prove that it is

losing for Max.

Let k = min{x ∈ {0, . . . , i − 1} | (∃y ∈ N0)(dx(vy) = −∞)}. There is some vertex from

V \Di−2 in p, and so we do not have to consider the case when the minimum is equal to

∞. It follows that k < i − 1. From the definition of k, it also follows that the play never

leaves Dk−1, and there is vertex v∞ from Dk−1 \ Dk in the path p. From the vertex v∞

onwards, Min uses the strategy πk. It holds that dk(v∞) = −∞, and so, by Theorem 3.1,

lwub
Γπk

(Dk−1)

b (v∞) = ∞. Therefore, the suffix of p starting from v∞ is losing for Max, and

so p is losing for Max too. We have that if Min uses π and the play leaves Di−2 then Max

loses. This completes the proof of the theorem. �

6.3 Improvement of the Complexity of KASI

This section describes a way to improve the complexity of KASI from O(|V |2 · (|V | ·

log |V | + |E|) · W) to O(|V | · (|V | · log |V | + |E|) · W). The pseudocode of the improved al-

gorithm is in Figures 5–9. All these figures share the following global variables: vectors

d, d ′, key ∈ (Z∪{−∞})V, vector queued ∈ {true, false}V, vectors countM, countB ∈ NV
0 ,

sets D, B ⊆ V , and strategy π ∈ ΠΓ
M.

The improved algorithm KASI (ImpKASI for short) performs the same basic steps as

the original algorithm KASI, but the steps are implemented more efficiently. Instead of

filling all the elements of vector di in each iteration of both EVALUATESTRATEGY() and
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LOWERWEAKUPPERBOUND(), ImpKASI uses one global vector d and updates only the

elements that need to be updated. The set of vertices for which the d value needs to

be updated is computed efficiently by the procedure IMPMARKING() in Figure 7. This

way, in each iteration, the algorithmworks only with vertices whose d value is updated,

which improves the overall complexity by a factor of |V |. We will now describe how the

individual parts of ImpKASI work.

During the execution of ImpKASI, B is an over-approximation of the set of vertices

with zero lwubΓ
b, and the vector d is such that −d is a lower estimate of lwubΓ

b (−d ≤

lwubΓ
b). The set D is a set of vertices such that about the vertices in V \ D we already

know that they have infinite lwubΓ
b, hence

D = {v ∈ V | d(v) > −∞}

To be able to perform certain operations efficiently, we keep the vectors countM and

coundB such that

(∀v ∈ D \ B)(countM(v) = |{(v, u) ∈ Eπ | d(v) = d(u) + w(v, u)}|)

(∀v ∈ B)(countB(v) = |{(v, u) ∈ Eπ | w(v, u) − d(v) + d(u) ≥ 0}|)

The vector d contains weights of longest paths from D to B, and so if for some v ∈

D \ B, countM(v) drops to zero, its d value has to be updated. Similarly, if for some

v ∈ B, countB(v) drops to zero, v has to be removed from B.

In Figures 6 and 5 is the pseudocode of the modified Dijkstra’s algorithm used in

ImpKASI. The input to IMPDIJKSTRA() consists of three parts. The first part is a graph

Gπ, the second part is a bound b, and finally the third part is a set M ⊆ V such that M

contains exactly the vertices the d value of which need to be updated. IMPDIJKSTRA()

has no specific output, it just modifies global variables, in particular, the vector d.

For each vertex v ∈ D \ M, d(v) is already the correct weight of longest path from v

to B. So, the job of IMPDIJKSTRA() is to assign the correct weights also to the vertices in

M.

The Dijkstra’s algorithm is initialized by the procedure INITIALIZEDIJKSTRA() in

Figure 5. For each v ∈ M, the procedure scans all outgoing edges (v, u) ∈ Eπ such that

u ∈ D∧u /∈ M, i.e., u is already assigned the correct longest path weight, and finds out

which of the edges yields the smallest decrease of d(v). Decreases below−b are ignored.
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The smallest decrease is stored in key(v) and the count of edges that yield the smallest

decrease is stored in countM(v). The vertices that have outgoing edges which satisfy

the constraints are put to the maximum priority queue q, where priority of a vertex v

is key(v). The queue is then used in the main procedure of the Dijkstra’s algorithm in

Figure 6.

The main while-loop of IMPDIJKSTRA() on lines 3–19 is the same as in the not-

improved DIJKSTRA(), with the only modification that the vector countM is updated

as necessary. After the main loop terminates, the vector d and the set D are updated on

lines 20–23.

Let’s now describe how the procedure IMPMARKING() computes the set of vertices

whose d value need to be updated. The vector d contains longest path weights from D

to B in Gπ(D) and the updates of d are induced either by removal of vertices from B or

by improvements of the strategy π. In both cases IMPMARKING() works the same.

The input to the procedure consists of two parts. The first part is a graph Gπ and the

second part is a set X ⊆ V which contains the vertices about which we already know

that their d value needs to be updated. These are either the vertices removed from B or

the vertices at which the strategy π was improved. The procedure then computes the

smallest set M such that X ⊆ M ⊆ D \ B and for each v ∈ (D \ B) \ M, there is an edge

(v, u) ∈ Eπ such that u /∈ M and d(v) = d(u) + w(v, u).

IMPMARKING() starts from the set X and then explores the graph Gπ in the reversed

direction edges. It iteratively repeats the following steps. It picks a vertex u from the

working set Z and explores all of its predecessors. For each predecessor v it checks

whether v is not already in M, v is in D, and v is not in B. If v ∈ M, then we already

know that d(v) needs to be updated. If v /∈ D, then d(v) = −∞, and so no update of

d(v) is possible. Finally, if v ∈ B, then d(v) = 0, which is the correct longest path weight

from v to B. So, if v satisfies all the conditions, we decide whether to add it to M or not.

To that end, we check whether there is some successor (v, u ′) ∈ Eπ such that u ′ /∈ M

and d(v) = d(u ′) + w(v, u ′). For the complexity of ImpKASI, it is important that only

predecessors/successors of vertices whose d value needs to be updated are explored.

Therefore, we do not explore all the successors of v to find out if there is a successor

u ′ /∈ M such that d(v) = d(u ′) + w(v, u ′). We use the vector countM instead. If u, the

successor from which we got to v, contributes to countM(v) (d(v) = d(u) + w(v, u)),

then we decrease countM(v), because we already know that d(u) needs to be updated,

and so u will no longer contribute to countM(v). If countM(v) drops to zero, then we
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know that d(v) needs to be updated too, hence we add v to the set M and also to the

working set Z. After the main loop on lines 4–18 terminates, the set M is returned as

output.

If Figure 8 is the pseudocode of the strategy evaluation procedure of ImpKASI. The

input to IMPEVALUATESTRATEGY() consist of four parts. The first and the second part

are anMPG Γ and a bound b. The third part is a strategy π that wewant to evaluate, and

finally the fourth part is a set Z ⊆ V which contains the vertices at which the strategy

π was improved since the last strategy evaluation. The set Z is given as a part of input

to IMPMARKING() in the first iteration of the strategy evaluation process. The output of

IMPEVALUATESTRATEGY() is the set of vertices whose d value was updated during the

whole strategy evaluation process.

IMPEVALUATESTRATEGY() iteratively repeats the following steps. On line 5, it uses

IMPMARKING() to compute the vertices whose d value need to be updated and returns

them as the set M. On line 6, it uses IMPDIJKSTRA() to update the vector d. The vertices

whose d value was updated are added to the set Mπ. The purpose of lines 9–21 is

to remove from B the vertices v that does not have an outgoing edge (v, u) such that

w(v, u) − d(v) + d(u) ≥ 0. For complexity reasons, this operation avoids exploration

of successors/predecessors of vertices outside the set M. This is made possible by the

vector countB.

It holds that M ∩ B = ∅, so the vertices from B that we need to remove must have a

successor in M. Therefore, for each vertex u ∈ M, we explore all edges (v, u) ∈ Eπ such

that v ∈ B. If an edge (v, u) satisfies w(v, u)−d ′(v)+d ′(u) ≥ 0∧w(v, u)−d(v)+d(u) < 0,

where d ′ is the state of the vector d before it was updated, then it means that the edge

(v, u) was one of the reasons why v is in the set B, but it no longer is a reason for that.

And so, we decrease countB(v), and if countB(v) drops to zero, we remove v from B

and add it to X. The set X is a basis for the set of vertices whose d value will be updated

in the next iteration. After the updating of the set B is finished, we copy the updated

part of the vector d to the vector d ′, so that d ′ = d, and start another iteration of the

main while-loop. If no vertex is removed from B, and so no vertex is added to X, then

the main loop terminates and IMPEVALUATESTRATEGY() returns the set Mπ.

In Figure 9 is the main procedure of ImpKASI. The initialization phase of the proce-

dure is on lines 2–11. As the initial strategy π of Min we take an arbitrary strategy from

ΠΓ
M. The vector d is initialized to vector of zeros and so is the vector d ′. The initialization

of the set B is on lines 5–9. For each v ∈ V , the algorithm first counts the number of non-
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negative edges emanation from v (since d is a vector of zeros, w(v, u) ≥ 0 also means

that w(v, u) − d(v) + d(u) ≥ 0), assigns the count to countB(v), and if countB(v) > 0,

adds v to B. The set D is initially equal to V , because all vertices have finite d value.

Finally, since all vertices from D \ B (= V \ B) have only negative edges emanating

from them, the set of vertices whose d value need to be updated in the first iteration of

the main while-loop on lines 12–29 is the largest possible, namely, it is equal to D \ B.

Therefore, the set of vertices Z that will be given as a part of input to the procedure

IMPEVALUATESTRATEGY() is initialized to D \ B.

Each iteration of the main loop does the following steps. On line 13, it evaluates

the current strategy π, which leads to updates to the vector d. The strategy evaluation

procedure returns the set Mπ of vertices whose d value was updated. The purpose of

the rest of the iteration is to improve the strategy π.

For complexity reasons, the strategy improvement phase has to explore

only successors/predecessors of vertices whose d value was updated by

IMPEVALUATESTRATEGY(). However, this does not complicate matters much. The

strategy improvement condition can be satisfied only at vertices with some successor

in Mπ. The reason is the following. If d(v) > d(u) + w(v, u) was not satisfied in the

previous iteration, then it can be satisfied in the current iteration only if d(u) was

updated (Recall that all updates to the vector d are decreases). Therefore, for each

vertex u ∈ Mπ, we check each edge (v, u) ∈ E such that v ∈ D ∩ VMin to see whether it

satisfies the strategy improvement condition, and if it does, then we take appropriate

steps. However, there is one important difference from the original not-improved

version of KASI.

We cannot use arbitrary edge that satisfies the strategy improvement condition for

the strategy improvement. For each v ∈ VMin such that edges satisfying the strategy im-

provement condition emanate from v, we must always take the best possible improve-

ment, because if the d value of the successor vertex that yields the best improvement is

not updated again, the improvement may be omitted. We use the vector d ′ to find out

which successors yield the best improvement.

Before the strategy improvement phase, it holds that d ′ = d. During the strategy

improvement phase, we record in d ′ the best possible improvements. If d ′(v) > d(u) +

w(v, u), it means that u yields better improvement than the ones found so far, and so

d ′(v) is updated to d(u) + w(v, u), π(v) is set to u, and finally v is added to Z and
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removed from B. The removal from B is caused by the fact that (v, π(v)) is the only edge

emanating from v in Gπ, and if d(v) > d(π(v)) + w(v, π(v)), then v cannot be in B.

After the strategy improvement phase ends, we have to undo the updates made to

d ′, because to function properly, IMPEVALUATESTRATEGY() requires that d = d ′. This

is done on line 28. If some improvements were made, which means that Z 6= ∅, an-

other iteration of the main loop is started, otherwise −d = lwubΓ
b, and so the procedure

terminates and returns −d. The complexity analysis follows.

The algorithm works only with vertices which update their d value, in each itera-

tion, both in IMPEVALUATESTRATEGY() and IMPLOWERWEAKUPPERBOUND(). Each

vertex can be improved at most O(|V | · W) times and each improvement of a ver-

tex v ∈ V costs us O(log |V | + indegree(v) + outdegree(v)) time. The complex-

ity O(log |V | + indegree(v) + outdegree(v)) comes from the fact that the succes-

sors/predecessors of each vertex with updated d value are explored only constant

number of times, and the operations needed for maintenance of the maximal prior-

ity queue used in IMPDIJKSTRA() cost O(log |V |) time per vertex. Therefore, the com-

plexity of the algorithm is O(|V | · W ·
∑

v∈V(log |V | + indegree(v) + outdegree(v))) =

O(|V | · (|V | · log |V | + |E|) · W).
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1 proc INITIALIZEIMPDIJKSTRA(Gπ = (V, Eπ,w), b,M)

2 [q is a maximum priority queue of vertices, where the priority of vertex v is key(v)]

3 foreach v ∈ M do

4 queued(v) := false

5 key(v) = −∞

6 foreach (v, u) ∈ Eπ do

7 if u ∈ D ∧ u /∈ M then

8 tmp := w(v, u) − d(v) + d(u)

9 if d(v) + tmp ≥ −b then

10 if tmp > key(v) then

11 key(v) := tmp

12 countM(v) := 1

13 elsif tmp = key(v) then

14 countM(v) := countM(v) + 1

15 fi

16 fi

17 od

18 if key(v) 6= −∞ then

19 q.enqueue(v)

20 queued(v) := true

21 fi

22 od

23 od

24 return q

25 end

Figure 5: Initialization of Dijkstra
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1 proc IMPDIJKSTRA(Gπ = (V, Eπ,w), b,M)

2 INITIALIZEIMPDIJKSTRA(Gπ, b,M)

3 while ¬q.empty() do

4 u := q.dequeue()

5 foreach (v, u) ∈ Eπ do

6 if v ∈ M then

7 tmp := key(u) + w(v, u) − d(v) + d(u)

8 if d(v) + tmp ≥ −b then

9 if tmp > key(v) then

10 key(v) := tmp

11 countM(v) := 1

12 if ¬queued(v) then q.enqueue(v); queued(v) := true fi

13 elsif tmp = key(v) then

14 countM(v) := countM(v) + 1

15 fi

16 fi

17 fi

18 od

19 od

20 foreach v ∈ M do

21 d(v) := d(v) + key(v)

22 if d(v) = −∞ then D := D \ {v} fi

23 od

24 end

Figure 6: Modified Dijkstra’s algorithm
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1 proc IMPMARKING(Gπ = (V, Eπ,w), X)

2 M := X

3 Z := X

4 while Z 6= ∅ do

5 pick u ∈ Z

6 Z := Z \ {u}

7 foreach (v, u) ∈ Eπ do

8 if v /∈ M ∧ v ∈ D ∧ v /∈ B then

9 if d(v) = d(u) + w(v, u) then

10 countM(v) := countM(v) − 1

11 if countM(v) = 0 then

12 Z := Z ∪ {v}

13 M := M ∪ {v}

14 fi

15 fi

16 fi

17 od

18 od

19 return M

20 end

Figure 7: Marking of vertices for which d has to be improved
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1 proc IMPEVALUATESTRATEGY(Γ, b, π, Z)

2 X := Z

3 Mπ := ∅

4 while X 6= ∅ do

5 M := IMPMARKING(Gπ, X)

6 IMPDIJKSTRA(Gπ, b,M)

7 Mπ := Mπ ∪ M

8 X := ∅

9 foreach u ∈ M do

10 foreach (v, u) ∈ Eπ do

11 if v ∈ B then

12 if w(v, u) − d ′(v) + d ′(u) ≥ 0 ∧ w(v, u) − d(v) + d(u) < 0 then

13 countB(v) := countB(v) − 1

14 if countB(v) = 0 then

15 B := B \ {v}

16 X := X ∪ {v}

17 fi

18 fi

19 fi

20 od

21 od

22 foreach v ∈ M do d ′(v) := d(v) od

23 od

24 return Mπ

25 end

Figure 8: Evaluation of strategy
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1 proc IMPLOWERWEAKUPPERBOUND(Γ, b)

2 π := Arbitrary strategy from ΠΓ
M

3 d := (0)v∈V

4 d ′ := d

5 B := ∅

6 foreach v ∈ V do

7 countB(v) :=| {(v, u) ∈ Eπ | w(v, u) ≥ 0} |

8 if countB(v) > 0 then B := B ∪ {v} fi

9 od

10 D := V

11 Z := D \ B

12 while Z 6= ∅ do

13 Mπ := IMPEVALUATESTRATEGY(Γ, b, π, Z)

14 Z := ∅

15 foreach u ∈ Mπ do

16 foreach (v, u) ∈ E do

17 if v ∈ VMin ∧ v ∈ D then

18 if d ′(v) > d(u) + w(v, u) then

19 d ′(v) := d(u) + w(v, u)

20 π(v) := u

21 Z := Z ∪ {v}

22 countB(v) := 0

23 B := B \ {v}

24 fi

25 fi

26 od

27 od

28 foreach v ∈ Z do d ′(v) := d(v) od

29 od

30 return − d

31 end

Figure 9: Solving the lower-weak-upper-bound problem
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