
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Decidable Race Condition for HMSC

by

Vojtěch Řehák
Petr Slovák
Jan Strejček
Loïc Hélouët

FI MU Report Series FIMU-RS-2009-10

Copyright c© 2009, FI MU December 2009

Copyright c© 2009, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Decidable Race Condition for HMSC

Vojtěch Řehák∗ Petr Slovák Jan Strejček†

Faculty of Informatics, Masaryk University

Brno, Czech Republic

{rehak, xslovak2, strejcek}@fi.muni.cz

Loïc Hélouët

INRIA/IRISA

Rennes, France

loic.helouet@irisa.fr

December 27, 2009

Abstract

Races in Message Sequence Charts may lead to a bad interpretation of described

behaviours, and are often considered as a design error. While there is a quadratic-

time algorithm detecting races in Basic Message Sequence Charts (BMSCs), the prob-

lem is undecidable for High-level Message Sequence Charts (HMSCs). To improve this

negative situation for HMSCs, we introduce two new notions: a new concept of

race called trace-race and an extension of the HMSC formalism with open coregions,

i.e. coregions that can extend over more than one BMSC. We present three argu-

ments showing benefits of our notions over the standard notions of race and HMSC.

First, every trace-race-free HMSC is also race-free. Second, every race-free HMSC

can be equivalently expressed as a trace-race-free HMSC with open coregions. Last,

the trace-race detection problem for HMSC with open coregions is decidable and

PSPACE-complete (the problem is in P if the number of processes and gates is

fixed).

∗Partially supported by Czech Science Foundation (GAČR), grant No. 201/08/P459.
†Partially supported by Czech Science Foundation (GAČR), grant No. 201/08/P375.

1

p q r

Figure 1: A BMSC containing a race

p q r

Figure 2: A similar BMSC containing a race

1 Introduction

Message Sequence Chart (MSC) [4] is a popular formalism for specification of systems

composed of several asynchronous interacting components (e.g. communication proto-

cols or multi-process systems). Its simplicity and intuitiveness come mainly from the

fact that MSC describes only exchange of messages between system components, while

other aspects of the system (such as content of the messages, computation steps of the

components, etc.) are abstracted away. Even such an incomplete model can indicate

serious errors in the designed system. This paper focuses on a common error called race

condition or simply race.

MSCs are based on composition of simple chronograms called Basic Message Sequence

Charts (BMSCs). A BMSC consists of a finite number of processes and events. Each event

is associated with some process. A message is represented by a pair of a send event on

a sender process and a receive event on a receiver process. Events on each process are

ordered according to their chronological succession. Besides this visual order <, there is

also a causal order �, that is weaker than <. Intuitively, events e, f are in causal order

e � f, if the BMSC enforces that e always precedes f. There are several definitions

of causal order depending on the settings of the modelled system and semantics of

the model. For example, if one process sends two messages to another process, the

corresponding receive events are causally ordered if and only if the considered message

transport protocol has the FIFO property: two messages sent from one process to another

are always received in the same order. In this paper, we assume that every process

has one unbounded buffer for all incoming messages and that the message transport

protocol satisfies the FIFO property.

A BMSC contains a race condition (or simply race) [1] if there are two visually ordered

events that are not causally ordered (i.e. they can actually occur in an arbitrary order).

For example, Figure 1 depicts that the process q receives a message from r followed by a

message from p. As processes and communication in BMSCs are always asynchronous,

2

s1

s2

r2

r1

p q r

Figure 3: A BMSC containing a race between r1, r2

the messages can be also received in the opposite order as shown in Figure 2). In both

figures, the two receive events are in race as they are ordered visually but not causally.

Races in BMSC description should be considered as a design error, as they exhibit dis-

crepancies between the intended ordering designed in a BMSC, and the ordering in a

real system implemented according to this BMSC. Races in a BMSC can be detected in

quadratic time [1].

While a BMSC describes only a single and finite communication scenario, its exten-

sion called High-level Message Sequence Chart (HMSC) [8, 1] can describe more complex

interactions, with iterations and alternatives between several scenarios. An HMSC is a

finite state transition system where each state is labelled by a BMSC or a reference to

another HMSC. In the sequel, we will only consider HMSCs labelled by BMSCs. Each

run (i.e. a path starting in the initial state and ending in a final state) in an HMSC can be

understood as a single BMSC, which is a concatenation of the BMSCs labelling the states

along the run. As a transitions system may contain cycles, the number of its runs may be

infinite. Hence, an HMSC represents a potentially infinite set of BMSCs of unbounded

size.

The definition of race was extended to HMSCs in [5]. Intuitively, an HMSC H has a

race if some BMSC represented byH contains a race andH does not represent any BMSC

where the two racing events are defined with the opposite visual order. Unfortunately,

the problem whether a given HMSC contains a race is undecidable [5, 4].

In this paper, we propose an alternative definition of race for HMSCs called trace-

race. Roughly speaking, an HMSC has a trace-race if some BMSC represented by H

contains a race. Clearly, every trace-race-free HMSC is also race-free but not vice versa.

To improve the expressive power of trace-race-free HMSCs, we extend the HMSC for-

malism with open coregions. A coregion is a standard part of the formalism that allows

some events on the same process in a BMSC to be visually unordered. An open coregion

is basically a coregion spread over several BMSCs. We present a transformation of an

3

arbitrary race-free HMSC into an equivalent trace-race-free HMSC with open coregions,

where equivalence means that the two HMSCs have the same set of linearizations. Fi-

nally, we show that the problem of whether a given HMSC with open coregions contains

a trace-race is decidable and PSPACE-complete. In fact, our algorithm works in poly-

nomial time for HMSCs with fixed number of processes and gates. For definitions of

gates and linearizations see Sections 2 and 3, respectively.

The rest of the paper is organized as follows. Section 2 recalls the definitions of

BMSCs, HMSCs and race condition for BMSCs. The race and trace-race conditions for

HMSCs are defined and compared in Section 3. Section 4 is devoted to the translation

of race-free HMSCs into equivalent trace-race-free HMSCs. The decidability and time

complexity of the trace-race detection problem is discussed in Section 5. Section 6 stud-

ies the space complexity is this problem. Section 7 briefly summarizes benefits of the

presented notions.

2 Preliminaries

This section provides definitions of BMSCs, race condition for BMSCs, and HMSCs. We

omit some features of MSCs given by the ITU standard [4], e.g. atomic actions, labelling

of messages with names, timers etc. However, these restrictions are quite common, and

our results can be extended to MSCs with atomic actions and message labelling using

the technique of [2].

2.1 BMSCs with (open) coregions, gates, and general ordering

The basic concept of BMSCs is described in Section 1. In the visual representation of a

BMSC, processes are depicted as vertical lines and messages are represented by arrows

between these lines. Events located on the same process line are visually ordered from

top to bottom.

A process line may contain segments called coregions delimiting subsets of events.

Events in a coregion are a priori not in visual order, but they can be visually ordered

using a relation called general ordering. Note that general ordering need not be a partial

order. In the visual representation, coregions are represented by rectangles and general

ordering is denoted by dashed arrows between pairs of ordered events (see Figure 3).

In existing MSC formalisms, coregions are limited to finite set of events located in

a single BMSC. We extend the standard definition of BMSCs with open coregions and

4

gates. These features allow coregions of arbitrary size, spread over several concatenated

BMSCs. Gates enable events of different BMSCs to be generally ordered within the

final joined coregion. Similar ideas for connecting orders using gates or predicates was

already proposed for instance in [7, 3].

A coregion can be open on top (top-open coregion), on bottom (bottom-open coregion),

or open on both sides. All processes use a common gate name space G. For each process

p, we define the sets of top gates p.G = {p.g | g ∈ G} and bottom gates p.G = {p.g | g ∈ G}
located on process p. Given a BMSC with a set of processes P , we set P.G =

⋃
p∈P p.G

and P.G =
⋃
p∈P p.G to be the sets of all top and bottom gates in this BMSC, respectively.

We also extend the general ordering to range over both events and gates within an open

coregion.

Definition 2.1. Let G be a finite gate name space. A BMSC over G is a tuple

M = (P, ES, ER, P, {<p}p∈P ,M, C, {≺C}C∈C)

where

• P is a finite set of processes.

• ES and ER are disjoint finite sets of send and receive events, respectively. We set E =

ES ∪ ER.

• P : E→ P is a mapping that associates each event with a process.

• <p is a total order on all events on a process p.

• M ⊆ (ES × ER) is a bijective mapping, relating every send with a unique receive. We

assume that a process cannot send a message to itself, i.e. P(e) 6= P(f) whenever (e, f) ∈
M. For any (e, f) ∈M, we useM(e) to denote the receive event f, andM−1(f) to denote

the send event e.

• C is a finite set of pairwise disjoint coregions, where a coregion C ∈ C is a consistent

nonempty subset of events and gates of a single process p, i.e.

– ∅ 6= C ⊆ P−1(p) ∪ p.G ∪ p.G for some p ∈ P

– if e <p d <p f and e, f ∈ C, then d ∈ C.

A coregion C containing a top gate is called top-open and it has to contain all top gates

p.G and satisfy that if e <p f and f ∈ C then e ∈ C. A coregion C containing a bottom

5

gate is called bottom-open and it has to contain all bottom gates p.G and satisfy that if

e <p f and e ∈ C then f ∈ C. A coregion which is both top-open and bottom-open is

called just open.

• ≺C is an acyclic relation called general ordering on elements in C such that≺C⊆ (p.G∪
P−1(p))× (p.G ∪ P−1(p)), where p is the process containing the coregion C.

The definition says that a top-open coregion has to contain all top gates. As coregions

are pairwise disjoint, there is at most one top-open coregion. Similarly, each BMSC

contains at most one bottom-open coregion. Note that we do not impose that coregions

contain events. For example, an open coregion covering an inactive process can connect

top and bottom gates in a BMSC.

In the visual representation, an open coregion is depicted as a rectangle without the

side(s) which are open. Gates are represented by small squares on the corresponding

missing side of these rectangles. As gates are always depicted in the same order, their

names become redundant (and they are often omitted). Dashed arrows represent gen-

eral ordering. For example of BMSCs with open coregions see Figure 4. Recall that

dashed arrows represent a general ordering.

2.2 Visual order, causal order and race in BMSCs

Every BMSC induces two preorders on events: visual < and causal� ordering. The vi-

sual order represents the order of events directly described by the BMSC. Loosely speak-

ing, < is the reflexive and transitive closure of total orders <p of events on each process,

excluding the order of events within each coregion, plus general ordering and the order

generated by the FIFO property and the fact that every send event precedes the corre-

sponding receive event. The visual order is actually defined over the union of events

and gates.

Definition 2.2. LetM = (P, ES, ER, P, {<p}p∈P ,M, C, {≺C}C∈C) be a BMSC over G. A visual

order < given byM is the least preorder <⊆ (P.G ∪ E)× (P.G ∪ E) such that

(i) < contains the relation

(⋃
p∈P

<p r
⋃
C∈C

C× C
)
∪ (

⋃
C∈C
≺C) ∪ M,

6

(ii) < respects the FIFO property, i.e. for every e, f ∈ ES such that P(e) = P(f) and

P(M(e)) = P(M(f)), it holds that e < f impliesM(e) <M(f).1

Note that one can define a BMSC where the preorder < is not a partial order (e.g. a

combination of a general order and the FIFO property can induce a cycle e < f < e

where e 6= f). Such a situation is clearly a design error and can be detected using

arbitrary algorithm for cycle detection. In the sequel, we always assume that < is a

partial order.

In contrast to the visual order, the causal order captures the partial order of events

that has to be respected by all executions as it is enforced by the semantics of the de-

sign. Hence, the causal order represents the interpretation of a BMSC relevant to its

implementation.

Definition 2.3. Given a BMSCM = (P, ES, ER, P, {<p}p∈P ,M, C, {≺C}C∈C) over G, we define

a causal order� as the least partial order on E such that e� f, if

• (e, f) ∈M, i.e. send and receive events of each message are ordered, or

• P(e) = P(f) and e < f and f ∈ ES, i.e. any send event is delayed until all previous

events took place, or

• P(e) = P(f) and ∃e ′, f ′ ∈ E such that e ′ < f ′, P(e ′) = P(f ′), (e ′, e) ∈ M and (f ′, f) ∈
M, i.e. causal order respects the FIFO property.

Lemma 2.4. For every BMSC it holds that �⊆<. Moreover, for each send event f ∈ ES it

holds e < f ⇐⇒ e� f.

Proof. The relation�⊆< follows directly from the definitions of the orders. Hence, it

remains to show that for each send event f it holds that e < f implies e� f.

Let e, b be events satisfying e < f and f is a send event. Further, let ≺ be a relation

defined in the same way as < but without the application of the reflexive and transitive

closure. In other words, ≺ is the least set such that it

(i) contains the relation

(⋃
p∈P

<p r
⋃
C∈C

C× C
)
∪ (

⋃
C∈C
≺C) ∪ M,

1The FIFO property is usually not included in the definition of a visual order. However, once we

choose the FIFO message passing setting, violating this property should be considered as a design error

and it can be easily detected. Hence, we included the property directly in our definition.

7

(ii) respects the FIFO property, i.e. for every e, f ∈ ES such that P(e) = P(f) and

P(M(e)) = P(M(f)), it holds that e < f impliesM(e) ≺M(f).

As e < f, there exists a sequence of events e0, e1, . . . , en such that e = e0 ≺ e1 ≺ . . . ≺
en = f. We prove by induction that on n that e� f.

Base case n = 0, i.e. e = f: As� is reflexive, e� f.

Inductive step n > 0: Let ei be the first event in the sequence e0, . . . , en such that

P(ei) = P(f). Definition of� directly implies that ei � f. If ei = e0 = e, we are

done. Otherwise P(ei−1) 6= P(e) and the definition of≺ implies that (ei−1, ei) ∈M.

Hence, ei−1 � ei. Further, ei−1 is a send action and by induction hypothesis we

get e� ei−1. To sum up, e� ei−1 � ei � f and thus e� f.

A race is defined as a difference between visual and causal order on events.

Definition 2.5. If a BMSC contains some events e, f satisfying e < f and e 6� f, we say that

the BMSC contains a race (between events e, f). Otherwise, the BMSC is called race-free.

Theorem 2.6 ([1]). The problem whether a given BMSC with n events contains a race is decid-

able in time O(n2).

Note that [1] deals with BMSCs without any coregions. However, an extension of

this theorem to BMSCs with (possibly open) coregions and general ordering is straight-

forward.

The following lemma says that a BMSC contains a race if and only if it contains a

race between two events on the same process.

Lemma 2.7. A BMSC contains a race if and only if there are two events e, f such that e < f,

e 6� f, and P(e) = P(f).

Proof. The implication “⇐=” follows immediately from the definition of race. We prove

the other direction. Let us assume that a BMSC (P, ES, ER, P, {<p}p∈P ,M, C, {≺C}C∈C)

contains a race between events e ′, f ′, i.e. e ′ < f ′ and e ′ 6� f ′. Further, let ≺ be a relation

defined in the same way as < but without the application of the reflexive and transitive

closure. In other words, ≺ is the least set such that it

8

(i) contains the relation

(⋃
p∈P

<p r
⋃
C∈C

C× C
)
∪ (

⋃
C∈C
≺C) ∪ M,

(ii) respects the FIFO property, i.e. for every e, f ∈ ES such that P(e) = P(f) and

P(M(e)) = P(M(f)), it holds that e < f impliesM(e) ≺M(f).

As e ′ < f ′, there exist events e0, e1, . . . , en such that e ′ = e0 ≺ e1 ≺ . . . ≺ en = f ′. Note

that n > 0 as e ′ 6� f ′ and� is reflexive. We prove by induction on n that there exist e, f

satisfying e < f, e 6� f, and P(e) = P(f).

Base case n = 1, i.e. e ′ ≺ f ′: As e ′ 6� f ′, we get that (e ′, f ′) 6∈ M and, similarly, (e ′, f ′)

could not have been added to ≺ as a result of the FIFO property. Definition of ≺
therefore implies that (e ′, f ′) ∈<p for some p ∈ P or (e ′, f ′) ∈≺C for some C ∈ C.

In both cases, it holds that P(e ′) = P(f ′).

Inductive step n > 1: Either e1 � f ′, which implies e ′ 6� e1 and then also P(e ′) = P(e1)

using same argument as in the base case; or e1 6� f ′ and the statement follows

directly from the induction hypothesis.

2.3 HMSCs

An HMSC is a finite directed graph with an initial state and a set of final states, where

each state is labelled with a BMSC.

Definition 2.8. An HMSC is a tuple (S,→, s0, SF,L,L) where

• S is a finite set of states, s0 ∈ S is an initial state, SF ⊆ S is a set of final states,

• →⊆ S× S is a transition relation,

• L is a finite set of BMSCs over a common gate name space,

• L(s) : S→ L is a mapping assigning to each state a BMSC.

A sequence of states σ = s1s2 · · · sk is a path, if (si, si+1) ∈→ for every 1 ≤ i < k. A path is a

run if s1 = s0 and sk ∈ SF.

9

To give a semantics of HMSCs, we need to define a concatenation operation on BM-

SCs. Intuitively, the concatenation of BMSCs M1 and M2 is done by gluing the corre-

sponding process lines together with the BMSC M2 drawn beneath M1. If M1 and M2

contain bottom-open and top-open coregions on a process p, respectively, then the two

coregions are merged and each bottom gate p.g of the upper open coregion is joined

with the corresponding top gate p.g of the lower open coregion. Further, whenever an

event e of the upper coregion is generally ordered with a joined gate and this joined

gate is generally ordered with an event f of the lower coregion, the events e, f become

generally ordered in the newly created coregion. The joined gates are then removed. If

M1 contains a bottom-open coregions on a process p that is not inM2, then the coregion

remains bottom-open. However, if M1 contains a bottom-open coregion on a process

p and M2 contains the process p without any top-open coregion on it, then the bottom

side of the coregion is closed.

Definition 2.9. Let Mi = (Pi, ESi, ERi, Pi, {<ip}p∈P ,Mi, Ci, {≺iC}C∈Ci) for i = 1, 2 be two

BMSCs over a common gate name space G and such that the sets ES1 ∪ ER1 and ES2 ∪ ER2 are

disjoint (we can always rename events so that the sets become disjoint). The concatenation of

M1 and M2 is the BMSC M1 ·M2 = (P1 ∪ P2, ES1 ∪ ES2, ER1 ∪ ER2, P1 ∪ P2, {<p}p∈P ,M1 ∪
M2, C, {≺C}C∈C) where

<p=

<1p if p ∈ P1 r P2
<2p if p ∈ P2 r P1
transitive closure of <1p ∪ <2p ∪ (P−1

1 (p)× P−1
2 (p))

if p ∈ P1 ∩ P2

and C contains all coregions C of the following five kinds:

1. C ∈ C1 and C is not bottom-open or C is on a process p ∈ P1 r P2. We set ≺C=≺1C.

2. C ∈ C2 and C is not top-open or C is on a process p ∈ P2 r P1. We set ≺C=≺2C.

3. C = C1 r p.G for some C1 ∈ C1 such that p.G ⊆ C1 and p.G ∩ C2 = ∅ for all C2 ∈ C2,
i.e. C corresponds to a coregion of C1 that is bottom-open but there is no matching top-open

coregion in C2 (note that C is closed on the bottom side). We set ≺C=≺1C1
∩ (C× C).

4. C = C2 r p.G for some C2 ∈ C2 such that p.G ⊆ C2 and p.G ∩ C1 = ∅ for all C1 ∈ C1,
i.e. C corresponds to a coregion of C2 that is top-open but there is no matching bottom-open

coregion in C1. We set ≺C=≺2C2
∩ (C× C).

10

p q r s

p q r

Figure 4: BMSCsM1 (upper) andM2

p q r s

Figure 5: ConcatenationM1 ·M2

5. C = (C1 r p.G) ∪ (C2 r p.G) for some C1 ∈ C1 and C2 ∈ C2 satisfying p.G ⊆ C1

and p.G ⊆ C2, i.e. C is a bottom-open coregion of C1 merged with the matching top-open

coregion of C2. We set

≺C= {(e, f) |
(
(e, f) ∈≺1C1

and f 6∈ p.G
)

or
(
(e, f) ∈≺2C2

and e 6∈ p.G
)

or
(
(e, p.g) ∈≺1C1

and (p.g, f) ∈≺2C2
for some g ∈ G

)
}.

Note that if visual orders of M1 and M2 are partial orders, then the visual order of

M1 ·M2 is also a partial order. An example of two BMSCs and their concatenation is

provided by Figures 4 and 5.

Each path s1s2 · · · sk of an HMSC represents a single BMSC given by concatenation

of the BMSCs assigned to s1, s2, . . . , sk, i.e. a path σ = s1s2 · · · sk represents the BMSC

L(σ) = L(s1)·L(s2)·. . .·L(sk). Hence, an HMSC represents a set of BMSCs corresponding

11

to its runs. As an HMSC may contain a cycle, the represented set of BMSCs can be

infinite and there is no bound on the size (i.e. number of events) of such BMSCs.

3 Race conditions in HMSCs

First we explain the idea of race conditions for a set of BMSCs. Let us consider a system

where two processes p and r send a message to a third process q, that receives them

in arbitrary order. This behaviour can be specified (even without any coregion) by two

BMSCs depicted in Figures 1 and 2. Even if both BMSCs contain a race, the specification

given by this pair of BMSCs should be considered as race-free because both permuta-

tions of the two receive events on process q allowed by causal ordering are included in

the specification.

The race condition for a set of BMSCs can formulated very simply using the follow-

ing terminology. An execution induced by a BMSCM is a totally ordered set (E,⊂), where

E is the set of events ofM and ⊂ is a linear extension of the causal order� given byM.

We say that such an execution (E,⊂) corresponds to a BMSCM ′ ifM ′ has the same set of

events and ⊂ is a linear extension of the visual order < ofM ′.

Definition 3.1. We say that a set of BMSCs contains a race if there exists an execution induced

by some BMSC of the set and not corresponding to any BMSC of the set.

The race condition for HMSCs introduced in [5] follows the same principle. Unfor-

tunately, we cannot directly say that an HMSC contains a race if it represents a set of

BMSCs containing a race. The problem is that the BMSCs represented by the HMSC

are constructed with the concatenation operation during which events can be renamed.

Therefore, the events are replaced by labels keeping the information about sending and

receiving processes. Further, the linearly ordered executions are replaced by words

called linearizations.

Definition 3.2. Let M = (P, ES, ER, P, {<p}p∈P ,M, C, {≺C}C∈C) be a BMSC. We define an

auxiliary function label : E→ {p!q, p?q | p, q ∈ P} such that

label(e) =

{
p!q if e ∈ ES, p = P(e), and q = P(M(e))

p?q if e ∈ ER, p = P(e), and q = P(M−1(e)).

A linearization of M w.r.t. a partial order <∈ {<,�} is a word label(e1)label(e2) · · · label(en)

such that E = {e1, e2, · · · , en} and ei < ej implies i < j. Moreover, we define Lin<(M) to be

the set of all linearizations ofM w.r.t <.

12

Intuitively, Lin�(M) represents all executions induced by M, while Lin<(M) repre-

sents all executions corresponding toM.

The definition of linearization can be extended to HMSCs as follows.

Definition 3.3. Linearizations of an HMSC H w.r.t. <∈ {<,�} is the set

Lin<(H) =
⋃

σ is a run ofH
Lin<(L(σ)).

Now we can recall the race condition for HMSCs introduced in [5].

Definition 3.4. An HMSC H contains a race if Lin<(H) 6= Lin�(H).

This definition of race has several drawbacks. First of all, the problem whether an

HMSC contains a race is undecidable even if we restrict the problem to HMSCs without

coregions [5, 6]. Further, as soon as we consider HMSCs with coregions, this notion

of race does not tally with the definition of race for BMSCs. For example, the BMSC

drawn in Figure 3 contains a race as the messages from q to r can be sent in arbitrary

order while the receive events r1, r2 are visually ordered. If we look at this BMSC as an

HMSC with only one state, then there is no race with respect to Definition 3.4 as both

events r1, r2 are represented in linearizations by the same label r?q and therefore the

information about their order is lost.

A simple definition of a trace-race follows.

Definition 3.5. An HMSCH contains a trace-race if there is a run σ ofH such that the BMSC

L(σ) contains a race.

If an HMSCH contains no trace-race, then each its run σ represents a race-free BMSC

L(σ). As visual and causal orders of a race-free BMSC coincide, we get that Lin<(L(σ)) =

Lin�(L(σ)). Hence, every trace-race-free HMSC is also race-free.

The inverse implication does not hold. For example, the race-free HMSC of Figure 6

has a trace-race (the HMSC describes the system discussed at the beginning of this sec-

tion).

As the definition of trace-race does not replace events by labels, trace-race tallies

with the definition of race for BMSCs, i.e. a BMSC has a race if and only if it has a

trace-race when seen as a single state HMSC.

It is commonly agreed that designers should avoid races in HMSCs. We provide an

intuitive explanation why we think that designers should actually avoid trace-races as

well. Let H be a race-free HMSC with a trace-race. As H has a trace-race, there has

13

pp q q rr

Figure 6: An race-free HMSC with a trace-race

p q r

Figure 7: A trace-race-free HMSC

to be a run σ such that L(σ) induces an execution not corresponding to L(σ). As H is

race-free, this execution corresponds to some BMSC L(σ ′), where σ ′ 6= σ is another run

of H.2 Lemma 2.4 implies that all executions corresponding to a run are also induced

by the run. Hence, the execution is in fact induced by (at least) two different runs of

the HMSC. This is a potential source of errors as an implementation of this kind of

description tends to violate the “write things once” programming principle. Moreover,

trace-race-free HMSCs are usually more compact and their use may encourage a cleaner

way of the system design. For example, compare the trace-race-free system depicted on

Figure 7, which models the same behaviour as the race-free HMSC of Figure 6.

4 Transformation of HMSCs into trace-race-free HMSCs

We present a transformation of an arbitrary HMSC H into a trace-race-free HMSC H ′.

This transformation consists only in relabelling the states of the original HMSC with

BMSCs that have the same processes, events, and causal orders as the original BMSCs,

but they induce different visual orders. As the structure of H ′ remains the same, it has

the same set of runs as H. The HMSC is changed in such a way that both visual and

causal orders of the BMSC corresponding to a run σ in H ′ are the same as the causal

order of the BMSC corresponding to σ in H. Hence, Lin<(H ′) = Lin�(H ′) = Lin�(H)

and H ′ is trace-race-free. Moreover, if H was race-free (i.e. Lin<(H) = Lin�(H)), then

2In fact, the linearization corresponding to the mentioned execution has to be in Lin<(L(σ ′)).

14

Lin<(H) = Lin�(H) = Lin<(H ′) = Lin�(H ′) and we say that H and H ′ are equivalent.

The transformation of the original HMSC H proceeds in two steps.

1. We modify each BMSC M in a state of H such that each process is covered with

a coregion open on both sides, while BMSCs represented by the resulting HMSC

remain the same as those represented by H: the same events on the same pro-

cesses with the same visual and causal orders. We use general orderings and two

fresh gate names pre, suc to induct the same visual (and hence also causal) orders.

The definition of concatenation implies that, on a process p, all events of BMSCs

preceding M in some run of H are visually ordered before all events of M (ex-

cept those in a top-open coregion). This relation is preserved using the gate p.pre.

Similarly, all events of M (except those in a bottom-open coregion) are visually

ordered before all events of BMSCs succeeding M in some run of H. This relation

is preserved using the gate p.suc.

More precisely, the general ordering ≺C ′ of a coregion C ′ open on both sides and

covering a process p is defined as the least relation satisfying the following condi-

tions (where G ′ = G ∪ {pre, suc} and < refers to the original visual order ofM):

• For every e ∈ (E ∪ p.G), f ∈ (E ∪ p.G), if e < f, then (e, f) ∈≺C ′ .

• For every e ∈ E, if e is not in a top-open coregion inM, then (p.pre, e) ∈≺C ′ .

• For every e ∈ E, if e is not in a bottom-open coregion in M, then

(e, p.suc) ∈≺C ′ .

• p.suc× (E ∪ p.G ′) ⊆≺C ′ .

• (E ∪ p.G ′)× p.pre ⊆≺C ′ .

2. Now we restrict the general orderings to induce visual orders equivalent to the

original causal orders. Due to Definition 2.3, it is sufficient to generally order

pairs (e, f) such that e < f and f ∈ ES (where < refers to the original visual order).

Formally, we replace every general ordering ≺C ′ computed in the previous step

with ≺C ′ ∩ ((P.G ′ ∪ E)× (P.G ′ ∪ Es)).

5 Trace-race detection problem for HMSCs

This section deals with decidability and time complexity of the trace-race detection prob-

lem, i.e. the problem whether a given HMSC (possibly with open coregions and gates)

15

contains a trace-race. We assume that each state of a given HMSCH = (S,→, s0, SF, L,L)

appears on some run of H (the states violating this property can be easily detected and

eliminated). Recall that H contains a trace-race if and only if there is a run σ such

that the BMSC L(σ) contains a race. There is such a run if and only if there is a path

π = s0s1s2 . . . sk starting in the initial state and such that

1. the BMSC L(sk) contains a race, or

2. there is an event e in a race-free BMSC L(s0 . . . sk−1) and an event f in a race-free

BMSC L(sk) such that L(π) contains a race between e and f.

The races of the first kind can be easily detected due to Theorem 2.6. In the rest of this

section, we focus on detection of the races of the second kind. The problem cannot be

directly reduced to the detection of races in BMSCs as there could be infinitely many

paths starting in s0. Our detection technique relies on a precise characterization of races

appearing in concatenation M1 ·M2 of two race-free BMSCs M1,M2. For this, we need

two new functions describing sets of joined gates of the form p.g. Intuitively, a joined gate

p.g for a concatenationM1 ·M2 is a reference to a gate that appears as a bottom gate p.g

inM1 and is identified with the corresponding top gate p.g ofM2 during concatenation.

We denote by p.G and P.G the sets all joined gates over gate name space G and the

process p or all processes P , respectively.

Definition 5.1. Given a BMSC M = (P, ES, ER, P, {<p}p∈P ,M, C, {≺C}C∈C) over gate name

space G, we define two functions ↓(), ↑() : (ES ∪ ER)→ 2P.G as

↓(e) = {p.g ∈ P.G | e < p.g} and ↑(e) = {p.g ∈ P.G | p.g < e}.

In the context of a concatenationM1 ·M2, ↓(e) and ↑(e) always refer to the values of

these functions in the BMSCMi (where i ∈ {1, 2}) originally containing the event e. The

characterization of races in M1 ·M2 is formulated in Lemma 5.6. The lemma assumes

that the two race-free BMSCs M1,M2 are in the special form where all events and gates

on each process are covered by a coregion open on both sides. Note that every BMSC

can be converted to this form by the first step of the transformation presented in the

previous section. Lemma 5.6 with the characterization is preceded by four auxiliary

lemmata.

Lemma 5.2. Let e, f be events of a BMSC such that f is a receive event. It holds that

e� f ⇐⇒ e <M−1(f) ∨

(P(e) = P(f) ∧ P(M−1(e)) = P(M−1(f)) ∧M−1(e) <M−1(f)).

16

Proof. The implication “⇐=” follows immediately from the definition of �: if e <

M−1(f), then Lemma 2.4 implies e � M−1(f) and thus e � f; if the second part of

the disjunction holds, e� f due to the FIFO property.

We prove the direction “=⇒”. Let us assume that e� f. Further, let ≺≺ be a relation

defined in the same way as� but without the application of the reflexive and transitive

closure. In other words, ≺≺ is the least set such that e≺≺f iff

(i) (e, f) ∈M, i.e. send and receive events of each message are ordered, or

(ii) P(e) = P(f) and e < f and f ∈ ES, i.e. any send event is delayed until all previous

events took place, or

(iii) P(e) = P(f) and ∃e ′, f ′ ∈ E such that e ′ < f ′, P(e ′) = P(f ′), (e ′, e) ∈ M and

(f ′, f) ∈M, i.e. ≺≺ satisfies the FIFO property.

As e � f, there exist events e0, e1, . . . , en such that e = e0≺≺ . . .≺≺en−1≺≺en = f. We

prove the Lemma by induction on n:

Base case n = 0, i.e. e = f: ThenM−1(e) =M−1(f) and thus the second part of the dis-

junction holds.

Base case n = 1, i.e. e≺≺f: As f is a receive event, we get e≺≺f either due to (i) (for which

the first part of the disjunction holds), or due to (iii) (for which the second part of

the disjunction is satisfied).

Inductive step n > 1: If en−1 is a send event, i.e. en−1 = M−1(f), then e � en−1

and therefore also e < en−1 = M−1(f). When en−1 is a receive event, we get

M−1(en−1) <M−1(f) (as en−1≺≺f due to (iii)) and we may use the induction hy-

pothesis:

• either e <M−1(en−1) which then gives us also e <M−1(f);

• or the second part of the disjunction holds for e and en−1, and therefore it

holds also for e and f.

Lemma 5.3. Let M1 ·M2 be a concatenation of two BMSCs, e be an event of M1, and f be an

event ofM2. It holds that ↓(e) ∩ ↑(f) 6= ∅ =⇒ e < f.

17

Proof. Let p.g ∈ ↓(e)∩↑(f) for some p ∈ P . Hence, Hence, e < p ′.g ′ inM1 and p ′.g ′ < f

inM2. Due to definition of concatenation, it holds that e < f inM1 ·M2.

Lemma 5.4. Let M1 ·M2 be a concatenation of two race-free BMSCs in the special form, e be

an event ofM1, and f be an event ofM2. It holds that

↓(e) ∩ ↑(f) = ∅ =⇒ e 6< f ∨

∃ a receive event f ′ inM2 such that f ′ < f ∧

label(e) = label(f ′) ∧M−1(e) <M−1(f ′).

Proof. We prove the following equivalent statement instead.

e < f =⇒ ↓(e) ∩ ↑(f) 6= ∅ ∨

∃ a receive event f ′ inM2 such that f ′ < f ∧

label(e) = label(f ′) ∧M−1(e) <M−1(f ′).

Let ≺ be a relation defined in the same way as < but without the application of the

reflexive and transitive closure. In other words, ≺ is the least set such that it

(i) contains the relation3 (
⋃
C∈C ≺C) ∪M,

(ii) respects the FIFO property, i.e. for every e ′, f ′ ∈ ES such that P(e ′) = P(f ′) and

P(M(e ′)) = P(M(f ′)), it holds that e ′ < f ′ impliesM(e ′) ≺M(f ′).

As e < f, there exist events e0, e1, . . . , en such that e = e0 ≺ e1 ≺ . . . ≺ en = f. Note

that n > 0 as e and f were originally in different BMSCs. We prove the statement by

induction on the weighted length of the sequence of ≺ steps. The weight of each step

induced by the item (i) is 1. The weight of each step M(e ′) ≺ M(f ′) induced by the

item (ii) is equal to the least weight of a sequence e ′ ≺ . . . ≺ f ′ for e ′ < f ′.

Base case n = 1, i.e. e ≺ f: First note, that (e, f) /∈M as each originates from a different

BMSC. Therefore, from the definition of the ≺ relation, P(e) = P(f) = p. There are

two cases:

• if (e, f) has been added to ≺ due to the FIFO property (item (ii) of the ≺
definition), then f = f ′ is a receive event such that label(e) = label(f ′) and

M−1(e) <M−1(f ′) hold;

• if (e, f) ∈ (
⋃
C∈C ≺C), then e and f must have been connected through some

gate joined during the concatenation, i.e. ↓(e) ∩ ↑(f) 6= ∅.
3As the BMSCs are in the special form, it holds

(⋃
p∈P <p

)
r
(⋃

C∈C C× C
)

= ∅.

18

Inductive step n > 1: We have e ≺ e1 < f.

Let e1 be inM1. The induction hypothesis for e1 < f implies that

• either ↓(e1) ∩ ↑(f) 6= ∅: As e < e1, it holds that ↓(e) ⊇ ↓(e1) and so ↓(e) ∩↑(f) 6= ∅;
• or ∃ a receive event f ′ inM2 such that f ′ < f∧label(e1) = label(f ′)∧M−1(e1) <

M−1(f ′): As M1 is race-free, e < e1 implies that e � e1. Hence, due to

Lemma 5.2, it holds that

– either e <M−1(e1): Due to induction hypothesis forM−1(e1) <M−1(f ′),

it holds that ↓(M−1(e1))∩↑(M−1(f ′)) 6= ∅ (the second disjunct cannot be

valid as M−1(e1) is a send event). From e < M−1(e1) and f ′ < f, it

follows that ↓(e) ∩ ↑(f) 6= ∅;
– or P(e) = P(e1)∧P(M−1(e)) = P(M−1(e1))∧M−1(e) <M−1(e1)): Hence,

label(e) = label(e1) = label(f ′) andM−1(e) <M−1(e1) <M−1(f ′).

Let e1 be inM2. The induction hypothesis for e < e1 implies that

• either ↓(e) ∩ ↑(e1) 6= ∅: As e1 < f, it holds that ↑(e1) ⊆ ↑(f) and so ↓(e) ∩↑(f) 6= ∅;
• or ∃ a receive event f ′ inM2 such that f ′ < e1∧ label(e) = label(f ′)∧M−1(e) <

M−1(f ′): As e1 < f, it holds that f ′ < f.

Lemma 5.5. Let M1 ·M2 be a concatenation of two race-free BMSCs in the special form, e be

an event ofM1, and f be an event ofM2. It holds that

e < f ⇐⇒ ↓(e) ∩ ↑(f) 6= ∅ ∨

∃ a receive event f ′ inM2 such that f ′ < f ∧

label(e) = label(f ′) ∧M−1(e) <M−1(f ′).

Proof. This lemma follows from Lemma 5.3, Lemma 5.4, and the fact that

∃ a receive event f ′ inM2 such that f ′ < f ∧

label(e) = label(f ′) ∧M−1(e) <M−1(f ′) =⇒ e < f.

Now we formulate and prove the characterization.

19

Lemma 5.6. Let M1 ·M2 be a concatenation of two race-free BMSCs M1,M2 in the special

form, e be an event of M1, and f be an event of M2 such that P(e) = P(f) = p. Then e and f

are in race if and only if all the following conditions hold.

1. f is a receive event

2. ↓(e) ∩ ↑(f) ∩ p.G 6= ∅
3. ↓(e) ∩ ↑(M−1(f)) = ∅
4. label(e) = label(f) =⇒ ↓(M−1(e)) ∩ ↑(M−1(f)) = ∅
5. ∀ receive events f ′ ofM2 such that f ′ <M−1(f) :

label(e) = label(f ′) =⇒ ↓(M−1(e)) ∩ ↑(M−1(f ′)) = ∅

Proof. “=⇒”: We divide the proof into the following cases.

(1) If f is not a receive event, then e < f =⇒ e� f and so, e and f are not in race.

(2) Due to Lemma 5.3, ↓(e)∩↑(M−1(f)) 6= ∅ implies e <M−1(f). AsM−1(f) is a send

event, it holds that e�M−1(f). Hence, e� f and e and f are not in race.

(3) Similarly, due to Lemma 5.3, ↓(M−1(e)) ∩ ↑(M−1(f)) 6= ∅ implies thatM−1(e) <

M−1(f). Therefore, label(e) = label(f) ∧ ↓(M−1(e)) ∩ ↑(M−1(f)) 6= ∅ implies (due

to the FIFO property) that e� f. Hence, e and f are not in race.

(4) Let f ′ be a receive event of M2 such that f ′ < M−1(f), label(e) = label(f ′), and↓(M−1(e)) ∩ ↑(M−1(f ′)) 6= ∅. Due to Lemma 5.3, ↓(M−1(e)) ∩ ↑(M−1(f ′)) 6= ∅
implies that M−1(e) < M−1(f ′). Therefore, label(e) = label(f ′) ∧ ↓(M−1(e)) ∩↑(M−1(f ′)) 6= ∅ implies (due to the FIFO property) that e � f ′. As f ′ < M−1(f)

implies f ′ �M−1(f), it holds that e� f, and so e and f are not in race.

(5) It remains to show that if ↓(e) ∩ ↑(f) ∩ p.G = ∅, then e and f are not in race. We

discuss two cases.

– Let ↓(e)∩↑(f) = ∅. Then, due to Lemma 5.4, either e 6< f or there is an event f ′

specified in Lemma 5.4. Due to the FIFO property, e� f ′. AsM2 is race-free,

f ′ � f holds. Hence, existence of f ′ implies e� f and e and f are not in race.

– Let (↓(e) ∩ ↑(f)) r p.G 6= ∅, say p ′.g ∈ ↓(e) ∩ ↑(f) for some p ′ 6= p. Then

there is a send event f ′ in M2 on the process p ′ such that e < f ′ < f and

p ′.g ∈ ↓(e) ∩ ↑(f ′). Therefore, e � f ′ < f. As M2 is race-free, it holds that

e� f ′ � f and e and f are not in race.

20

“⇐=”: Due to Lemma 5.3, it follows from ↓(e) ∩ ↑(f) ∩ p.G 6= ∅ that e < f.

Due to Lemma 5.4, ↓(e)∩↑(M−1(f)) = ∅ implies that e 6<M−1(f) or there is a receive

event f ′′ in M2 such that f ′′ < M−1(f) ∧ label(e) = label(f ′′) ∧M−1(e) < M−1(f ′′).

However, the last conjunct of our precondition (∀ receive events f ′ . . .) implies that↓(M−1(e))∩ ↑(M−1(f ′′)) = ∅, which contradictsM−1(e) <M−1(f ′′) (due to Lemma 5.4

for send events). Hence, it holds that e 6< M−1(f) and Lemma 5.2 says that e � f iff

label(e) = label(f) andM−1(e) <M−1(f). Now the precondition label(e) = label(f) =⇒↓(M−1(e))∩↑(M−1(f)) = ∅ and Lemma 5.4 applied on send eventsM−1(e) andM−1(f)

imply that e 6� f. Hence, e and f are in race.

In Lemma 5.6, the precondition P(e) = P(f) is not a serious restriction thanks to

Lemma 2.7. The characterization says that to decide whether an event e of M1 is in

race with some event of M2, one needs to know only label(e), ↓(e) and, if e is a receive

action, then also ↓(M−1(e)). Triples (label(e), ↓(e), ↓(M−1(e))) for receive events e and

(label(e), ↓(e), ∅) for send events e are called footprints of M1. Note that the number

of footprints for a fixed set of processes P and a gate name space G is bounded by

2 · |P |2 · 2|P |·|G| · 2|P |·|G|. Extending function P to labels as P(p!q) = P(p?q) = p, Lemma 5.6

can be reformulated as follows:

Lemma 5.7. Let M1 and M2 be two race-free BMSCs in the special form. The concatenation

M1 ·M2 contains a race if and only if there is a receive event f inM2 and a footprint (l, F, F ′) of

M1 such that all the following conditions hold.

1. P(l) = P(f) = p

2. F ∩ ↑(f) ∩ p.G 6= ∅
3. F ∩ ↑(M−1(f)) = ∅
4. l = label(f) =⇒ F ′ ∩ ↑(M−1(f)) = ∅
5. ∀ receive events f ′ ofM2 such that f ′ <M−1(f) :

l = label(f ′) =⇒ F ′ ∩ ↑(M−1(f ′)) = ∅

If the concatenation M1 ·M2 contains no race, we can easily compute its set of foot-

prints. The computation uses the following auxiliary function.

Definition 5.8. For every BMSCM over a gate name space G and a set of processes P , and for

every set G ⊆ P ′.G of joined gates we define G↓M as

G↓M = {p ′.g ′ | p.g < p ′.g ′ where < is the visual order inM } ∪ {p.g ∈ G | p 6∈ P}.

21

Lemma 5.9. Let FP1 be the set of all footprints of a race-free BMSC M1 and FP2 be the set of

all footprints of a race-free BMSC M2 such that M1 ·M2 is also race-free. Then the set of all

footprints of the concatenationM1 ·M2 is equal to

FP2 ∪ {(l, F↓M2
∪ F, F ′↓M2

) | (l, F, F ′) ∈ FP1 ∧

F = {p.g | ∃ a receive event f ofM2 such that

f < p.g ∧ label(f) = l ∧ F ′ ∩ ↓(M−1(f)) 6= ∅ }}.

Proof. It follows from the definition of the footprint, that any footprint (l, F, F ′) ∈ FP2
has to be a footprint of the concatenation as well. Each footprint (l, F, F ′) of M1 is up-

dated using the functions F↓M2
and F ′↓M2

. This update does not reflect the relations

induced by the FIFO property, which are therefore added by the set F.

One can readily confirm that all computed footnotes are footnotes of M1 ·M2. The

other inclusion can be proven by induction similar to the one in the proof of Lemma 2.7.

Now, we are ready to present our trace-race detection algorithm. Given a HMSC

H = (S,→, s0, SF,L,L), we remove all states that are not on any run of H and we trans-

form all the remaining BMSCs to the special form. Then the algorithm checks whether

the BMSCs in states are race-free. Further, the algorithm computes all pairs (s, (l, F, F ′)),

where s is a state and (l, F, F ′) is a footprint of L(s). In general, such a pair (s, (l, F, F ′))

represents a footprint of a BMSC L(σ) for some path σ = s0 . . . sk starting in the ini-

tial state and leading to s. Each computed pair (s, (l, F, F ′)) is then processed: for all

(s, s ′) ∈→, the algorithm uses Lemma 5.7 to decide whether a BMSC M with the foot-

print (l, F, F ′) concatenated with L(s ′) contains a race. If a race is found the algorithm

halts. Otherwise, the algorithm employs Lemma 5.9 to calculate the footprint (l ′, F ′′, F ′′′)

corresponding to concatenation of (l, F, F ′) and L(s ′). The pair (s ′, (l ′, F ′′, F ′′′)) is stored

for subsequent processing unless it has been already processed or it is waiting to be

processed. If all computed pairs are processed and no race is found, the HMSC is trace-

race-free. The number of pairs is bounded and each pair is processed at most once, the

algorithm eventually terminates. The algorithm is described formally in Figure 8.

Theorem 5.10. Given an HMSC H = (S,→, s0, Sf, L,L) (with open coregions and gates)

over a gate name space G, the problem whether H contains a trace-race is decidable in time

O(|S|2 · b3 · |P |2 · 22·|P |·(|G|+2)), where b is the size of the largest BMSC in L. Hence, the problem

is in P if the number of processes and gates is fixed.

22

Input: an HMSC H = (S,→, s0, SF,L,L)

Output: “race” if the HMSC contains a trace-race, “no race” otherwise

initialization
remove states that are not on any run in H
transform all BMSCs in states to the special form
for every s of S do

if L(s) contains a race then return “race”

TODO := {(s, (l, F, F ′)) | (l, F, F ′) is a footprint of L(s)}

processing the pairs
DONE := ∅
while TODO 6= ∅ do

take (s, (l, F, F ′)) from TODO

add (s, (l, F, F ′)) to DONE

for every s ′ such that (s, s ′) ∈→ do

race checking
for every f ∈ ER of L(s ′) do

if P(l) = P(f) = p and F ∩ ↑(f) ∩ p.(G ∪ {pre, suc}) 6= ∅
and F ∩ ↑(M−1(f)) = ∅
and (l = label(f) =⇒ F ′ ∩ ↑(M−1(f)) = ∅)

and ∀ receive events f ′ of L(s ′) such that f ′ <M−1(f)

it holds that (l = label(f ′) =⇒ F ′ ∩ ↑(M−1(f ′)) = ∅)
then return “race”

new footprint computation
F := {p.g | ∃ a receive event f of L(s ′) such that

f < p.g ∧ label(f) = l ∧ F ′ ∩ ↓(M−1(f)) 6= ∅ }

if (s ′, (l, F↓L(s ′) ∪ F, F ′↓L(s ′))) 6∈ TODO ∪DONE then
add (s ′, (l, F↓L(s ′) ∪ F, F ′↓L(s ′))) to TODO

return “no race”

Figure 8: Trace-race detection algorithm

Proof. The correctness of the algorithm follows from Lemmata 2.7, 5.7 and 5.9. The

complexity bound has been derived as follows:

• initialization: Removal of states that are not on any run in H can be done in

O(|S|2). Then we compute visual and causal orders for all BMSCs in the remaining

states of H. This can be done in O(|S| · b2). The conversion of all BMSCs in states

23

of H to the special form (due to the first part of the transformation presented in

Section 4) can be done in O(|S| · b2). The conversion does not modify the number

of events in the BMSCs, but the gate name space is extended with names pre, suc.

The for-cycle runs in O(|S| · b2).

• processing the pairs: The number of pairs is bounded by |S| · 2|P |2 · 2|P |·(|G|+2) ·
2|P |·(|G|+2) and each pair is processed at most once. The race checking for a fixed

pair and a fixed state s ′ can be done in O(b3) time. The computation of a new

footprint takes O(b2) time. Hence, the whole while-cycle is evaluated in O(|S|2 ·
b3 · |P |2 · 22·|P |·(|G|+2)).

The overall complexity is O(|S|2 · b3 · |P |2 · 22·|P |·(|G|+2)).

6 Space complexity of the trace-race detection problem

In this section, we show that the trace-race detection problem for HMSCs is PSPACE-

complete.

In the algorithm of Figure 8, each tuple (s, (l, F, F ′)) is of a polynomial size to the size

of the given HMSC. Therefore, the sets TODO and DONE are of an exponential size of

the given HMSC. To prove that the problem is in PSPACE, we present a nondetermin-

istic algorithm, where the sets TODO and DONE are supplied by a nondeterministic

choice of the race inducing footprint as well as the successive states on the race induc-

ing path of the given HMSC. To prevent infinite runs of the nondeterministic algorithm,

we introduce a counter i which counts the number of derived pairs (s, (l, F, F ′)). If i

is greater then the number of all possible pairs, we stop the computation. The formal

description of the nondeterministic algorithm is in Figure 9.

Lemma 6.1. The trace-race detection problem for HMSC (with open coregions and gates) is in

PSPACE.

Proof. The correctness of the algorithm follows from Lemmata 2.7, 5.7 and 5.9. The space

complexity is polynomial as we need to store only the current footnote and the value

of i. The size of a footnote is polynomial in the size of H. The value of i is bounded by

|S|·2|P |2 ·22·|P |·(|G|+2)) and therefore it can be also stored in a polynomial space. Hence, the

trace-race detection problem is in NPSPACE. As PSPACE=NPSPACE, it is in PSPACE.

24

Input: an HMSC H = (S,→, s0, SF,L,L)

Output: the HMSC contains a trace-race iff the algorithm can return “race”

initialization
remove states that are not on any run in H
transform all BMSCs in states to the special form
choose a state s of S
choose a footprint (l, F, F ′) of L(s)

i := 0

while i < |S| · 2|P |2 · 22·|P |·(|G|+2)) do
i := i+ 1

processing the pair (s, (l, F, F ′))

choose s ′ such that (s, s ′) ∈→
for every f ∈ ER of L(s ′) do

race checking
if P(l) = P(f) = p and F ∩ ↑(f) ∩ p.(G ∪ {pre, suc}) 6= ∅

and F ∩ ↑(M−1(f)) = ∅
and (l = label(f) =⇒ F ′ ∩ ↑(M−1(f)) = ∅)

and ∀ receive events f ′ of L(s ′) such that f ′ <M−1(f)

it holds that (l = label(f ′) =⇒ F ′ ∩ ↑(M−1(f ′)) = ∅)
then return “race”

new footprint computation

F := {p.g | ∃ a receive event f of L(s ′) such that

f < p.g ∧ label(f) = l ∧ F ′ ∩ ↓(M−1(f)) 6= ∅ }

(l, F, F ′) := (l, F↓L(s ′) ∪ F, F ′↓L(s ′))

s := s ′

return “don’t know”

Figure 9: Nondeterministic trace-race detection algorithm

Lemma 6.2. The problem whether a given HMSC (with open coregions and gates) contains a

trace-race is PSPACE-hard.

Proof. We prove this lemma by a reduction of the word problem for linear bounded au-

tomata, which is known to be PSPACE-complete,onto the trace race condition problem

for HMSCs with open coregions and gates.

First, let us recall the definition of the word problem for linear bounded automata.

25

Instance: A word w and a linear bounded automaton A.

Question: Is the word w accepted by the automaton A?

Let A be a linear bounded automaton (Q,q0, Σ, Γ, δ, F). Without loss of generality, let

us assume that the set of states Q = {q0, q1, · · · , qn}, the input alphabet Σ = {0, 1}, the

tape alphabet Γ = {., 0, 1, /}, the set of accepting states F = {qn}. Let w ∈ {0, 1}∗ be an

input word and w[i] ∈ {0, 1} be the i-th letter of w, for 1 ≤ i ≤ |w|.

In what follows, we construct an HMSC Hw,A = (S,→, s0, {sf},L,L), where S =

{s0, sinit, scomp, saccept, sf} ∪ {sqbq ′b ′D | q, q ′ ∈ Q ∧ b, b ′ ∈ Γ ∧ D ∈ {L, R} ∧ (q ′, b ′, D) ∈
δ(q, b)}. The transition relation→ is defined as

{(s0, sinit), (sinit, scomp), (scomp, saccept), (saccept, sf)} ∪
({scomp}× {sqbq ′b ′D | q, q ′ ∈ Q∧ b, b ′ ∈ Γ ∧D ∈ {L, R} ∧ (q ′, b ′, D) ∈ δ(q, b)}) ∪
({sqbq ′b ′D | q, q ′ ∈ Q∧ b, b ′ ∈ Γ ∧D ∈ {L, R} ∧ (q ′, b ′, D) ∈ δ(q, b)}× {scomp}).

The mapping L assigns the empty BMSC to the states s0, scomp, and sf, which serves as

connection points only. For every other state s, the mapping L assigns a BMSC Ms of

L to s. In every BMSC of L (except of the empty BMSC), there are no events and only

one process p with one (both top- and bottom-) open coregion containing all gates of

p.G and p.G, where G = {g0, g1} ∪ Q ∪ {ti, bi | 0 ≤ i ≤ |w| + 1}. Therefore, defining

general ordering within each BMSC of L is the last and the most important part of the

Hw,A construction. General ordering of top gates p.g0, p.g1 and bottom gates of p.G
will store configurations of A. Intuitively, connecting to p.g0 stands for FALSE or 0 and

connecting to p.g1 stands for TRUE or 1. Gates p.Q mimic the actual control state of

A. Each pair p.ti, p.bi stores the tape value on the i-th position on the right-hand side

from the reading/writing head (i is counted modulo the tape length). The gate p.ti is

connected to p.g1 if the i-th symbol is terminal, i.e. . or /; otherwise, it is connected to

p.g0. The gates p.bi store the value 0 or 1, or marks . off /.

The general ordering of the BMSCMsinit
is defined as:

{p.g0}×

 {p.g0} ∪ {p.qi | 0 < i ≤ n} ∪
{p.ti | 1 ≤ i ≤ |w|} ∪ {p.b0} ∪ {p.bi | 1 ≤ i ≤ |w| ∧w[i] = 0}

∪

{p.g1}×

 {p.g1} ∪ {p.q0} ∪
{p.t0, p.t|w|+1} ∪ {p.b|w|+1} ∪ {p.bi | 1 ≤ i ≤ |w| ∧w[i] = 1}

 .

26

The general ordering of the BMSCMsqbq ′b ′D
is defined as:

{(p.g0, p.g0), (p.g1, p.g1)}

∪
{p.qi | 1 ≤ i ≤ n∧ qi 6= q}× {p.g0}

∪
{p.qi | 1 ≤ i ≤ n∧ qi = q}× {p.g1}

∪
{(p.t0, p.gi), (p.b0, p.gj) | (b ∈ {0, 1} =⇒ (i = 0∧ j = b)) ∧

(b = . =⇒ (i = 1∧ j = 0)) ∧

(b = / =⇒ (i = 1∧ j = 1)) }

∪
{p.g0}× {p.qi | 1 ≤ i ≤ n∧ qi 6= q ′}

∪
{p.g1}× {p.qi | 1 ≤ i ≤ n∧ qi = q ′}

∪
{(p.gi, p.tk), (p.gj, p.bk) | (D = L =⇒ k = 1) ∧

(D = R =⇒ k = |w| + 1) ∧

(b ′ ∈ {0, 1} =⇒ (i = 0∧ j = b)) ∧

(b ′ = . =⇒ (i = 1∧ j = 0)) ∧

(b ′ = / =⇒ (i = 1∧ j = 1)) }

∪
{(p.ti, p.tj), (p.bi, p.bj) | 1 ≤ i ≤ |w| + 1 ∧

(D = L =⇒ j = i+ 1 mod (|w| + 2)) ∧

(D = R =⇒ j = i− 1 mod (|w| + 2)) }

The general ordering of the BMSCMsaccept is defined as:

({p.g0} ∪ {p.qi | 0 ≤ i < n})× {p.g0}

∪
({p.g1} ∪ {p.qn})× {p.g1}.

"Cheating" during the simulated computation (to continue in a different computa-

tion) will order p.g0 before p.g1, or p.g1 before p.g0. Therefore, in L(Hw,A), there is a

BMSC with p.g0 6< p.g1 and p.g1 6< p.g0 if and only if A accepts w.

To show the reduction proving this lemma, we need an HMSC H such that in L(H),

there is a BMSC p.g0 6< p.g1 or p.g1 6< p.g0 if and only ifA acceptsw. In other words, we

need to eliminate all BMSC where p.g0 < p.g1∧p.g1 6< p.g0 or p.g0 6< p.g1∧p.g1 < p.g0.

27

p0 p1p

p.g1p.g0

H2
w,A

p0 p1p

p.g0 p.g1

Figure 10: The HMSC H

p0 p1p

Figure 11: A (race-free) BMSC of a

cheating computation

p0 p1p

Figure 12: A BMSC (with race) of

an accepting computation

We construct an HMSC H2w,A from the HMSC Hw,A adding one more copy of gate

names Q ′ ∪ {t ′i, b
′
i | 0 ≤ i ≤ |w| + 1} into G. The new gates will be connected by general

ordering in the same way as their non-primed counterparts but the roles of g0 and g1
will be exchanged with respect to them, i.e. p.g0 will stand for TRUE or 1, and p.g0 will

stand for FALSE or 0. Therefore, in H2w,A, if a cheating cause p.g0 < p.g1 via the original

gates, then the primed gates cause p.g1 < p.g0 at the same BMSC. Therefore, in L(H2w,A),

there is a BMSC with p.g0 6< p.g1 and p.g1 6< p.g0 if A accepts w; otherwise, all BMSC

of L(H2w,A) includes p.g0 < p.g1 and p.g1 < p.g0.

Now, we construct an HMSC H of Figure 10. It holds that there is a trace-race in H if

and only if there is a BMSC in L(H2w,A) such that p.g0 6< p.g1 or p.g1 6< p.g0. Therefore,

there is a trace-race in H if and only if A accepts w.

The Lemmata 6.1 and 6.2 directly implies Theorem 6.3.

Theorem 6.3. The trace-race detection problem is PSPACE-complete.

28

7 Conclusions

We have introduced two new notions for HMSCs: an extension of the formalism with

open coregions and a new race condition for HMSCs called trace-race. Definitions of race

and trace-race directly imply that every trace-race-free HMSC is also race-free. We have

shown that every race-free HMSC can be translated into an equivalent trace-race-free

HMSC using open coregions, where by equivalence we mean that the two HMSCs

represent sets of BMSCs with identical linearizations. Hence, trace-race-free HMSCs

with open coregions are as expressive as race-free HMSCs with open coregions (and

we conjecture that trace-race-free HMSCs with open coregions are in fact strictly more

expressive than race-free HMSCs without open coregions). While the race detection

problem is undecidable even for HMSCs without coregions [5], we have demonstrated

that the trace-race detection problem is decidable (and PSPACE-complete) for HMSCs

with open coregions. Therefore, HMSCs with open coregions and the trace-race notion

appear as good candidates for tractable analysis of race ambiguities in scenario based

designs.

The trace-race detection algorithm is implemented in Sequence Chart Studio (a Mi-

crosoft Visio add-on available at http://scstudio.sourceforge.net/). The studio cur-

rently supports HMSCs with closed coregions only (a support of open coregions is

planned too).

Acknowledgment. We would like to thank Philippe Darondeau for an important hint.

References

[1] R. Alur, G.J. Holzmann, and D. Peled. An Analyzer for Message Sequence Charts.

In TACAS’96, LNCS, pages 35–48. Springer, 1996.

[2] Philippe Darondeau, Blaise Genest, and Loïc Hélouët. Products of message se-

quence charts. In Roberto M. Amadio, editor, Foundations of Software Science and

Computational Structures, FOSSACS 2008, volume 4962 of Lecture Notes in Computer

Science, pages 458–473. Springer, 2008.

[3] Thomas Gazagnaire and Loïc Hélouët. Event correlation with boxed pomsets. In

John Derrick and Jüri Vain, editors, Formal Techniques for Networked and Distributed

29

Systems - FORTE 2007, volume 4574 of Lecture Notes in Computer Science, pages 160–

176. Springer, 2007.

[4] ITU Telecommunication Standardization Sector - Study group 17. ITU recomman-

dation Z.120, Message Sequence Charts (MSC), 2004.

[5] A. Muscholl and D. Peled. Message Sequence Graphs and Decision Problems on

Mazurkiewicz Traces. In MFCS’99, volume 1672 of LNCS, pages 81–91. Springer,

1999.

[6] A. Muscholl and D. Peled. Analyzing Message Sequence Charts. In SAM 2000:

Proceedings of the 2nd Conference on MSC and SDL, pages 3–17, Grenoble, 2000. VER-

IMAG, IRISA, SDL Forum.

[7] Vaughan R. Pratt. Modeling concurrency with partial orders. International Journal of

Parallel Programming, 15(1):33–71, 1986.

[8] Ekkart Rudolph, Peter Graubmann, and Jens Grabowski. Tutorial on Message Se-

quence Charts. Computer Networks and ISDN Systems, 28(12):1629–1641, 1996.

30

	Introduction
	Preliminaries
	BMSCs with (open) coregions, gates, and general ordering
	Visual order, causal order and race in BMSCs
	HMSCs

	Race conditions in HMSCs
	Transformation of HMSCs into trace-race-free HMSCs
	Trace-race detection problem for HMSCs
	Space complexity of the trace-race detection problem
	Conclusions

