
}w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

On the Memory Consumption of
Probabilistic Pushdown Automata

by

Tomáš Brázdil
Javier Esparza
Stefan Kiefer

FI MU Report Series FIMU-RS-2009-07

Copyright c© 2009, FI MU October 2009

Copyright c© 2009, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

On the Memory Consumption of Probabilistic
Pushdown Automata

Tomáš Brázdil∗

Faculty of Informatics,

Masaryk University,

Czech Republic

xbrazdil@fi.muni.cz

Javier Esparza

Institut für Informatik,

Technische Universität München,

Germany

esparza@in.tum.de

Stefan Kiefer

Institut für Informatik,

Technische Universität München,

Germany

kiefer@in.tum.de

October 2, 2009

Abstract

We investigate the problem of evaluating memory consumption for systems mod-

elled by probabilistic pushdown automata (pPDA). The space needed by a run of a

pPDA is the maximal height reached by the stack during the run. The problem is

motivated by the investigation of depth-first computations that play an important

role for space-efficient schedulings of multithreaded programs.

We study the computation of both the distribution of the memory consumption

and its expectation. For the distribution, we show that a naive method incurs an

exponential blow-up, and that it can be avoided using linear equation systems. We

also suggest a possibly even faster approximation method. Given ε > 0, these meth-

ods allow to compute bounds on the memory consumption that are exceeded with

a probability of at most ε.

∗Supported by the research center Institute for Theoretical Computer Science (ITI), project No. 1M0545.

1

For the expected memory consumption, we show that whether it is infinite can

be decided in polynomial time for stateless pPDA (pBPA) and in polynomial space

for pPDA. We also provide an iterative method for approximating the expectation.

We show how to compute error bounds of our approximation method and ana-

lyze its convergence speed. We prove that our method converges linearly, i.e., the

number of accurate bits of the approximation is a linear function of the number of

iterations.

1 Introduction

The verification of probabilistic programs with possibly recursive procedures has

been intensely studied in the last years. The Markov chains or Markov Decision Pro-

cesses underlying these systems may have infinitely many states. Despite this fact,

which prevents the direct application of the rich theory of finite Markov Chains, many

positive results have been obtained. Model-checking algorithms have been proposed

for both linear and branching temporal logics [11, 16, 24, 20, 35], the long-run behavior

of the systems has been analyzed [10, 17], and algorithms deciding properties of several

kinds of games have been described [8, 9, 19, 21, 22, 23].

In all these papers programs are modelled as probabilistic pushdown automata

(pPDA) or as recursive Markov chains; the two models are very close, and nearly all

results obtained for one of them can be easily translated to the other [14]. In this paper

we consider pPDA. Loosely speaking, a pPDA is a pushdown automaton whose transi-

tions carry probabilities. The configurations of a pPDA are pairs containing the current

control state and the current stack content. A run is a sequence of configurations, each

one obtained from its predecessor by applying a transition, which may modify the con-

trol state and modify the top of the stack. If a run reaches a configuration with empty

stack, it stays in this configuration forever. We say “it terminates”.

The memory consumption of a pPDA is modelled by the random variable M that

assigns to a run the maximal stack height of the configurations visited along it (which

may be infinite). We study the distribution and the expected value of M. The execution

time and memory consumption of pPDA were studied in [17], but the results about the

latter were much weaker. More precisely, all it was shown in [17] was that P(M = ∞)

can be compared with 0 or 1 in polynomial space and with other rationals in exponential

time.

2

A probabilistic recursive program whose variables have finite range can be mod-

elled by a pPDA, and in this case M models the amount of memory needed for the

recursion stack. But M is also an important parameter for the problem of schedul-

ing multithreaded computations (see [29, 5, 3, 1] among other papers). When a mul-

tithreaded program is executed by one processor, a scheduler decides which thread to

execute next, and the current states of all other active threads are stored. When threads

are lightweight, this makes the memory requirements of the program heavily depend

on the thread scheduler [29]. Under the usual assumption that a thread can terminate

only after all threads spawned by it terminate, the space-optimal scheduler is the one

that, when A spawns B, interrupts the execution of A and continues with B; this is called

the depth-first scheduler in [29, 5]. The depth-first scheduler can be modelled by a push-

down automaton. To give an example, consider a multithreaded system with two types

of threads, X and Y. Imagine that through statistical sampling we know that a thread

of type X spawns either a thread of type Y or no new threads, both with probability

1/2; a thread of type Y spawns another thread of type Y with probability 1/3, or no new

thread with probability 2/3. The depth-first execution of this multithreaded program

is modelled by a pPDA with one control state, stack symbols X, Y, and rules X
1/2→ YX,

X
1/2→ ε, Y

1/3→ YY, Y
2/3→ ε. Notice that the rule X

1/2→ YX indeed models the depth-first idea:

the new thread Y is executed before the thread X.

In this simple model, pPDA for multithreaded systems have one single control state.

Stack symbols represent currently active threads and pushdown rules model whether

a thread dies or spawns a new thread. On the other hand, pPDA with more than one

control state can model global variables with finite range (the possible values of the

global store are encoded into the control states of the pPDA) [6]. For these reasons we

study arbitrary pPDA in this paper, but also specialize our results (and in particular

the complexity of algorithms) to so-called pBPA, which are pPDA with a single control

state. As we shall see, while some algorithms are polynomial for pBPA, this is unlikely

to be the case for pPDA.

Our contribution. We specifically address the problem of computing P(M ≥ n), or

at least an upper bound, for a given n. This allows us to determine the size that the

stack (or the store for threads awaiting execution) must have in order to guarantee that

the probability of a memory overflow does not exceed a given bound. In Section 3 we

obtain a system of recurrence equations for P(M ≥ n), and show that for a pPDA with

set Q of control states and set Γ of stack symbols, P(M ≥ n) can be computed in time

3

O
(
n · (|Q|2 · |Γ |)3

)
(timeO

(
n · |Γ |3

)
for pBPAs) in the Blum-Shub-Smale model, the com-

putation model in which an arithmetic operation takes one time unit, independently of

the size of the operands. However, this result does not provide any information on

the asymptotic behavior of P(M ≥ n) when n grows, and moreover the algorithm is

computationally inefficient for large values of n. We address these problems for pPDA

in which the expected value of M is finite. We show in Section 3.2 that in this case

P(M ≥ n) ∈ Θ(ρn), where ρ < 1 is the spectral radius of a certain matrix. This power

law etermines the exact asymptotic behavior up to a constant, and also leads to an algo-

rithm for computing a bound on P(M ≥ n) with logarithmic runtime in n.

Then we turn to computing the expectation of M. In Section 3.3 we provide an

algorithm that approximates the expectation, give an error bound and analyze its con-

vergence speed. Finally, in Section 4 we study the problem of deciding whether the

expected value of M is finite. We show that the problem is polynomial for pBPAs. For

arbitrary pPDA we show that the problem is in PSPACE and at least as hard as the

SQRT-SUM and PosSLP problems. Notice that already the problem of deciding if the

termination probability of a pPDA exceeds a given bound has this same complexity.

Related work. Much work has been done also on the analysis of other well-structured

infinite-state Markov chains, such as quasi-birth-death processes [31], Jackson queue-

ing networks [32] and probabilistic lossy channel systems [34]. However, none of these

classes contain pPDA or even pBPA. (The model of quasi-birth-death processes is close

to ours, it roughly corresponds to pPDAs with one single stack symbol.) There is also

work on general infinite-state (continuous-time) Markov chains which analyzes the be-

havior of the chain up to a finite depth [36, 25]. This method is very general, but it is

inefficient for pPDA, because it has not been designed to exploit the pushdown struc-

ture. Our analysis techniques are strongly based on linear algebra and matrix theory, in

particular Perron-Frobenius theory [4]. The closest work to ours is [24] which also uses

Perron-Frobenius theory for assessing the termination probability of recursive Markov

chains.

2 Preliminaries

In the rest of this paper, N and R denote the set of positive integers and real numbers,

respectively. The set of all finite words over a given alphabet Σ is denoted by Σ∗, and the

set of all infinite words over Σ is denoted by Σω. We write ε for the empty word. Given

4

two sets K ⊆ Σ∗ and L ⊆ Σ∗∪Σω, we use K ·L (or just KL) to denote the concatenation of

K and L, i.e., KL = {ww ′ | w ∈ K,w ′ ∈ L}. The length of a given w ∈ Σ∗ ∪ Σω is denoted

by |w|, where the length of an infinite word is ∞. Given a word (finite or infinite) over

Σ, the individual letters of w are denoted by w(0), w(1), . . .

Vectors and Matrices. Given a set S, we regard the elements of RS as vectors. We use

bold letters, like u, for vectors. The vector whose components are all 0 (resp. all 1) is

denoted by 0 (resp. 1). We write u = v (resp. u ≤ v) if u(s) = v(s) (resp. u(s) ≤ v(s))

holds for all s ∈ S. If S ′ ⊆ S, we write u|S ′ for the restriction of u on S ′, i.e., the vector

v ∈ RS ′ with v(s) = u(s) for all s ∈ S ′.

Given two vector spaces RS, RT we identify a linear function A : RS → RT with its

corresponding matrix A ∈ RT×S. We use capital letters for matrices and I for the identity

matrix. We call a matrix nonnegative if all its entries are nonnegative. For nonnegative

square matrices A ∈ RS×S we define the matrix sum A∗ =
∑∞

i=0 Ai = I + A + AA + · · · .
It is a well-known fact (see e.g. [26]) that A∗ converges (or “exists”) iff ρ(A) < 1, where

ρ(A) denotes the spectral radius of A, i.e., the largest absolute value of the eigenvalues

of A. Perron-Frobenius theory for nonnegative matrices (see e.g. [4]) states that ρ(A) is

an eigenvalue of A. If A∗ exists, then A∗ = (I − A)−1.

Markov Chains. Our models of interest induce (infinite-state) Markov chains.

Definition 2.1. A Markov chain is a triple M = (S, →, Prob) where S is a finite or countably

infinite set of states, → ⊆ S× S is a transition relation, and Prob is a function which to each

transition s → t of M assigns its probability Prob(s → t) > 0 so that for every s ∈ S we have∑
s→t Prob(s → t) = 1 (as usual, we write s

x→ t instead of Prob(s → t) = x).

A path in M is a finite or infinite word w ∈ S+ ∪ Sω such that w(i−1) → w(i) for every

1 ≤ i < |w|. A run in M is an infinite path in M. We denote by Run[M] the set of all runs

in M. The set of all runs that start with a given finite path w is denoted by Run[M](w).

When M is understood, we write Run (or Run(w)) instead of Run[M] (or Run[M](w),

resp.).

To every s ∈ S we associate the probability space (Run(s),F ,P) where F is the

σ-field generated by all basic cylinders Run(w) where w is a finite path starting with s,

and P : F → [0, 1] is the unique probability measure such that P(Run(w)) = Π
|w|−1
i=1 xi

where w(i−1)
xi→ w(i) for every 1 ≤ i < |w|. If |w| = 1, we put P(Run(w)) = 1. Only

certain subsets of Run(s) are P-measurable, but in this paper we only deal with “safe”

5

subsets that are guaranteed to be in F . Given s ∈ S and A ⊆ S, we say A is reachable

from s if P({w ∈ Run(s) | ∃i ≥ 0 : w(i) ∈ A}) > 0.

Probabilistic Pushdown Automata (pPDA).

Definition 2.2. A probabilistic pushdown automaton (pPDA) is a tuple ∆ = (Q, Γ, δ, Prob)

where Q is a finite set of control states, Γ is a finite stack alphabet, δ ⊆ Q × Γ × Q × Γ≤2

(where Γ≤2 = {α ∈ Γ ∗, |α| ≤ 2}) is a transition relation, and Prob is a function which to each

transition pX → qα assigns a rational probability Prob(pX → qα) > 0 so that for all p ∈ Q

and X ∈ Γ we have that
∑

pX→qα Prob(pX → qα) = 1 (as usual, we write pX
x→ qα instead of

Prob(pX → qα) = x).

Elements of Q× Γ ∗ are called configurations of ∆. A pPDA with just one control state

is called pBPA (pBPAs correspond to 1-exit recursive Markov chains defined in [24]). In

what follows, configurations of pBPAs are usually written without the control state (i.e.,

we write only α instead of pα).

Example 2.3. As a running example we choose the pBPA ∆ = ({p}, {X, Y, Z,W}, δ, Prob) with

δ and Prob given as follows.

X
1/4→ ε X

1/4→ Y Y
2/3→ ε Z

1→ Z

X
1/4→ XX X

1/4→ Z Y
1/3→ YY W

1→ YW

We can interpret this example as a model of a multithreaded system with four kinds of threads.

Notice that threads of type Z and W do not terminate (our results also deal with this possibility).

We are interested in the minimal number of threads n such that the probability that the execution

of X requires to store more than n threads is at most 10−5.

We define the size |∆| of a pPDA ∆ as follows: |∆| = |Q| + |Γ | + |δ| + |Prob| where |Prob|

equals the sum of sizes of binary representations of values of Prob. To ∆ we associate

the Markov chain M∆ with Q× Γ ∗ as set of states and transitions defined as follows:

• pε
1→ pε for each p ∈ Q;

• pXβ
x→ qαβ is a transition of M∆ iff pX

x→ qα is a transition of ∆.

Given p, q ∈ Q and X ∈ Γ , we often write pXq to denote (p, X, q). Given pXq we define

Run(pXq) = {w ∈ Run(pX) | ∃i ≥ 0 : w(i) = qε} and [pXq] = P(Run(pXq)) .

6

Maximal Stack Height. Given pα ∈ Q × Γ ∗, we denote by height(pα) = |α| the stack

height of pα. Given pX ∈ Q× Γ , the maximal stack height of a run is defined by setting

MpX(w) = sup{height(w(i)) | i ≥ 0} for all runs w ∈ Run(pX).

It is easy to show that for all n ∈ N∪ {∞} the set M−1
pX(n) = {w ∈ Run(pX) | MpX(w) = n}

is measurable. Hence the expectation EMpX of MpX exists and we have

EMpX =
∑

n∈N∪{∞}

n · P(M−1
pX(n)) .

For what follows, we fix a pPDA ∆ = (Q, Γ, δ, Prob) with initial configuration

p0X0 ∈ Q× Γ . We are interested in the random variable Mp0X0
modelling the memory

consumption of ∆. More concretely, we wish to compute or approximate the distribu-

tion of Mp0X0
and its expectation.

3 Computing the Memory Consumption

The problem of computing the distribution of the maximal stack height is the problem

of computing the probability of reaching a given height. So, for every n ≥ 1 we define

a vector P[n] ∈ RQ×Γ with

P[n](pX) = P({w ∈ Run(pX) | MpX(w) ≥ n}) for every pX ∈ Q× Γ ,

i.e., P[n](pX) is the probability that the maximal stack height is≥ n in a run of Run(pX).

There is a “naive” method to compute P[n](p0X0). (Recall that M∆ is the Markov

chain associated with ∆.) First, compute the Markov chain Mn+1
∆ obtained from M∆ by

restricting it to the states with a height of at most n + 1. Note that Mn+1
∆ has finitely

many states. Then compute P[n](p0X0) by computing the probability of reaching a state

of height n+1 starting from p0X0. This can be done as usual by solving a linear equation

system. The problem with this approach is that the number of states in Mn+1
∆ is Θ(|Q| ·

|Γ |n), i.e., exponential in n, and the linear equation system has equally many equations.

A better algorithm is obtained by observing that the Markov chain induced by a

pPDA has a certain regular structure. We exploit this to get rid of the state explosion

in the “naive” method. (This has also been observed in the analysis of other structured

infinite-state systems, see e.g. [31].) In the following we describe the improved method,

which is based on linear recurrences. We are mainly interested in the probabilities P[n]

to reach height n, but as an auxiliary quantity we use the probability of not exceeding

7

height n in terminating runs. Formally, for every n ≥ 0 we define a vector T[n] ∈
RQ×Γ×Q such that

T[n](pXq) = P({w ∈ Run(pXq) | MpX(w) ≤ n}) for every pXq ∈ Q× Γ ×Q ,

i.e., T[n](pXq) is the probability of all runs of Run(pX) that terminate at q and do not

exceed the height n. To every pXq ∈ Q × Γ × Q we associate a variable T〈n〉(pXq).

Consider the following equation system: If T[n](pXq) = 0, then we put T〈n〉(pXq) = 0.

Otherwise, we put

T〈n〉(pXq) =
∑

pX
y→qε

y +
∑

pX
y→rY

yT〈n〉(rYq) +
∑

pX
y→rYZ

∑
s∈Q

yT[n − 1](rYs)T〈n〉(sZq) .

Proposition 3.1. For every n ≥ 0, the vector T[n] is the unique solution of that equation

system.

The values T[n] can be used to set up an equation system for P[n]. To every pX ∈
Q × Γ we associate a variable P〈n〉(pX). Consider the following equation system: We

put P〈1〉(pX) = 1. If P[n](pX) = 0, then we put P〈n〉(pX) = 0. Otherwise, we put

P〈n〉(pX) =
∑

pX
y→qY

yP〈n〉(qY)+
∑

pX
y→qYZ

yP[n − 1](qY)+
∑

pX
y→qYZ

∑
r∈Q

yT[n − 2](qYr)P〈n〉(rZ) .

Proposition 3.2. For every n ≥ 1, the vector P[n] is the unique solution of that equation

system.

Example 3.3. In our example we have for n ≥ 1

T[n](X) = 1/4 + 1/4 T[n](Y) + 1/4 T[n](Z) + 1/4 T[n − 1](X)T[n](X)

T[n](Y) = 2/3 + 1/3 T[n − 1](Y)T[n](Y)

T[n](Z) = 0

T[n](W) = 0

and for n ≥ 2

P[n](X) = 1/4 P[n](Y) + 1/4 P[n](Z) + 1/4 P[n − 1](X) + 1/4 T[n − 2](X)P[n](X)

P[n](Y) = 1/3 P[n − 1](Y) + 1/3 T[n − 2](Y)P[n](Y)

P[n](Z) = 0

P[n](W) = P[n − 1](Y) + T[n − 2](Y)P[n](W) .

8

Solving those systems successively for increasing n shows that n = 17 is the smallest number n

such that P[n](X) ≤ 10−5. In the interpretation as a multithreaded system this means that the

probability that 17 or more threads need to be stored is at most 10−5.

Using the above equation systems, we can compute T[n] and P[n] iteratively for

increasing n by plugging in the values obtained in earlier iterations. The cost of each

iteration is dominated by solving the equation system for T[n], which can be done,

using Gaussian elimination, in time O
(
(|Q|2 · |Γ |)3

)
in the Blum-Shub-Smale model. So

the total time to compute P[n] is linear in n.

Proposition 3.4. The value P[n] can be computed by setting up and solving the equation sys-

tems of Propositions 3.1 and 3.2 in time O
(
n · (|Q|2 · |Γ |)3

)
in the Blum-Shub-Smale model.

The values P[n] that can be computed by Proposition 3.4 also allow to approximate

the expectation EMp0X0
: Since EY =

∑∞
n=1P(Y ≥ n) holds for any random variable Y

with values in N, we have EMp0X0
=

∑∞
n=1 P[n](p0X0), so one can approximate EMp0X0

by computing
∑k

n=1 P[n](p0X0) for some finite k.

Proposition 3.4 is simple and effective, but not fully satisfying for several reasons.

First, it does not indicate how fast P[n](p0X0) decreases (if at all) for increasing n. Sec-

ond, although computing P[n] using Proposition 3.4 is more efficient than using the

“naive” method, it may still be too costly for large n, especially if Q or Γ are large. In-

stead, one may prefer an upper bound on P[n] if it is fast to compute. Finally, we wish

for an approximation method for EMp0X0
that comes with an error bound.

In the following we achieve these goals for pPDAs in which the expected memory

consumption is finite. So we assume the following on the pPDA ∆ for the rest of the

section.

ASSUMPTION: The expectation EMp0X0
is finite.

Notice that from the practical point of view this is a mild assumption: systems with

infinite expected memory consumption also have infinite expected running time, and

are unlikely to be considered suitable in reasonable scenarios. In Section 4 we discuss

the assumption in more detail. In particular, we show that whether EMp0X0
is finite can

be decided in polynomial time for pBPA, but also that this problem is unlikely to be

decidable in polynomial time for general pPDA.

9

3.1 The Matrix A

This subsection leads to a matrix A which is crucial for our analysis. It is useful to

get rid of certain irregularities in the equation systems of Propositions 3.1 and 3.2. The

following lemma shows that the variables in the equation systems do not change from

0 to positive (or from positive to 0) if n is sufficiently large. (Recall that, by definition,

T[n] ≤ T[n + 1] and P[n] ≥ P[n + 1] for all n ≥ 1.)

Lemma 3.5.

1. T[|Q|2|Γ | + 1](pXq) > 0 ⇐⇒ for all n ≥ |Q|2|Γ | + 1 : T[n](pXq) > 0 ⇐⇒ [pXq] > 0;

2. P[|Q||Γ | + 1](pX) > 0 ⇐⇒ for all n ≥ 1 : P[n](pX) > 0.

Another irregularity can be removed by restricting T[n] and P[n] to their “interest-

ing” components; in particular, we filter out entries of P[n] that cannot create large

stacks. Let T ⊆ Q × Γ × Q denote the set of all pXq such that pXΓ ∗ is reachable from

p0X0, and [pXq] > 0. Let H ⊆ Q× Γ denote the set of all pX such that pXΓ ∗ is reachable

from p0X0, and P[n](pX) > 0 for all n ≥ 1.

Lemma 3.6. The sets T and H are computable in polynomial time.

Example 3.7. For our running example, we fix X as the initial configuration. Then WΓ ∗ is not

reachable and P[n](Z) = 0 for n ≥ 2, hence H = {X, Y}. Furthermore, T = {X, Y}.

We define t[n] ∈ RT by t[n] := T[n]|T , i.e., t[n] ∈ RT is the restriction of T[n] to T .

Similarly, we define p[n] := P[n]|H. Now we bring the equation systems for t[n] and p[n]

from Propositions 3.1 and 3.2 in a compact matrix form.

For t[n], we define a vector c ∈ RT , a linear function L̃ on RT , and a bilinear function

Q̃ : RT × RT → RT as follows:

(c)(pXq) =
∑

pX
y→qε

y (L̃v)(pXq) =
∑

pX
y→rY

rYq∈T

yv(rYq)

(Q̃(u, v))(pXq) =
∑

pX
y→rYZ

∑
s∈Q

rYs∈T
sZq∈T

yu(rYs)v(sZq)

By Q̃(u, ·) we denote a linear function satisfying Q̃(u, ·)(v) = Q̃(u, v).

10

For p[n], we define linear functions L and L ′ on RH, and a bilinear function

Q : RT × RH → RH as follows:

(Lv)(pX) =
∑

pX
y→qY

qY∈H

yv(qY) (L ′v)(pX) =
∑

pX
y→qYZ

qY∈H

yv(qY)

(Q(u, v))(pX) =
∑

pX
y→qYZ

∑
r∈Q

qYr∈T
rZ∈H

yu(qYr)v(rZ)

By Q(u, ·) we denote a linear function satisfying Q(u, ·)(v) = Q(u, v).

Using Propositions 3.1 and 3.2 we obtain for n ≥ |Q|2|Γ | + 3 (recall Lemma 3.5):

Proposition 3.8. The following equations hold for all n ≥ |Q|2|Γ | + 3:

t[n] = c + L̃t[n] + Q̃(t[n − 1], t[n]) and p[n] = Lp[n] + L ′p[n − 1] + Q(t[n − 2], p[n])

Example 3.9. In our example we have for n ≥ 1

t[n] =

L̃+Q̃(t[n−1],·)︷ ︸︸ ︷(
1/4 t[n − 1](X) 1/4

0 1/3 t[n − 1](Y)

)
t[n] +

c︷ ︸︸ ︷(
1/4

2/3

)

and for n ≥ 2

p[n] =

L+Q(t[n−2],·)︷ ︸︸ ︷(
1/4 t[n − 2](X) 1/4

0 1/3 t[n − 2](Y)

)
p[n] +

L ′︷ ︸︸ ︷(
1/4 0

0 1/3

)
p[n − 1] .

Unlike P[n], the vector p[n] can be expressed in the form Anp[n − 1] for a suitable ma-

trix An:

Proposition 3.10. Let An := (L + Q(t[n − 2], ·))∗L ′. Then for every n ≥ |Q|2|Γ | + 3 the

matrix An exists and p[n] = Anp[n − 1].

The key of our further analysis is to replace the matrix An by A = limn→∞ An. Since

An = (L + Q(t[n − 2], ·))∗L ′, we have

A := (L + Q(t, ·))∗L ′

where we define t = limn→∞ t[n]. (Observe that t(pXq) = [pXq].) It is not immediate

from Proposition 3.10 that A exists, but it can be proved:

Proposition 3.11. The matrix A exists and its spectral radius ρ satisfies ρ < 1.

11

Proposition 3.11 is the technical core of this paper. Its proof is quite involved and

relies on Perron-Frobenius theory [4]. We give a proof sketch and a full proof in Ap-

pendix B.7.

Example 3.12. The termination probabilities t can be computed as the least solution of a non-

linear equation system [16, 24]. Applied to our example we obtain t(X) = 2 −
√

2 ≈ 0.586 and

t(Y) = 1. Basic computations yield the following matrix A whose spectral radius is ρ = 1/2.

A =

(
1/(2 +

√
2) 1/(4 + 2

√
2)

0 1/2

)

3.2 Approximating the Distribution and a Tail Bound

We can assume p0X0 ∈ H in the following, because otherwise, by Lemma 3.5, we would

have P[n](p0X0) = 0 for n ≥ |Q|2|Γ | + 3, removing any need for further analysis.

The following theorem suggests an efficient approximation algorithm.

Theorem 3.13. Let n⊥ := |Q|2|Γ |+3 and p̂[n] := p[n] for n < n⊥ and p̂[n⊥ + n] := Anp[n⊥]

for n ≥ 0. Then p[n] ≤ p̂[n] holds for all n ≥ 1. Moreover, there exists d with 0 < d ≤ 1 and

d · p̂[n](p0X0) ≤ p[n](p0X0) ≤ p̂[n](p0X0) .

The proposition shows that p[n](p0X0) and the approximation p̂[n](p0X0) differ at most

by a constant factor. Given A, the matrix powers An can be computed by repeated

squaring, which allows to compute this upper bound in time O
(
(|Q| · |Γ |)3 · log n

)
in

the Blum-Shub-Smale model. To compute A = (L + Q(t, ·))∗L ′ itself, we can compute

the matrix star via the matrix inverse, as stated in the preliminaries. Computing the

vector t of termination probabilities requires a more detailed discussion. The vector is

the least solution of a nonlinear equation system, and its components may be irrational

and even non-expressible by radicals [16, 24]. However, there are several ways to com-

pute at least upper bounds on t (which suffices to obtain upper bounds on p[n], as A

depends monotonically on t), or lower-bound approximations sufficiently accurate for

all practical purposes. First, t can be approximated in polynomial space using binary

search [24]. Second, one may use Newton’s method and the results of [28, 15] on its con-

vergence speed. These papers show that Newton’s method converges at least linearly,

and exponentially in many cases, i.e., the number of accurate bits grows exponentially

in the number of iterations. Finally, one of the conditions systems must often satisfy

12

is termination with probability 1. For pBPAs this condition can be checked in polyno-

mial time [24]. If this test is passed, we know t = 1, and the problem of computing t is

solved.

Theorem 3.13 provides a tail bound for p[n](p0X0):

Corollary 3.14. We have p[n](p0X0) ∈ Θ (ρn) .

Example 3.15. Since in our example Proposition 3.10 holds already for n ≥ 2, we have p̂[n] =

An−11 for n ≥ 1. With the matrix A from Example 3.12 and using p[n] ≤ p̂[n] we obtain:

p[2] ≤ 0.5 · 1 , p[5] ≤ 0.07 · 1 , p[17] ≤ 10−4 · 1 , p[65] ≤ 10−19 · 1 , . . .

Binary search can be used to determine that n = 18 is the least number n for which p[n] ≤
p̂[n] ≤ 10−5 · 1 holds, so the comparison with Example 3.3 shows that the overapproximation is

quite tight here. As ρ = 1/2, Corollary 3.14 yields p[n](p0X0) ∈ Θ (1/2n).

3.3 Approximating the Expectation

We define an approximation method for the expectation EMp0X0
, and bound its error.

As mentioned below Proposition 3.4, we have EMp0X0
=

∑∞
n=1 p[n](p0X0), which can

be (under-) approximated by the partial sums
∑k

n=1 p[n](p0X0). The values p[n](p0X0)

can be computed using Proposition 3.8.

The following theorem gives error bounds on this approximation method and shows

that it converges linearly, i.e., the number of accurate bits (as defined in [28]) is a linear

function of the number of iterations. (Recall for the following statement that for a vector

v ∈ RH its 1-norm ‖v‖1 is defined as
∑

h∈H |v(h)|, and that for a matrix B its 1-norm ‖B‖1

is the maximal 1-norm of its columns.)

Theorem 3.16. Let UMp0X0
(k) :=

∑k
n=1 p[n](p0X0). For all k ≥ |Q|2|Γ | + 3

EMp0X0
− UMp0X0

(k) ≤ ‖A∗‖1 ‖p[k]‖1 ≤ abk

where a > 0 and 0 < b < 1 are computable rational numbers. Hence, the sequence

(UMp0X0
(k))k converges linearly to EMp0X0

.

The computation procedure of the constants a and b from Theorem 3.16 is somewhat

involved(see Appendix B.9), but the first inequality of Theorem 3.16 gives concrete error

bounds as well:

13

Example 3.17. Using Proposition 3.8 we compute
∑12

n=1 p[n](X) = 1.5731 . . . and furthermore

‖p[12]‖1 ≈ 0.00042. We have ‖A∗‖1 = 1 +
√

2 ≈ 2.4. Theorem 3.16 yields

1.57 < EMX ≤ 1.5731 . . . + ‖A∗‖1 · ‖p[12]‖1 < 1.58 .

4 Finiteness of the Expected Memory Consumption

In this section we study the complexity of the finite-expectation problem that asks

whether the expectation of the memory consumption is finite.

4.1 Expected Memory Consumption of pPDA

For pPDA we can show the following theorem.

Theorem 4.1. The problem whether EMp0X0
is finite is decidable in polynomial space.

The proof is based on the following proposition which strengthens Proposition 3.11

from the previous section which stated that, under the assumption that EMp0X0
is finite,

the spectral radius ρ of A satisfies ρ < 1.

Proposition 4.2. Suppose P(Mp0X0
< ∞) = 1. Then the matrix A exists. Moreover, its

spectral radius ρ satisfies ρ < 1 if and only if EMp0X0
is finite.

The condition P(Mp0X0
< ∞) = 1 can be checked in polynomial space [17]. If it does

not hold, then clearly EMp0X0
= ∞. Otherwise one checks ρ ≥ 1. Roughly speaking,

this can be done in polynomial space because the matrix A is given in terms of the

termination probabilities t which can be expressed in the existential theory of the reals,

which is decidable in polynomial space [12, 33].

We can also show that this upper complexity bound from Theorem 4.1 cannot be

significantly lowered without a major breakthrough on long-standing and fundamental

problems on numerical computations, namely the SQRT-SUM and the PosSLP problems

(see [2, 24] or Appendix C.2 for the definition and a discussion of these problems):

Theorem 4.3. The PosSLP problem is P-time many-one reducible to the decision problem

whether the expected maximal height of a pPDA is finite.

It follows that SQRT-SUM is (Turing) reducible to the finite-stack problem, because

SQRT-SUM is (Turing) reducible to PosSLP [2, 24].

14

4.2 Expected Memory Consumption of pBPA

Now we show that for pBPA the finite-expectation problem can be decided in polyno-

mial time. Let us fix a pBPA ∆ = ({p}, Γ, δ, Prob), and fix an initial configuration X0 ∈ Γ .

Let Γ0 denote the set of all symbols Y ∈ Γ such that YΓ ∗ is reachable from X0.

We divide the set Γ0 into two groups as follows.et Term be the set of all symbols X ∈ Γ0

such that t(X) = 1, i.e., a run from a Term-symbol terminates almost surely. We define

NTerm = Γ0\Term. The following proposition follows from [24] (see also [7]).

Proposition 4.4. The sets Term and NTerm can be computed in polynomial time.

For symbols in Term we have the following proposition.

Proposition 4.5. If X0 ∈ Term, the problem whether EMX0
< ∞ is decidable in polynomial

time.

The decision procedure of Proposition 4.5 is similar to the one of Theorem 4.1, but it

runs in polynomial time. Roughly speaking, this is because X0 ∈ Term implies t = 1,

which makes the matrix A computable in polynomial time. For the case X0 ∈ NTerm,

we use the following proposition.

Proposition 4.6. If X0 ∈ NTerm, then the problem whether P(MX0
< ∞) = 1 is decidable in

polynomial time.

ALGORITHM DECIDING WHETHER EMX0
IS FINITE:

1. Compute the sets Term and NTerm (using Proposition 4.4).

2. Decide whether all Y ∈ NTerm satisfy P(MY < ∞) = 1 (using Proposition 4.6). If

no, then stop and return ‘no’.

3. Decide whether all Y ∈ Term satisfy EMY < ∞ (using Proposition 4.5). If no, then

return ‘no’. Otherwise return ‘yes’.

Example 4.7. Consider our running example for X0 = X. In this case Γ0 = {X, Y, Z},

NTerm = {X,Z} and Term = {Y}. The algorithm decides the finiteness of EMX as follows. In the

first step, the algorithm computes the sets Term and NTerm using Proposition 4.4 (this involves

invocation of nontrivial procedures of [24]). Since P(MX < ∞) = P(MZ < ∞) = 1, the algo-

rithm does not stop in step 2. Consequently, the algorithm applies Proposition 4.5 with X0 = Y

which gives that EMY < ∞, and hence the algorithm returns ‘yes’.

15

In some more detail, the decision procedure of Proposition 4.5 proceeds by checking the spec-

tral radius ρ of the matrix A: First, the setsH = {Y} and T = {Y} are computed. Then the matrix

(i.e. the number) A = (L + Q(t, ·))∗L ′ = 1/2 is computed. Finally, the decision procedure of

Proposition 4.5 decides whether ρ < 1. As ρ = 1/2, it finds EMY < ∞.

Theorem 4.8. The above algorithm returns ‘yes’ iff EMX0
is finite. It runs in polynomial time.

A proof sketch and a full proof of this theorem can be found in Appendix C.5.

5 Conclusions

We have investigated the memory consumption of probabilistic pushdown automata

(pPDA). Technically speaking, we have studied the random variable M returning the

maximal stack height of a pPDA. In [17] a PSPACE algorithm was provided for deciding

whether the runs with M = ∞ have nonzero probability, but the distribution of M and

its expectation have not been studied.

For computing the distribution of M, we have shown that the exponential blow-up

of the naive method can be avoided using a system of linear equations. We have also

provided an approximation method that gives upper bounds. This can be used, e.g., for

providing space that suffices with a probability of, say, 99%.

Computing the expectation EM was mentioned in [17] as “harder problem” and

left open. Using novel proof techniques, we have provided a rather complete solu-

tion. We have shown that whether the expected maximal stack height of a pBPA is

finite can be decided in polynomial time, while for general pPDA the problem is in

PSPACE. By means of a reduction to the PosSLP and SQRT-SUM problems we have

furthermore shown that this complexity cannot be significantly lowered without ma-

jor breakthroughs. Finally, we have defined an iterative method for approximating the

expected maximal stack height, and have shown that it converges linearly.

The complexity of the decision problem EMp0X0
< k for a finite bound k is an open

question. The application of our results to program models similar to those of [13] is

also left for future research.

16

References

[1] K. Agrawal, C.E. Leiserson, Y. He, and W.J. Hsu. Adaptive work-stealing with

parallelism feedback. ACM TOCS, 26(3), 2008.

[2] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the com-

plexity of numerical analysis. In IEEE Conference on Computational Complexity,

pages 331–339. IEEE Computer Society, 2006.

[3] N.S. Arora, R.D. Blumofe, and C.G. Plaxton. Thread scheduling for multipro-

grammed microprocessors. Theory of Computing Systems, 34:115–144, 2001.

[4] A. Berman and R.J. Plemmons. Nonnegative matrices in the mathematical sciences.

Academic Press, 1979.

[5] R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by

work stealing. Journal of the ACM, 46(5):720–748, 1999.

[6] A. Bouajjani and J. Esparza. Rewriting models of boolean programs. In Proceedings

of RTA 2006, Seattle, USA, 2006.

[7] T. Brázdil. Verification of Probabilistic Recursive Sequential Programs. PhD

thesis, Faculty of Informatics, Masaryk University, 2007. Full version at

http://www.fi.muni.cz/~xbrazdil/thesis.pdf.

[8] T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Reachability in recursive Markov

decision processes. In CONCUR 2006, pages 358–374, 2006.

[9] T. Brázdil, V. Brožek, A. Kučera, and J. Obdržálek. Qualitative reachability in

stochastic BPA games. In STACS 2009, pages 207–218, 2009.

[10] T. Brázdil, J. Esparza, and A. Kučera. Analysis and prediction of the long-run

behavior of probabilistic sequential programs with recursion. In FOCS’05, pages

521–530, 2005.

[11] T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of temporal proper-

ties of probabilistic pushdown automata. In STACS 2005, pages 145–157, 2005.

[12] J. Canny. Some algebraic and geometric computations in PSPACE. In STOC’88,

pages 460–467, 1988.

17

[13] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T.A. Henzinger, and J. Palsberg. Stack

size analysis for interrupt-driven programs. Inform. and Computat., 194(2):144–174,

2004.

[14] J. Esparza and K. Etessami. Verifying probabilistic procedural programs. In

FSTTCS 2004, pages 16–31, 2004.

[15] J. Esparza, S. Kiefer, and M. Luttenberger. Convergence thresholds of Newton’s

method for monotone polynomial equations. In STACS 2008, pages 289–300, 2008.

[16] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown au-

tomata. In LICS 2004, pages 12–21. IEEE, 2004.

[17] J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic push-

down automata: Expectations and variances. In LICS’05, pages 117–126. IEEE,

2005.

[18] J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular valua-

tions for pushdown systems. Information and Computation, 186(2):355–376, Novem-

ber 2003.

[19] K. Etessami, D. Wojtczak, and M. Yannakakis. Recursive stochastic games with

positive rewards. In ICALP 2008 (1), pages 711–723, 2008.

[20] K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic

state machines. In TACAS 2005, pages 253–270, 2005.

[21] K. Etessami and M. Yannakakis. Recursive Markov decision processes and recur-

sive stochastic games. In ICALP 2005, pages 891–903, 2005.

[22] K. Etessami and M. Yannakakis. Efficient qualitative analysis of classes of recursive

Markov decision processes and simple stochastic games. In STACS 2006, pages

634–645, 2006.

[23] K. Etessami and M. Yannakakis. Recursive concurrent stochastic games. Logical

Methods in Computer Science, 4(4), 2008.

[24] K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars,

and monotone systems of nonlinear equations. Journal of the ACM, 56(1):1–66, 2009.

18

[25] E.M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. INFAMY: An infinite-state

Markov model checker. In CAV, LNCS 5643, pages 641–647, 2009.

[26] R.A. Horn and C.A. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[27] J. G. Kemeny and J. L. Snell. Finite Markov Chains: With a New Appendix “General-

ization of a Fundamental Matrix”. Springer, first edition, 1983.

[28] S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s method

for monotone systems of polynomial equations. In STOC 2007, pages 217–226,

2007.

[29] G.J. Narlikar and G.E. Belloch. Space-efficient scheduling of nested parallelism.

ACM TOPLAS, 21(1):138–173, 1999.

[30] J. R. Norris. Markov Chains. Oxford University Press, first edition, 1998.

[31] A. Remke, B. Haverkort, and L. Cloth. CSL model checking algorithms for QBDs.

Theoretical Computer Science, 382(1):24–41, 2007.

[32] A. Remke and B.R. Haverkort. CSL model checking algorithms for infinite-state

structured Markov chains. In FORMATS, LNCS 4763, pages 336–351, 2007.

[33] J. Renegar. On the computational complexity and geometry of the first-order theory

of the reals. Parts I–III. Journal of Symbolic Computation, 13(3):255–352, 1992.

[34] P. Schnoebelen. The verification of probabilistic lossy channel systems. In Validation

of Stochastic Systems, LNCS 2925, pages 445–465. Springer, 2004.

[35] M. Yannakakis and K. Etessami. Checking LTL properties of recursive Markov

chains. In QEST 2005, pages 155–165, 2005.

[36] L. Zhang, H. Hermanns, E.M. Hahn, and B. Wachter. Time-bounded model check-

ing of infinite-state continuous-time markov chains. In ACSD, pages 98–107. IEEE,

2008.

19

APPENDIX

In the appendix we give missing proofs from the main body. In Section A we provide

lemmata on nonnegative matrices that we use later on.

Additional Notation and Concepts Used in the Appendix

Markov Chains. Given any Markov chain (S, →, Prob), a state s ∈ S and a set A ⊆ S,

we define

P(s →∗ A) = P({w ∈ Run(s) | ∃i ≥ 0 : w(i) ∈ A})

(Recall that A is reachable from s if P(s →∗ A) > 0.)

P(s →+ A) = P({w ∈ Run(s) | ∃i ≥ 1 : w(i) ∈ A})

We sometimes write P(s →∗ t) and P(s →+ t) instead of P(s →∗ {t}) and P(s →+ {t}),

respectively.

Probabilistic Pushdown Automata. Given a finite path v in M∆ and a sequence ω =

t1, . . . , t|v|−1 of transitions of δ ⊆ Q × Γ × Q × Γ≤2, we say that ω induces v if for every

1 ≤ i < |v| holds that v(i − 1) → v(i) is induced by ti (i.e., v(i − 1) is of the form pXα, ti

is of the form pX → qβ, and v(i) = qβα).

Given a configuration pXα of a pPDA, we call pX the head and α the tail of pXα (we

also write head(pXα) = pX and tail(pXα) = α). The head of pε is p and the tail is ε (here

ε denotes the empty stack).

Vectors. For any vectors u, v ∈ RM, we write u � v to mean u(m) > v(m) for all

m ∈ M.

ExTh(R). A formula of ExTh(R), the existential fragment of the first-order theory of

the reals, is of the form ∃x1 . . .∃xnR(x1, . . . , xn) where R(x1, . . . , xn) is a boolean combi-

nation of comparisons of the form p(x1, . . . , xn) ∼ 0 where p(x1, . . . , xn) is a multivariate

polynomial and ∼ ∈ {<, >,≤,≥,=, 6=}. The theory ExTh(R) is known to be decidable in

polynomial space [12, 33].

A Constant. We set n⊥ := |Q|2|Γ | + 3 throughout the appendix.

20

A Lemmata on Nonnegative Matrices

Lemma A.1. Let A ∈ Rn×n be a nonnegative matrix.

(a) A∗ exists iff ρ(A) < 1.

(b) If A∗ exists then A∗ = (I − A)−1.

(c) If ρ(A) ≥ 1 then there is a principal submatrix B of A such that ρ(B) ≥ 1 and B is

strongly connected (strongly connected means that for all 1 ≤ i, j ≤ n there is k ≥ 0 with

(Bk)ij 6= 0).

Proof. Statements (a) and (b) are standard theory on nonnegative matrices, see e.g. [4].

Statement (c) follows from (a) and the fact that as long as A is not strongly connected,

ρ(A) is an eigenvalue of some proper principal submatrix of A (see [4], Corollary 2.1.6).

Lemma A.2. Let A,B ∈ Rn×n be nonnegative matrices such that A∗ exists. We have ρ(A +

B) < 1 iff ρ(A∗B) < 1.

Proof. The direction “⇒” follows from the theory of M-matrices and regular splittings,

see [4], Theorem 6.2.3 part P48. For the direction “⇐” let ρ(A∗B) < 1. Then by

Lemma A.1 the matrix (A∗B)∗ exists. As A∗ exists, also (A∗B)∗A∗ exists. This matrix

equals (A+B)∗ which is easily seen by reordering infinite (absolutely) converging sums.

So, (A + B)∗ exists as well, hence by Lemma A.1 we have ρ(A + B) < 1.

Lemma A.3. Let A ∈ Rm×m be a nonnegative matrix such that A∗ exists. Let (εn)n∈N be a

sequence with εn ≥ εn+1 ≥ 0 converging to 0. Then there exists an n1 and a nonnegative

matrix K such that for all n ≥ n1(
(1 − εn)A

)∗ ≥ (I − εnK)A∗ .

Proof. We can assume εn ≤ 1. Let M = (I − A)−1A. Then by Lemma A.1 and a simple

computation (
(1 − εn)A

)∗
=
(
I + εnM

)−1
A∗ .

Choose n1 large enough so that ρ(εnM) < 1. Then (εnM)∗ exists and so(
I + εnM

)−1
= I − (εnM) + (εnM)2 − (εnM)3 + − · · ·

≥ I − (εnM)(εnM)∗

≥ I − εnM(εn1
M)∗

Choose K = M(εn1
M)∗ and the claim follows.

21

B Proofs of Section 3

On page 9, we made the assumption for Section 3 that EMp0X0
is finite. For many proofs

in this section, this assumption is not needed, or only a weaker assumption is needed,

namely that P(Mp0X0
< ∞) = 1. (This assumption is weaker, as P(Mp0X0

= ∞) > 0

clearly implies that EMp0X0
is infinite.) For clarity and for later reuse of results we

make those assumptions explicit in this appendix, i.e., we include the assumption in the

preconditions of the statement whenever it is needed. For instance, no such assumption

is needed for Propositions 3.1 and 3.2, as it is not mentioned in the restatements of those

propositions below.

B.1 Proof of Propositions 3.1 and 3.2

Here are restatements of Propositions 3.1 and 3.2.

PROPOSITION 3.1. For every n ≥ 0, the vector T[n] is the unique solution of the equation

system on page 8.

PROPOSITION 3.2. For every n ≥ 1, the vector P[n] is the unique solution of the equation

system on page 8.

We prove only Proposition 3.2, since the proof of Proposition 3.1 is analogous.

Proof. The proof that for every n ≥ 2, the vector P[n] solves the system is straightfor-

ward. Let us prove uniqueness. Fix n ≥ 2. Let us consider a finite state Markov chain

M = (S, ↪→, Prob ′) where S = (Q× Γ) ∪ {term} and pX ↪→ qY iff

x =
∑

pX
y→qY

y +
∑

pX
y→rZY

yT[n − 2](rZq) > 0

in which case Prob ′(pX ↪→ qY) = x. Finally, we define pX ↪→ term iff

x =
∑

pX
y→qYZ

yP[n − 1](qY) > 0

in which case we define Prob ′(pX ↪→ qY) = x. Let us denote by fpX the probability of

reaching term from pX in M. By [30] Theorem 1.3.2, the vector of all values fpX is the

least nonnegative solution (with respect to component-wise ordering) of the following

system

xpX =

0 if fpX = 0∑
pX

y
↪→term

y +
∑

pX
y
↪→qY

yxqY otherwise.

22

We first show that this system has only one solution. Obviously, it suffices to consider

the restricted system obtained by omitting the equations for xpX with fpX = 0 and re-

placing those xpX on the right hand sides with 0. Hence the least nonnegative solution

of this system is positive in all components. If there existed a solution different from

the least nonnegative one, then, by basic linear algebra facts, all points on the straight

line defined by the two solutions would be solutions as well. In particular, there would

exist a nonnegative solution with a zero component, contradicting the existence of a

least nonnegative solution which is positive. So the system defined above has only one

solution.

However, substituting the real transition probabilities of M to the above system we

obtain the original system for P[n]. It means that the vector of the values fpX is also the

unique solution of the system for P[n].

B.2 Proof of Proposition 3.4

Here is a restatement of Proposition 3.4.

PROPOSITION 3.4. The value P[n] can be computed by setting up and solving the equation

systems of Propositions 3.1 and 3.2 in timeO
(
n · (|Q|2 · |Γ |)3

)
in the Blum-Shub-Smale model.

Proof. To set up the equation system for T[n] we have to determine, for each pXq ∈ Q×
Γ×Q, whether T[n](pXq) = 0. To this end, we set up an equation system for T̃[n], where

T̃[n](pXq) equals, for each pXq ∈ Q × Γ ×Q, the boolean value true if T[n](pXq) > 0,

and false if T[n](pXq) = 0. Following [18] and defining an order false < true, the

boolean vector T̃[n](pXq) is the (componentwise) least solution of the following boolean

equation system over the variable vector T̃〈n〉.

T̃〈n〉(pXq) =
∨

pX
y→qε

true ∨
∨

pX
y→rY

T̃〈n〉(rYq) ∨
∨

pX
y→rYZ

∨
s∈Q

(
T̃[n − 1](rYs) ∧ T̃〈n〉(sZq)

)
.

Its least solution, and hence T̃[n], can be computed using fixed-point iteration of that

equation system. By implementing it with a worklist algorithm [18], this costs

O(|δ| · |Q|2) ≤ O(|Q|2 · |Γ |3 · |Q|2) = O(|Q|4 · |Γ |3)

operations. Once T̃[n] is computed, the equation system for T[n] from Proposition 3.1

can be set up in time O(|Q|4 · |Γ |3) and solved in time O
(
(|Q|2 · |Γ |)3

)
using Gaussian

elimination.

23

Since all this needs to be done for all n ′ with 1 ≤ n ′ ≤ n, computing T[n] requires

O
(
n · (|Q|2 · |Γ |)3

)
operations.

The values T[n] can be used to compute P[n] using the equation system from Propo-

sition 3.2. It can be set up and solved similarly as shown above for T[n]. The costs

for P[n] are at most the costs for T[n]. (Some costs decrease by a factor of |Q|.) So the to-

tal time for determining P[n] in the Blum-Shub-Smale model is O
(
n · (|Q|2 · |Γ |)3

)
.

B.3 Proof of Lemma 3.5

Here is a restatement of Lemma 3.5.

LEMMA 3.5.

1. T[|Q|2|Γ | + 1](pXq) > 0 ⇐⇒ for all n ≥ |Q|2|Γ | + 1 : T[n](pXq) > 0 ⇐⇒ [pXq] > 0;

2. P[|Q||Γ | + 1](pX) > 0 ⇐⇒ for all n ≥ 1 : P[n](pX) > 0.

Proof. The proof of this lemma is based on arguments similar to the pumping lemma

from language theory.

ad 1. The first “⇐⇒” follows from the fact that, by definition, T[n](pXq) is monotoni-

cally increasing with n. Since T[|Q|2|Γ | + 1](pXq) > 0 implies [pXq] > 0, it remains

to show that [pXq] > 0 implies T[|Q|2|Γ | + 1](pXq) > 0. Let us define a sequence of

sets A0, A1, A2, . . . ⊆ Q× Γ ×Q as follows: We define A0 = ∅ and

Ai+1 = Ai

∪ {pXq | pX → qε}

∪ {pXq | pX → rY, rYq ∈ Ai}

∪ {pXq | pX → rYZ; rYs, sZq ∈ Ai)} .

It is easy to see that [pXq] > 0 implies that pXq ∈ An for some n ≥ 0. As Ai ⊆ Ai+1

and Ai+1 depends only on Ai, we can choose n ≤ |Q×Γ×Q| = |Q|2|Γ |. We show, by

induction, that if pXq ∈ An, then there is a path from pX to qε with maximal stack

height at most n + 1. This trivially holds for n = 0. Let us consider pXq ∈ An+1. If

either pXq ∈ An, or pX → qε, then we are done. Also, if pX → rY where rYq ∈ An,

24

we are done. Assume that pX → rYZ and assume that rYs, sZq ∈ An for some s ∈
Q. By induction, there is a path u from rY to sε with maximal stack height at most

n, and also a path v from sZ to qε with maximal stack height at most n. Assume

that u is induced by a sequence t1, . . . , tk of transitions of δ and v is induced by a

sequence tk+1, . . . , t`. Now a sequence of transitions pX → rYZ, t1, . . . , t` induces

a path from pX to qε with maximal stack height at most n + 1.

ad 2. Let us assume that

P({w ∈ Run(pX) | MpX(w) ≥ |Q||Γ | + 1}) > 0

There is a path v = v(0) . . . v(m) with v(0) = pX and |v(m)| ≥ |Q||Γ | + 1. By the

pigeonhole principle there are 0 ≤ j < k ≤ m such that head(v(j)) = head(v(k))

and |v(j)| < |v(k)| and |v(j)| ≤ |v(t)| for all j ≤ t ≤ k.

Let us assume that v is induced by the sequence t1, t2, . . . tm of transitions of δ (for

the meaning of induce see the beginning of Appendix). Now for every ` ≥ 1 we

define a path v` induced by the following sequence of transitions of δ:

t1, t2, . . . , tj, (tj+1, . . . , tk)
`

It is easy to see that v` reaches a height of at least `. Hence

P({w | MpX(w) ≥ `}) ≥ P(Run(v`)) > 0 .

B.4 Proof of Lemma 3.6

We prove the following stronger version of Lemma 3.6.

LEMMA 3.6 (stronger version).

(1) The set T is computable in polynomial time. If pXq ∈ T and T〈n〉(rYs) occurs in the

equation for T〈n〉(pXq) with a nonzero coefficient, then either rYs ∈ T , or for all n ≥ 0

holds T[n](rYs) = 0.

(2) The set H is computable in polynomial time. If pX ∈ H and P〈n〉(rY) occurs in the

equation for P〈n〉(pX) with a nonzero coefficient, then either rY ∈ H, or for all n ≥
|Q||Γ | + 1 holds P[n](rY) = 0.

25

Proof. (1) We start by showing that the problem whether pXq ∈ T is decidable in

polynomial time. Whether pXΓ ∗ is reachable from p0X0 can be decided using al-

gorithms of [18] in polynomial time. Note that [pXq] > 0 iff qε is reachable from

pX. The latter can also be decided in polynomial time using results of [18].

Assume that for some pXq ∈ T , a variable T〈n〉(rYs) occurs in the equation for

T〈n〉(pXq) with a nonzero coefficient. Then rYΓ ∗ is reachable from pX, and hence

also from p0X0. Thus if rYs 6∈ T , then [rYs] = 0, and hence for all n ≥ 0 holds

T[n](rYs) = 0.

(2) We start by showing that the problem whether pX ∈ H is decidable in poly-

nomial time. Whether pXΓ ∗ is reachable from p0X0 can be decided using algo-

rithms of [18] in polynomial time. By Lemma 3.5, P[n](pX) > 0 for all n ≥ 0

iff P[|Q||Γ | + 1](pX) > 0. The latter can also be decided in polynomial time using

results of [18].

Assume that for some pX ∈ H, a variable P〈n〉(rY) occurs with a nonzero coef-

ficient in the equation for P〈n〉(pX). Then clearly rYΓ ∗ is reachable from pX and

hence also from p0X0. Hence, if rY 6∈ H, then there must be some ` ≥ 1 such that

P[`](pX) = 0. However, then by Lemma 3.5, P[|Q||Γ | + 1](pX) = 0, which implies

that for all ` ≥ |Q||Γ | + 1 holds P[`](pX) = 0.

B.5 Proof of Proposition 3.8

Here is a restatement of Propositions 3.8.

PROPOSITION 3.8. The following equations hold for all n ≥ |Q|2|Γ | + 3:

t[n] = c + L̃t[n] + Q̃(t[n − 1], t[n]) and p[n] = Lp[n] + L ′p[n − 1] + Q(t[n − 2], p[n])

Proof. The equations are equal to the ones of Propositions 3.1 and 3.2 up to some omitted

terms, which are zero according to the stronger version of Lemma 3.6 that was proved

above.

B.6 Proof of Proposition 3.10

Here is a restatement of Proposition 3.10.

26

PROPOSITION 3.10. Suppose P(Mp0X0
< ∞) = 1. Let

An := (L + Q(t[n − 2], ·))∗L ′p[n − 1] .

Then for every n ≥ |Q|2|Γ | + 3 the matrix An exists and p[n] = Anp[n − 1].

We first prove the following lemma.

Lemma B.1. Suppose P(Mp0X0
< ∞) = 1. The matrix A = (L + Q(t, ·))∗L ′ exists.

Proof. Let us consider a finite state Markov chain M = (S, ↪→, Prob ′) where S = H ∪
{term} and pX ↪→ qY iff

x =
∑

pX
y→qY

y +
∑

pX
y→rZY

rZq∈T

yt(rZq) > 0

in which case Prob ′(pX ↪→ qY) = x. Finally, we define pX ↪→ term iff 1 −∑
pX↪→qY Prob ′(pX ↪→ qY) > 0 in which case we put

Prob ′(pX ↪→ term) = 1 −
∑

pX↪→qY

Prob ′(pX ↪→ qY)

For all pX, qY ∈ H holds that Prob ′(pX ↪→ qY) is the entry of L + Q(t, ·) corresponding

to the heads pX and qY. We show that all pX ∈ H are transient states of M (see [27],

Definition 2.4.1), and then apply [27], Corollary 3.1.2 to obtain the desired result.

Assume that pX ∈ H is not a transient state of M, i.e. that the probability of reaching

pX from pX in at least one step is 1 (in the chain M). We show that

P(pX →+ pX) = 1

Given qY, rZ ∈ H, denote by BqY,rZ the set of all paths p0α0, . . . , pnαn where n > 0,

p0α0 = qY, pnαn = rZ, and for all 0 < i < n holds |αi| ≥ 2. It is easy to show that

Prob ′(pX ↪→ qY) = P(
⋃

v∈BpX,qY

Run(v))

However, then P(pX →+ pX) is equal to the probability of reaching pX from pX in at

least one step in M, which is 1.

Since pX ∈ H, for every n ≥ 0 there is a path vn from pX to pX in M∆ such that the

maximal stack height in vn is at least n. It is straightforward to show that almost all

runs initiated in pX follow all paths vn infinitely many times. Hence, for almost all runs

w ∈ Run(pX) holds MpX(w) = ∞. However, then P(Mp0X0
= ∞) > 0 (because pX ∈ H)

27

which contradicts our assumption that P(Mp0X0
< ∞) = 1. Hence, all elements of H

are transient states of M.

Let us denote by Pn(pX, qY) the probability of reaching qY from pX in M in pre-

cisely n steps. Observe that
∑∞

n=0 Pn(pX, qY) is precisely the entry of the matrix

(L + Q(t, ·))∗ =
∑∞

n=0(L + Q(t, ·))n corresponding to the heads pX and qY. By [27],

Corollary 3.1.2, there are numbers b > 0 and 0 < c < 1 such that Pn(pX, qY) ≤ b · cn,

and thus
∑∞

n=0 Pn(pX, qY) ≤ b
1−c

< ∞. It follows that (L + Q(t, ·))∗ exists.

Now we can prove Proposition 3.10.

Proof. We have t[n] ≤ t for all n ≥ 1. Since A exists by Lemma B.1, the matrix An also

exists, using the monotonicity of the matrix star. The equality p[n] = Anp[n − 1] follows

from Proposition 3.8 using the fact that (L + Q(t[n], ·))∗ =
(
I − (L + Q(t[n], ·))

)−1.

B.7 Proof of Proposition 3.11

Here is a restatement of Proposition 3.11.

PROPOSITION 3.11. Suppose that EMp0X0
is finite. The matrix A exists and its spectral

radius ρ satisfies ρ < 1.

The fact that A exists follows from Lemma B.1. The statement that ρ < 1 follows from

the following Lemma.

Lemma B.2. Suppose P(Mp0X0
< ∞) = 1. Then EMp0X0

is infinite iff ρ ≥ 1.

So it suffices to show Lemma B.2. It can be seen as the technical core of the paper,

and the proof is quite long. We start with a proof sketch.

Proof sketch.

The direction “⇒” is quite straightforward: Let ρ < 1. By Proposition 3.10

p[n] = (L + Q(t[n − 2], ·))∗L ′p[n − 1] ≤ Ap[n − 1] for n ≥ n⊥. (1)

By an easy induction we obtain p[n⊥ + n] ≤ Anp[n⊥] and so
∑∞

n=0 p[n⊥ + n] ≤ A∗p[n⊥].

By standard matrix theory, ρ < 1 implies that the matrix sum A∗ converges, so
∑∞

n=1 p[n]

is finite, in particular EMp0X0
is finite.

For the other (harder) direction “⇐”, let ρ ≥ 1. We have to show that EMp0X0
is infi-

nite. It suffices to show that EMpX is infinite for some pX ∈ H because the configuration

28

p0X0 can reach all pX ∈ H. In fact, we even show that for some pXq ∈ T the condi-

tional expectation E(MpX | Run(pXq)) is infinite, i.e., the expectation of MpX under the

condition that pX terminates at q. As [pXq] > 0 for pXq ∈ T , it is equivalent to show

that [pXq] · E(MpX | Run(pXq)) is infinite. This value equals
∑∞

n=1 e[n](pXq) where we

define

e[n](pXq) := P({w ∈ Run(pXq) | MpX(w) ≥ n}) ,

i.e., e[n](pXq) is the probability for the configuration pX to reach a stack height of at least

n and then to terminate to q. Summarizing, it suffices to show that the sum
∑∞

n=1 e[n]

diverges.

Notice that we have e[n] := t − t[n − 1]. Therefore, showing that
∑∞

n=1 e[n] diverges

amounts to showing that (t[n]) converges ‘slowly’ to t. Two steps remain:

1. Show that it is impossible that (t[n]) converges ‘fast’, i.e., at least linearly.

2. Show that it follows from 1. that
∑∞

n=1 e[n] diverges.

Both steps crucially depend on Perron-Frobenius theory. Let us give the intuition.

For step 1., we return to (p[n]) and define a small variant (p ′[n])n≥n⊥ by p ′[n⊥] =

p[n⊥] and p ′[n] = Ap ′[n − 1]. By Perron-Frobenius theory, ρ ≥ 1 implies that (p ′[n])

does not converge to 0. On the other hand, (p[n]) converges to 0, because P(MpX =∞) = 0 for all pX ∈ H. But comparing the definition of p ′[n] with Equation (1) for

p[n] shows that p[n] and p ′[n] differ only in that the matrix (L + Q(t[n − 2], ·))∗L ′ has

changed to (L + Q(t, ·))∗L ′. So it is natural to expect that the coefficients t[n] converge

‘slowly’ to t, because otherwise (p[n]) and (p ′[n]) would have the same limit. We can

show that this is in fact true. More precisely, it is impossible that the sequence (t[n])

converges (at least) linearly to t.

For step 2., we take advantage of the fact that e[n] satisfies the following recurrence:

e[n] =
(
L̃ + Q̃(t − e[n − 1], ·)

)∗
Q̃(·, t)e[n − 1] (2)

Let B =
(
L̃ + Q̃(t, ·)

)∗
Q̃(·, t). Assume first ρ(B) < 1. We have e[n] ≤ Be[n − 1] by (2), so

by standard matrix theory, the sequence (e[n]) converges linearly to 0, a situation that

we have excluded in step 1. So we have in fact ρ(B) ≥ 1.

Like the sequence (p ′[n]) above, define a sequence (e ′[n])n≥n⊥ by e ′[n⊥] = e[n⊥]

and e ′[n] = Be ′[n − 1]. By Perron-Frobenius theory, ρ(B) ≥ 1 implies that (e ′[n]) does

not converge to 0, which in turn implies that
∑

n e ′[n] diverges. Comparing the def-

inition of e ′[n] with Equation (2) for e[n] shows that e[n] and e ′[n] differ only in that

29

the matrix
(
L̃ + Q̃(t − e[n − 1], ·)

)∗
Q̃(·, t) has changed to

(
L̃ + Q̃(t, ·)

)∗
Q̃(·, t). So, intu-

itively, if (e[n]) decays quickly then e[n] ‘behaves like’ e ′[n], i.e.,
∑

n e[n] diverges. On

the other hand, if (e[n]) decays slowly then it is immediately conceivable that
∑

n e[n]

diverges as well. Therefore, we prove a carefully chosen inductive invariant that shows

that the divergence of
∑

n e[n] cannot be avoided, again using Perron-Frobenius theory

for nonnegative matrices.

We now give a full proof of Lemma B.2 for which we have given a sketch above.

Unlike the proof sketch, the following proof is organized in a bottom-up fashion in

order to avoid forward references. It is divided into a sequence of lemmata.

The following lemma is similar to Lemma 3.5 in that it is also based on a “pumping”

argument.

Lemma B.3. For every pXq ∈ T we have that either t[|Q|2|Γ |](pXq) = [pXq], or for all n ≥ 1

holds t[n](pXq) < [pXq].

Proof. Let ξ = |Q|2|Γ |. Assume that t[ξ](pXq) < [pXq]. Then there is a path v from pX to

qε with maximal stack height at least ξ + 1. There are numbers i1 < . . . < iξ+1 such that

for every 1 ≤ k ≤ ξ + 1 holds |tail(v(ik))| = k and for ik ≤ l ≤ iξ+1 holds |tail(v(l))| ≥ k.

For every k let jk be the least number greater than ik such that |tail(v(jk))| = k − 1. By

the pigeonhole principle there exist k < ` such that head(v(ik)) = head(v(i`)) and the

configurations v(jk) and v(j`) have the same control state.

Let t1, . . . , tm be the sequence of transitions in δ that induce v. Given n ≥ 1, we

define a path vn induced by the following transitions of δ (for the meaning of induce see

the beginning of Appendix):

t1, . . . , tik, s
n
up, ti`+1, . . . , tj`, s

n
down, tjk+1, . . . , tm

where

sup := tik+1, . . . , ti`

sdown := tj`+1, . . . , tjk

and sn
up and sn

down are concatenations of n copies of sup and sdown, respectively.

It is easy to verify that maximum stack height of vn is at least ξ + n. Hence,

t[n](pXq) < [pXq] for all n ≥ 1.

We define, for n ≥ n⊥, the vector e[n] ∈ RT as

e[n] := t − t[n − 1] .

30

Notice that for all pXq ∈ T we have

e[n](pXq) = P({w ∈ Run(pXq) | MpX(w) ≥ n}) ,

i.e., e[n](pXq) is the probability of all runs of Run(pX) that terminate at q and reach a

height of at least n. For e[n] we give a recurrence similar to those given in Proposi-

tion 3.8 for t[n] and p[n]:

Lemma B.4. For all n ≥ n⊥:

e[n] =
(
L̃ + Q̃(t − e[n − 1], ·)

)
e[n] + Q̃(·, t)e[n − 1]

Proof. It is easy to see (see e.g. [16]) that the vector t of termination probabilities satisfies

t = c + L̃t + Q̃(t, t) . (3)

Then, using t = t[n − 1] + e[n], we have:

e[n] = t − t[n − 1]

= t − c − L̃t[n − 1] − Q̃(t[n − 2], t[n − 1])

(by Proposition 3.8)

= t − c − L̃(t − e[n]) − Q̃(t − e[n − 1], t − e[n])

= L̃e[n] + Q̃(t − e[n − 1], e[n]) + Q̃(e[n − 1], t)

(by (3))

The following lemma (and its proof) is analogous to Lemma B.1.

Lemma B.5. The matrix
(
L̃ + Q̃(t, ·)

)∗ exists.

Proof. Let us consider a finite state Markov chain M = (S, ↪→, Prob ′) where S = T ∪
{term} and pXs ↪→ qYs iff

x =
∑

pX
y→qY

y +
∑

pX
y→rZY

rZq∈T

yt(rZq) > 0

in which case Prob ′(pXs ↪→ qYs) = x. Finally, we define pXs ↪→ term iff 1 −∑
pXs↪→qYs Prob ′(pXs ↪→ qYs) > 0 in which case we put

Prob ′(pXs ↪→ term) = 1 −
∑

pXs↪→qYs

Prob ′(pXs ↪→ qYs)

31

For all pXs, qYr ∈ T holds that Prob ′(pXs ↪→ qYr) is the entry of L̃ + Q̃(t, ·) corre-

sponding to the triples pXs and qYr. We show that all pXs ∈ T are transient states of

M (see [27], Definition 2.4.1), and then apply [27], Corollary 3.1.2 to obtain the desired

result.

Assume that pXs ∈ T is not a transient state of M, i.e., the probability of reaching

pXs from pXs in at least one step is 1 (in the chain M). We show that

P(pX →+ pX) = 1 .

Denote by BqY,rZ the set of all paths p0α0, . . . , pnαn where n > 0, p0α0 = qY, pnαn = rZ,

and for all 0 < i < n holds |αi| ≥ 2.

It is easy to show that

Prob ′(pXs ↪→ qYs) = P(
⋃

v∈BpX,qY

Run(v))

Then P(pX →+ pX) is equal to the probability of reaching pXs from pXs in at least one

step in M, which is 1.

But P(pX →+ pX) = 1 implies [pXs] = 0 contradicting that pXs ∈ T . Hence, all

triples t ∈ T are transient states of M.

Let us denote by Pn(pXs, qYs) the probability of reaching qYs from pXs in M in

precisely n steps. Observe that
∑∞

n=0 Pn(pXs, qYs) is precisely the entry of the matrix

(L̃ + Q̃(t, ·))∗ =
∑∞

n=0(L̃ + Q̃(t, ·))n corresponding to the triples pXs and qYs. By [27],

Corollary 3.1.2, there are numbers b > 0 and 0 < c < 1 such that Pn(pXs, qYs) ≤ b · cn,

and thus
∑∞

n=0 Pn(pXs, qYs) ≤ b
1−c

< ∞. It follows that (L̃ + Q̃(t, ·))∗ exists.

This immediately implies the following:

Corollary B.6. For all n ≥ n⊥ :

e[n] =
(
L̃ + Q̃(t − e[n − 1], ·)

)∗
Q̃(·, t)e[n − 1]

We will need that the ratio between certain components of e[n] cannot be not arbitrarily

large:

Lemma B.7. There is a constant c > 0 such that e[n](t1) ≥ ce[n](t2) holds for all n ∈ N and

all t1, t2 ∈ T such that t2 is reachable from t1 in L̃ + Q̃(t, ·) + Q̃(·, t). (Here, by “reachable” we

mean that
((

L̃ + Q̃(t, ·) + Q̃(·, t)
)i)

t1,t2

6= 0 for some i ≥ 0.)

32

Proof. Let t1 = pXq and t2 = rYs. We prove that there is α ∈ Γ ∗ such that P(pX →∗

rYα) > 0 and P(sα →∗ qε) > 0. From this we obtain that e[n](t1) ≥ P(pX →∗

rYα)P(sα →∗ qε)e[n](t2) and it suffices to put c = P(pX →∗ rYα)P(sα →∗ qε).

We prove the statement by induction on the length of a shortest path from t1 to t2 in

L̃ + Q̃(t, ·) + Q̃(·, t). If the length is 0, then t1 = t2 and the claim follows immediately.

Assume that s1, . . . , sn (n ≥ 1) is a shortest path in L̃ + Q̃(t, ·) + Q̃(·, t) from t1 = s1

to t2 = sn. Assume that s2 = tUv. By induction, there is α ′ ∈ Γ ∗ such that P(tU →∗

rYα ′) > 0 and P(sα ′ →∗ vε) > 0. There are two cases:

• If (L̃ + Q̃(·, t))pXq,tUv > 0 then pX → tUγ where P(vγ →∗ qε) > 0.

• If Q̃(t, ·)pXq,tUv > 0 then pX → uVU where [uVt] > 0 and q = v.

In the former case we have P(pX →∗ rYα ′γ) > 0 and P(sα ′γ →∗ qε) > 0. In the latter

case we have P(pX →∗ tU) > 0, which implies that P(pX →∗ rYα ′) > 0 and P(sα ′ →∗

vε) > 0.

Let T↑ ⊆ T denote the set of those triples pXq ∈ T for which e[n](pXq) > 0 for

all n ∈ N. In the following we denote, for any vector v ∈ RT , by v↑ the projection

of v on T↑, i.e., v↑ := v|T↑ . We denote, for any u ∈ RT , by L̄, P̄(u), Q̄ ∈ RT↑×T↑ the

principal submatrices of L̃, Q̃(u, ·) and Q̃(·, t), respectively, obtained by deleting all rows

and columns not indexed by T↑. Then Corollary B.6 can be restricted to e↑[n] as follows:

Lemma B.8. For all n ≥ n⊥ :

e↑[n] =
(
L̄ + P̄(t − e[n − 1])

)∗
Q̄e↑[n − 1]

Proof. By Corollary B.6 we have

e↑[n] =
((

L̃ + Q̃(t − e[n − 1], ·)
)∗

Q̃(·, t)e[n − 1]
)↑ .

So it suffices to show that((
L̃ + Q̃(t − e[n − 1], ·)

)j
Q̃(·, t)e[n − 1]

)
(t) = 0

for all j ≥ 0 and all t 6∈ T↑. This is true because otherwise we would have, again by

Corollary B.6, a t 6∈ T↑ with e[n⊥](t) > 0, and hence, by Lemma B.3, e[n](t) > 0 for all

n ∈ N, which contradicts the definition of T↑.

The following lemma is the key to the proof of Lemma B.2. It provides a dichotomy

result on e[n].

33

Lemma B.9. If T↑ = ∅ then e[n] = 0 for all n ≥ n⊥. Otherwise, let r = ρ
(
L̄ + P̄(t) + Q̄

)
. If

r < 1 then the sequence (e[n])n∈N converges linearly to 0. If r ≥ 1 then
∑

n∈N e[n] diverges.

Remark on the lemma: It follows from results by Etessami and Yannakakis [24] that r > 1

(strictly greater) is impossible, but we do not need that here.

Proof. By Lemma B.3 we have e[n](t) > 0 for n ≥ n⊥ iff e[n⊥](t) > 0 iff t ∈ T↑. So,

for the rest of the proof we can assume T↑ 6= ∅ and it suffices to consider the sequence

(e↑[n])n≥n⊥ . Notice that e↑[n] � 0. (For this notation see the beginning of the appendix.)

Let r < 1. With Lemma A.2 it follows

ρ
((

L̄ + P̄(t)
)∗

Q̄
)

< 1.

It follows using standard matrix theory (see e.g. [26]) that there is a norm ‖·‖ such that

r ′ :=
∥∥(L̄ + P̄(t)

)∗
Q̄
∥∥ < 1.

In this norm we have by Lemma B.8

‖e↑[n]‖ =
∥∥(L̄ + P̄(t − e[n − 1])

)∗
Q̄e↑[n − 1]

∥∥
≤

∥∥(L̄ + P̄(t)
)∗

Q̄e↑[n − 1]
∥∥

≤ r ′ ‖e↑[n − 1]‖ .

Using the equivalence of norms (see e.g. [26]) linear convergence is now immediate.

Now let r ≥ 1. Let C =
(
L̄ + P̄(t)

)∗
Q̄. Then by Lemma A.2 we have ρ(C) ≥ 1. By

Lemma A.1 there is a set T↑↑ ⊆ T↑ such that the principal submatrix D obtained from C

by deleting all rows and columns not indexed by T↑↑ is strongly connected and satisfies

ρ(D) ≥ 1.

In the following we denote, for any vector v ∈ RT , by v↑ and v↑↑ the projection of v

on T↑ and T↑↑, respectively. We will show that
∑

n∈N e↑↑[n] diverges. We can restrict our

attention to those t ∈ T that are reachable from T↑↑ via L̃ + Q̃(t, ·) + Q̃(·, t). To avoid

notational clutter we simply assume that all t ∈ T are reachable from T↑↑. (Otherwise

the corresponding coefficients and the corresponding matrix rows and columns can be

removed in the straightforward way, without affecting the validity of what has been

said. In particular, the matrix D stays exactly the same and Lemma B.8 stays valid for

the remaining components and coefficients.)

34

For the proof it will be crucial that the Perron-Frobenius theorem (see e.g. [26]) im-

plies that there is a nonnegative vector u ∈ RT↑ with u↑↑ � 0 and Du↑↑ = ρ(D)u↑↑ ≥ u↑↑
and u(t) = 0 for t 6∈ T↑↑. As D is a principal submatrix of

(
L̄ + P̄(t)

)∗
Q̄ we also have(

L̄ + P̄(t)
)∗

Q̄u ≥ u. (4)

Let tmin = mint∈T {t(t)}. Define a sequence (εn)n≥n⊥ by εn := t−1
min · maxt∈T {e[n](t)}.

As e↑[n] � 0 and by definition of e[n], we have εn ≥ εn+1 > 0 for all n. We can

assume w.l.o.g. that (εn) converges to 0, because otherwise the conclusion of the lemma

(
∑

n∈N e[n] diverges) is already satisfied. With the constant c from Lemma B.7 we have

e↑[n](t) ≥ c · tmin · εn for all t ∈ T↑↑. By scaling down the vector u by multiplying it with

a small positive number, we can accomplish c · tmin ≥ u(t) for all t without changing the

stated properties of u. Since u(t) = 0 for t 6∈ T↑↑, we can summarize:

εn · t ≥ e[n] and e↑[n] ≥ εn · u . (5)

Next, we show that there is an n1 ≥ n⊥ and a d > 0 such that for all n ≥ n1 we have

εnd < 1 and for all i ∈ N
e↑[n + i] ≥ (1 − εnd)iεnu . (6)

As u(t) = 0 for t 6∈ T↑↑, it suffices to show e↑[n + i] ≥↑↑ (1 − εnd)iεnu where by the

notation v ≥↑↑ w we mean v↑↑ ≥ w↑↑.

35

We will determine the constants on the fly and proceed by induction on i. The base

case (i = 0) is immediate from (5). Let i ≥ 0. Then

e↑[n + i + 1]

=
(
L̄ + P̄(t − e[n + i])

)∗
Q̄e↑[n + i]

(by Lemma B.8)

≥
(
(1 − εn+i)

(
L̄ + P̄(t)

))∗
Q̄e↑[n + i]

(by (5))

≥
(
(1 − εn)

(
L̄ + P̄(t)

))∗
Q̄(1 − εnd)iεnu

(induction hypothesis)

≥ (I − εnK)
(
L̄ + P̄(t)

)∗
Q̄(1 − εnd)iεnu

(for a large n1 and some K by Lemma A.3)

≥ (1 − εnd)iεn(u − εnK
(
L̄ + P̄(t)

)∗
Q̄u)

(by (4))

≥↑↑ (1 − εnd)iεn(u − εndu)

(for a large d such that

K
(
L̄ + P̄(t)

)∗
Q̄u ≤↑↑ du)

= (1 − εnd)i+1εnu .

We have
k∑

i=0

e↑[n + i]

≥
k∑

i=0

(1 − εnd)iεnu (by (6))

≥ 1 − (1 − εnd)k+1

1 − (1 − εnd)
· εn · u

=
1 − (1 − εnd)k+1

d
· u ,

so, for every n ≥ n⊥, there exists some k(n) such that
∑k(n)

i=n e↑[i] ≥ 1
2d
· u. Hence the

sum
∞∑

i=n⊥

e↑[i] =

k(n⊥)∑
i=n⊥

e↑[i] +

k(k(n⊥)+1)∑
i=k(n⊥)+1

e↑[i] + · · ·

≥ 1

2d
· u +

1

2d
· u + · · ·

36

diverges since u↑↑ � 0.

The following lemma provides a lower bound on p[n](p0X0) in terms of the spectral

radius ρ of A. Its proof is, in large parts, quite similar to the previous proof.

Lemma B.10. Suppose that EMp0X0
is finite (sic!). Then there is a number b > 0 with

p[n](p0X0) ≥ bρn for all n ≥ 1.

Proof. We first show that
∑

n e[n](pXq) converges. Assume for a contradiction that∑
n e[n](pXq) diverges for some pXq ∈ T . Then

∑
n p[n](pX) diverges as well because

e[n](pXq) ≤ p[n](pX). Notice that in fact pX ∈ H because e[n](pXq) > 0 for all n ≥ 1.

Hence, EMpX is infinite which implies that EMp0X0
is infinite because p0X0 can reach

pX. This contradicts the precondition of the lemma requiring EMp0X0
to be finite.

Hence, Lemma B.9 guarantees that (e[n])n converges (at least) linearly, i.e., there are

constant numbers r, s > 0 with s < 1 such that e[n] ≤ rsnt, because t � 0. Setting

εn := rsn we have

e[n] ≤ εnt . (7)

By Lemma A.1 there is a set H↑↑ ⊆ H such that the principal submatrix D obtained

from A by deleting all rows and columns not indexed by H↑↑ is strongly connected and

satisfies ρ(D) ≥ 1.

In the following we denote, for any vector v ∈ RH, by v↑↑ the projection of v on H↑↑.

The Perron-Frobenius theorem (see e.g. [26]) implies that there is a nonnegative vector

u ∈ RH with u↑↑ � 0 and Du↑↑ = ρu↑↑ and u(h) = 0 for h 6∈ H↑↑. As D is a principal

submatrix of A we also have

Au ≥ ρu . (8)

Now we show that there is an n1 ≥ n⊥ and a d > 0 such that εn1−1d < 1 and for all

n ≥ 0

p[n1 + n] ≥

(
n∏

i=1

(1 − εn1+i−1d)

)
ρnu . (9)

As u(h) = 0 for h 6∈ H↑↑, it suffices to show p[n1 + n] ≥↑↑ ∏n
i=1(1 − εn1+i−1d)ρnu where

by the notation v ≥↑↑ w we mean v↑↑ ≥ w↑↑.

We proceed by induction on n. For the induction base (n = 0) observe that, due to

p[n1] � 0, we can enforce p[n1] ≥ u by scaling down u by multiplying it with a small

scalar. This does not change the stated properties of u.

37

Let n ≥ 0. Now we have

p[n1 + n + 1]

= (L + Q(t[n1 + n − 1], ·))∗L ′p[n1 + n]

= (L + Q(t − e[n1 + n], ·))∗L ′p[n1 + n]

≥ (L + Q((1 − εn1+n)t, ·))∗L ′p[n1 + n]

(by (7))

≥
(
(1 − εn1+n)(L + Q(t, ·))

)∗
L ′p[n1 + n]

≥
(
(1 − εn1+n)(L + Q(t, ·))

)∗
L ′

n∏
i=1

(1 − εn1+i−1d)ρnu

(induction hypothesis)

≥ (I − εn1+nK)A

n∏
i=1

(1 − εn1+i−1d)ρnu

(for a large n1 and some K by Lemma A.3)

≥
n∏

i=1

(1 − εn1+i−1d)(ρn+1u − εn1+nKAρnu)

(by (8))

≥↑↑
n∏

i=1

(1 − εn1+i−1d)(ρn+1u − εn1+ndρn+1u)

(for a large d such that KAu ≤↑↑ dρu)

=

n+1∏
i=1

(1 − εn1+i−1d)ρn+1u

This proves (9). We have

b ′ :=

∞∏
i=n1

(1 − εid) =

∞∏
i=n1

(1 − rsid) > 0 ,

as 1−rsid ≥ 1−1/i2 is true for almost all natural numbers i and
∏∞

i=2(1−1/i2) = 1
2

> 0 .

Let p1X1 ∈ H↑↑. Recall that u(p1X1) > 0. We have for all n ≥ 1:

p[n](p0X0) ≥ b ′′p[n](p1X1) (for a b ′′ > 0, as p1X1Γ
∗ is reachable from p0X0)

≥ b ′′p[n1 + n](p1X1) (as (p[n])n is monotonically decreasing)

≥ b ′′b ′u(p1X1)ρ
n (by Equation (9)) ,

so the lemma holds for b := b ′′b ′u(p1X1).

38

Now we complete the proof of Lemma B.2.

Proof. Let ρ < 1. By Proposition 3.10 we have

p[n] = (L + Q(t[n − 2], ·))∗L ′p[n − 1] ≤ Ap[n − 1] .

By an easy induction we obtain p[n⊥ + n] ≤ Anp[n⊥] and so
∑∞

n=0 p[n⊥ + n] ≤ A∗p[n⊥].

By Lemma A.1, ρ < 1 implies that the matrix sum A∗ converges, so
∑∞

n=1 p[n] is finite,

in particular EMp0X0
is finite.

For the other direction, let EMp0X0
be finite. We have EMp0X0

=
∑

n≥1 p[n](p0X0),

so
∑

n≥1 p[n](p0X0) converges. By Lemma B.10,
∑

n≥1 bρn converges as well. Hence,

ρ < 1.

B.8 Proof of Theorem 3.13

Here is a restatement of Theorem 3.13.

THEOREM 3.13. Let n⊥ := |Q|2|Γ | + 3 and p̂[n] := p[n] for n < n⊥ and

p̂[n⊥ + n] := Anp[n⊥] for n ≥ 0. Then we have p[n] ≤ p̂[n] for all n ≥ 1. Moreover,

there exists d with 0 < d ≤ 1 and

d · p̂[n](p0X0) ≤ p[n](p0X0) ≤ p̂[n](p0X0) .

Proof. We first prove the upper bound by induction on n. The induction base (n ≤ n⊥)

is trivial. For n ≥ n⊥ we have:

p[n + 1] = An+1p[n] (Proposition 3.10)

≤ Ap[n] (An ≤ A)

≤ Ap̂[n] (induction hypothesis)

= p̂[n + 1] (definition of p̂[n + 1])

It remains to show the lower bound. Letting ρ denote the spectral radius of A, there is,

by standard matrix theory [26], a number c > 0 with p̂[n](p0X0) ≤ cρn for all n ≥ 1. By

Lemma B.10 we have bρn ≤ p[n](p0X0). So the theorem holds with d := b/c.

39

B.9 Proof of Theorem 3.16

Here is a restatement of Theorem 3.16.

THEOREM 3.16. Suppose that EMp0X0
is finite. Let UMp0X0

(k) :=
∑k

n=1 p[n](p0X0). For

all k ≥ |Q|2|Γ | + 3

EMp0X0
− UMp0X0

(k) ≤ ‖A∗‖1 ‖p[k]‖1 ≤ abk

where a > 0 and 0 < b < 1 are computable rational numbers. Hence, the sequence

(UMp0X0
(k))k converges linearly to EMp0X0

.

Proof. Let UMpX(k) :=
∑k

n=1 p[n](pX) for all pX ∈ H. Recall that EMpX =

limk→∞ UMpX(k). Hence, the “error vector” δ[k] ∈ RH with

δ[k](pX) = EMpX − UMpX(k − 1) =

∞∑
n=k

p[n](pX)

converges to 0. We prove the theorem by showing ‖δ[k](pX)‖1 ≤ ‖A∗‖1 ‖p[k]‖1 ≤ abk.

By Proposition 3.10, for n ≥ n⊥ = |Q|2|Γ | + 3

p[n] = (L + Q(t[n − 2], ·))∗L ′p[n − 1] ≤ Ap[n − 1]

where ρ < 1 by Lemma B.2. By a simple induction, we get p[k + n] ≤ Anp[k] and so

δ[k] ≤ A∗p[k] which converges. So we have

‖δ[k]‖1 ≤ ‖A∗‖1 ‖p[k]‖1 for all k ≥ n⊥

which shows the first inequality.

For the second inequality it suffices to compute rational numbers r, b > 0 with b < 1

such that ‖p[n⊥ + k]‖1 ≤ rbk. By the argument above we have p[n⊥ + k] ≤ Akp[n⊥]

with ρ < 1. First we compute an upper bound b < 1 on ρ as follows. Note that one can

express t in ExTh(R). Furthermore one can decide for any rational number s whether

ρ ≥ s because this is equivalent to the existence of a nonnegative, nonzero vector x

with Ax ≥ sx, see [4] Thm. 2.1.11 and cf. [24]. So, a bound b can be computed using a

bisection method.

Now we can compute a rational number r with ‖p[n⊥ + k]‖1 ≤ rbk as follows. By

standard matrix theory there exists a vector norm ‖·‖∗ that induces a matrix norm with

‖A‖∗ ≤ b. Following the proof of Lemma 5.6.10 in [26] the norm ‖·‖∗ is given by ‖x‖∗ :=

‖DQx‖1 where Q is the unitary similarity matrix of a Schur factorization of A and D is a

40

nonsingular diagonal matrix with large enough entries. (Strictly speaking, [26] defines

a matrix norm directly, but it is easy to verify that the vector norm ‖·‖∗ defined above

induces this matrix norm.)

Recall that a Schur factorization of A is given by two matrices Q,U such that

A = Q−1UQ, where Q is a unitary matrix and U is an upper diagonal matrix. (Those

properties imply that the entries on the main diagonal of U are the eigenvalues of A.)

The Schur factorization of A can be expressed in ExTh(R) by handling complex num-

bers using pairs of real numbers. It is easy to see that the matrix D given in [26] can also

be expressed in ExTh(R).

Now we have

‖p[n⊥ + k]‖1 ≤
∥∥Akp[n⊥]

∥∥
1

=
∥∥Q−1D−1DQAkp[n⊥]

∥∥
1

≤
∥∥Q−1D−1

∥∥
1

∥∥DQAkp[n⊥]
∥∥

1

=
∥∥Q−1D−1

∥∥
1

∥∥Akp[n⊥]
∥∥
∗

≤
∥∥Q−1D−1

∥∥
1
‖A‖k

∗ ‖p[n⊥]‖∗
=
∥∥Q−1D−1

∥∥
1
‖A‖k

∗ ‖DQp[n⊥]‖1

≤
∥∥Q−1D−1

∥∥
1
bk ‖DQ‖1 ‖p[n⊥]‖1

≤
∥∥Q−1D−1

∥∥
1
bk ‖DQ‖1 |H| ,

so choose r ≥
∥∥Q−1D−1

∥∥
1
‖DQ‖1 |H| and it follows ‖p[n⊥ + k]‖1 ≤ rbk.

C Proofs of Section 4

C.1 Proof of Theorem 4.1 and Proposition 4.2

Here are restatements of Theorem 4.1 and Proposition 4.2.

THEOREM 4.1. The problem whether EMp0X0
is finite is decidable in polynomial space.

PROPOSITION 4.2. Suppose P(Mp0X0
< ∞) = 1. Then the matrix A exists. Moreover, its

spectral radius ρ satisfies ρ < 1 if and only if EMp0X0
is finite.

Proposition 4.2 is immediate from Lemma B.1 and Lemma B.2. So it suffices to show

Theorem 4.1.

41

Proof. In [17] it was shown that the problem whether P(Mp0X0
= ∞) > 0 is decidable in

polynomial space. If P(Mp0X0
= ∞) > 0, then clearly EMp0X0

is infinite. Otherwise, i.e.

if P(Mp0X0
< ∞) = 1, we use the criterion of Lemma B.2, i.e., we check whether or not

the spectral radius ρ of A = (L+Q(t, ·))∗L ′ satisfies ρ < 1. The vector t can be expressed

in ExTh(R), see e.g. [17]. Hence, the same applies to A.

Standard theory on nonnegative matrices implies (see e.g. [4] Thm. 2.1.11 and

cf. [24]) that ρ ≥ s iff there is a nonnegative nonzero vector x with Ax ≥ sx, so ρ ≥ 1 is

expressible in ExTh(R) which is decidable in polynomial space [12, 33].

C.2 Discussion of the Lower Bound and Proof of Theorem 4.3

The following exposition of those problems is essentially taken from Etessami and Yan-

nakakis [24]. Also the reduction to our finite-stack decision problem is based on a re-

duction of [24].

SQRT-SUM is the following problem: given natural numbers d1, . . . , dn ∈ N and

another number k ∈ N, decide whether
√

d1 + · · · +
√

dn ≤ k. The PosSLP (Positive

Straight-Line Program) decision problem asks whether a given straight-line program

or, equivalently, arithmetic circuit with operations +, −, ·, and inputs 0 and 1, and a des-

ignated output gate, outputs a positive integer or not [2]. SQRT-SUM, a long-standing

open problem in the complexity of numerical computation, reduces to PosSLP via a

P-time Turing reduction, see [2]. Both the SQRT-SUM and the PosSLP problem can be

solved in PSPACE. Their complexity was recently lowered slightly to the 4th level of the

Counting Hierarchy [2]. PosSLP is a fundamental problem of numerical computation;

it is complete for the class of decision problems that can be solved in polynomial time

on models with unit-cost exact rational arithmetic, see [2, 24] for more details.

Now we prove Theorem 4.3 which we restate here:

THEOREM 4.3. The PosSLP problem is P-time many-one reducible to the decision problem

whether the expected maximal height of a pPDA is finite.

Proof. As a gadget for their reduction to the decision problem whether a pPDA ter-

minates with probability one, Etessami and Yannakakis [24] compute, given a PosSLP

instance, a pPDA ∆ with the following properties. (Strictly speaking, they construct an

equivalent Recursive Markov Chain.) The starting configuration is pX, and after having

left the initial configuration, ∆ reaches the control state p again with probability 1. When

42

∆ reaches p, the configuration is pε with some probability a, and pXX with probability

1 − a. Moreover, the time needed to reach either of those configurations is essentially

bounded by the size of the given PosSLP instance. In particular, this time is finite, and

so is the expected maximal height of the stack. Furthermore, the given PosSLP instance

is a “yes instance” iff a > 1
2
.

Now it is easy to see that EMpX is finite in ∆ iff it is finite in the pPDA ∆ ′ that consists

only of the transitions pX
a→ pε and pX

1−a→ pXX. So it suffices to show that EMpX is

finite in ∆ ′ iff a > 1
2
.

If a < 1
2
, then it is easy to show with the method from [17] that P(MpX = ∞) > 0

and so EMpX = ∞.

If a ≥ 1
2
, then by [16, 24] we clearly have [pXp] = 1. Consequently, we can apply

Lemma B.2 that states that EMpX is finite iff

(1 − a)∗ · (1 − a) =
1 − a

1 − (1 − a)
=

1 − a

a
< 1

which holds iff a > 1
2
. This completes the proof.

We remark that ∆ contains more control states than just p. So, the reduction does not

work for pBPA.

C.3 Proof of Proposition 4.5

Here is a restatement of Proposition 4.5.

PROPOSITION 4.5. If X0 ∈ Term, the problem whether EMX0
< ∞ is decidable in polynomial

time.

Proof. As X0 ∈ Term, all symbols reachable from X0 are in Term as well. It follows t = 1

and so all entries of the matrix A = (L + Q(t, ·))∗L ′ are rational. Since the sets H and T
are computable in polynomial time using Lemma 3.6, it follows that A can be computed

in polynomial time.

As X0 ∈ Term, we clearly have P(MX0
< ∞) = 1, so the criterion of Lemma B.2 is

applicable, which states that EMX0
= ∞ holds iff the spectral radius ρ of A satisfies ρ ≥

1. Standard theory on nonnegative matrices implies (see e.g. [4] Thm. 2.1.11 and cf. [24])

that ρ ≥ 1 iff there is a nonnegative nonzero vector x with Ax ≥ x. As A has rational

entries, that condition can be decided in polynomial time using linear programming.

43

C.4 Proof of Proposition 4.6

Here is a restatement of Proposition 4.6.

PROPOSITION 4.6. If X0 ∈ NTerm, then the problem whether P(MX0
< ∞) = 1 is decidable

in polynomial time.

Proof. The result follows immediately from [17] Theorem 6.2 and the fact, that the tran-

sition structure of the finite Markov chain X, as defined in [17], can be computed in

polynomial time for pBPA using methods of [24] (see also [7]).

C.5 Proof Sketch and Full Proof of Theorem 4.8

Here is a restatement of Theorem 4.8.

THEOREM 4.8. The algorithm on page 15 returns ‘yes’ iff EMX0
is finite. It runs in polynomial

time.

Proof sketch.

Clearly, if the algorithm returns ‘no’, then EMX0
= ∞. Assume that the algorithm

returns ‘yes’.

Let RH denote the set of all Y ∈ NTerm such that almost all runs of Run(Y) reach

YΓ ∗ ∪ {ε}. We start by proving that for every Y in RH we have that P(Y →+ Y) = 1 and

that all runs w ∈ Run(Y) satisfy MY(w) ≤ |Γ |.

First, if there is a path from Y to some configuration Yα where |α| > 0, then in almost

all non-terminating runs of Run(Y) the stack height grows unboundedly.1 It follows

that P(Y →+ {Y, ε}) = 1. Now a straightforward argument shows that P(Y →+ ε) = 0,

because otherwise we would have P(Y →+ ε) = 1, which would contradict Y ∈ RH. It

follows that P(Y →+ Y) = 1.

Now assume that there is a path from Y to a configuration α satisfying |α| > |Γ |.

Because P(Y →+ Y) = 1, there is a path from α to Y, and thus also a path from Y to Y

in which the stack height exceeds |Γ |. By Lemma 3.5, for every n ≥ 0, there is a path un

from Y to Y such that the maximal stack height is at least n in un. However, almost all

runs of Run(Y) follow all paths un infinitely many times, which means that the maximal

1This can be confirmed using the results of [17] Section 6.1; in particular, using the terminology of [17],

in this situation some BSCC of the chain X contains a non-limited transition (Z,m) → (Y,+) which implies

the unboundedness of the stack height in nonterminating runs of Run(Y).

44

stack height is almost surely infinite, a contradiction with the step 2. of the algorithm.

Hence, P(Y →+ Y) = 1 and all runs w ∈ Run(Y) satisfy MY(w) ≤ |Γ |.

Let us define

R = {Yα ∈ Γ ∗ | Y ∈ RH} ∪ {ε} .

The results of [7] Section 4.3.1 imply that almost all runs of Run(X0) reach R. Hence, it

suffices to concentrate on the expected maximal stack height before reaching R.

Intuitively, almost all runs w of Run(X0) that reach R behave as follows: First, w pro-

ceeds through some configurations with the head in NTerm until either a configuration

of R, or a configuration of the form Yα where Y ∈ Term is entered. In the latter case,

w follows a finite ‘bump’ from Yα to α (note that the expected maximal height of this

bump is equal to EMY + |α| which is finite by the step 3. of the above algorithm). Then

w proceeds from α through configurations with the heads in NTerm until either a con-

figuration of R, or some other configuration with the head in Term is entered, and so on.

Let T(w) be the number of configurations with the head in NTerm plus the number of

‘bumps’ entered before reaching R. We prove that ET is finite, which allows us to bound

EMX0
in terms of the product of ET and maxY∈Term EMY (more concretely, we show that

EMX0
≤ ET ·maxY∈Term EMY + |Γ |).

The intuition behind the proof of the finiteness of ET is the following. For every

Y ∈ NTerm there is cY ≥ 1 such that, with a probability εY > 0, a run goes from Y to

RH ·Γ ∗ via cY configurations with the head in NTerm. Observe that the number of bumps

in such runs cannot be greater than 2cY . Let ε = minY∈NTerm εY and c = maxY∈NTerm cY .

A straightforward argument shows that P(T ≥ 3cn) is at most (1 − ε)n, and thus

ET ≤
∞∑

n=0

3cP(T ≥ 3cn) ≤ 3c

ε
< ∞

In the following we give a full proof of Theorem 4.8. In the course of the proof we

repeat some definitions from the sketch presented above.

Assume that the algorithm deciding whether EMX0
is finite returns ‘yes’. Let RH

denote the set of all Y ∈ NTerm such that almost all runs of Run(Y) reach YΓ ∗ ∪ {ε}. The

following proposition was already proved in the sketch. Let us define

R = {Yα ∈ Γ ∗ | Y ∈ RH} ∪ {ε} .

Proposition C.1. For every Y in RH we have that P(Y →+ Y) = 1 and that all runs w ∈
Run(Y) satisfy MY(w) ≤ |Γ |. Moreover, almost all runs of Run(X0) reach R.

45

The results of [7] Section 4.3.1 imply that almost all runs of Run(X0) reach R. (Indeed,

using the terminology of [7], the set R is equal to the union of all BSCCs of X∆, and hence

almost all runs in X∆ reach R. Then, by [7] Lemma 4.3.6, almost all nonterminating runs

of Run(X) reach {Yα ∈ Γ ∗ | Y ∈ RH}.)

We denote by CRun(X0) the set of all runs w ∈ Run(X0) that satisfy the following

two conditions:

1. for some i ≥ 0 holds w(i) ∈ R;

2. for every i ≥ 0 satisfying head(w(i)) ∈ Term there is j ≥ i such that w(j) =

tail(w(i)).

Proposition C.2. P(CRun(X0)) = 1

Proof. We argued above that almost all runs satisfy the condition 1. from the definition

of CRun(X0). Let A ⊆ Run(X0) be the set of all runs that satisfy the condition 2. Clearly,

in order to prove P(CRun(X0)) = 1, it suffices to show P(A) = 1.

Given Y ∈ Term, we denote by DY the set of all paths v from X0 to {Yα | α ∈ Γ ∗}. For

every v ∈
⋃

Y∈Term DY , we denote by D(v) the set of all runs w ∈ Run(v) such that for all

i ≥ |v| holds |w(i)| ≥ |v(|v| − 1)| (remember that v(|v| − 1) is the last state of v). Clearly,

Run(X0)\A =
⋃

Y∈Term

⋃
v∈DY

D(v)

It is easy to see that for every v ∈ DY holds

P(D(v)) = P(Run(v)) · (1 − P(Y →∗ {ε})) = 0

Hence,

P(Run(X0)\A) = P(
⋃

Y∈Term

⋃
v∈DY

D(v))

≤
∑

Y∈Term

∑
v∈DY

P(D(v))

= 0

which implies that P(A) = 1 and P(CRun(X0)) = 1.

We define a sequence of random variables I1, I2, . . . as follows: Given w ∈ CRun(X0) we

put

• I1(w) = 0

46

• for n ≥ 2

– if either head(w(In(w))) ∈ NTerm, or w(In(w)) = ε, then In+1(w) = In(w) + 1

– if head(w(In(w))) ∈ Term, then In+1(w) is the least number ` ≥ In(w) such

that |w(`)| = |w(In(w))| − 1

We define a sequence of random variables K1, K2, . . . as follows: Given w ∈
CRun(X0) and n ≥ 1 we put

Kn(w) = max{|w(j)| − |w(In(w))| | In(w) ≤ j < In+1(w)}

Let T : CRun(X0) → N be a random variable such that T(w) is the least number satisfy-

ing w(IT(w)(w)) ∈ R.

Proposition C.3. For all w ∈ CRun(X0) we have that

MX(w) ≤ T(w) +

T(w)∑
n=1

Kn(w) + |Γ |

Proof. Let us fix w ∈ CRun(X0). Let us define

M = sup{|w(i)| | i ≥ IT(w)(w)}

and

m = max{|w(i)| | 0 ≤ i < IT(w)(w)}

Clearly, MX(w) ≤ max{M,m}. By Proposition C.1, M ≤ T(w) + |Γ |. Also,

m ≤ max
1≤n<T(w)

max
In(w)≤i<In+1(w)

|w(i)|

≤ max
1≤n<T(w)

Kn(w) + T(w)

≤ T(w) +

T(w)∑
n=1

Kn(w)

Hence,

MX(w) ≤ T(w) +

T(w)∑
n=1

Kn(w) + |Γ |

Proposition C.4. The expected value ET of the variable T is finite.

47

Proof. Assume that X0 ∈ NTerm\RH (otherwise ET ≤ 2). We have already argued that

for every Y ∈ NTerm holds P(Y →∗ R) = 1. Thus, for every Y ∈ NTerm there is a finite

path vY initiated in Y such that head(vY(|vY | − 1)) ∈ RH (remember that vY(|vY | − 1) is the

last state of vY) and for every 0 ≤ i < |vY |−1 holds head(v(i)) 6∈ RH. Let εY = P(Run(vY)).

We put

ε = min
Y∈NTerm

εY

Note that ε > 0. Let us define cY = |vY | and c = maxY∈NTerm cY .

We define a sequence B0, B1, . . . of sets of finite paths initiated in X0 as follows (for

an intuitive description see below): We define B0 = {X0}. Let v be a finite path initiated

in X0. We put v ∈ Bn+1 iff

• for all 0 ≤ i < |v| holds v(i) 6∈ R

• there is ` ≥ 0 such that the prefix v(0) · · · v(`) of v is in Bn

• there is k > ` and a sequence ω = t1, . . . , tk−` of transitions of δ such that

– ω induces v(`) · · · v(k) (for the meaning of induce see the beginning of Ap-

pendix)

– t1, . . . , tk−`−1 induces a (proper) prefix of vY for some Y ∈ NTerm (i.e.

t1, . . . , tk−`−1 induces a path u such that |u| < |vY | and for all 0 ≤ i < |u|

holds u(i) = vY(i))

– ω does not induce a prefix of vY for any Y ∈ NTerm

• for k ≤ i < |v| − 1 holds head(v(i)) ∈ Term

• head(v(|v| − 1)) ∈ NTerm\RH

The intuition behind the definition of Bn, where n ≥ 1, is following. Let us follow a

finite path initiated in X0. This path, say v, is in Bn if it can be described as follows.

We start by following a part of the path vX0
. At some point, before reaching the end

of vX0
, we leave the path vX0

. Consequently, we erase all symbols of Term from the top

of the stack and enter a configuration with the head in NTerm\RH. Then we repeat a

very similar behavior n−1 times in a row: Assuming that the current configuration has

the form Yβ, we follow a part of the path vY within the context β. At some point, before

reaching the end of vY , we leave the path vY . Consequently, we erase all symbols of Term

from the top of the stack and enter a configuration with the head in NTerm\RH.

48

For every n ≥ 0 we write Run(Bn) =
⋃

v∈Bn
Run(v). Note that for all n ≥ 0 holds

Run(Bn) ⊇ Run(Bn+1) and that P(Run(Bn)) ≤ (1 − ε)n.

It is easy to see that for every i ≥ 1 and v ∈ Bi there are at most ci − 1 numbers

` < |v| − 1 such that head(v(`)) ∈ NTerm. Then for i ≥ 2 and w ∈ Run(Bi−1)\Run(Bi)

holds T(w) < 3c(i − 1) + 3c = 3ci because every symbol of NTerm can generate at most

two symbols of Term. Also for w ∈ Run(B0)\Run(B1) holds T(w) < 3c. It follows that

Run(X0)\Run(Bn) =

n⋃
i=1

Run(Bi−1)\Run(Bi)

and hence for all w ∈ Run(X0)\Run(Bn) holds T(w) < 3cn. Thus if T(w) ≥ 3cn, then

w ∈ Run(Bn). Consequently, for every n ≥ 1 holds

P(T ≥ 3cn) ≤ P(Run(Bn)) ≤ (1 − ε)n

It follows that

ET ≤ 3c

∞∑
n=0

P(T ≥ 3cn) ≤ 3c

ε

Proposition C.5.

EMX ≤ ET · max
Y∈Term

EMY + |Γ | < ∞

Proof. By Proposition C.3 and linearity of expectation,

EMX ≤ ET + E(

T∑
n=1

Kn) + |Γ |

We prove that

E(

T∑
n=1

Kn) ≤ ET · (max
Y∈Term

EMY − 1) (10)

from which we immediately obtain

EMX ≤ ET + E(

T∑
n=1

Kn) + |Γ |

≤ ET + ET · max
Y∈Term

EMY − ET + |Γ |

≤ ET · max
Y∈Term

EMY + |Γ |

49

In order to prove (10) we need some additional notation. For every Y ∈ Γ0 we denote

eY =

EMY if Y ∈ Term

1 if Y ∈ NTerm

Given m ≥ 1, 1 ≤ n < m, Y ∈ Γ0, and α ∈ Γ ∗, we define A[m,n, Y, α] to be the set of all

w ∈ CRun(X0) such that T(w) = m and w(In(w)) = Yα.

In order to prove the equation (10) we proceed in the following steps:

1. we prove that

E(Kn | A[m,n, Y, α]) = eY − 1 (11)

2. for A[m,n,α] =
⋃

Y∈Γ0
A[m,n, Y, α] we prove that

E(Kn | A[m,n,α]) = max
Y∈Γ0

EMY − 1

3. for A[m] =
⋃m

n=1

⋃
α∈Γ∗ A[m,n,α] we prove that

E(

T∑
n=1

Kn | A[m]) = m max
Y∈Term

EMY − 1

4. we prove the equation (10).

ad 1.

For Y ∈ NTerm the equation (11) follows immediately from definition of Kn. Assume

that Y ∈ Term. Let us define

U = {wIn(w)−1 | w ∈ A[m,n, Y, α]}

where wIn(w)−1 is the path w(0), . . . , w(In(w) − 1). Let us define

W = {wIn+1(w)+1 | w ∈ A[m,n, Y, α]}

where wIn+1(w)+1 is the run

w(In+1(w) + 1), w(In+1(w) + 2), . . .

Let Vk be the set of all paths of the form β1α, . . . , βjα, where β1 = Y, for all 1 ≤ i < j

holds |βi| > 0, βj = ε, and

max{|βi| − 1 | 1 ≤ i ≤ j} = k

50

Let V be the set of all paths of the form β1α, . . . , βjα, where β1 = Y, for all 1 ≤ i < j

holds |βi| > 0, and βj = ε.

Observe that A[m,n, Y, α] = U · V · W and that U · Vk ·W is the set of all runs w ∈
A[m,n, Y, α] such that Kn(w) = k. It is also easy to see that

P(U · Vk ·W) = P(Run(U))P(Run(Vk))P(W)

= P(Run(U))P(MY = k + 1)P(W)

P(U · V ·W) = P(Run(U))P(Run(V)P(W)

= P(Run(U))P(W)

Hence,

P(Kn = k | A[m,n, Y, α]) =
P(Kn = k ∧ A[m,n, Y, α])

P(A[m,n, Y, α])

=
P(U · Vk ·W)

P(U · V ·W)

= P(MY = k + 1)

It follows that for Y ∈ Term holds

E(Kn | A[m,n, Y, α]) = EMY − 1 = eY − 1

This proves (11) for Y ∈ Term.

ad 2.

For every Y ∈ Γ0 we define

pY = P(A[m,n, Y, α] | A[m,n,α])

Now

E(Kn | A[m,n,α]) =
∑
Y∈Γ0

E(Kn | A[m,n, Y, α])pY

≤
∑
Y∈Γ0

(eY − 1)pY

≤ max
Y∈Γ0

eY − 1

= max
Y∈Term

EMY − 1

Here the last equality follows from the fact that for every Y ∈ Term holds EMY ≥ 1.

51

ad 3.

Define pn,α = P(A[m,n,α] | A[m]). Then

E(

T∑
n=1

Kn | A[m]) =

m∑
n=1

E(Kn | A[m])

=

m∑
n=1

∑
α∈Γ∗

E(Kn | A[m,n,α])pn,α

≤
m∑

n=1

∑
α∈Γ∗

pn,α max
Y∈Term

EMY − 1

= m max
Y∈Term

EMY − 1

ad 4.

We have

E(

T∑
n=1

Kn) =

∞∑
m=1

E(

T∑
n=1

Kn | A[m])P(A[m])

≤
∞∑

m=1

mP(A[m])(max
Y∈Term

EMY − 1)

=

∞∑
m=1

mP(TY = m)(max
Y∈Term

EMY − 1)

= ET · max
Y∈Term

EMY − 1

which proves the equation (10).

52

