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Abstract

We show that several basic discounted properties of probabilistic pushdown au-

tomata related both to terminating and non-terminating runs can be efficiently ap-

proximated up to an arbitrarily small given precision.

1 Introduction

Discounting formally captures the natural intuition that the far-away future is not as

important as the near future. In the discrete time setting, the discount assigned to a

state visited after k time units is λk, where 0 < λ < 1 is a fixed constant. Thus, the

“weight” of states visited lately becomes progressively smaller. Discounting (or infla-

tion) is a key paradigm in economics and has been studied in Markov decision processes

as well as game theory [20, 17]. More recently, discounting has been found appropriate

also in systems theory (see, e.g., [7]), where it allows to put more emphasis on events

that occur early. For example, even if a system is guaranteed to handle every request

eventually, it still makes a big difference whether the request is handled early or lately,

and discounting provides a convenient formalism for specifying and even quantifying

this difference.
∗Supported by the research center Institute for Theoretical Computer Science (ITI), project No. 1M0545.
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In this paper, we concentrate on basic discounted properties of probabilistic push-

down automata (pPDA), which provide a natural model for probabilistic systems with

unbounded recursion [10, 5, 11, 4, 15, 13, 14]. Thus, we aim at filling a gap in our

knowledge on probabilistic PDA, which has so far been limited only to non-discounted

properties. As the main result, we show that several fundamental discounted proper-

ties related to long-run behaviour of probabilistic PDA (such as the discounted gain or

the total discounted accumulated reward) are expressible as the least solutions of ef-

ficiently constructible systems of recursive monotone polynomial equations (theorems

4.10, 4.13 and 4.14) whose form admits the application of the recent results [19, 9] about

a fast convergence of Newton’s approximation method. This entails the decidability of

the corresponding quantitative problems (we ask whether the value of a given discounted

long-run property is equal to or bounded by a given rational constant). A more im-

portant consequence is that the discounted long-run properties are computational in the

sense that they can be efficiently approximated up to an arbitrarily small given preci-

sion. This is very different from the non-discounted case, where the respective quanti-

tative problems are also decidable but no efficient approximation schemes are known1.

This shows that discounting, besides its natural practical appeal, has also mathematical

and computational benefits.

We also consider discounted properties related to terminating runs, such as the dis-

counted termination probability (Theorem 4.2) and the discounted reward accumulated

along a terminating run (Theorem 4.6). Further, we examine the relationship between

the discounted and non-discounted variants of a given property (Theorem 4.17). In-

tuitively, one expects that a discounted property should be close to its non-discounted

variant as the discount approaches 1. This intuition is mostly confirmed, but in some

cases the actual correspondence is more complicated (theorems 4.18 and 4.21).

Concerning the level of originality of the presented work, the results about ter-

minating runs are obtained as simple extensions of the corresponding results for the

non-discounted case presented in [10, 15, 11]. New insights and ideas are required to

solve the problems about discounted long-run properties of probabilistic PDA (the dis-

counted gain and the total discounted accumulated reward), and also to establish the

correspondence between these properties and their non-discounted versions. A more

detailed discussion and explanation is postponed to Sections 3 and 4.

1For example, the existing approximation methods for the (non-discounted) gain employ the decision

procedure for the existential fragment of (R,+, ∗,≤), which is rather inefficient.
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2 Basic Definitions

In this paper, we use N, N0, Q, and R to denote the sets of positive integers, non-negative

integers, rational numbers, and real numbers, respectively. We also use the standard

notation for intervals of real numbers, writing, e.g., (0, 1] to denote the set {x ∈ R | 0 <

x ≤ 1}.
The set of all finite words over a given alphabet Σ is denoted Σ∗, and the set of all

infinite words over Σ is denoted Σω. We also use Σ+ to denote the set Σ∗ \ {ε} where ε is

the empty word. The length of a givenw ∈ Σ∗ ∪Σω is denoted len(w), where the length

of an infinite word isω. Given a word (finite or infinite) over Σ, the individual letters of

w are denoted w(0), w(1), · · · .
Let V 6= ∅, and let → ⊆ V × V be a total relation (i.e., for every v ∈ V there is some

u ∈ V such that v→u). The reflexive and transitive closure of → is denoted → ∗. A

path in (V, → ) is a finite or infinite wordw ∈ V+∪Vω such thatw(i−1)→w(i) for every

1 ≤ i < len(w). A run in (V, → ) is an infinite path in V . The set of all runs that start

with a given finite path w is denoted Run(w).

A probability distribution over a finite or countably infinite set X is a function f : X →
[0, 1] such that

∑
x∈X f(x) = 1. A probability distribution f over X is positive if f(x) > 0

for every x ∈ X, and rational if f(x) ∈ Q for every x ∈ X. A σ-field over a set Ω is a

set F ⊆ 2Ω that includes Ω and is closed under complement and countable union. A

probability space is a triple (Ω,F ,P) where Ω is a set called sample space, F is a σ-field

over Ω whose elements are called events, and P : F → [0, 1] is a probability measure such

that, for each countable collection {Xi}i∈I of pairwise disjoint elements of F we have that

P(
⋃
i∈I Xi) =

∑
i∈IP(Xi), and moreover P(Ω)=1. A random variable over a probability

space (Ω,F ,P) is a function X : Ω → R ∪ {⊥}, where ⊥ 6∈ R is a special “undefined”

symbol, such that {ω ∈ Ω | X(ω) ≤ c} ∈ F for every c ∈ R. If P(X=⊥) = 0, then the

expected value of X is defined by E[X] =
∫
ω∈Ω X(ω) dP .

Definition 2.1 (Markov Chain). A Markov chain is a tripleM = (S, → ,Prob) where S is a

finite or countably infinite set of states, → ⊆ S× S is a total transition relation, and Prob is

a function which to each state s ∈ S assigns a positive probability distribution over the outgoing

transitions of s. As usual, we write s x→ t when s→ t and x is the probability of s→ t.
To every s ∈ S we associate the probability space (Run(s),F ,P) where F is the σ-field

generated by all basic cylinders Run(w) where w is a finite path starting with s, and
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P : F → [0, 1] is the unique probability measure such that P(Run(w)) = Π
len(w)−1
i=1 xi

where w(i−1) xi→w(i) for every 1 ≤ i < len(w). If len(w) = 1, we put P(Run(w)) = 1.

Definition 2.2 (probabilistic PDA). A probabilistic pushdown automaton (pPDA) is a

tuple ∆ = (Q, Γ, δ,Prob) where Q is a finite set of control states, Γ is a finite stack alphabet,

δ ⊆ (Q × Γ) × (Q × Γ≤2) is a transition relation (here Γ≤2 = {w ∈ Γ ∗ | len(w) ≤ 2}), and

Prob : δ → (0, 1] is a rational probability assignment such that for all pX ∈ Q × Γ we have

that
∑
pX→qα Prob(pX→ qα) = 1.

A configuration of∆ is an element ofQ×Γ ∗, and the set of all configurations of∆ is denoted

C(∆).

To each pPDA ∆ = (Q, Γ, δ,Prob∆) we associate a Markov chain M∆ = (C(∆),→,Prob),

where pε 1→pε for every p ∈ Q, and pXβ x→qαβ iff (pX, qα) ∈ δ, Prob∆(pX→qα) = x,

and β ∈ Γ ∗. For all p, q ∈ Q and X ∈ Γ , we use Run(pXq) to denote the set of all

w ∈ Run(pX) such that w(n) = qε for some n ∈ N, and Run(pX↑) to denote the set

Run(pX)\
⋃
q∈Q Run(pXq). The runs of Run(pXq) and Run(pX↑) are sometimes referred

to as terminating and non-terminating, respectively.

We further adopt the notation of [3] as follows. Let w be a finite path. The set of all

finite paths that start with the path w is denoted FPath(w). We extend the notation to

sets of finite paths as well. Let pX ∈ Q × Γ , q ∈ Q and n ∈ N0. The set of all runs

from pX that eventually reach qε is denoted Run(pXq). The set of all runs from pX that

reach qε in at most n steps is denoted Runn(pXq). The set of all finite paths from pX to

the first qε is denoted FPath(pXq). The set of all finite paths from pX to the first qε of

length at most n is denoted FPathn(pXq). Note that the sets of finite paths are always at

most countably infinite.

Let u be a finite path, len(u) = n, and v be a finite or infinite path starting in u(n).

The concatenation of the two paths is a path denoted u � v. The notation is extended

to A�Bwhere A is a set of finite paths and B is a set of paths provided there is a state s

such that every u ∈ A ends in s and every v ∈ B starts in s.

Given a configuration pα and β ∈ Γ ∗, we denote pαbβ = pαβ. Given a path w,

we denote wbβ the string of configurations where (wbβ)(i) = w(i)bβ. Intuitively, we

inserted β to the bottom of the stack. Note thatwbβ is not necessarily a path. We extend

this notation to sets of paths as well.
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3 Discounted Properties of Probabilistic PDA

In this section we introduce the family of discounted properties of probabilistic PDA

studied in this paper. These notions are not PDA-specific and could be defined more

abstractly for arbitrary Markov chains. Nevertheless, the scope of our study is limited

to probabilistic PDA, and the notation becomes more suggestive when it directly reflects

the structure of a given pPDA.

For the rest of this section, we fix a pPDA ∆ = (Q, Γ, δ,Prob∆), a non-negative reward

function f : Q × Γ → Q, and a discount function λ : Q × Γ → [0, 1). The functions f

and λ are extended to all elements of Q × Γ+ by stipulating that f(pXα) = f(pX) and

λ(pXα) = λ(pX), respectively. One can easily generalize the presented arguments also

to rewards and discounts that depend on the whole stack content, provided that this

dependence is “regular”, i.e., can be encoded by a finite-state automaton which reads

the stack bottom-up. This extension is obtained just by applying standard techniques

that have been used in, e.g., [12]. Also note that λ can assign a different discount to

each element of Q × Γ , and that the discount can also be 0. Hence, we in fact work

with a slightly generalized form of discounting which can also reflect relative speed of

transitions.

We start by defining several simple random variables. The definitions are parametr-

ized by the functions f and λ, control states p, q ∈ Q, and a stack symbol X ∈ Γ . For

every run w and i ∈ N0, we use λ(wi) to denote Πij=0λ(w(j)), i.e., the discount accumu-

lated up to w(i). Note that the initial state of w is also discounted, which is somewhat

non-standard but technically convenient (the equations constructed in Section 4 become

more readable).

IpXq(w) =

1 if w ∈ Run(pXq)

0 otherwise

IλpXq(w) =

λ(wn−1) if w ∈ Run(pXq), w(n−1) 6= w(n) = qε

0 otherwise

RfpXq(w) =


∑n−1
i=0 f(w(i)) if w ∈ Run(pXq), w(n−1) 6= w(n) = qε

0 otherwise

5



Rf,λpXq(w) =


∑n−1
i=0 λ(w

i) · f(w(i)) if w ∈ Run(pXq), w(n−1) 6= w(n) = qε

0 otherwise

GfpX(w) =

limn→∞ ∑n
i=0 f(w(i))

n+1
if w ∈ Run(pX↑) and the limit exists

⊥ otherwise

Gf,λpX(w) =

limn→∞ ∑n
i=0 λ(w

i)·f(w(i))∑n
i=0 λ(w

i)
if w ∈ Run(pX↑) and the limit exists

⊥ otherwise

Xf,λpX(w) =


∑∞
i=0 λ(w

i)f(w(i)) if w ∈ Run(pX↑)
0 otherwise

The variable IpXq is a simple indicator telling whether a given run belongs to Run(pXq)

or not. Hence, E[IpXq] is the probability of Run(pXq), i.e., the probability of all runs

w ∈ Run(pX) that terminate in qε. The variable IλpXq is the discounted version of IpXq,

and its expected value can thus be interpreted as the “discounted termination proba-

bility”, where more weight is put on terminated states visited early. Hence, E[IλpXq] is

a meaningful value which can be used to quantify the difference between two config-

urations with the same termination probability but different termination time. From

now on, we write [pXq] and [pXq, λ] instead of E[IpXq] and E[IλpXq], respectively, and

we also use [pX↑] to denote 1 −
∑
q∈Q[pXq]. The computational aspects of [pXq] have

been examined in [10, 15], where it is shown that the family of all [pXq] forms the least

solution of an effectively constructible system of monotone polynomial equations. By

applying the recent results [19, 9] about a fast convergence of Newton’s method, it is

possible to approximate the values of [pXq] efficiently (the precise values of [pXq] can

be irrational). In Section 4 (Theorem 4.2), we generalize these results to [pXq, λ].

The variable RfpXq returns to everyw ∈ Run(pXq) the total f-reward accumulated up

to qε. For example, if f(rY) = 1 for every rY ∈ Q× Γ , then the variable returns the num-

ber of transitions executed before hitting the configuration qε. In [11], the conditional

expected value E[RfpXq | Run(pXq)] has been studied in detail. This value can be used to

analyze important properties of terminating runs; for example, if f is as above, then∑
q∈Q

[pXq] · E[RfpXq | Run(pXq)]

is the conditional expected termination time of a run initiated in pX, under the condi-

tion that the run terminates (i.e., the stack is eventually emptied). In [11], it has been
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shown that the family of all E[RfpXq | Run(pXq)] forms the least solution of an effec-

tively constructible system of recursive polynomial equations. One disadvantage of

E[RfpXq | Run(pXq)] (when compared to [pXq, λ] which also reflects the length of termi-

nating runs) is that this conditional expected value can be infinite even in situations

when [pXq] = 1.

The discounted version Rf,λpXq of RfpXq assigns to each w ∈ Run(pXq) the total dis-

counted reward accumulated up to qε. In Section 4 (Theorem 4.9), we extend the afore-

mentioned results about E[RfpXq | Run(pXq)] to the family of all E[Rf,λpXq | Run(pXq)].

The extension is actually based on analyzing the properties of the (unconditional) ex-

pected value E[Rf,λpXq] (Theorem 4.6). At first glance, E[Rf,λpXq] does not seem to provide

any useful information, at least in situations when [pXq] 6= 1. However, this expected

value can be used to express not only E[Rf,λpXq | Run(pXq)], but also other properties such

as E[Gf,λpX] or E[Xf,λpX] discussed below, and can be effectively approximated by Newton’s

method. Hence, the variable Rf,λpXq and its expected value provide a crucial technical tool

for solving the problems of our interest.

The variable GfpX assigns to each non-terminating run its average reward per tran-

sition, provided that the corresponding limit exists. For finite-state Markov chains, the

average reward per transition exists for almost all runs, and hence the corresponding

expected value (also called the gain2) always exists. In the case of pPDA, it can happen

that P(GfpX=⊥) > 0 even if [pX↑] = 1, and hence the gain E[GfpX] does not necessarily ex-

ist. A concrete example is given in Section 4 (Theorem 4.18). In [11], it has been shown

that if all E[RgtYs | Run(tYs)] are finite (where g(rZ) = 1 for all rZ ∈ Q × Γ ), then the

gain is guaranteed to exist and can be effectively expressed in first order theory of the

reals. This result relies on a construction of an auxiliary finite-state Markov chain with

possibly irrational transition probabilities, and this method does not allow for efficient

approximation of the gain.

In Section 4, we examine the properties of the discounted gain E[Gf,λpX] which are re-

markably different from the aforementioned properties of the gain (these are the first

highlights among our results). First, we always have that P(Gf,λpX=⊥ | Run(pX↑)) = 0

whenever [pX↑] > 0, and hence the discounted gain is guaranteed to exist whenever

[pX↑] = 1 (Theorem 4.14). Further, we show that the discounted gain can be efficiently

approximated by Newton’s method (Theorem 4.16). One intuitively expects that the

discounted gain is close to the value of the gain as the discount approaches 1, and we

2The gain is one of the fundamental concepts in performance analysis.
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show that this is indeed the case when the gain exists (Theorem 4.21, the proof is not

trivial). Thus, we obtain alternative proofs for some of the results about the gain that

have been presented in [11], but unfortunately we do not yield an efficient approxi-

mation scheme for the (non-discounted) gain, because we were not able to analyze the

corresponding convergence rate. More details are given in Section 4.

The variable Xf,λpX assigns to each non-terminating run the total discounted reward

accumulated along the whole run. Note that the corresponding infinite sum always

exists and it is finite. If [pX↑] = 1, then the expected value E[Xf,λpX] exactly corresponds to

the expected discounted payoff, which is a fundamental and deeply studied concept in

stochastic programming (see, e.g., [20, 17]). In Section 4 (Theorem 4.10), we show that

the family of all E[Xf,λpX] forms the least solution of an effectively constructible system of

monotone polynomial equations. Hence, these expected values can also be effectively

approximated by Newton’s method by applying the results of [19, 9]. We also show

(Theorem 4.16) how to express E[Xf,λpX | Run(pX↑)], which is more relevant in situations

when 0 < [pX↑] < 1.
4 Computing the Discounted Properties of

Probabilistic PDA

In this section we show that the (conditional) expected values of the discounted ran-

dom variables introduced in Section 3 are expressible as the least solutions of efficiently

constructible systems of recursive equations. This allows to encode these values in first

order theory of the reals, and design efficient approximation schemes for some of them.

Recall that first order theory of the reals (R,+, ∗,≤) is decidable [21], and the existen-

tial fragment is even solvable in polynomial space [6]. The following definition explains

what we mean by encoding a certain value in (R,+, ∗,≤).

Definition 4.1. We say that some c ∈ R is encoded by a formula Φ(x) of (R,+, ∗,≤) iff the

formula ∀x.(Φ(x)⇔ x=c) holds.

Note that if a given c ∈ R is encoded by Φ(x), then the problems whether c = ρ and

c ≤ ρ for a given rational constant ρ are decidable (we simply check the validity of the

formulae Φ(x/ρ) and ∃x.(Φ(x) ∧ x ≤ ρ), respectively).

For the rest of this section, we fix a pPDA ∆ = (Q, Γ, δ,Prob∆), a non-negative reward

function f : Q× Γ → Q, and a discount function λ : Q× Γ → [0, 1).

8



As a warm-up, let us first consider the family of expected values [pXq, λ]. For each of

them, we fix the corresponding first order variable 〈〈pXq, λ〉〉〈〈pXq, λ〉〉〈〈pXq, λ〉〉, and construct the follow-

ing equation (for the sake of readability, each variable occurrence is typeset in boldface):

〈〈pXq, λ〉〉〈〈pXq, λ〉〉〈〈pXq, λ〉〉 =
∑
pX

x→qε
x·λ(pX) +

∑
pX

x→rY
x·λ(pX)·〈〈rYq, λ〉〉〈〈rYq, λ〉〉〈〈rYq, λ〉〉+

∑
pX

x→rYZ, s∈Q
x·λ(pX)·〈〈rYs, λ〉〉〈〈rYs, λ〉〉〈〈rYs, λ〉〉·〈〈sZq, λ〉〉〈〈sZq, λ〉〉〈〈sZq, λ〉〉 (1)

Thus, we produce a finite system of recursive equations (S1). This system is rather sim-

ilar to the system for termination probabilities [pXq] constructed in [10, 15]. The only

modification is the introduction of the discount factor λ(pX). The proof of the following

theorem is also just a technical extension of the proof given in [10, 15]. However, we de-

scribe it in detail here bacause it shares a common structure with proofs of Theorem 4.6

and Theorem 4.10. Presenting the structure here will allow us to focus only on critical

parts of those proofs.

Theorem 4.2. The tuple of all [pXq, λ] is the least non-negative solution of the system (S1).

Proof. The tuple of all [pXq, λ] is a non-negative solution of the system (S1) (Lemma 4.4).

It remains to show that the tuple is component-wise less than or equal to any non-

negative solution of the system.

Let us consider random variables Iλ;npXq : Run(pX)→ R, n ∈ N0 that take into account

only runs terminating in at most n steps.

Iλ;npXq(w) =

λ(wk−1) ∃k, 0 < k ≤ n : w(k) = qε and ∀m < k : w(m) 6= qε

0 otherwise

Observe that for all k ≤ l the variables satisfy 0 ≤ Iλ;kpXq ≤ I
λ;l
pXq ≤ IλpXq, thus E[Iλ;kpXq] ≤

E[Iλ;lpXq] ≤ [pXq, λ]. Moreover, limn→∞ Iλ;npXq = IλpXq and hence the dominted convergence

theorem (Theorem 4.22) applies yeilding limn→∞ E[Iλ;npXq] = [pXq, λ]. Since the tuple

of E[Iλ;npXq] is component-wise less than or equal to any non-negative solution of the sys-

tem (S1) for all n (Lemma 4.5), so is the tuple of [pXq, λ].

Proofs of Lemma 4.4 and Lemma 4.5 as well as other lemmas in this section are

based on manipulating paths of the Markov chainM∆. The next technical lemma (taken

from [3]) allows “moving” among probability spaces associated to individual states

ofM∆. Given a state s ofM∆, we denote Ps the associated probability measure.

Lemma 4.3. Let s, t be states of M∆, let A ⊆ FPath(s) be a prefix-free set of paths from s to t,

and B ⊆ Run(t) be a measurable set of runs. Then A� B is measurable and

Ps(A� B) = Ps(Run(A)) · Pt(B)
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Let Z : Run(s) → R be a random variable. Since FPath(s) is at most countably

infinite, so is the set A. Thus, as a corollary to Lemma 4.3, we obtain∫
w∈A�B

Z(w) dPs =
∑
u∈A

∫
v∈B

Z(u� v) · Ps(Run(u)) dPt

Lemma 4.4. The tuple of all [pXq, λ], pX ∈ Q× Γ , q ∈ Q forms a non-negative solution of the

system (S1).

Proof. Recall that [pXq, λ] is a notation for E[IλpXq]. The expected values E[IλpXq] are non-

negative by definition of IλpXq. It remains to show that they form a solution of the system.

Let pX ∈ Q×Γ , q ∈ Q. Let us partition Run(pXq) according to the type of the production

rule of ∆which generates the first transition.

Run(pXq) = W0 ]W1 ]W2

W0 =
⊎

pX→qεpX→ qε� Run(qε)

W1 =
⊎

pX→rY pX→ rY � Run(rYq)

W2 =
⊎

pX→rYZ
s∈Q

pX→ rYZ� FPath(rYs)bZ� Run(sZq)

By applying definitions, we obtain

E[IλpXq] =

∫
w∈Run(pX)

IλpXq(w) dPpX =

∫
w∈Run(pXq)

IλpXq(w) dPpX

=

∫
w∈W0

IλpXq(w) dPpX +

∫
w∈W1

IλpXq(w) dPpX +

∫
w∈W2

IλpXq(w) dPpX

Let us process each of the summands individually.∫
w∈W0

IλpXq(w) dPpX =

∫
w∈W0

λ(pX) dPpX =
∑
pX

x→qε
x · λ(pX)

∫
w∈W1

IλpXq(w) dPpX =
∑
pX

x→rY
λ(pX) · x ·

∫
u∈Run(rYq)

IλrYq(u) dPrY =
∑
pX

x→rY
x · λ(pX) · E[IλrYq]

∫
w∈W2

IλpXq(w) dPpX =
∑
pX

x→rYZ
s∈Q

∫
u∈Run(rYs)
v∈Run(sZq)

λ(pX) · IλrYs(u) · IλsZq(v) · x dPrY dPsZ

=
∑
pX

x→rYZ
s∈Q

x · λ(pX) · E[IλrYs] · E[IλsZq]

10



We can conclude now that

E[IλpXq] =
∑
pX

x→qε
x · λ(pX) +

∑
pX

x→rY
x · λ(pX) · E[IλrYq] +

∑
pX

x→rYZ
s∈Q

x · λ(pX) · E[IλrYs] · E[IλsZq]

Lemma 4.5. Let the tuple of all UpXq be a non-negative solution of the system (S1). Then

E[Iλ;npXq] ≤ UpXq holds for all n ∈ N0.

Proof. By induction on n. For n = 0we have E[Iλ;0pXq] = 0 by definition.

Let n > 0. We will proceed in a similar way as in Lemma 4.4. Let us approximate

Runn(pXq) as follows

Runn(pXq) ⊆Wn
0 ]Wn

1 ]Wn
2

Wn
0 =

⊎
pX→qεpX→ qε� Run(qε)

Wn
1 =

⊎
pX→rY pX→ rY � Runn−1(rYq)

Wn
2 =

⊎
pX→rYZ
s∈Q

pX→ rYZ� FPathn−1(rYs)bZ� Runn−1(sZq)

By definitions, we have

E[Iλ;npXq] =

∫
w∈Runn(pXq)

Iλ;npXq(w) dPpX

≤
∫

w∈Wn
0

Iλ;npXq(w) dPpX +

∫
w∈Wn

1

Iλ;npXq(w) dPpX +

∫
w∈Wn

2

Iλ;npXq(w) dPpX

Let us process each of the summands individually. Recall we assume E[Iλ;ipXq] ≤ UpXq for

all i, 0 ≤ i < n.∫
w∈Wn

0

Iλ;npXq(w) dPpX =
∑
pX

x→qε
λ(pX) · x

∫
w∈Wn

1

Iλ;npXq(w) dPpX =
∑
pX

x→rY
x · λ(pX) ·

∫
u∈Runn−1(rYq)

Iλ;n−1
rYq (w) dPrY =

∑
pX

x→rY
x · λ(pX) · E[Iλ;n−1

rYq ]

≤
∑
pX

x→rY
x · λ(pX) ·UrYq
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∫
w∈Wn

2

Iλ;npXq(w) dPpX ≤
∑
pX

x→rYZ
s∈Q

∫
u∈Runn−1(rYs)

v∈Runn−1(sZq)

λ(pX) · Iλ;n−1
rYs (u) · Iλ;n−1

sZq (v) · x dPrY dPsZ

=
∑
pX

x→rYZ
s∈Q

x · λ(pX) · E[Iλ;n−1
rYs ] · E[Iλ;n−1

sZq ] ≤
∑
pX

x→rYZ
s∈Q

x · λ(pX) ·UrYs ·UsZq

To see the inequality in the case ofWn
2 , observe that the integrand on the left side is less

than or equal to the integrand on the right side of the inequality for all runs. Indeed,

given a run w ∈ Run(pX) the integrand on the right side either equals to Iλ;npXq(w) or

Iλ;npXq(w) = 0. Now, we can conclude that

E[Iλ;npXq] ≤
∑
pX

x→qε
x · λ(pX) +

∑
p
x→rY
x · λ(pX) ·UrYq +

∑
pX

x→rYZ
s∈Q

x · λ(pX) ·UrYs ·UsZq = UpXq

Now consider the expected value E[Rf,λpXq]. For all p, q ∈ Q and X ∈ Γ we fix a first order

variable 〈〈pXq〉〉〈〈pXq〉〉〈〈pXq〉〉 and construct the following equation:

〈〈pXq〉〉〈〈pXq〉〉〈〈pXq〉〉 =
∑
pX

x→qε
x · λ(pX) · f(pX) +

∑
pX

x→rY
x · λ(pX) ·

(
[rYq] · f(pX) + 〈〈rYq〉〉〈〈rYq〉〉〈〈rYq〉〉

)
+
∑
pX

x→rYZ, s∈Q
x · λ(pX) · ([rYs] · [sZq] · f(pX) + [sZq] · 〈〈rYs〉〉〈〈rYs〉〉〈〈rYs〉〉+ [rYs, λ] · 〈〈sZq〉〉〈〈sZq〉〉〈〈sZq〉〉)

(2)

Thus, we obtain the system (S2). Note that termination probabilities and discounted

termination probabilities are treated as “known constants” in the equations of (S2).

As opposed to (S1), the equations of system (S2) do not have a good intuitive mean-

ing. At first glance, it is not clear why these equations should hold, and a formal proof

of this fact requires advanced arguments.

Theorem 4.6. The tuple of all E[Rf,λpXq] is the least non-negative solution of the system (S2).

Proof. The tuple of all E[Rf,λpXq] is a non-negative solution of the system (S2) (Lemma 4.7).

Similar to the proof of Theorem 4.2, let us consider random variables Rf,λ;kpXq : Run(pX)→
R, k ∈ N0 that take into account only runs terminating in at most k steps.

Rf,λ;kpXq (w) =


n−1∑
i=0

λ(wi) · f(w(i)) ∃n, 0 < n ≤ k : w(n) = qε and ∀m < n : w(m) 6= qε

0 otherwise

12



The tuple of all E[Rf,λpXq;k] is less than or equal to any non-negative solution of the sys-

tem (S2) for all k (see Lemma 4.8). Now, the proof proceeds using similar reasoning as

in the proof of Theorem 4.2.

Lemma 4.7. The tuple of all E[Rf,λpXq], pX ∈ Q× Γ , q ∈ Q forms a non-negative solution of the

system (S2).

Proof. The expectations are non-negative by definitions of the random variables. It re-

mains to show that they form a solution. Let pX ∈ Q× Γ , q ∈ Q and consider the same

partition of Run(pXq) = W0 ]W1 ]W2 as in Lemma 4.4. We have

E[Rf,λpXq] =

∫
w∈Run(pX)

Rf,λpXq(w) dPpX =

∫
w∈Run(pXq)

Rf,λpXq(w) dPpX

=

∫
w∈W0

Rf,λpXq(w) dPpX +

∫
w∈W1

Rf,λpXq(w) dPpX +

∫
w∈W2

Rf,λpXq(w) dPpX

Let us process each of the summands individually.∫
w∈W0

Rf,λpXq(w) dPpX =
∑
pX

x→qε
x · λ(pX) · f(pX)

∫
w∈W1

Rf,λpXq(w) dPpX =
∑
pX

x→rY
∫
u∈Run(rYq)

(
λ(pX) · f(pX) + λ(pX) · Rf,λrYq(u)

)
· x · dPrY

=
∑
pX

x→rY
x · λ(pX) ·

(
[rYq] · f(pX) + E[Rf,λrYq]

)
∫

w∈W2

Rf,λpXq(w) dPpX

=
∑
pX

x→rYZ
s∈Q

λ(pX) · x ·
∫
u∈Run(rYs)
v∈Run(sZq)

(
f(pX) + Rf,λrYs(u) + IλrYs(u) · Rf,λsZq(v)

)
dPrY dPsZ

=
∑
pX

x→rYZ
s∈Q

λ(pX) · x ·
(
f(pX) · [rYs] [sZq] + E[Rf,λrYs] · [sZq] + [rYs, λ] · E[Rf,λsZq]

)
We can conclude now that

E[Rf,λpXq] =
∑
pX

x→qε
x · λ(pX) · f(pX) +

∑
pX

x→rY
x · λ(pX) ·

(
[rYq] · f(pX) + E[Rf,λrYq]

)
+
∑
pX

x→rYZ, s∈Q
x · λ(pX) ·

(
[rYs][sZq] · f(pX) + [sZq] · E[Rf,λrYs] + [rYs, λ] · E[Rf,λsZq]

)
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Lemma 4.8. Let the tuple of all UpXq be a non-negative solution of the system S2. Then

E[Rf,λ;kpXq ] ≤ UpXq holds for all k ∈ N0.

Proof. By induction on k. For k = 0we have E[Rf,λ;0pXq ] = 0 by definition.

Let k > 0. We will combine the techniques from proofs of Lemma 4.5 and Lemma 4.7.

We approximate Runk(pXq) ⊆Wk
0 ]Wk

1 ]Wk
2 as in Lemma 4.5. By definitions, we have

E[Rf,λ;kpXq ] =

∫
w∈Runk(pXq)

Rf,λ;kpXq (w) dPpX

≤
∫

w∈Wk
0

Rf,λ;kpXq (w) dPpX +

∫
w∈Wk

1

Rf,λ;kpXq (w) dPpX +

∫
w∈Wk

2

Rf,λ;kpXq (w) dPpX

Let us process each of the summands individually. Recall we assume E[Rf,λ;ipXq] ≤ UpXq
for all i, 0 ≤ i < k. ForWk

0 we obtain∫
w∈Wk

0

Rf,λ;kpXq (w) dPpX =
∑
pX

x→qε
x · λ(pX) · f(pX)

ForWk
1 we obtain∫

w∈Wk
1

Rf,λ;kpXq (w) dPpX =
∑
pX

x→rY
x · λ(pX) ·

∫
u∈Runk−1(rYq)

(
f(pX) + Rf,λ;k−1rYq (u)

)
dPrY

≤
∑
pX

x→rY
x · λ(pX) ·

(
[rYq] · f(pX) + E[Rf,λ;k−1rYq ]

)
≤
∑
pX

x→rY
x · λ(pX) · ([rYq] · f(pX) +UrYq)

Finally, forWk
2 we obtain∫

w∈Wk
2

Rf,λ;kpXq (w) dPpX

≤
∑
pX

x→rYZ
s∈Q

∫
u∈Runk−1(rYs)

v∈Runk−1(sZq)

x · λ(pX) ·
(
f(pX) + Rf,λ;k−1rYs (u) + IλrYs(u) · Rf,λ;k−1sZq (v)

)
dPrY dPsZ

≤
∑
pX

x→rYZ
s∈Q

x · λ(pX) ·
(
f(pX) · [rYs] [sZq] + E[Rf,λ;k−1rYs ] · [sZq] + [rYs, λ] · E[Rf,λ;k−1sZq ]

)
≤
∑
pX

x→rYZ
s∈Q

x · λ(pX) · (f(pX) · [rYs] [sZq] +UrYs · [sZq] + [rYs, λ] ·UsZq)
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Even if it is not so obvious in this case, the first inequality in the case of Wk
2 holds for

the same reasons as a corresponding inequality in Lemma 4.5. Putting the parts back

together, we have

E[Rf,λ;kpXq ] ≤
∑
pX

x→qε
x · λ(pX) · f(pX) +

∑
pX

x→rY
x · λ(pX) · ([rYq] · f(pX) +UrYq)

+
∑
pX

x→rYZ
s∈Q

x λ(pX) · (f(pX) · [rYs] [sZq] +UrYs · [sZq] + [rYs, λ] ·UsZq) = UpXq

The conditional expected values E[Rf,λpXq | Run(pXq)] make sense only if [pXq] > 0,

which can be checked in time polynomial in the size of∆ because [pXq] > 0 iff pX→ ∗qε,

and the reachability problem for PDA is in P (see, e.g., [8]). The next theorem says

how to express E[Rf,λpXq | Run(pXq)] using E[Rf,λpXq]. It follows from the definitions of the

random variables and linearity of expectations.

Theorem 4.9. For all p, q ∈ Q and X ∈ Γ such that [pXq] > 0 we have that

E[Rf,λpXq | Run(pXq)] =
E[Rf,λpXq]

[pXq]
(3)

Now we turn our attention to the discounted long-run properties of probabilistic PDA

introduced in Section 3. These results represent the core of our paper.

As we already mentioned, the system (S1) can also be used to express the family of

termination probabilities [pXq]. This is achieved simply by replacing each λ(pX) with 1

(thus, we obtain the equational systems originally presented in [10, 15]). Hence, we can

also express the probability of non-termination:

[pX↑] = 1−
∑
q∈Q

[pXq] (4)

Note that this equation is not monotone (by increasing [pXq] we decrease [pX↑]), which

leads to some complications discussed in Section 4.1.

Now we have all the tools that are needed to construct an equational system for the

family of all E[Xf,λpX]. For all p ∈ Q and X ∈ Γ , we fix a first order variable 〈〈pX〉〉〈〈pX〉〉〈〈pX〉〉 and

construct the following equation, which gives us the system (S5):
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〈〈pX〉〉〈〈pX〉〉〈〈pX〉〉 =
∑
pX

x→rY
x · λ(pX) · ([rY↑] · f(pX) + 〈〈rY〉〉〈〈rY〉〉〈〈rY〉〉) +

∑
pX

x→rYZ
x · λ(pX) · ([rY↑] · f(pX) + 〈〈rY〉〉〈〈rY〉〉〈〈rY〉〉)

+
∑
pX

x→rYZ, s∈Q
x · λ(pX) ·

(
[rYs] · [sZ↑] · f(pX) + [sZ↑] · E[Rf,λrYs] + [rYs, λ] · 〈〈sZ〉〉〈〈sZ〉〉〈〈sZ〉〉

)
(5)

The equations of (S5) are even less readable than the ones of (S2). However, note that

the equations are monotone and efficiently constructible.

Theorem 4.10. The tuple of all E[Xf,λpX] is the least non-negative solution of the system (S5).

Proof. The tuple of all E[Xf,λpX] is a non-negative solution of the system (S5) (Lemma 4.11).

Similar to the proof of Theorem 4.2, let us consider random variables Xf,λ;kpX : Run(pX)→
R, k ∈ N0 that take into account only prefixes of runs of length k− 1.

Xf,λ;kpX (w) =


0 ∃n : w(n) = qε and ∀m < n : w(m) 6= qε
k−1∑
i=0

λ(wi)f(w(i)) otherwise

The tuple of all E[Xf,λ;kpX ] is less than or equal to any non-negative solution of the sys-

tem (S5) for all k (see Lemma 4.12). Now, the proof proceeds using similar reasoning as

in the proof of Theorem 4.2.

Lemma 4.11. The tuple of all E[Xf,λpX], pX ∈ Q× Γ , q ∈ Q forms a non-negative solution of the

system S5.

Proof. The expectations are non-negative by the definition of the random variables so it

suffices to show that they form a solution of the system. Let pX ∈ Q × Γ , q ∈ Q. We

partition Run(pX↑) as follows.

Run(pX↑) = V1 ] V2 ] V3

V1 =
⊎

pX→rY pX→ rY � Run(rY↑)
V2 =

⊎
pX→rYZpX→ rYZ� Run(rY↑)bZ

V3 =
⊎

pX→rYZ
s∈Q

pX→ rYZ� FPath(rYs)bZ� Run(sZ↑)
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By definitions, we have

E[Xf,λpX] =

∫
w∈Run(pX)

Xf,λpX(w) dPpX =

∫
w∈Run(pX↑)

Xf,λpX(w) dPpX

=

∫
w∈V1

Xf,λpX(w) dPpX +

∫
w∈V2

Xf,λpX(w) dPpX +

∫
w∈V3

Xf,λpX(w) dPpX

Let us process each of the summands individually. For the integral over V1 we have∫
w∈V1

Xf,λpX(w) dPpX =
∑
pX

x→rY
λ(pX) · x ·

∫
u∈Run(rY↑)

(
f(pX) + Xf,λrY (u)

)
dPrY

=
∑
pX

x→rY
x · λ(pX) ·

(
f(pX) · [pX↑] + E[Xf,λrY ]

)
The case of V2 is analogical.∫

w∈V2

Xf,λpX(w) dPpX =
∑
pX

x→rYZ
x · λ(pX) ·

(
f(pX) · [pX↑] + E[Xf,λrY ]

)
Finally, in the case of V3 we have∫

w∈V3

Xf,λpX(w) dPpX

=
∑
pX

x→rYZ
s∈Q

x · λ(pX) ·
∫
u∈Run(rYs)
v∈Run(sZ↑)

(
f(pX) + Rf,λrYs + IλrYs(u) · Xf,λsZ (v)

)
dPrY dPsZ

=
∑
pX

x→rYZ
s∈Q

x · λ(pX) ·
(
f(pX) · [rYq] · [sZ↑] + E[Rf,λrYs] · [sZ↑] + [rYs, λ] · E[Xf,λsZ ]

)

We can conclude now that

E[Xf,λpX] =
∑
pX

x→rY
x · λ(pX) ·

(
f(pX) · [pX↑] + E[Xf,λrY ]

)
+
∑
pX

x→rYZ
x · λ(pX) ·

(
f(pX) · [pX↑] + E[Xf,λrY ]

)
+
∑
pX

x→rYZ
s∈Q

x · λ(pX) ·
(
f(pX) · [rYq] · [sZ↑] + E[Rf,λrYs] · [sZ↑] + [rYs, λ] · E[Xf,λsZ ]

)

Lemma 4.12. Let the tuple of all UpX be a non-negative solution of the system S5. Then

E[Xf,λ;kpX ] ≤ UpX holds for all k ∈ N0.
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Proof. By induction on k. For k = 0we have E[Xf,λ;0pX ] = 0 by definition.

Let k > 0 and partition Run(pX↑) = V1 ] V2 ] V3 in the same way as in Lemma 4.11.

By definitions, we have

E[Xf,λ;kpX ] =

∫
w∈Run(pX)

Xf,λ;kpX (w) dPpX =

∫
w∈Run(pX↑)

Xf,λ;kpX (w) dPpX

=

∫
w∈V1

Xf,λ;kpX (w) dPpX +

∫
w∈V2

Xf,λ;kpX (w) dPpX +

∫
w∈V3

Xf,λ;kpX (w) dPpX

Let us process each of the summands individually. Recall we assume E[Xf,λ;ipX ] ≤ UpX for

all i, 0 ≤ i < k. For the integral over V1 we have∫
w∈V1

Xf,λ;kpX (w) dPpX =
∑
pX

x→rY
λ(pX) · x ·

∫
u∈Run(rY↑)

(
f(pX) + Xf,λ;k−1rY (u)

)
dPrY

=
∑
pX

x→rY
x · λ(pX) ·

(
f(pX) · [pX↑] + E[Xf,λ;k−1rY ]

)
≤
∑
pX

x→rY
x · λ(pX) ·

(
f(pX) · [pX↑] +UrY

)
The case of V2 is analogical.∫

w∈V2

Xf,λ;kpX (w) dPpX ≤
∑
pX

x→rYZ
x · λ(pX) ·

(
f(pX) · [pX↑] +UrY

)
Finally, in the case of V3 we have∫

w∈V3

Xf,λ;kpX (w) dPpX

≤
∑
pX

x→rYZ
s∈Q

x · λ(pX) ·
∫
u∈Run(rYs)
v∈Run(sZ↑)

(
f(pX) + Rf,λrYs(u) + IλrYs(u) · Xf,λ;k−1sZ (v)

)
dPrY dPsZ

=
∑
pX

x→rYZ
s∈Q

x · λ(pX) ·
(
f(pX) · [rYs] [sZ↑] + E[Rf,λrYs] · [sZ↑] + [rYs, λ] · E[Xf,λ;k−1sZ ]

)
≤
∑
pX

x→rYZ
s∈Q

x · λ(pX) ·
(
f(pX) · [rYs] [sZ↑] + E[Rf,λrYs] · [sZ↑] + [rYs, λ] ·UsZ

)
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Putting the parts back together, we have

E[Xf,λ;kpX ] ≤
∑
pX

x→rY
x · λ(pX) ·

(
f(pX) · [pX↑] +UrY

)
+
∑
pX

x→rYZ
x · λ(pX) ·

(
f(pX) · [pX↑] +UrY

)
+
∑
pX

x→rYZ
s∈Q

x · λ(pX) ·
(
f(pX) · [rYs] [sZ↑] + E[Rf,λrYs] · [sZ↑] + [rYs, λ] ·UsZ

)
= UpX

In situations when [pX↑] < 1, E[Xf,λpX | Run(pX↑)] may be more relevant than E[Xf,λpX]. The

next theorem says how to express this expected value. It follows from the definitions of

the random variables and linearity of expectations.

Theorem 4.13. For all p, q ∈ Q and X ∈ Γ such that [pX↑] > 0 we have that

E[Xf,λpX | Run(pX↑)] =
E[Xf,λpX]

[pX↑] (6)

Concerning the equations of (S6), there is one notable difference from all of the previous

equational systems. The only known method of solving the problem whether [pX↑] > 0
employs the decision procedure for the existential fragment of (R,+, ∗,≤), and hence

the best known upper bound for this problem is PSPACE. This means that the equations

of (S6) cannot be constructed efficiently, because there is no efficient way of determining

all p, q and X such that [pX↑] > 0.
The last discounted property of probabilistic PDA which is to be investigated is the

discounted gain E[Gf,λpX]. Here, we only managed to solve the special case when λ is a

constant function.

Theorem 4.14. Let λ be a constant discount function such that λ(rY) = κ for all rY ∈ Q× Γ ,

and let p ∈ Q, X ∈ Γ such that [pX↑] = 1. Then

E[Gf,λpX] = (1− κ) · E[Xf,λpX] (7)

Proof. Letw ∈ Run(pX↑). Since both limn→∞∑n
i=0 λ(w

i)f(w(i)) and limn→∞∑n
i=0 λ(w

i)

exist and the latter is equal to (1 − κ)−1 the claim follows from the linearity of the ex-

pected value.

Note that the equations of (S7) can be constructed efficiently (in polynomial time),

because the question whether [pX↑] = 1 is equivalent to checking whether [pXq] = 0 for
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all q ∈ Q, which is equivalent to checking whether pX 6→∗ qε for all q ∈ Q. Hence, it

suffices to apply a polynomial-time decision procedure for PDA reachability such as [8].

Since all equational systems constructed in this section contain just summation, mul-

tiplication, and division, one can easily encode all of the considered discounted proper-

ties in (R,+, ∗,≤) in the sense of Definition 4.1. For a given discounted property c, the

corresponding formulaΦ(x) looks as follows:

∃~v
(

solution(~v) ∧ (∀~u
(
solution(~u)⇒ ~v ≤ ~u

)
∧ x = ~vi

)
Here~v and ~u are tuples of fresh first order variables that correspond (in one-to-one fash-

ion) to the variables employed in the equational systems (S1), (S2), (S3), (S4), (S5), (S6),

and (S7). The subformulae solution(~v) and solution(~u) say that the variables of ~v and ~u

form a solution of the equational systems (S1), (S2), (S3), (S4), (S5), (S6), and (S7). Note

that the subformulae solution(~v) and solution(~u) are indeed expressible in (R,+, ∗,≤),

because the right-hand sides of all equational systems contain just summation, mul-

tiplication, division, and employ only constants that themselves correspond to some

variables in ~v or ~u. The ~vi is the variable of ~vwhich corresponds to the considered prop-

erty c, and the x is the only free variable of the formula Φ(x). Note that Φ(x) can be

constructed in space which is polynomial in the size of a given pPDA ∆ (the main cost

is the construction of the system (S6)), but the length of Φ(x) is only polynomial in the

size of ∆, λ, and f. Since the alternation depth of quantifiers in Φ(x) is fixed, we can

apply the result of [18] which says that every fragment of (R,+, ∗,≤) where the alter-

nation depth of quantifiers is bounded by a fixed constant is decidable in exponential

time. Thus, we obtain the following theorem:

Theorem 4.15. Let c be one of the discounted properties of pPDA considered in this section,

i.e., c is either [pXq, λ], E[Rf,λpXq], E[Rf,λpXq | Run(pXq)], E[Xf,λpX], E[Xf,λpX | Run(pX↑)], or E[Gf,λpX]

(in the last case we further require that λ is constant). The problems whether c = ρ and c ≤ ρ
for a given rational constant ρ are in EXPTIME.

This theorem extends the results achieved in [10, 11, 15] to discounted properties of

pPDA. However, the presented proof in the case of discounted long-run properties

E[Xf,λpX], E[Xf,λpX | Run(pX↑)], and E[Gf,λpX] is completely different from the non-discount-

ed case. Moreover, the constructed equations take the form which allows to design

efficient approximation scheme for these values, and this is what we show in the next

subsection.
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4.1 The Application of Newton’s Method

In this section we show how to apply the recent results [19, 9] about fast convergence

of Newton’s method for systems of monotone polynomial equations to the discounted

properties introduced in Section 3. We start by recalling some notions and results pre-

sented in [19, 9].

Monotone systems of polynomial equations (MSPEs) are systems of fixed point equa-

tions of the form x1 = f1(x1, · · · , xn), · · · , xn = fn(x1, · · · , xn), where each fi is a polyno-

mial with non-negative real coefficients. Written in vector form, the system is given as

~x = f(~x), and solutions of the system are exactly the fixed points of f. To f we associate

the directed graphHf where the nodes are the variables x1, . . . , xn and (xi, xj) is an edge

iff xj appears in fi. A subset of equations is a strongly connected component (SCC) if its

associated subgraph is a SCC of Hf.

Observe that each of the systems (S1), (S2), and (S5) forms a MSPE. Also observe

that the system (S1) uses only simple coefficients obtained by multiplying transition

probabilities of ∆ with the return values of λ, while the coefficients in (S2) and (S5) are

more complicated and also employ constants such as [rYq], [rYs, λ], E[Rf,λpXq], or [rY↑].
The problem of finding the least non-negative solution of a given MSPE ~x = f(~x)

can be obviously reduced to the problem of finding the least non-negative solution for

F(~x) = ~0, where F(~x) = f(~x) − ~x. The Newton’s method for approximating the least

solution of F(~x) = ~0 is based on computing a sequence ~x(0),~x(1), · · · , where ~x(0) = ~0 and

~x(k+1) = ~xk − (F ′(~xk))−1 F(~xk)

where F ′(~x) is the Jacobian matrix of partial derivatives. If the graph Hf is strongly

connected, then the method is guaranteed to converge linearly [19, 9]. This means that

there is a threshold kf such that after the initial kf iterations of the Newton’s method,

each additional bit of precision requires only 1 iteration. In [9], an upper bound for kf is

presented.

For general MSPE whereHf is not necessarily strongly connected, a more structured

method called Decomposed Newton’s method (DNM) can be used. Here, the component

graph of Hf is computed and the SCCs are divided according to their depth. DNM

proceeds bottom-up by computing k · 2t iterations of Newton’s method for each of the

SCCs of depth t, where t goes from the height of the component graph to 0. After

computing the approximations for the SCCs of depth i, the computed values are fixed,

the corresponding equations are removed, and the SCCs of depth i−1 are processed
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in the same way, using the previously fixed values as constants. This goes on until all

SCCs are processed. It was demonstrated in [15] that DNM is guaranteed to converge to

the least solution as k increases. In [19], it was shown that DNM is even guaranteed to

converge linearly. Note, however, that the number of iterations of the original Newton’s

method in one iteration of DNM is exponential in the depth of the component graph

of Hf.

Now we show how to apply these results to the systems (S1), (S2), and (S5). First, we

also add a system (S0) whose least solution is the tuple of all termination probabilities

[pXq] (the system (S0) is very similar to the system (S1), the only difference is that each

λ(pX) is replaced with 1). The systems (S0), (S1), (S2), and (S5) themselves are not nec-

essarily strongly connected, and we use H to denote the height of the component graph

of (S0). Note that the height of the component graph of (S1), (S2), and (S5) is at most H.

Now, we unify the systems (S0), (S1), (S2), and (S5) into one equation system S. What

we obtain is a MSPE with three types of coefficients: transition probabilities of ∆, the

return values of λ, and non-termination probabilities of the form [rY↑] (the system (S4)

cannot be added to S because the resulting system would not be monotone). Observe

that

• (S0) and (S1) only use the transition probabilities of ∆ and the return values of λ

as coefficients;

• (S2) also uses the values defined by (S0) and (S1) as coefficients;

• (S5) uses the values defined by (S0), (S1) and (S2) as coefficients, and it also uses

coefficients of the form [rY↑].
This means that the height of the component graph of S is at most 3H. Now we can

apply the DNM in the way described above, with the following technical modification:

after computing the termination probabilities [rYq] (in the system (S0)), we compute

an upper approximation for each [rY↑] according to equation (4), and then subtract an

upper bound for the overall error of this upper approximation bound with the same

overall error (here we use the technical results of [9]). In this way, we produce a lower

approximation for each [rY↑] which is used as a constant when processing the other SCCs.

Now we can apply the aforementioned results about DNM.

Note that once the values of [pXq], [pXq, λ], E[Rf,λpXq], and E[Xf,λpX] are computed with

a sufficient precision, we can also compute the values of E[Rf,λpXq | Run(pXq)] and E[Gf,λpX]
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by equations given in Theorem 4.9 and Theorem 4.14, respectively. Thus, we obtain the

following:

Theorem 4.16. The values of [pXq], [pXq, λ], E[Rf,λpXq], E[Xf,λpX], E[Rf,λpXq | Run(pXq)], and

E[Gf,λpX] can be approximated using DNM, which is guaranteed to converge linearly. The num-

ber of iterations of the Newton’s method which is needed to compute one iteration of DNM is

exponential in H.

In practice, the parameter H stays usually small. A typical application area of PDA are

recursive programs, where stack symbols correspond to the individual procedures, pro-

cedure calls are modeled by pushing new symbols onto the stack, and terminating a pro-

cedure corresponds to popping a symbol from the stack. Typically, there are “groups” of

procedures that call each other, and these groups then correspond to strongly connected

components in the component graph. Long chains of procedures P1, · · · , Pn, where each

Pi can only call Pj for j > i, are relatively rare, and this is the only situation when the

parameter H becomes large.

4.2 The Relationship Between Discounted and

Non-discounted Properties

In this section we examine the relationship between the discounted properties intro-

duced in Section 3 and their non-discounted variants. Intuitively, one expects that a

discounted property should be close to its non-discounted variant as the discount ap-

proaches 1. To formulate this precisely, for every κ ∈ (0, 1) we use λκ to denote the

constant discount function that always returns κ.

The following theorem is immediate. It suffices to observe that the equational sys-

tems for the non-discounted properties are obtained from the corresponding equational

systems for discounted properties by substituting all λ(pX) with 1.

Theorem 4.17. We have that

• [pXq] = limκ↑1[pXq, λκ]
• E[RfpXq] = limκ↑1 E[Rf,λκpXq]

• E[RfpXq | Run(pXq)] = limκ↑1 E[Rf,λκpXq | Run(pXq)]
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The situation with discounted gain E[Gf,λpX] is more complicated. First, let us realize that

E[GfpX] does not necessarily exist even if [pX↑] = 1. To see this, consider the pPDA with

the following rules:

pX
1
2→ pYX, pY

1
2→ pYY, pZ

1
2→ pZZ, pX

1
2→ pZX, pY

1
2→ pε, pZ

1
2→ pε

The reward function f is defined by f(pX) = f(pY) = 0 and f(pZ) = 1. Intuitively, pX

models a one-dimensional symmetric random walk with distinguished zero (X), pos-

itive numbers (Z) and negative numbers (Y). Observe that [pX↑] = 1. However, the

following theorem states that P(GfpX=⊥) = 1, which means that E[GfpX] does not exist.

Theorem 4.18. P(GfpX=⊥) = 1.

A proof of the theorem relies on an arcsine law for symmetric random walks on Z [16,

p.82, Corollary 12] which is stated in the following lemma.

Lemma 4.19. If 0 < x < 1, the probability that xn time units are spent on the positive side and

(1− x)n on the negative side tends to K(x) = 2
π

arcsin
√
x as n→∞.

Let us outline the proof first. We need to prove there is a set of runs W ⊆ Run(X) of

measure 1 such that w ∈W implies GfX(w) does not exist. Let us denote

Gn(w) =

∑n
i=0 f(w(i)

n+ 1

We consider runs which visit the initial configuration X infinitely often and employ the

arcsine law to identify disjunct blocks of increasing length in each of them, all blocks

starting in the configuration X. Then, we observe whether a run spends 2
3

steps of a

given block on the Y-side (events Ak) or on the Z-side (events Bk). We can choose the

blocks long enough so that an occurrence ofAk impliesGn(w) ≤ 3
7

at the end of the k-th

block and an occurrence of Bk implies 1
2
≤ Gn(w) at the end of the k-block.

We show that infinitely many Ak occur with probability 1 and infinitely many Bk
occur with probability 1. It follows that infinitely manyAk and infinitely many Bk occur

with probability 1, i.e. for almost every run w there is an inifinite increasing sequence

i1 < i2 < i3 < · · · such that w ∈
⋂∞
j=1(Ai2j−1 ∩ Bi2j) and hence Gn(w) oscillates.

Proof of Theorem 4.18. Let’s denote P(n) the probability that the random walk spends 2n
3

time units out of n on the positive side. According to Lemma 4.19 there is K, 0 < K < 1

such that P(n) tends to K as n→∞. Let’s fix δ > 0 such that 0 < K− δ. Then there is n0
such that for all n > n0 we have |K− P(n)| < δ, i.e. 0 < K− δ < P(n).
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Let L > n0. For each run w ∈ U we recursively define a system of blocks wk for as

many k ∈ N as possible. Note that |wk| ≥ L > n0 for all k. Also note that the blocks

differ on different runs because of the definition of indices swk .

w0 = w(sw0 ) . . . w(tw0 )

sw0 = 0

tw0 = L

wk+1 = w(swk+1) . . . w(twk+1) (if swk+1 exists)

swk+1 = the smallest index > twk such that w(swk+1) = X

twk+1 = 7 · swk+1

LetU be the set of runs which visit the initial configuration X infinitely often. EventsA ′k
and Ak, k ∈ N state properties of blocks wk as follows.

A ′k =
{
w ∈ Run(X)

∣∣∣ wk exists and
2|wk|

3
configurations in wk have head Y

}
Ak = A ′k ∩U

P (U) = 1 for symmetric random walks on Z and P (A ′k) > K− δ > 0 due to the Markov

property and the arcsine law (recall |wk| > n0). Thus P (Ak) > K− δ > 0.

We show now that with probability 1 infinitely manyAk occur. Assume the contrary.

There exists an n such that with positive probability noAi, i ≥ n occurs. Since P (Ak) >

K− δ > 0we get P (co-Ak) < 1− (K− δ) < 1 and using lemma 4.20 the probability that

no Ai, i ≥ n occurs is

P

( ∞⋂
i=n

co-Ai

)
= lim
k→∞P

(
n+k⋂
i=n

co-Ai

)
= lim
k→∞

n+k∏
i=n

P (co-Ai) = 0

which is a contradiction.

Events B ′k and Bk, k ∈ N are defined symmetrically to eventsA ′k andAk, respectively,

using the very same constants K, δ and systems of blocks in runs.

B ′k =
{
w ∈ Run(X)

∣∣∣ wk exists and
2|wk|

3
configurations in wk have head Z

}
Bk = B ′k ∩U

We can conclude by symmetry (of the arcsine law at the beginning) that with probabil-

ity 1 infinitely many Bk occur.
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Then, with probability 1 there is an infinite sequence 0 < i1 < i2 < i3 < · · · such that

events Ai2j−1 and Bi2j occur where for k = i2j−1, i.e. at the end of the block wi2j−1 ,

Gtwk (w) ≤
swk + 1

3
· 6swk

7swk + 1
≤ 3swk
7swk + 1

≤ 3
7

and for k = i2j, i.e. at the end of the block wi2j (note that swk ≥ 1 because k > 0)

Gtwk (w) ≥
2
3
· 6swk

7swk + 1
=

4swk
7swk + 1

≥ 4s
w
k

8swk
=
1

2

Thus, with probability 1 the gain G(w) does not exist.

Lemma 4.20. LetN ⊆ N be a finite set of numbers. Then P
(⋂

i∈N co-Ai
)

=
∏
i∈NP (co-Ai),

where co-Ak is the complement of Ak.

Proof. The proof proceeds by induction on |N|. For |N| = 1 the statement is clear. Con-

sider N = M ] {n} and assume maxM < n. Denote

F = {w(0) . . . w(swn ) | w ∈ U}

the finite set of prefixes of all runs fromU up to the beginning of the n-th block. Observe

that ∑
u∈F

P (Run(u)) ≥ P (U) = 1, i.e.
∑
u∈F

P (Run(u)) = 1

From the definition of the family of events Ak and the choice of n we have for all u ∈ F
and i ∈M thatw,w ′ ∈ Run(u) impliesw ∈ co-Ai ⇐⇒ w ′ ∈ co-Ai. Thus, there is some

C ⊆ F such that
⋂
i∈M co-Ai =

⋃
u∈C Run(u).

Denote D = {wn | w ∈ co-An} the finite set of blocks wn satisfying co-An. Clearly

co-An =
⊎
u∈F,v∈D Run(u� v). Now for every T ⊆ F:

P

(
co-An

∣∣∣ ⋃
u∈T

Run(u)

)
=
P
(
co-An ∩

⋃
u∈T Run(u)

)
P
(⋃

u∈T Run(u)
)

=

∑
u∈T,v∈DP (Run(u)) · P (Run(v))∑

u∈T P (Run(u))

=

∑
u∈T P (Run(u)) ·

∑
v∈DP (Run(v))∑

u∈T P (Run(u))

=
∑
v∈D

P (Run(v))

26



In particular, for every u ∈ F setting T = {u} and T = F yeilds

P (co-An | Run(u)) =
∑
v∈D

P (Run(v)) = P (co-An)

P

(
co-An ∩

⋂
i∈M

co-Ai

)
=
∑
u∈C

P (co-An | Run(u)) · P (Run(u))

=
∑
u∈C

P (co-An) · P (Run(u))

= P (co-An) ·
∑
u∈C

P (Run(u)) = P (co-An) · P

(⋂
i∈M

co-Ai

)

Applying the induction hypothesis toM in the last expression concludes the proof.

The following theorem says that if the gain does exist, then it is equal to the limit of

discounted gains as κ approaches 1. The opposite direction, i.e., the question whether

the existence of the limit of discounted gains implies the existence of the (non-discount-

ed) gain is left open. The proof of the following theorem is not trivial and relies on

several subtle observations.

Theorem 4.21. If E[GfpX] exists, then E[GfpX] = limκ↑1 E[Gf,λκpX ].

Proof. Note that
∑∞
i=0 κ

i = (1− κ)−1. Using Theorem 4.14 it suffices to prove:

E[GfpX] = E[lim
κ↑1 (1− κ) · Xf,λκpX ] = lim

κ↑1 E[(1− κ) · Xf,λκpX ] = lim
λ↑1 (1− λ) · E[Xf,λκpX ]

The first equality follows from Lemma 4.23. Let {κi}
∞
i=0 be a sequence of real numbers

from [0, 1) satisfying limn→∞ κn = 1. Clearly limκ↑1(1−κ)·Xf,λκpX = limn→∞(1−κn)·Xf,λκnpX .

Further, since (1 − κ) · Xf,λκpX is bounded by the maximal reward for every κ ∈ [0, 1), it

follows from Theorem 4.22 that

E[ lim
n→∞(1− κn) · Xf,λκnpX ] = lim

n→∞ E[(1− κn) · Xf,λκnpX ]

Since this holds for every sequence {κn} → 1, we have limn→∞ E[(1 − κn) · Xf,λκnpX ] =

limκ↑1 E[(1 − κ) · Xf,λκpX ], completing the proof of the second equality. The third equality

is obvious.

The previous proof relies on the following theorem which is known as Lebesgue’s

dominated convergence theorem. We state it here in a special form (for a more general

formulation and proof see [2, Theorem 16.4]).
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Theorem 4.22 (Dominated convergence). For any sequence of functions {fn}
∞
i=0 on runs, if

the limit f := limn→∞ fn exists and there is some function g, such that |fn| ≤ g on almost all

runs and E[g] exists, then limn→∞ E[fn] = E[f].

Lemma 4.23. For every p ∈ Q, X ∈ Γ and w ∈ Run(pX↑) the following inequalities hold:

lim inf
n→∞

1

n+ 1

n∑
i=0

f(w(i)) ≤ lim inf
λ↑1 (1− λ) · Xf,λpX(w) ≤ lim sup

λ↑1 (1− λ) · Xf,λpX(w)

≤ lim sup
n→∞

1

n+ 1

n∑
i=0

f(w(i))

Proof. The second inequality follows directly from definitions.

Let R = max{f(pY) | p ∈ Q, Y ∈ Γ }. Consider the sequence {cn = f(w(n))−R}∞n=0. Let

sn denote the sum
∑n
i=0 ci. Since

∑n
i=0 f(w(i)) = sn + (n+ 1)R, we have that

lim inf
n→∞

1

n+ 1

n∑
i=0

f(w(i)) = lim inf
n→∞

sn + (n+ 1)R

n+ 1
= lim inf

n→∞
sn

n+ 1
+ R

Similarly, (1− λ) ·Xf,λpX(w) = (1− λ) ·
(∑∞

i=0 λ
ici +

∑∞
i=0 λ

iR
)

= (1− λ) ·
∑∞
i=0 λ

ici+R.

Hence, the first inequality holds iff the following inequality holds:

lim inf
n→∞

sn

n+ 1
≤ lim inf

λ↑1 (1− λ) ·
∞∑
i=0

λici

Since cn ≤ 0 for all n, the inequality follows from [20, Lemma 8.10.6].

To prove the third inequality, we define the sequence {dn = −(f(w(n)) + R)}∞n=0. The

sum
∑n
i=0 di is denoted by tn. Since

∑n
i=0 f(w(i)) = −(n+ 1)R− tn, we have that

lim sup
n→∞

1

n+ 1

n∑
i=0

f(w(i)) = −R+ lim sup
n→∞

−tn

n+ 1
= −R− lim inf

n→∞
tn

n+ 1

Similarly,

lim sup
λ↑1 (1− λ) · Xλ,f = −R− lim inf

λ↑1 (1− λ) ·
∞∑
i=0

λidi

Adding R to both sides of the third inequality and multiplying by −1 we now see that

the inequality holds iff the following inequality holds:

lim inf
n→∞

tn

n+ 1
≤ lim inf

λ↑1 (1− λ) ·
∞∑
i=0

λidi.

Since dn ≤ 0 for all n, this inequality follows again from [20, Lemma 8.10.6].
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Since limλ↑1 E[Gf,λpX] can be effectively encoded in first order theory of the reals, we obtain

an alternative proof of the result established in [11] saying that the gain is effectively

expressible in (R,+, ∗,≤). Actually, we obtain a somewhat stronger result, because the

formula constructed for limλ↑1 E[Gf,λpX] encodes the gain whenever it exists, while the

(very different) formula constructed in [11] encodes the gain only in situation when a

certain sufficient condition (mentioned in Section 3) holds. Unfortunately, Theorem 4.21

does not yet help us to approximate the gain, because the proof does not give any clue

how large κmust be chosen in order to approximate the limit upto a given precision.

5 Conclusions

We have shown that a family of discounted properties of probabilistic PDA can be ef-

ficiently approximated by decomposed Newton’s method. In some cases, it turned out

that the discounted properties are “more computational” than their non-discounted

counterparts. An interesting open question is whether the scope of our study can be

extended to other discounted properties defined, e.g., in the spirit of [4].
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