
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Distributed System
for Discovering Similar Documents

From a Relational Database to the Custom-Developed Parallel Solution

by

Jan Kasprzak
Michal Brandejs
Miroslav Křipač

Pavel Šmerk

FI MU Report Series FIMU-RS-2008-04

Copyright c© 2008, FI MU June 2008



Copyright c© 2008, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic



Distributed System
for Discovering Similar Documents

From a Relational Database to the Custom-Developed Parallel Solution

Jan Kasprzak Michal Brandejs Miroslav Křipač

Pavel Šmerk

Faculty of Informatics, Masaryk University

Brno, Czech Republic

{kas,brandejs,kripac,smerk}@fi.muni.cz

June 30, 2008

Abstract

One of the drawbacks of e-learning methods such as Web-based submission and

evaluation of students’ papers and essays is that it has become easier for students

to plagiarize the work of other people. In this paper we present a computer-based

system for discovering similar documents, which has been in use at Masaryk Uni-

versity in Brno since August 2006, and which will also be used in the forthcoming

Czech national archive of graduate theses. We also focus on practical aspects of this

system: achieving near real-time response to newly imported documents, and com-

putational feasibility of handling large sets of documents on commodity hardware.

We also show the possibilities and problems with parallelization of this system for

running on a distributed cluster of computers.1

1 Introduction

1.1 About IS MU

At Masaryk University, the study administration is being supported by a web-based In-

formation System (http://is.muni.cz/, IS MU). The system has been in development
1Short version of this paper has been presented at the 10th International Conference on Enterprise

Information Systems (http://www.iceis.org/), and is available in the conference proceedings.

1



since 1999. For basic premises on which the IS MU is being developed, see the early

paper from ICEIS 2000 [2]. Since then, IS MU has become the central part of the study

administration and communication at Masaryk University.

As a background information, we provide some traffic statistics: IS MU is being

actively used by about about 27,000 different users each day (from the total of about

140,000, who have an active account in IS MU). These system renders up to 2,000,000

authenticated dynamic WWW pages for them daily. The system is also provided in an

outsourcing form to some other universities in the Czech Republic.

1.2 E-learning Subsystem

Of the subsystems which have been developed or improved inside IS MU in the last

few years probably the most actively developed (and also the most wanted by users)

are those related to e-learning. IS MU supports storing study materials, including the

system of access rights, discussion forums (course-wide ones as well as global ones),

WWW-based e-mail server, electronic test forms, automatic recognition and evaluation

of paper question forms, collecting students’ essays and tools for evaluation of these,

and so on.

1.3 Document Storage

The study materials from the e-learning subsystem are stored in an in-house developed

distributed and replicated data storage, running on a cluster of Linux servers, equipped

with commodity hard disks. This storage system allows cheap and reliable storage of

large amounts of data. The storage system is used also by other agendas like user e-mail

boxes, public university documents, and last but not least, the graduate theses.

The document storage provides many features—some of them similar to the filesys-

tem features (like a tree-organized structure, file names, hard links for study materials

of the same course in different semesters, etc.), and some which are related to the data

stored: automatic background conversion of files in proprietary formats like Word or

Excel to open formats like PDF and plain text, character set encoding detection, image

thumb-nails, file descriptions, automatic or manual setting of MIME types, time-related

access rights (used, for example, for automatically revoking the “create file” permission

in folders dedicated for uploading students’ homeworks after the deadline), etc.

2



1.4 Handling plagiarism

One of the problems of storing (and making available) documents in an electronic form

is that documents can be easily plagiarized. This is by no means a problem specific to IS

MU: students often have their own WWW sites for exchanging documents like essays

or written exams, so disallowing document sharing inside IS MU would not help to

mitigate the problem.

Instead, we actively encourage document sharing, and using old essays as basis for

new ones, provided that the source is correctly cited. However, we must provide tools to

detect similar documents, so that the teacher (or a thesis reviewer) can easily discover

copied sections in students’ essays. The actual decision whether the submitted docu-

ment is plagiarized or simply contains some quoted text, which is correctly labeled as

such, relies on human work. The machine can only serve as a tool.

1.5 Thesis Archive

The IS MU development team has started working on a next project, the Czech national

archive of graduate theses. This project will use the same distributed document storage

as IS MU. Because this project will make a huge number of theses available on-line, we

will also have to provide tools for discovering similar works in this document base.

In this paper, we will discuss the inner workings of our system for discovering sim-

ilar documnets in its original prototype SQL database-backed form (which has been in

use inside IS MU since August 2006), and in its new implementation, which will be

more than an order of magnitude faster, while allowing it to be distributed to a set of

commodity computers in a Linux cluster.

2 Similar Documents

Firstly let us describe which documents we consider similar and how to calculate sim-

ilarity in documents. There are various approaches in discovering similar documents

[1]. We use a chunk-based approach: the document in its plain text form is split into

chunks of text, and the system then tries to find these chunks inside other documents.

3



2.1 Document similarity

For two documents A and B we define the similarity of the document A to the document B as

a percentage of chunks of the document A which can also be found inside the document

B. Using this definition, the similarity is a real number between 0 and 100 inclusively.

Please note that similarity is not symmetric: for example, when the document A as

a whole is contained inside a bigger document B (think thesis template with the license

agreement and so on, and the thesis based on this template), the document A is 100 %

similar to the document B, while the the document B similarity to the document A

is lower than 100 %. However, because the absolute number of common chunks in the

documents A and B is the same, the actual similarity of the document B to the document

A can be computed as

number of common chunks in A and B

total number of chunks in B
· 100%

2.2 What is a Chunk

One of the tricky parts of this problem is how to construct the set of chunks for a given

document. We construct chunks as several consecutive words from the document (so

we skip any non-word characters like interpunction). For our purposes, five-word

chunks are sufficient. The chunks are constructed from each five consecutive words

in the documents, so they are overlapping.

Additionaly, we sort the words inside each chunk. This at the first sight may look

like we are lowering the algorithm precision, but it is not the case: sorting the words in

chunks can help to overcome common tricks like word transposition. Czech is more-

or-less a free word order language, where some word transpositions can still lead into a

fully legible text.

As an example, the first four sorted five-word chunks constructed from the previous

paragraph would be the following:

1. additionaly sort the we words

2. inside sort the we words

3. each inside sort the words

4. chunk each inside the words

4



2.3 Current Data Set

We have approximately 250,000 documents in IS MU, which have its plain text form,

and which have not been excluded from the process of finding similar documents (an

example of such excluded documents are discussion forum posts, documents in users’

temporary file repositories, etc.). This set of documents can be transformed to about

600,000,000 (chunk, document-ID) pairs. There is circa 445,000,000 unique chunks in

the data set.

For the Czech national archive of graduate theses, it is expected that the total volume

will quickly increase (the initial rough estimate is that the total volume will be twice as

big as the current data set in the first year of usage), while the number of documents

will probably not increase significantly: the current data set in IS MU contains not only

relatively long theses, but also much shorter essays, seminar works, articles, etc.

3 Prototype System

The first implementation of the above approach has been in the production use in IS

MU since the August 2006. We have used Oracle as the database back-end.

We have not stored the chunks themselves, but a sorted concatenation of word ID

numbers from the dictionary instead, which has saved us some space.

3.1 Data Structures

The data needed for calculating the similar documents has been stored in the following

database tables:

dictionary—a table of two columns: word ID and the word itself. We use dictionaries

for Czech, Slovak, and English languages, but it is easy to add more. The table has

slightly under 900,000 rows, which occupy about 19 MB of data space. The table

has indexes on both word ID and the word itself, these indexes take additional

about 16 MB and 20 MB, respectively.

chunk table—a table of six columns: document ID, and IDs of the five words in the

chunk. The table data has about 30 GB, the index which maps the chunk to the

document ID has about 46 GB, and the reverse index for looking up all chunks

corresponding to a given document ID has slightly under 17 GB. The first index

5



is needed for looking up similar documents, and the second one is needed for re-

moving entries which belong to the documents, which have already been deleted

from the documents repository.

similarity database—this table contains the computed results, i.e. IDs of two docu-

ments, and their calculated similarity. It contains about 8 milion rows, while we

insert into this table only pairs of documents with the similarity of at least 1 %.

The above table and index sizes are raw data segment capacity from the live system,

as reported by Oracle. The actual data size is a bit lower.

3.2 System Performance

The system runs on our former main database server, SGI Altix 350 with 14 Itanium2

CPUs and 28 GB of RAM. The big amount of RAM is significant, but the data set is still

bigger than the available memory.

The system then works in the two steps:

• Firstly the existing set of documents as a whole is recalculated: documents are

transformed into set of chunks in the database table, and then similar documents

inside the whole set are computed from the information in the chunk table.

• The next step is being run on a regular basis—for any newly uploaded document

the same has been done: transforming it into chunks, and finding whether these

chunks are also included in the existing set of documents, and computing the

similarity of this documents to the existing documents.

In the first step generating chunks from the documents takes about two hours, in-

serting them to the chunk table in the database takes another up to two hours (both

using all 14 CPUs). Computing similarities from the chunk table takes about 50 hours

also using all 14 CPUs.

The second step was not without problems: when a bigger number of documents has

been uploaded to the system (such as mass import of scanned theses from the archive),

the recalculation of the similarity took up to one day. So the similarity interface in the

WWW system cannot be used by for example teachers who wanted to know quickly

whether some of just-submitted seminar works is plagiarized or not.

6



3.3 Pros and Cons

The original system has showed us some interesting facts: firstly, the Oracle representa-

tion of the chunk table was not much bigger than expected—their metadata size did not

add any substantial overhead. To obtain a significant speed improvement, the different

data structures will have to be used.

Also the solution with SQL database as a backing store and Perl with the DBI in-

terface can be easily prototyped, so we could put the system into the production use

relatively fast.

On the other hand, the strict ACID properties of SQL database have been a bottle-

neck of the system. For most of the tasks (such as the first step of the above algorithm),

we did not need a strictly isolated and atomic transactions—the data will be usable only

after all the documents are transformed into the chunks anyway.

4 Distributed Approach

In the next step, we have decided to reimplement this system outside the database, in

the tightly packed and customized data structures. The requirements to the new system

were the following:

• The system should be usable even on a commodity hardware with much less re-

sources than our Altix system.

• The system should be made scalable not by adding CPU and memory to the server,

but by adding another computing node. The commodity hardware has relatively

low upper limits on the amount of supported memory. On the other hand, adding

another node to the cluster is cheaper, and more importantly, almost always pos-

sible.

• The new system should be faster. Users are willing to tolerate few minutes delay

between the time the new document is inserted and the time the system can find

the documents similar to it. However, they are not willing to tolerate several hours

or even a day of delay.

7



4.1 Chunk Table

The biggest barrier which prevents the system from being used on commodity hardware

is probably the size of the chunk table. With the approach described in the previous

section, even our mid-range server cannot fit the data set into its memory. Let’s estimate

the theoretical size limits of this approach:

We have about 1 milion words in the dictionary. So we need about 20 bits to encode

a word. With five-word chunks, we need 100 bits, i.e. 12.5 bytes, to encode the chunk

itself. With 450,000,000 different chunks, we would need about 5.2 GB to store just the

chunk IDs in this extremely tightly packed encoding, not counting the documents in

which those chunks appear, and the index needed for fast searching inside this data.

We need to shrink the data in the chunk table even more.

4.2 Chunk as Its Hash

In order to reduce the memory space needed, we propose that the chunk identification

should be stored not as the exact set of word identifications, but as some kind of the

hash value of the words themselves. This gives us a lower number of bits needed for

expressing the chunk identification. Moreover, by using different hash functions we can

even choose the number of bits used for expressing the chunk ID. In other words, we

can set the various levels of tradeoff between the data size and the accuracy of the data

(the probability of hash collisions).

We have chosen a function which is has random enough distribution, the MD5 di-

gest function. Until recently, it has even been considered cryptographically strongi so

the distribution is sufficiently random, yet MD5 is a bit hard to compute. To obtain

the desired number of bits of the hash value, we have just took the upper n bits of

MD5(word1 ·word2 ·word3 ·word4 ·word5).

As for the value of n, we have tried values of 24 and 28 bits. Note that the total num-

ber of different chunks in the given data set is between 228 and 229. The results were

interesting: with 24 bits of hash value size, the difference between the computed and

expected (exact) results were up to 5 %, but only for documents which had their simi-

larity already at most 5 %. So we have got only some false positives for the document

8



pairs which have already been different enough. For n = 28, the computed value was

not different by more than 1 % from the expected value2.

Should the exact results be needed, we can always use this algorithm as an upper

estimate of the similarity, and compute the exact similarities only for document pairs

which are preselected by this algorithm, and only after the user looks at these docu-

ments (so not precompute the exact values).

Also note that using hash from the words themselves relaxes the need of unique

word ID numbers. The dictionary table then can be transformed into a set (i.e. we will

not have to look up the word ID, but instead only ask whether the word is present in

the dictionary or not). This can lower the resource requirements for the dictionary table,

altough this reduction is not significant in the whole picture.

4.3 Data Structure

The hash function we use has the range of values from 0 to 2n − 1 for some n. Unlike

the database approach, we actually do not need the whole chunk table, searchable both

by chunk ID and the document ID. In fact, we only need one of these two directions:

for discovering similar documents to a given one, we need to split the new document

into the chunks, and then look up in which other documents those chunks are. So in the

database speech, we only need the index mapping the chunk ID to the list of document

ID.

0

1

2

2^n−1

chunk

2^n

5013

14

9123

5431

8550

649

2108

1043

1041

2

2

0

offset array document ID array

Figure 1: The data structure mapping chunk ID to the list of document IDs.

2Note that the similarity is defined in Section 2.1 as a percentage. So the above “not more than 1 %”

means that when–for example–the computed similarity of the document A to the document B was 2 %,

the expected one was between 1 % and 3 %, inclusively.

9



The proposed data structure for this task is described in the Figure 1. The data struc-

ture contains two arrays:

• The array of document IDs (in the Figure 1 the rightmost one). This is an array of

values of the “document ID” data type. It contains the list of documents in which

the ID 0 appears, then the list of documents in which the chunk ID 1 appears,

and so on. The size of this array is approximately equal to sizeof(document_id)

multiplied by the total number of all chunks in all documents. For 600,000,000

chunks and three bytes for the document ID, it is about 1.7 GB. There is nothing

simple we can do to reduce the size of this array.

• The array of offsets (in the Figure 1 the leftmost one). This array describes where in

the array of document IDs we should look, when we want to find all documents,

in which a given chunk occurs. The entry i of this array gives the offset of the first

document ID for the chunk with the hash value i, and the entry i + 1 gives the

offset of the first document ID, in which this chunk does not occur. It is an array of

the integer data type, indexed by all possible values of the chunk ID. So for 24-bit

hash function value space and 4-byte integer, this array has 224 ·4 bytes, i.e. 64 MB,

and for 28-bit hash function value space it has 1 GB. So the size of this array is

proportional to the number of bits of the hash value. This means the bigger the

hash value range is, the more memory we will need, but the lower probability

of hash collisions will be, and the results given by our algorithm will be more

accurate.

For example, in the Figure 1, the chunk with hash value of 0 occurs in documents

5431 and 9123, the chunk with hash value 1 is not anywhere in the whole data set, the

chunk with hash value 2 is in documents 14, 5013, 8550 and maybe others, and the last

chunk (hash value 2n − 1) occurs in the documents 649 and 2108. Note how the entry

2n in the array of offsets is used to determine the number of entries for the hash value

2n − 1 in the array of document IDs.

For further possible optimizations we keep the sub-list of document IDs for a given

chunk sorted.

4.4 Algorithm

The actual task of finding similar documents in a given set of documents runs in the

following steps:

10



1. Construct a set of hash-based chunk IDs of all not yet added (i.e. new) documents.

2. Construct the array of document IDs and the array of offsets as described in Sec-

tion 4.3.

3. Merge the data structure from the previous step with the same data structure de-

scribing the previously added documents, possibly removing data about docu-

ments, which has been deleted from the system.

4. Using the merged data structure, for each newly added document find all docu-

ments similar to it. If similarities are found in the documents which already had

been in the database from previous runs of this algorithm, also compute the in-

verse similarity (from the number of common chunks and from the total number

of chunks in this older document as described in Section 2.1).

Note how we do not have a separate “compute everything” step, and it is just a

special case of the “new documents added” step, starting with an empty array of doc-

ument IDs and an empty array of offsets. However, for the initial recomputing of the

whole data set it may not be feasible to keep the list of chunks for a given document ID

computed in the step 1, and instead we can recompute it again as-needed in the step 4.

4.5 Properties of the Algorithm

Let us discuss the computing resources needed for the above algorithm:

• As for transforming the plain text form of the document to the set of chunks, there

is not much to be improved speed-wise. This is an easily parallelized task, and

provided that the dictionary is replicated to the cluster nodes, it even does not

need any network communication (other than retrieving the document itself and

storing the computed results).

• In the step 2 we want to compute an “inverted index”. I.e. from the document ID

to list of chunk IDs mapping, we need to compute the opposite direction, mapping

the chunk ID to the list of document IDs. This can be done for example by a variant

of a radix sort (especially when the whole data set does not fit into the memory,

such as in the “compute everything” phase). The radix sort can be further speeded

up by pre-sorting the data into a given number of buckets in the step 1.

11



• Merging the two data structures from Section 4.3 can be done sequentially, in a

linear time. This step cannot be parallelized. However, we can split the whole

data structure to the cluster nodes giving each node its own range of the chunk

IDs. Then each node can merge only its own part of the data structure.

• Finding similar documents: the complexity of this step is proportional to the num-

ber of chunks in the newly added documents. However, this step uses both big

arrays only for reading, so this step can be fully parallelized (on a shared-memory

machine by mapping the arrays to multiple processes or threads, and on a clus-

ter by copying the whole arrays to each cluster node, which can be done in sub-

minute times). Should the size of these two arrays grow outside the available

RAM, we can distribute this task so that each cluster node handles only part of

the document ID range. So by adding more nodes, we lower the memory require-

ments on each node.

• Incremental runs: the incremental runs are fast, we expect them to be run in a one-

to five-minute period on a production system.

4.6 Practical Results

We have implemented this algorithm, and we are able to present some practical results:

• The step 1 took about 2 hours, including pre-sorting different chunk ranges to

separate files, in order to do a radix sort in the next step. The time taken is about

the same as in the prototype solution.

• The step 2, i.e. merging the pre-sorted ranges, took about three hours on a single

CPU. Further speed improvements by using multiple nodes or multiple CPUs are

possible by, for example, giving each node its own range of chunk IDs to sort.

• The resulting data structure takes less than 2 GB of memory for 24-bit hash value,

and less than 3 GB of memory for 28-bit hash value.

• Finding similar documents using this data structure runs on one CPU at speeds

around 8500 documents per hour, so the whole data set can be recomputed in

slightly more than two hours on 14 CPUs.

12



Thus the total run time of this new system for the inital recomputing all similarities

in the given data set is about 7 hours, while still having room for improvement by

parallelization.

5 Future Work

There is a number of areas where further improvements can be made:

• Generating chunks: so far we have got along without using lemmatization (i.e. find-

ing a basic form from the inflected word). We think that for for inflectional lan-

guages like Czech or Slovak, it can make a improvement in recognizing similar

parts of the text (in Czech, for example, when swapping two consecutive words,

usually a different inflection has to be used).

• Different hash function: we can do some experiments with hash functions other

than based on MD5. MD5 is sufficiently random, but relatively slow to compute

(after all, it has been designed to be cryptographically strong). However, this part

of the algorithm can be easily parallelized, so this probably will not result in a

meaningful improvement of the whole process.

• Better encoding of the array of offsets from the Section 4.3: since most chunks appear in

very low number of documents (most often there are in 0 or 1 document), so the

offset table can be compressed: the neighbouring values are usually close to each

other, so some kind of differential encoding could save more memory space as a

trade-off for more CPU time.

6 Conclusion

We have described two generations of a system for finding similar documents in the

real-world information system. One of the most important properties of this system

is that it is not only a theoretical construct, but a real-world system, which has been

used since the August 2006. The strength of this system both in its abilities, but also

(as we have to admit) in its pure existence: students are now aware that it is easy for

the teachers of our University to find similar documents, so they are less motivated to

plagiarize work of other people.

13



The new implementation runs much faster than the prototype one (7 hours versus

54 hours for an initial step). And there is still room for further improvements. No part

of the new system require more than 4 GB of RAM, while the system can be run on a

cluster of nodes with even less RAM available. The new implementation is usable both

on clusters and shared-memory multiprocessors.

So far we are not aware of any other system for finding similarities in documents,

which uses the hash-based approach for approximating the actual chunk identification.

As we have verified, this approach can provide significant savings in the total memory

needed, allowing the system to be run on a commodity hardware, while the accuracy of

the computed values remain within a reasonable distance from the exact values.

References

[1] Krisztián Monostori, Raphael A. Finkel, Arkady B. Zaslavsky, Gábor Hodász, and

Máté Pataki. Comparison of overlap detection techniques. In ICCS ’02: Proceedings

of the International Conference on Computational Science-Part I, pages 51–60, London,

UK, 2002. Springer-Verlag.

[2] J. Pazdziora and M. Brandejs. University information system fully based on www.

In ICEIS 2000 Proceedings, pages 467–471. Escola Superior de Tecnologia do Instituto

Politécnico de Setúbal, 2000.

14


