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Faculty of Informatics, Masaryk University,

Botanická 68a, 60200 Brno,

Czech Republic.

{brazdil,forejt,xkretins,kucera}@fi.muni.cz

Abstract

We study the satisfiability problem for qualitative PCTL (Probabilistic Computa-

tion Tree Logic), which is obtained from “ordinary” CTL by replacing the EX, AX,

EU, and AU operators with their qualitative counterparts X>0, X=1, U>0, and U=1,

respectively. As opposed to CTL, qualitative PCTL does not have a small model

property, and there are even qualitative PCTL formulae which have only infinite-

state models. Nevertheless, we show that the satisfiability problem for qualitative

PCTL is EXPTIME-complete and we give an exponential-time algorithm which for

a given formula ϕ computes a finite description of a model (if it exists), or answers

“not satisfiable” (otherwise). We also consider the finite satisfiability problem and

provide analogous results. That is, we show that the finite satisfiability problem for

qualitative PCTL is EXPTIME-complete, and every finite satisfiable formula has a

model of an exponential size which can effectively be constructed in exponential

time. Finally, we give some results about the quantitative PCTL, where the numeri-

cal bounds in probability constraints can be arbitrary rationals between 0 and 1. We

prove that the problem whether a given quantitative PCTL formula ϕ has a model

of the branching degree at most k, where k ≥ 2 is an arbitrary but fixed constant, is

highly undecidable. We also show that every satisfiable formulaϕ has a model with

branching degree at most |ϕ|+2. However, this does not yet imply the undecidabil-

ity of the satisfiability problem for quantitative PCTL, and we in fact conjecture the

opposite.

The presented work has been supported by the research center Institute for Theoretical Computer Science

(ITI), project No. 1M0545.
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1 Introduction

Probabilistic CTL (PCTL) [13] is a probabilistic extension of the well-known branching-

time logic CTL [7] obtained by replacing the existential and universal path quantifiers

with the probabilistic operator, which allows to quantify the probability of all runs that

satisfy a given path formula. More precisely, the syntax of PCTL is built upon atomic

propositions, using Boolean connectives and operators “next” and “until” of the form

Xonρϕ and ϕ1Uonρϕ2, respectively, where on is a numerical comparison such as ≤ or >,

and ρ ∈ [0, 1] is a rational constant. We also use the standard abbreviations Fϕ and Gϕ

to denote the path formulae ttUϕ and ¬F¬ϕ. A simple example of a PCTL formula

is G=1(a ⇒ F≥0.2b) which says “in each reachable state that satisfies a, the probability

of visiting a state satisfying b is at least 0.2”. Formally, PCTL formulae are interpreted

over Markov chains where each state is assigned a subset of atomic propositions that

are valid in a given state.

In this paper, we study the satisfiability problem for the qualitative fragment of PCTL,

which is obtained by restricting the probabilistic operator to its qualitative forms (i.e.,

the constant ρ in Xonρϕ and ϕ1Uonρϕ2 can be just 0 or 1). Since the syntax of PCTL

includes negation, we need to consider only the probability constraints >0 and =1 (for

example, the formula X<1ϕ is equivalent to ¬X=1ϕ). Hence, there are only four modal

operators X>0, X=1, U>0, and U=1. At first glance, they seem to be closely related to

standard CTL operators EX, AX, EU, and AU, respectively. To a large extent, this is

true for X>0, X=1, U>0, but the properties of U=1 and AU are very different, which leads

to the phenomena described in the next paragraphs.

First, let us recall known results about the satisfiability problem for CTL and related

logics. For CTL, the problem is known to be EXPTIME-complete [8]. In the same paper

[8], it is also shown that CTL has a small model property, i.e., every satisfiable CTL for-

mula ϕ has a finite-state model whose size is exponential in ϕ. For the logic CTL∗, the

satisfiability problem is 2-EXPTIME-complete [9, 20]. The 2-EXPTIME lower bound

holds even for the weaker logic CTL+ [16]. The complexity of the satisfiability and

validity problems for other fragments of CTL and CTL∗ (such as the existential and uni-

versal fragments) has also been studied (see, e.g., [19]). The satisfiability for the modal

µ-calculus is EXPTIME-complete [2, 12], and even this powerful logic has the small

model property [17]. The satisfiability and validity for some fragments of the modal

µ-calculus have been studied in greater depth in [14]. To the best of our knowledge,
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the satisfiability problem for probabilistic CTL has not yet been examined. Nonethe-

less, there are some related results about PCTL model-checking (both for infinite- and

finite-state systems, see e.g. [6, 15, 11, 10, 5]) and strategy synthesis for Markov decision

processes with branching-time objectives [1, 18, 3, 4].

As we already noted, the qualitative PCTL formulae seem to be rather similar to

“ordinary” CTL formulae. One may even be tempted to think that a qualitative PCTL

formula ϕ is satisfiable iff the corresponding CTL formula ϕ ′ is satisfiable, where ϕ ′ is

obtained from ϕ by replacing each occurrence of X>0, X=1, U>0, and U=1 with EX, AX,

EU, and AU, respectively. This is not true; for example, the qualitative PCTL formula

ϕ ≡ a∧
(
G=1(a ⇒ X>0a)

)
∧
(
F=1¬a

)
has the following model:

s

a

t

¬a

1
21

2 1

Note that s |= ϕ because the probability of all runs initiated in s which eventually visit

t is equal to 1. However, the corresponding CTL formula

ϕ ′ ≡ a∧
(
AG(a ⇒ EXa)

)
∧
(
AF¬a

)
is not satisfiable. Further, qualitative PCTL does not have the small model property, and

there are even satisfiable qualitative PCTL formulae that only have infinite-state models.

A simple example of such a formula is G>0(¬a ∧ F>0a). Intuitively, this formula does

not have a finite-state model, because for every finite-state Markov chain M there is a

fixed constant ε > 0 such that every state of M which satisfies F>0a also satisfies F≥εa.

This means that the probability of all runs satisfying the path formula G(¬a ∧ F>0a)

is zero, hence G>0(¬a ∧ F>0a) does not hold. On the other hand, G>0(¬a ∧ F>0a) has

an infinite-state model, which admits a simple symbolic description in a form of the

following marked graph:

v

¬a

u

a

In general, a marked graph is a finite binary graph where each node has at least one

out-going transition, and some transitions are “marked” (in the above figure, the only

marked transition is the loop on v, which is indicated by a thick arrow). Each node v in a
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given marked graph G determines a unique infinite-state Markov chainMG obtained by

unfolding the structure of G into an infinite tree (with the root v), where the probabilities

of outgoing transitions at each state s ofMG are determined as follows:

• if all outgoing transitions of s are either marked or non-marked, then all of them

have the same probability p;

• otherwise, the probability of all marked transitions is p1, the probability of all

non-marked transitions is p2, and the total probability of all marked transitions is

1− 1/4d+1, where d is the distance of s from the root of MG (note that p1 and p2
are uniquely determined by these conditions).

For example, the initial part of the chainMG , where G is the marked graph above, looks

as follows (for simplicity, the loop on u is not unfolded):

v

¬a ¬a ¬a ¬a

a a a a

3
4

15
16

63
64

1 1 1 1

1
4

1
16

1
64

1
256

Observe that v |= G>0(¬a ∧ F>0a), because the only run which satisfies the formula

G(¬a∧ F>0a) has a positive probability.

We prove that every satisfiable qualitative PCTL formula ϕ has a model which can

be represented by a marked graph whose size is exponential in |ϕ|, and we design an

exponential-time algorithm which for a given ϕ computes a suitable marked graph if

it exists, and outputs “unsatisfiable” otherwise. Hence, the satisfiability problem for

qualitative PCTL is in EXPTIME and we also give the matching lower bound (the lower

bound is proved by standard techniques). Since the logic PCTL contains negation and

EXPTIME is closed under complement, the validity problem for qualitative PCTL is

also EXPTIME-complete.

One may also ask whether the use of exponentially small probabilities in the

way indicated above is indeed necessary. For example, the mentioned formula

G>0(¬a∧ F>0a) has another infinite-state model, where the probability of every transi-

tion is exactly 1
2
. The model looks as follows:

t

a

s0

¬a

s1

¬a

s2

¬a

s3

¬a

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2
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We have that s0 |= G>0(¬a ∧ F>0a). To see this, realize that the probability of all runs

initiated in s0 which do not visit t is positive (this is a standard result of Markov chain

theory; the exact value of this probability is (3−
√
5)/2). However, the use of “exponen-

tially small probabilities” is unavoidable in some cases. For example, one can easily

show that the formula G=1(X>0a) ∧ G>0¬a does not have a model where the proba-

bilities of all transitions are uniformly bounded from below. However, the formula

G=1(X>0a) ∧ G>0¬a is satisfiable, which is witnessed by the marked graph for the for-

mula G>0(¬a∧ F>0a) constructed earlier.

Since some qualitative PCTL formulae have only infinite-state models, we also con-

sider the finite satisfiability problem, where we ask whether a given qualitative PCTL

formula has a finite-state model. We obtain similar results as for general satisfiability. We

show that the existence of a finite-state model implies the existence of a model whose

size is exponential in the size of a given formula, and we give an exponential-time al-

gorithm which computes such a model if it exists, and outputs “not finite satisfiable”

otherwise. Hence, the finite satisfiability/validity problems for qualitative PCTL are

also in EXPTIME, and in fact EXPTIME-complete.

Finally, we give some results concerning the satisfiability problem for general PCTL.

We show that the problem whether a given PCTL formula has a model where the

branching degree is bounded by a fixed k is highly undecidable for every k ≥ 2 (note

that the k is not a part of the problem instance, but a fixed parameter—for a different

choice of k we have a different problem, and each of these infinitely many problems

is highly undecidable). Then, we show that every satisfiable PCTL formula ϕ has a

model with branching degree at most |ϕ| + 2. At first glance, one may be tempted to

think that these two results imply the undecidability of the satisfiability problem for

the general PCTL, but in fact it is not the case. Despite a reasonable amount of effort,

we did not manage to extend the undecidability proof to the satisfiability problem for

PCTL, and the difficulties seem to be fundamental (at least, the undecidability proof

techniques developed in [3, 5] specifically for probabilistic systems seem insufficient).

On the other hand, there are some structural regularities in PCTL models which suggest

that the problem might in fact be decidable. We present the decidability hypothesis as

an open conjecture which surely deserves further attention.
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2 Definitions

In this paper, we use N, N0, Q, and R to denote the sets of positive integers, non-

negative integers, rational numbers, and real numbers, respectively. We also use the

standard notation for intervals of real numbers, writing, e.g., (0, 1] to denote the set

{x ∈ R | 0 < x ≤ 1}.
The set of all finite words over a given alphabet Σ is denoted Σ∗, and the set of all

infinite words over Σ is denoted Σω. We also use Σ+ to denote the set Σ∗r {ε} where ε is

the empty word. The length of a givenw ∈ Σ∗ ∪Σω is denoted len(w), where the length

of an infinite word isω. Given a word (finite or infinite) over Σ, the individual letters of

w are denoted w(0), w(1), . . ..

Let V 6= ∅, and let → ⊆ V × V be a total relation (i.e., for every v ∈ V there is some

u ∈ V such that v→u). A path in V is a finite or infinite word w ∈ V+ ∪ Vω such that

w(i−1) →w(i) for every 1 ≤ i < len(w). Sometimes we also write s0→ · · · → sn to

denote the finite path s0, · · · , sn, particularly in situations when the underlying relation→ is not completely obvious from the context. We also use → + to denote the transitive

closure of → , and → ∗ to denote the reflexive and transitive closure of → . A run in V is

an infinite path in V . The set of all runs that start with a given finite path w is denoted

Run(w). Let U ⊆ V . We say that U is strongly connected if v→ +u for all v, u ∈ U (from

a graph-theoretic point of view, this definition is somewhat non-standard, because a

singleton {s} is strongly connected iff s→ s). Further, we say thatU is a strongly connected

component (SCC) if U 6= ∅ is a maximal strongly connected subset of V , and U is a bottom

SCC (BSCC) if U is a SCC and for every u ∈ U and every u→ vwe have that v ∈ U.

A probability distribution over a finite or countably infinite set X is a function

f : X → [0, 1] such that
∑
x∈X f(x) = 1. A probability distribution f over X is positive if

f(x) > 0 for every x ∈ X, and uniform if f(x) = f(y) for all x, y ∈ X. A σ-algebra over a

set Ω is a set F ⊆ 2Ω that includes Ω and is closed under complement and countable

union. A probability space is a triple (Ω,F ,P) where Ω is a set called sample space, F is a

σ-algebra overΩwhose elements are called events (or measurable sets), andP : F → [0, 1]

is a probability measure such that, for each countable collection {Xi}i∈I of pairwise disjoint

elements of F , P(
⋃
i∈I Xi) =

∑
i∈IP(Xi), and moreover P(Ω)=1.

Definition 2.1 (Markov Chain). A Markov chain is a triple M = (St, → ,Prob) where St

is a finite or countably infinite set of states, → ⊆ St × St is a total transition relation, and
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Prob is a function which to each state s ∈ St assigns a positive probability distribution over the

outgoing transitions of s. As usual, we write s x→ t when s→ t and x is the probability of s→ t.

When defining the semantics of PCTL (see below), we need to measure the probabil-

ity of certain sets of runs. Formally, to every s ∈ St we associate the probability space

(Run(s),F ,P) where F is the σ-algebra generated by all basic cylinders Run(w) where

w is a finite path starting with s, and P : F → [0, 1] is the unique probability measure

such that P(Run(w)) = Π
len(w)−1
i=1 xi where w(i−1) xi→w(i) for every 1 ≤ i < len(w). If

len(w) = 1, we put P(Run(w)) = 1. Hence, only certain subsets of Run(s) are measur-

able, but in this paper we only deal with “safe” subsets that are guaranteed to be in F .

Definition 2.2. Let Ap = {a, b, c, . . .} be a countably infinite set of atomic propositions. The

syntax of PCTL state and path formulae is defined by the following abstract syntax equations:

ϕ ::= a | ¬ϕ | ϕ1 ∧ϕ2 | Ponρψ

ψ ::= Xϕ | ϕ1Uϕ2

Here a ranges over Ap, on is a comparison (i.e., on ∈ {<,>,≤,≥,=, 6=}), and ρ ∈ [0, 1] is a

rational constant. The qualitative fragment of PCTL is obtained by restricting ρ to 0 and 1 (to

prevent a confusion between PCTL and qualitative PCTL, we sometimes refer to “quantitative

PCTL” instead of PCTL).

In the rest of this paper, “PCTL formula” means “PCTL state formula”. Since the proba-

bilistic operator Ponρ is always bound to exactly one modal connective, we simplify the

syntax by writing Xonρϕ instead of Ponρ(Xϕ), and ϕ1Uonρϕ2 instead of Ponρ(ϕ1Uϕ2). For

every PCTL formulaϕ, the symbol ϕ̂ denotes either the formula ξ or ¬ϕ, depending on

whether ϕ is of the form ¬ξ or not, respectively.
Let M = (St, → ,Prob) be a Markov chain, and let ν : St → 2Ap be a valuation. The

validity of PCTL formulae in the states ofM is defined inductively as follows:

M,s |=ν a iff a ∈ ν(s)
M,s |=ν ¬ϕ iff M,s 6|=ν ϕ
M, s |=ν ϕ1 ∧ϕ2 iff M,s |=ν ϕ1 andM,s |=ν ϕ2

M,s |=ν Xonρϕ iff P({w ∈ Run(s) | M,w(1) |=ν ϕ}) on ρ

M, s |=ν ϕ1Uonρϕ2 iff P({w ∈ Run(s) | ∃j ≥ 0 : M,w(j) |=ν ϕ2

and ∀0 ≤ i < j : M,w(i) |=ν ϕ1}) on ρ

A PCTL formula ϕ is satisfiable if M,s |=ν ϕ for some M, s, and ν. The formula ϕ is

finite satisfiable if M,s |=ν ϕ for some finite-state M. The formula ϕ is valid if M,s |=ν ϕ

for allM, s, and ν.
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3 A Solution for Qualitative PCTL

In this section, we solve the satisfiability and the finite satisfiability problems for quali-

tative PCTL. To emphasize (and identify) the main difference between qualitative PCTL

and CTL, we follow the traditional approach based on filtration through Fischer-Ladner

closure [12]. In the case of CTL, the main problem with this technique is the introduc-

tion of new cycles which can “spoil” universally quantified formulae such as AFϕ [8].

In the case of qualitative PCTL, these new cycles are not a problem because, roughly

speaking, they are either harmless or they are eventually left with probability 1. On the

other hand, the invalidity of a formulaϕ1U=1ϕ2 cannot be witnessed just by a single run

which violates the path formula ϕ1Uϕ2, because this single run can have zero probabil-

ity. This means that the heart of our construction for qualitative PCTL is actually rather

different from the one for CTL.

We start by recalling a folklore observation which is used quite frequently in the

proofs of our main results.

Lemma 3.1. Let M = (St, → ,Prob) be a Markov chain, ν : St → 2Ap a valuation, and

ϕ1U=1ϕ2 a qualitative PCTL formula. If M,s 6|=ν ϕ1U=1ϕ2 for a given s ∈ St, then there are

two possibilities:

(a) There is a finite path s=s0→ · · · → sn such that M,si |=ν ϕ̂2 for all 0 ≤ i ≤ n, and

M,sn |=ν ϕ̂1.

(b) P(R) > 0, whereR is the set of allw ∈ Run(s) such thatw(i) |=ν ϕ1∧ϕ̂2 for all i ∈ N0.
IfM is finite-state, this is equivalent to the existence of a finite path s=s0→ · · · → sn and

a BSCC α ofM such that sn ∈ α and for every state t that appears in the path or in α we

have thatM, t |=ν ϕ1 ∧ ϕ̂2.

Proof. The first part follows from the fact that every run s0s1 · · · is either of one of the

forms specified in (a) and (b), or satisfies ϕ1Uϕ2.

Let M be finite. If there is a path and a BSCC α as described above, then

Run(s0 · · · sn) ⊆ R, hence 0 <
∏n−1
i=0 Prob(si → si+1) ≤ P(R). On the other hand,

let all BSCCs reachable from s contain a state in which ϕ1 ∧ ϕ̂2 does not hold or are

reachable only via paths containing such a state. Since a run reaches some BSCC with

the probability 1 and then visits all states in this BSCC again with probability 1, we

conclude that P(R) = 0.
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A proof of Lemma 3.1 is simple and standard. Now we recall the Fischer-Ladner closure

[12].

Definition 3.2. Let ψ be a qualitative PCTL formula. The closure of ψ, denoted Cl(ψ), is the

least set C of PCTL formulae such that ψ ∈ C and the following conditions are satisfied:

• if ϕ ∈ C, then ϕ̂ ∈ C

• if ϕ1 ∧ϕ2 ∈ C, then ϕ1, ϕ2 ∈ C

• if X>0ϕ ∈ C, then ϕ ∈ C

• if X=1ϕ ∈ C, then ϕ ∈ C

• if ϕ1U>0ϕ2 ∈ C, then ϕ1, ϕ2,X>0(ϕ1U>0ϕ2) ∈ C

• if ϕ1U=1ϕ2 ∈ C, then ϕ1, ϕ2,X=1(ϕ1U=1ϕ2) ∈ C

• if ϕ1U=1ϕ2 ∈ C, then ϕ1U>0ϕ2 ∈ C

Definition 3.2 mimics the variant of Fischer-Ladner closure used in [8] for the logic CTL.

The only notable difference is the last item, where we require that if ϕ1U=1ϕ2 is in the

closure, then ϕ1U>0ϕ2 is also there. The exact purpose of this rule is clarified in the

proofs of our main results.

In our next definition we identify certain formulae that should be satisfied “to-

gether” in a given state.

Definition 3.3. A set S ⊆ Cl(ψ) is eligible if for everyϕ ∈ Cl(ψ) we have thatϕ or ϕ̂ belongs

to S, and the following conditions hold:

• if ϕ ∈ S, then ϕ̂ 6∈ S

• if ϕ1 ∧ϕ2 ∈ S, then ϕ1, ϕ2 ∈ S

• if ¬(ϕ1 ∧ϕ2) ∈ S, then ϕ̂1 ∈ S or ϕ̂2 ∈ S

• if ϕ1U>0ϕ2 ∈ S, then ϕ2 ∈ S or ϕ1,X>0(ϕ1U>0ϕ2) ∈ S

• if ¬(ϕ1U>0ϕ2) ∈ S, then ϕ̂1, ϕ̂2 ∈ S or ϕ̂2,¬X>0(ϕ1U>0ϕ2) ∈ S

• if ϕ1U=1ϕ2 ∈ S, then ϕ2 ∈ S or ϕ1,X=1(ϕ1U=1ϕ2) ∈ S

• if ¬(ϕ1U=1ϕ2) ∈ S, then ϕ̂1, ϕ̂2 ∈ S or ϕ̂2,¬X=1(ϕ1U=1ϕ2) ∈ S

9



Definition 3.4. A pseudo-structure for a qualitative PCTL formula ψ is a pairA = (A, → ),

where A is a set of eligible subsets of Cl(ψ) and → ⊆ A×A is a total relation.

Every pseudo-structureA = (A, → ) for a formulaψ determines a unique Markov chain

MA = (A, → ,Prob) where Prob assigns a uniform probability distribution to every state.

Further, to each ϕ ∈ Cl(ψ) we associate a fresh atomic proposition [ϕ] and define a

valuation ν over A such that [ϕ] ∈ ν(S) iff ϕ ∈ S. In the following, we write

• A, S |= Xonρϕ instead ofMA, S |=ν Xonρ[ϕ]

• A, S |= ¬Xonρϕ instead ofMA, S |=ν ¬Xonρ[ϕ]

• A, S |= ϕ1Uonρϕ2 instead ofMA, S |=ν [ϕ1]Uonρ[ϕ2]

• A, S |= ¬(ϕ1Uonρϕ2) instead ofMA, S |=ν ¬([ϕ1]Uonρ[ϕ2])

where “onρ” is of the form “>0” or “=1”.

As we already mentioned, the invalidity of a formula ϕ1U=1ϕ2 cannot be witnessed

just by a single run that violates the path formula ϕ1Uϕ2. A suitable witness for

¬(ϕ1U=1ϕ2) is identified in our next definition.

Definition 3.5. Let ψ be a qualitative PCTL formula and A = (A, → ) a pseudo-structure for

ψ. A witness for a formula ¬(ϕ1U=1ϕ2) ∈ Cl(ψ) in A is a pseudo-structure B = (B, ↪→)

where ∅ 6= B ⊆ A and ↪→ ⊆ → such that

• B is strongly connected.

• For every S ∈ B we have that ϕ̂2 ∈ S.

• For every S ∈ B and every ξ1U=1ξ2 ∈ S we have that B, S |= ξ1U=1ξ2.

Definition 3.6. Let ψ be a qualitative PCTL formula. A pseudo-model for ψ is a pseudo-

structure A = (A, → ) for ψ such that ψ ∈ T for some T ∈ A, and every S ∈ A satisfies the

following conditions:

(1) If ξ ∈ S, where ξ is of the form X=1ϕ, ¬X=1ϕ, X>0ϕ, ¬X>0ϕ, ϕ1U>0ϕ2, ¬(ϕ1U>0ϕ2),

or ϕ1U=1ϕ2, then A, S |= ξ.

(2) If ¬(ϕ1U=1ϕ2) ∈ S, then one of the following conditions is satisfied:

(a) A, S 6|= ϕ1U=1ϕ2.

10



(b) There is a witness B = (B, ↪→) for ¬(ϕ1U=1ϕ2) and a finite path S0→ · · · →Sn

such that S0=S, Sn ∈ B, and ϕ̂2 ∈ Si for every 0 ≤ i ≤ n.

A pseudo-model is simple if the condition (2) is always satisfied by item (a), i.e., no witness is

employed.

The next theorem says that the satisfiability of a given qualitative PCTL formula is al-

ways certified by a pseudo-model.

Theorem 3.7. Let ψ be a qualitative PCTL formula. If ψ is satisfiable, then there is a pseudo-

model A = (A, 7→) for ψ. Moreover, if ψ is finite-satisfiable, then A is simple.

Proof. Let us fix a satisfiable qualitative PCTL formula ψ. Then there is a Markov chain

M = (St, → ,Prob), a valuation ν, and a state sψ ∈ St such that M,sψ |=ν ψ. For

every s ∈ St, let [s] = {ϕ ∈ Cl(ψ) | M,s |=ν ϕ}. We define A = {[s] | s ∈ St}, and

[s] 7→ [t] iff there are some s ′, t ′ ∈ St such that [s] = [s ′], [t] = [t ′], and s ′→ t ′. We show

that A = (A, 7→) is a pseudo-model for ψ. Clearly, all elements of A are eligible, and

ψ ∈ [sψ]. Now let [s] ∈ A and ξ ∈ [s]. We verify the two conditions of Definition 3.6.

Condition (1). Let ξ be of the form X=1ϕ. If [s] 7→ [t], then s ′ → t ′ for some some

[s ′] = [s], [t ′] = [t]. Since M,s ′ |=ν X=1ϕ, we have M, t ′ |=ν ϕ, hence ϕ ∈ [t ′] = [t].

Similarly for ¬X>0ϕ.

Let ξ be of the form ϕ1U>0ϕ2. Since M,s |=ν ϕ1U>0ϕ2, there is a path

s = s0 → · · ·→ sn, such that M,si |=ν ϕ1 for 0 ≤ i < n and M,sn |=ν ϕ2. There-

fore, there is a path [s] = [s0] 7→ · · · 7→ [sn], where ϕ1 ∈ [si] for 0 ≤ i < n and ϕ2 ∈ [sn].

Hence A, [s] |= ϕ1U>0ϕ2. Similarly for X>0ϕ and ¬X=1ϕ.

Let ξ = ¬(ϕ1U>0ϕ2), and let us assume (for the sake of deriving a contradic-

tion) that A, [s] 6|= ¬(ϕ1U>0ϕ2), i.e., A, [s] |= ϕ1U>0ϕ2. Then there is is finite path

[s0] 7→ · · · 7→ [sn], where n ∈ N0, [s] = [s0], ϕ2 ∈ [sn], and ϕ1 ∈ [si] for all 0 ≤ i < n.

By induction on n we show that some [si] in this finite path is not eligible, which is a

contradiction.

• n = 0. Then we have that ϕ2 ∈ [s0] and ¬(ϕ1U>0ϕ2) ∈ [s0], which means that

ϕ2, ϕ̂2 ∈ [s0], hence [s0] is not eligible.

• Induction step. Since ¬(ϕ1U>0ϕ2) ∈ [s0], there are two possibilities (see Defini-

tion 3.3): Either ϕ̂1, ϕ̂2 ∈ [s0], which means that ϕ̂1, ϕ1 ∈ [s0] and hence [s0] is not

eligible, or ¬X>0(ϕ1U>0ϕ2) ∈ [s0], which means that ¬(ϕ1U>0ϕ2) ∈ [s1] and we

can apply induction hypothesis.

11



Let ξ = ϕ1U=1ϕ2, and let us assume that A, [s] 6|= ϕ1U=1ϕ2. According to

Lemma 3.1, there are two possibilities:

(a) There is a finite path [s0] 7→ · · · 7→ [sn], where n ∈ N0, [s] = [s0], ϕ̂2 ∈ [si] for all

0 ≤ i ≤ n, and ϕ̂1 ∈ [sn]. Since ϕ̂1, ϕ̂2 ∈ [sn], we have that M,sn |=ν ϕ̂1 ∧ ϕ̂2,

hence M,sn |=ν ϕ1U=0ϕ2. By a straightforward induction on j we can show that

M,sn−j |=ν ϕ1U<1ϕ2 for all 0 ≤ j ≤ n, which means that ϕ1U=1ϕ2 6∈ [s0] = [s],

and we have a contradiction.

(b) There is a BSCC α of A such that ϕ̂2 ∈ [t] for every [t] ∈ α, and a finite path

[s0] 7→ · · · 7→ [sn] such that n ∈ N0, [s] = [s0], [sn] ∈ α, and ϕ̂2 ∈ [si] for all

0 ≤ i ≤ n. First, let us realize that if [t] ∈ α, then for every t ′ ∈ St such that

t→ ∗t ′ we have that M, t ′ 6|=ν ϕ2. Hence, M, t |=ν ϕ1U=0ϕ2. Since [sn] ∈ α,

we have that M,sn |=ν ϕ1U=0ϕ2. From this we obtain (similarly as in (a)) that

ϕ1U=1ϕ2 6∈ [s0] = [s], which is a contradiction.

Condition (2). Let ¬(ϕ1U=1ϕ2) ∈ [s]. First we show that if M is a finite-state

Markov chain (i.e., the formula ψ is finite satisfiable), then A, [s] 6|= ϕ1U=1ϕ2. Since

M,s 6|= ϕ1U=1ϕ2 and M is a finite-state Markov chain, there are two possibilities (see

Lemma 3.1):

(a) There is a finite path s = s0→ · · · → sn, n ∈ N0, such that M,si |=ν ϕ̂2 for all

0 ≤ i ≤ n, and M,sn |=ν ϕ̂1. But then [s] = [s0] 7→ · · · 7→ [sn], ϕ̂2 ∈ [si] for all

0 ≤ i ≤ n, and ϕ̂1 ∈ [sn], which means that A, [s] 6|= ϕ1U=1ϕ2 as needed.

(b) Since A is finite, there is a BSCC α of M such that M, t |=ν ϕ̂2 for every t ∈ α, and

a finite path s = s0→ · · · → sn, n ∈ N0, such that sn ∈ α and M,si |=ν ϕ̂2 for all

0 ≤ i ≤ n. Consider the finite path [s]=[s0] 7→ · · · 7→ [sn]. Clearly ϕ̂2 ∈ [si] for

all 0 ≤ i ≤ n. We show that A, [sn] |= ¬(ϕ1U>0ϕ2), which implies that A, [s] 6|=
ϕ1U=1ϕ2 as needed.

Since M, t |=ν ¬(ϕ1U>0ϕ2) for every t ∈ α, we have that ¬(ϕ1U>0ϕ2) ∈ [t] for

every t ∈ α (here we rely on the last rule of Definition 3.2 which guarantees that

¬(ϕ1U>0ϕ2) ∈ Cl(ψ)). In particular, ¬(ϕ1U>0ϕ2) ∈ [sn]. By applying the analysis

of Condition (1), we can conclude that A, [sn] |= ¬(ϕ1U>0ϕ2).

Now consider the general case when the Markov chainM is not necessarily finite-state.

SinceM,s 6|= ϕ1U=1ϕ2, there are two possibilities (see Lemma 3.1):
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(a) There is a finite path s = s0→ · · · → sn, n ∈ N0, such that M,si |=ν ϕ̂2 for all

0 ≤ i ≤ n, andM,sn |=ν ϕ̂1. Then we obtain A, [s] 6|= ϕ1U=1ϕ2 as in (a) above.

(b) P(R) > 0, where R = {w ∈ Run(s) | M,w(i) |= ϕ1 ∧ ϕ̂2}. For every w ∈ R, the

type of w is the pseudo-structure B = (B, ↪→) where

• [t] ∈ B iff there are infinitely many i ∈ N0 such that [w(i)] = [t];

• [t] ↪→ [u] iff there are infinitely many i ∈ N0 such that [w(i)] = [t], [w(i+1)] = [u],

and w(i) →w(i+1).

For every type B, let R(B) = {w ∈ R | the type of w is B}. Since there are only

finitely many types, R =
⋃
BR(B), and P(R) > 0, there must be a type B such that

P(R(B)) > 0. For the rest of this proof, let us fix such a type B = (B, ↪→). We claim that

B is a witness for ¬(ϕ1U=1ϕ2). Clearly B is strongly connected and ϕ̂2 ∈ [t] for every

[t] ∈ B. It remains to show that for every [t] ∈ B and every ξ1U=1ξ2 ∈ [t] we have that

B, [t] |= ξ1U=1ξ2. Suppose that B, [t] 6|= ξ1U=1ξ2. Since B has finitely many states and is

strongly connected, there are two possibilities (see Lemma 3.1):

(a) There is a finite path [t0] ↪→ · · · ↪→ [tn], where n ∈ N0, [t] = [t0], ξ̂2 ∈ [ti] for all

0 ≤ i ≤ n, and ϕ̂1 ∈ [tn]. Then we obtain ξ1U=1ξ2 6∈ [t0] = [t] in the same way as

in the paragraph Condition (1) (a).

(b) ξ1, ξ̂2 ∈ [u] for every [u] ∈ B (note that B is strongly connected). We show that

ξ1U=1ξ2 6∈ [t]. For this we need the observation formulated in the next paragraph.

For every u ∈ St such that [u] ∈ Bwe define Run(u,B) as the set of allw ∈ Run(u)

such that [w(i)] ↪→ [w(i+1)] for all i ∈ N0. We claim that for every u ∈ St such

that [u] ∈ B there is some u ′ ∈ St such that [u] = [u ′] and P(Run(u ′,B)) > 0.

Suppose that this condition is violated by some u ∈ St. Let H be the set of all

finite paths in M initiated in s and terminated in some u ′ ∈ St where [u ′] = [u].

Since every run of R(B) eventually visits some u ′ such that [u ′] = [u], we have

thatR(B) ⊆
⋃
v∈H

(
v ·Run(uv,B)

)
, where uv is the last state of v and v ·Run(uv,B)

the set of all runs of the form vw̄ where uvw̄ ∈ Run(uv,B). Hence, P(R(B)) ≤∑
v∈H P(Run(v)) · P(Run(uv,B)). Since P(Run(uv,B) = 0 for every v ∈ H, we

obtain P(R(B)) = 0, which is a contradiction.

Due to the observation formulated in the previous paragraph, there is some

t ′ ∈ St such that [t ′] = [t] and P(Run(t ′,B)) > 0. Since M,w(i) 6|=ν ξ2
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for every w ∈ Run(t ′,B) and i ∈ N0, we obtain that M, t ′ 6|=ν ξ1U=1ξ2, hence

ξ1U=1ξ2 6∈ [t ′] = [t].

According to Theorem 3.7, every satisfiable qualitative PCTL formula has a finite

pseudo-model. Now we show that this pseudo-model can be turned into a “real”

model, which can be infinite but always admits a finite description in the form of a

marked graph.

Definition 3.8. A marked graph is a triple G = (G, ↪→, L) where G is a finite set of nodes,

↪→ ⊆ G×G is a total relation, and L ⊆ ↪→ a subset of marked transitions.

Each marked graph G = (G, ↪→, L) determines a unique Markov chain MG =

(G+, → ,Prob) where

• for all w ∈ G∗ and v ∈ G, wv→ w̄ iff w̄ = wvv ′ for some v ′ ∈ G such that v ↪→ v ′.

We say that wv→wvv ′ is marked iff v ↪→ v ′ is marked;

• for every w ∈ G+, Prob(w) is a uniform distribution if none or all outgoing tran-

sitions of w are marked. Otherwise, Prob assigns the same probability p to all

non-marked transitions and the same probability p ′ to all marked transitions so

that
∑
w→w ′∈L p is equal to 1− 1/4len(w).

In other words, each marked graph G is a finite representation of an infinite-state

Markov chain MG obtained by “unfolding” the structure of G and assigning larger and

larger probabilities to marked transitions.

Remark 3.9. Let G = (G, ↪→, L) be a marked graph. For every run w ∈ Run(u) of G there is a

corresponding run w̄ ∈ Run(u) ofMG , where w̄(k) = w(0) · · ·w(k) for every k ∈ N0. Further,

each η : G → 2Ap can be naturally extended to a valuation η ′ : G+ → 2Ap where η ′(wv) = η(v)

for every w ∈ G∗ and v ∈ G. For the sake of simplicity, we introduce the following notation:

• for every PCTL formula ϕ and every η : G → 2Ap, we write G, v |=η ϕ iffMG, v |=η
′
ϕ

• for every set of runs L ⊆ Run(u) in G we put L̄ = {w̄ | w ∈ L} and define P(L) = P(L̄)

whenever L̄ is measurable.

Let v be a finite path in G initiated in some S ∈ G. One can easily prove that for every L ⊆
Run(v) such that P(L) is defined we have that P(L) = P(Run(v)) · P({w | vw ∈ L}), and this

observation is frequently used in the proof of Theorem 3.10.
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Theorem 3.10. Let ψ be a qualitative PCTL formula. If there is a pseudo-model A for ψ, then

there is a marked graph G = (G, ↪→, L) whose size is exponential in |ϕ|, a valuation η : G → 2Ap,

and v ∈ G such that G, v |=η ψ. Moreover, if A is simple, then L = ∅ and ψ has a finite-state

model whose size is exponential in |ψ|.

Proof. LetA = (A, 7→) be a pseudo-model forψ. IfA is simple, we can put G = (A, 7→, ∅)
and η(S) = {p ∈ Ap | p ∈ S} for every S ∈ A. It is easy to verify that for every S ∈ A and

ϕ ∈ S we have that G, S |=η ϕ. (A proof is a straightforward induction on the structure

of ϕ, where all subcases follow immediately from Definition 3.6).

If A is not simple, we proceed as follows. Let Bi = (Bi, i), 1 ≤ i ≤ m, be a family

of pseudo-structures such that

• for every S ∈ A and every ¬(ϕ1U=1ϕ2) ∈ S there is a suitable Bi and a finite path

S = S0 7→ · · · 7→ Sn such that ϕ̂2 ∈ Sj for every 0 ≤ j ≤ n, Sn ∈ Bi, and Bi is a

witness for ¬(ϕ1U=1ϕ2) in A;

• each Bi is a witness for some ¬(ϕ1U=1ϕ2) ∈ Cl(ψ) in A.

Since we need at most one witness for every S ∈ A and every ¬(ϕ1U=1ϕ2) ∈ S, we can

safely assume thatm ≤ |A| · |ψ|.

The nodes of G are obtained by taking the disjoint union of A and all Bi, 1 ≤ i ≤ m.

Formally, we put G =
⋃m
i=0 Bi×{i}, where B0 = A. The ↪→ and L are defined as follows:

if S 7→ T , then

• (S, 0) ↪→ (T, i) for every 0 ≤ i ≤ m such that T ∈ Bi;

• for every 1 ≤ i ≤ m such that S, T ∈ Bi and S i T we have that (S, i) ↪→ (T, i) and

this transition is marked;

• for every 1 ≤ i ≤ m such that S ∈ Bi and T 6∈ Bi we have that (S, i) ↪→ (T, 0).

Both ↪→ and L contain only those transitions which can be derived by the above rule.

Note that the size of G is exponential in |ψ|.

Before continuing with the main proof, we need to formulate auxiliary observations

about G. We say that a runw of G stays at i, where 0 ≤ i ≤ m, ifw(k) ∈ Bi× {i} for every

k ∈ N0. We say that a run w enters i, where 0 ≤ i ≤ m, if w is of the form uw̄, where w̄

stays at i. Now observe that
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(i) for every (S, i) ∈ Gwhere i ≥ 1, the probability of all w ∈ Run((S, i)) that stay at i

is at least 2/3. To see this, realize that the probability of all w ∈ Run((S, i)) such

that a non-marked transition is performed in w is bounded by
∑∞
k=1 1/4

k = 1/3.

This follows directly from the definition ofMG .

(ii) for every (S, i) ∈ G, the probability of all w ∈ Run((S, i)) such that w does not

enter any j, where 0 ≤ j ≤ m, is zero. This is an immediate consequence of the

previous observation.

(iii) for every (S, i) ∈ G and every ξ1U=1ξ2 ∈ S, the conditional probability of all

w ∈ Run((S, i)) such that G, w |= ξ1Uξ2, under the condition that w stays at i, is

equal to 1. This follows from Definition 3.5.

Now we continue with the main proof. Let η be a valuation given by η((S, i)) = {p ∈
Ap | p ∈ S} for every 0 ≤ i ≤ m. We show that for every ϕ ∈ Cl(ψ) and every (S, i) ∈ G
we have that ϕ ∈ S iff G, (S, i) |=η ϕ (from now on, the η in |=η is omitted). We proceed

by induction on the structure of ϕ.

• The cases when ϕ is of the form p, ¬ϕ1, ϕ1∧ϕ2, X>0ϕ1, or X=1ϕ1 follow immedi-

ately.

• Let ϕ be of the form ϕ1U>0ϕ2. If ϕ1U>0ϕ2 ∈ S, then A, S |= ϕ1U>0ϕ2, and there

is a finite path S=S0 7→ · · · 7→ Sn, where ϕ1 ∈ Sj for every 0 ≤ j < n and ϕ2 ∈ Sn.

Hence, (S, i)=(S0, i0) ↪→ · · · ↪→ (Sn, in), where 0 ≤ ij ≤ m for every 0 ≤ j ≤ n
(this follows from the definition of G). Further, G, (Sj, ij) |= ϕ1 for every 0 ≤ j < n
and G, (Sn, in) |= ϕ2 (by induction hypothesis), hence G, (S, i) |= ϕ1U>0ϕ2 as re-

quired. Similarly, we show that if G, (S, i) |= ϕ1U>0ϕ2, then A, S |= ϕ1U>0ϕ2,

hence ϕ1U>0ϕ2 ∈ S as needed.

• Let ϕ be of the form ϕ1U=1ϕ2. We start with the “⇒” direction, i.e., we prove that

if G, (S, i) 6|= ϕ1U=1ϕ2 for some (S, i) ∈ G, then ϕ1U=1ϕ2 6∈ S.

Since G, (S, i) 6|= ϕ1U=1ϕ2, there are two possibilities (see Lemma 3.1):

(a) There is a finite path (S, i)=(S0, i0) ↪→ · · · ↪→ (Sn, in) such that G, (Sj, ij) |= ϕ̂2

for every 0 ≤ j ≤ n and G, (Sn, in) |= ϕ̂1. But then S=S0 7→ · · · 7→ Sn where

A, Sj |= ϕ̂2 for every 0 ≤ j ≤ n and A, Sn, |= ϕ̂1 (by induction hypothesis), which

means A, S 6|= ϕ1U=1ϕ2, and hence ϕ1U=1ϕ2 6∈ S by definition.
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(b) We have P(R) > 0, where R = {w ∈ Run((S, i)) | G, w(k) |= ϕ1 ∧ ϕ̂2}. Let

us assume that ϕ1U=1ϕ2 ∈ S, for a contradiction. Observe that for every run

(S, i)=(S0, i0), (S1, i1), · · · ofR and every k ∈ N0 we have that ϕ1U=1ϕ2 ∈ Sk. This

can be shown by induction k:

– k = 0. This is immediate because ϕ1U=1ϕ2 ∈ S.

– Induction step: Let us assume ϕ1U=1ϕ2 ∈ Sk−1 and (Sk−1, ik−1) ↪→ (Sk, ik).

Since we have G, (Sk−1, ik−1) 6|= ϕ2, we obtain ϕ2 6∈ Sk−1 by induction hy-

pothesis (here we consider the “outer” structural induction). Since Sk−1 is

eligible, we have that X=1(ϕ1U=1ϕ2) ∈ Sk−1 (see Definition 3.3). Since (A, 7→)

is a pseudo-model and Sk−1 7→ Sk, we obtain ϕ1U=1ϕ2 ∈ Sk as needed.

For every 0 ≤ j ≤ m, let Rj = {w ∈ R | w enters j}. Due to observation (ii) above,

P(R) =
∑m
j=0P(Rj), and hence there is some j such that P(Rj) > 0. For the rest

of this paragraph, let us fix such a j. Let H be the set of all finite paths initiated in

(S, i). For every u ∈ H, let Rj(u) = {w ∈ Rj | w = uw̄where w̄ stays at j}. Since

P(Rj) > 0 and Rj =
⋃
u∈HRj(u), there is some u ∈ H such that P(Rj(u)) > 0.

For the rest of this paragraph, we fix such a u. Let u = u ′(Sk, ik), and let

L = {w̄ | u ′w̄ ∈ Rj(u)}. Since P(Rj(u)) > 0, we have that P(L) > 0. Since

ϕ1U=1ϕ2 ∈ Sk and G, w̄ 6|= ϕ1Uϕ2 for every w̄ ∈ L, we obtain a contradiction with

observation (iii).

It remains to prove the “⇐” direction. We show that if ϕ1U=1ϕ2 6∈ S, then

G, (S, i) 6|= ϕ1U=1ϕ2 for every 0 ≤ i ≤ m such that (S, i) ∈ G. According to

Definition 3.6, two cases arise:

(a) A, S 6|= ϕ1U=1ϕ2. Since A is finite-state, there are two possibilities (see

Lemma 3.1):

i. There is a finite path S=S0 7→ · · · 7→ Sn where A, Sj |= ϕ̂2 for every 0 ≤ j ≤ n
and A, Sn, |= ϕ̂1. From this we easily obtain that G, (S, i) 6|= ϕ1U=1ϕ2.

ii. There is a BSCC α of A such that A, T |= ϕ̂2 for every T ∈ α, and a finite path

S = S0 7→ · · · 7→ Sn, n ∈ N0, such that Sn ∈ α and A, Si |= ϕ̂2 for all 0 ≤ i ≤ n.

Then (S, i)=(S0, i0) ↪→ · · · ↪→ (Sn, in) where G, (Sn, in) |= ϕ1U=0ϕ2. From this

we get G, (S, i) 6|= ϕ1U=1ϕ2.

(b) There is a witness Bk = (Bk, k) and a finite path S = S0 7→ · · · 7→ Sn ∈ Bk,
where ϕ̂2 ∈ Sj for every 0 ≤ j ≤ n, and ϕ̂2 ∈ T for every T ∈ Bk. Hence also
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(S, i) = (S0, j0) ↪→ · · · ↪→ (Sn, jn) where jn = k. Let R = {w ∈ Run((S, i)) | w =

(S0, j0) · · · (Sn, jn)u, where u stays at k}. Since G, w(`) |= ϕ̂2 for every w ∈ R and

` ∈ N0, and P(R) > 0 using observation (i), we receive G, (S, i) 6|= ϕ1U=1ϕ2.

Note that the construction of the marked graph G in Theorem 3.10 is effective (provided

that the family Bi of witness has already been computed). Hence, it remains to show

how to compute a (simple) pseudo-model for a given qualitative PCTL formula (if it

exists) together with the associated family of witnesses.

Theorem 3.11. Let ψ be a qualitative PCTL formula. The existence of a (simple) pseudo-model

for ψ is decidable in time exponential in |ψ|. Moreover, if a (simple) pseudo-model for ψ exists,

it can be effectively constructed in time exponential in |ψ|.

Proof. Let ψ be a qualitative PCTL formula. An algorithm for constructing a (finite)

pseudo-model for ψ is given in Figure 1. The algorithm executes either the line 10a or

10b (not both), depending on whether the constructed pseudo-model is to be simple or

not, respectively. We show that the algorithm has the required properties. This is done

in three steps. We show that

(a) if the algorithm returns some A = (A, 7→), then A is a (simple) pseudo-model for

ψ;

(b) if ψ is (finite) satisfiable, then the algorithm returns a (simple) pseudo-model for

ψ;

(c) the algorithm terminates in time which is exponential in |ψ|.

Step (a). It suffices to verify the conditions stated in Definition 3.6. Let S ∈ A and ξ ∈ S.

If ξ is of the form X=1ϕ or ¬X>0ϕ, thenA, S |= ξ because only the “safe” outgoing edges

of S satisfy the conditions given at line 3 and line 4, respectively. Similarly, if ξ is of the

form X>0ϕ, ¬X=1ϕ, or ϕ1U>0ϕ2, then A, S |= ξ because otherwise S would have to be

deleted from A at line 7.

Now let ξ ≡ ¬(ϕ1U>0ϕ2). We need to show that A, S |= ξ. Suppose the converse,

i.e., A, S |= ϕ1U>0ϕ2. Then there is a finite path S = S0 7→ · · · 7→ Sn, where ϕ2 ∈ Sn and

ϕ1 ∈ Si for all 0 ≤ i < n. By induction on n we show that some Si in this finite path is

not eligible, which is a contradiction.

• n = 0. Then ϕ2 ∈ S0 and ¬(ϕ1U>0ϕ2) ∈ S0, which means that ϕ2, ϕ̂2 ∈ S0, hence

S0 is not eligible.
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Input: A qualitative PCTL formula ψ.

Output: A (simple) pseudo-model A = (A, 7→) if ψ is (finite) satisfiable, unsatisfiable otherwise.

1: A := the set of all eligible subsets of Cl(ψ)

2: 7→ := A×A
3: for all S ∈ A, X=1 ∈ S do

delete all edges S 7→ T where ϕ 6∈ T
4: for all S ∈ A, ¬X>0 ∈ S do

delete all edges S 7→ T where ϕ ∈ T
5: repeat

6: for all S ∈ A, ξ ∈ S (in any order) do

7: if ξ ≡ X>0ϕ or ξ ≡ ¬X=1ϕ or ξ ≡ ϕ1U>0ϕ2 then

if A, S 6|= ξ then A := Ar {S}

8: if ξ ≡ ϕ1U=1ϕ2 then

for every BSCC B of (A, 7→) (in any order) do

if ϕ1, ϕ̂2, ϕ1U=1ϕ2 ∈ T for every T ∈ B then

A := Ar B
done

9: if ξ ≡ ¬(ϕ1U=1ϕ2) then

if there is no finite path S = S0 7→ · · · 7→ Sn where ¬(ϕ1U>0ϕ2) ∈ Sn and

ϕ1, ϕ̂2 ∈ Si for all 0 ≤ i < n then

10a: A := Ar {S}

10b:

if there is no witness (B, ↪→) for ¬(ϕ1U=1ϕ2) in (A, 7→) such that there

is a finite path S = S0 7→ · · · 7→ Sn where Sn ∈ B and ϕ̂2 ∈ Si for all

0 ≤ i ≤ n then

A := Ar {S}

11: repeat

7→ := 7→ ∩ (A×A)

A := Ar {S ∈ A | S has no outgoing edges}

until A does not change

done

12: until (A, 7→) does not change

13: if ψ ∈ S for some S ∈ A then

return A = (A, 7→)

else return unsatisfiable

Figure 1: An algorithm for constructing a (simple) pseudo-model.
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• Induction step. Since ¬(ϕ1U>0ϕ2) ∈ S0, there are two possibilities (see Defini-

tion 3.3): Either ϕ̂1, ϕ̂2 ∈ S0, which means that ϕ̂1, ϕ1 ∈ S0 and hence S0 is not

eligible, or ¬X>0(ϕ1U>0ϕ2) ∈ S0, which means that ¬(ϕ1U>0ϕ2) ∈ S1 and we can

apply induction hypothesis.

The next case is ξ ≡ ϕ1U=1ϕ2. Again, we need to show that A, S |= ξ. Suppose the

converse, i.e., A, S |= ¬(ϕ1U=1ϕ2). According to Lemma 3.1, there are two possibilities:

• There is a finite path S = S0 7→ · · · 7→ Sn such that ϕ̂1 ∈ Sn and ϕ̂2 ∈ Si for all

0 ≤ i ≤ n. Similarly as above, we can show (by a straightforward induction on n)

that some Si is not eligible.

• There is a BSCC B of A = (A, 7→) and a finite path S = S0 7→ · · · 7→ Sn such that

Sn ∈ B andϕ1, ϕ̂2 ∈ T for every T ∈ Awhich appears in the path or in B. A simple

induction reveals that ϕ1U=1ϕ2 ∈ Sn, and in fact ϕ1U=1ϕ2 ∈ T for every T ∈ B.

Hence, the BSCC Bwas deleted from A at line 8, which is a contradiction.

Finally, let us consider the case when ξ ≡ ¬(ϕ1U=1ϕ2). According to Definition 3.6,

we need to verify thatA, S |= ¬(ϕ1U=1ϕ2) or there is a suitable witness for ¬(ϕ1U=1ϕ2).

The latter possibility is considered only if the algorithm is supposed to construct a

pseudo-model that is not necessarily simple. Let us assume that A, S |= ϕ1U=1ϕ2. But

then there cannot be any finite path S = S0 7→ · · · 7→ Sn such that ¬(ϕ1U>0ϕ2) ∈ Sn
and ϕ1, ϕ̂2 ∈ Si for all 0 ≤ i ≤ n, which means that the condition of line 9 is satisfied.

If the algorithm is supposed to construct a simple pseudo-model, we obtain a contra-

diction because S is deleted from A at line 10a. Otherwise, the algorithm proceeds with

line 10b, which verifies the existence of a suitable witness for ¬(ϕ1U=1ϕ2). If there was

no witness, Swould have been deleted from A at line 10b.

Step (b). Let us assume that ψ is (finite) satisfiable. By Theorem 3.7, there is a (simple)

pseudo-model A ′ = (A ′, ) for ψ. We show that A ′ ⊆ A (taken componentwise) is an

invariant of the main repeat-until loop at lines 5-12. Here we consider each of the if

statements individually and show that no element ofA ′ can be deleted from the current

A, assuming that A ′ ⊆ A.

If ξ = ϕ1U>0ϕ2 and A ′, S |= ξ, then there is a path S = S0 7→ · · · 7→ Sn in A ′ with

ϕ1 ∈ Si for 0 ≤ i < n and ϕ2 ∈ Sn. Since A ′ ⊆ A by the induction hypothesis, this path

is also a path in A, hence A, S |= ξ. Similarly for ξ of the forms X>0 and ¬X=1.

For ξ = ϕ1U=1ϕ2, let R be a state from a BSCC B, where ϕ1, ϕ̂2, ϕ1U=1ϕ2 ∈ T for

every T ∈ B. Suppose for a contradiction that R is a state of A ′. Then there is a path
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R = S0 7→ · · · 7→ Sn in A ′ with ϕ1 ∈ Si for 0 ≤ i < n and ϕ2 ∈ Sn. Since A ′ ⊆ A by the

induction hypothesis, this path is also a path in A. However, all paths from R are in B,

which is a contradiction.

For ξ = ¬(ϕ1U=1ϕ2) and ξ ∈ S, let S be a vertex of A ′. Firstly, let A ′ be simple,

then A ′, S 6|= ξ. According to Lemma 3.1, there are two possibilities. Either there is a

path S = S0 7→ · · · 7→ Sn such that ϕ1, ϕ̂2 ∈ Si for 0 ≤ i < n and ϕ̂1, ϕ̂2 ∈ Sn whence

¬(ϕ1U>0ϕ2) ∈ Sn. Or there is a BSCC α and a path S = S0 7→ · · · 7→ Sn ∈ α where

all states on this path or in α contain ϕ1 and ϕ̂2. As no state containing ϕ2 is reachable

from Sn we have ¬(ϕ1U>0ϕ2) ∈ Sn. In both cases, there is a path specified in step 9 and

thus S is not deleted. IfA ′ is not simple, a third possibility occurs, that there is a witness

B for ¬(ϕ1U=1ϕ2) reachable via a path with its states containing ϕ̂2. Since A ′ ⊆ A this

is a witness in A ′ reachable along the same path.

Clearly, states with no outgoing edges in A have no outgoing edges in A ′ and hence

are not states of A ′.
Since A is initialized to the set of all eligible states and 7→ is initialized to A×A and

the edges deleted in steps 3 and 4 clearly cannot be in A ′, the invariant A ′ ⊆ A surely

holds before executing the main repeat-until loop. Hence, we also have that A ′ ⊆ A
after this loop terminates.

Step (c). Since the model-checking problem for qualitative PCTL and finite-state

Markov chains is decidable in polynomial time, all steps can be implemented in time

which is polynomial in |ψ| and the size of A (i.e., exponential in |ψ|). The existence of a

suitable witness at line 10b can be decided as follows: suppose that ¬(ϕ1U=1ϕ2) ∈ S.

First, initialize B to {T ∈ A | ϕ̂2 ∈ T }, and then do the following:

(A) Compute the strongly connected components B1, . . . , Bn of B using the current 7→,

and put Bi = (Bi, ↪→i), where S ↪→i T iff S, T ∈ Bi and S 7→ T .

(B) Compute the set C of all S ∈ Bi, where 1 ≤ i ≤ n, such that for some ξ1U=1ξ2 ∈ S
we have that Bi, S 6|= ξ1U=1ξ2.

(C) Put B := BrC. If C = ∅, terminate. Otherwise, goto (A).

Obviously, the above procedure can be implemented in time which is polynomial in |ψ|

and the size ofA. We show that every witness for ¬(ϕ1U=1ϕ2) in the currentA = (A, 7→)

is contained in some SCC of the resulting B, and each of these SCCs itself is a witness

for ¬(ϕ1U=1ϕ2).

21



Firstly, we show that no state S of any witness B ′ for ¬(ϕ1U=1ϕ2) in A ′ cannot be

deleted in step (B). Let S be deleted for a contradiction. Since A ′ ⊆ A there is 1 ≤ i ≤ n
such that B ′ ⊆ Bi and there is ξ1U=1ξ2 ∈ S such that Bi, S 6|= ξ1U=1ξ2. The possibility

(a) in Lemma 3.1 cannot occur. Indeed, since we have already performed step 3 and

eligibility guarantees that if ξ1U=1ξ2 ∈ T , then ξ2 ∈ T or ξ1,X=1(ξ1U=1ξ2) ∈ T . Hence,

a simple induction reveals that there is no path S = S0 ↪→ · · · ↪→ Sn such that ξ̂2 ∈ Si for

1 ≤ i ≤ n and ξ̂1 ∈ Sn. Hence, the possibility (b) takes place, i.e., ξ1, ξ̂2 ∈ T for every

state T in Bi since Bi is the only reachable BSCC. Therefore, ξ1, ξ̂2 ∈ T for every state T

in B ′, which means that B ′ is not a witness, a contradiction.

Secondly, we show that after termination every SCC Bi in the resulting B is a witness

for ¬(ϕ1U=1ϕ2). Clearly, Bi is strongly connected and satisfies that for every state S of

Bi and every ξ1U=1ξ2 ∈ S we have that Bi, S |= ξ1U=1ξ2. Due to the initialization

B ⊆ {T ∈ A | ϕ̂2 ∈ T }, and thus all states of Bi contain ϕ̂2.

For the sake of completeness, we explicitly verify the corresponding lower complexity

bound, although the proof is not very different from the non-probabilistic case.

Theorem 3.12. The satisfiability problem and the finite-satisfiability problem are EXPTIME-

hard.

A direct corollary to the previously presented results is the following:

Theorem 3.13. Let ψ be a qualitative PCTL formula. The problem whether ψ is satisfiable (or

finite-satisfiable) is EXPTIME-complete. Moreover, if ψ is satisfiable (or finite satisfiable), then

there is a marked graph (or a finite Markov chain) of size exponential in |ψ| constructible in time

exponential in |ψ| which defines a model for ψ.

4 Some Notes on Quantitative PCTL

In this section, we present some results about the satisfiability problem for quantitative

PCTL formulae, which seem confusing at first glance, but which in fact indicate that this

problem is more “fragile” and subtle than it looks.

First, we show that the satisfiability problem for quantitative PCTL is highly unde-

cidable for a restricted class of models where the branching degree is bounded by a

fixed constant k ≥ 2. Our proof uses a technique for encoding the computations of non-

deterministic Minsky machines, which was developed and used in [3] to show the high

undecidability of 11
2
-player games with PCTL objectives.
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Theorem 4.1. Let ψ be a quantitative PCTL formula, and let k ≥ 2. The existence of a model

for ψ where each state has at most k outgoing transitions is highly undecidable. Moreover,

the existence of a finite model for ψ where each state has at most k outgoing transitions is

undecidable.

Note that this theorem does not allow to conclude that the satisfiability problem as such

is undecidable for quantitative PCTL, because the branching degree of the model cannot

be bounded by any fixed constant.

Finally, we present a result which reveals some kind of regularity in PCTL models.

First we formulate a general lemma which will be used in the proof of our main result.

Intuitively, the lemma says that a countable convex combination of vectors is express-

ible as a convex combination of a finite number of these vectors. Moreover, if n is the

dimension of the vector space, n+ 1 vectors are sufficient (the lemma is a basic result in

geometry; a self-contained proof is included in the appendix).

Lemma 4.2. Let I be a countable set, v ∈ Rn, and ui ∈ Rn for every i ∈ I. If v =
∑
i∈I aiui

where ai ≥ 0 and
∑
i∈I ai = 1, then there is J ⊆ I such that |J| ≤ n+ 1, and for each j ∈ J there

is bj ≥ 0 such that
∑
j∈J bj = 1 and v =

∑
j∈J bjuj.

Now we show that every satisfiable PCTL formula ψ has a model where each state has

at most |ψ| + 2 outgoing transitions. This result is non-trivial and uses a combination of

geometrical and probabilistic arguments.

Theorem 4.3. Every satisfiable PCTL formulaψ has a model where each state has at most |ψ|+2

outgoing transitions.

Proof Sketch. Letψ be a satisfiable formula. This means that there areM = (St, → ,Prob),

sin ∈ St and ν satisfying M,sin |=ν ψ. We may safely assume that M is a (possibly

infinite branching) tree rooted in sin, i.e., that every state of M distinct from sin has

precisely one incoming transition and sin has no incoming transitions (note that every

model of ψ can be “unfolded” into a tree). We construct a model with branching degree

bounded by |ψ| + 2. The proof is based on choosing suitable successors and assigning

them appropriate probabilities, and pruning the others while keeping a model.

Let us denote S(ψ) the set of all state subformulae of ψ. Further, let

I = S(ψ) ∪ {Xϕ | Xonρϕ ∈ S(ψ)} ∪ {ϕ1Uϕ2 | ϕ1Uonρϕ2 ∈ S(ψ)}
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Let us consider vectors of dimension |I| over real numbers with components indexed by

elements of I. For every state s ofMwe define a vector ~s ∈ R|I| as follows:

~sXϕ = r iffM,s |= X=rϕ

~sϕ1Uϕ2 = r iffM,s |= ϕ1U=rϕ2

and for ϕ ∈ S(ψ) we put

~sϕ =

1 ifM,s |=ν ϕ;

0 otherwise.

It is easy to verify that for every state s the vector ~s satisfies the following “local consis-

tency” equations:

~sXϕ =
∑
s
x→t
x ·~tϕ

and

~sϕ1Uϕ2 =
∑
s
x→t
x ·~tϕ1Uϕ2

forϕ1Uϕ2 ∈ I such thatM,s |=ν ϕ1 andM,s 6|=ν ϕ2. Note also that components of ~s not

occurring in the above equations are determined by other components of~s. Hence, if we

are to prune the transition relation ofMwe should strive to satisfy the above equations.

Let us denote

N(s) = {Xϕ ∈ I} ∪ {ϕ1Uϕ2 ∈ I | M,s |=ν ϕ1;M,s 6|=ν ϕ2}

For every t such that s→ t we define a vector p(t) ∈ R|N(s)| (indexed by elements of

N(s)) as follows:

p(t)Xϕ = ~tϕ and p(t)ϕ1Uϕ2 = ~tϕ1Uϕ2

Let s be a state of M. Observe that now we may apply Lemma 4.2 to prune outgoing

transitions from s while preserving the model. Indeed, it suffices to apply Lemma 4.2

to
∑
s
x→t x · p(t) and obtain numbers b1, . . . , bk and successors t1, . . . , tk of s such that∑

s
x→t x · p(t) =

∑k
i=1 bi · p(ti). Consequently, it suffices to modify transitions of M in

such a way that s bi→ ti. It is easy to verify that the resulting Markov chain is still a model

of ψ. However, this pruning cannot be treated out for all states of M. Intuitively, the

problem is that fulfilling ϕ1Uϕ2 can be deferred indefinitely while still preserving the

local consistency (a path formulaϕ1Uϕ2 is fulfilled on a runw in n steps ifϕ2 is satisfied

in w(n) and ϕ1 is satisfied in w(i) for all 0 ≤ i < n; a formula ϕ1Uϕ2 is fulfilled if it

is fulfilled in n steps for some n). Therefore, the chain M has to be pruned carefully so

that a progress in fulfilling “until” formulae is ensured.
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Let ξ1, . . . , ξ` be all formulae of I of the form ϕ1Uϕ2. Observe that there is n1 ≥ 0
such that with a probability rs ≥ 1

2
~sξ1 the formula ξ1 is fulfilled in at most n1 steps.

Let us assign to every state t reachable from s in k ≤ n1 steps the probability rt of

fulfilling ξ1 in less than n1 − k steps (i.e., up to the n1’th level of the subtree rooted in

s). First, assume that ξ1 ∈ N(s). Note that rs =
∑
s
x→t x · rt. Let us apply Lemma 4.2

to
∑
s
x→t x · (p(t), rt) and obtain numbers b1, . . . , bm and successors t1, . . . , tm of s such

that
∑
s
x→t x · (p(t), rt) =

∑m
i=1 bi · (p(ti), rti). Now we may safely prune the outgoing

transitions from s so that s bi→ ti. On the other hand, if ξ1 6∈ N(s), we may ignore rt
and apply Lemma 4.2 to

∑
s
x→t x · p(t) in the same way as above. We inductively repeat

this pruning for all states reachable from s in at most n1 steps. Observe that after this

pruning the resulting chain is still a model of ψ.

Now let us repeat the above procedure for all states reachable from s in n1 + 1 steps

and for the formula ξ2. We obtain n2 ≥ n1 and a new Markov chain, a model of ψ,

which has the property that ξ1 and ξ2 are fulfilled with probability at least 1
2
~sξ1 and

1
2
~sξ2 , resp., in n2 steps (starting in s). Note that while taking care of ξ2 the part of the

chain reachable from s in at most n1 steps remains unaltered. Similarly, we carry out

this process for the remaining formulae ξ3, . . . , ξ`. We obtain a modelM1 of ψ such that

for somem1 ≥ 0 all states reachable from s in at mostm1 steps have a branching degree

bounded by |ψ| + 2. Moreover, every ϕ1Uϕ2 ∈ I is fulfilled in at most m1 steps with

probability at least 1
2
~sϕ1Uϕ2 .

Repeating the whole construction for states reachable from s in m1 + 1 steps we

obtain M2 and m2 ≥ m1 with similar properties as M1 and m1, resp., except that every

ϕ1Uϕ2 ∈ I is fulfilled in at most m2 steps with probability at least 3
4
~sϕ1Uϕ2 . Repeating

this process ad infinitum we obtain a model M∞ of ψ such that every state reachable

from s has a branching degree bounded by |ψ| + 2.

Finally, to obtain a model for ψwith branching degree bounded by |ψ| + 2 it suffices

to perform the construction ofM∞ for s = sin.

5 Conclusions, Future Work

We solved the satisfiability problem for qualitative PCTL. Although there are some sim-

ilarities with the logic CTL, the actual properties of these two logics are rather different.

Since qualitative PCTL formulae may have only infinite-state models, we also consid-

ered the finite satisfiability problem. Since some qualitative PCTL formulae may also
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require transition probabilities arbitrarily close to zero, another refinement of the satis-

fiability question might be to consider only models which are possibly infinite-state, but

where all probability distributions are uniform. For example, the (satisfiable) formula

G=1(X>0p)∧G>0¬p does not have this kind of model, while the formula G>0(¬p∧F>0p)

(which has only infinite-state models) has a model where the probabilities of all transi-

tions are equal to 1
2
. Another direction for future work is to design a complete deductive

system for qualitative PCTL. The decidability of the satisfiability problem for quantita-

tive PCTL remains also open. It seems that proof techniques known to the authors are

not sufficient to prove the undecidability. On the other hand, there is some indication

that the problem might actually be decidable; of course, all the problems that have suc-

cessfully been defeated in the qualitative case now rise with a new power.

References

[1] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for

probabilistic systems. In Proceedings of IFIP TCS’2004, pages 493–506. Kluwer, 2004.

[2] B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Temporal Logic in

Specification, volume 398 of Lecture Notes in Computer Science, pages 62–74. Springer,

1987.

[3] T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with branching-
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A Appendix

Proof of Theorem 3.12

In what follows we show that the satisfiability problem for qualitative PCTL is

EXPTIME-hard. We give a reduction from the acceptance problem for alternating

LBA. Most of the definitions are taken from [3]. An alternating LBA is a tuple T =

(Q,A, Γ, q0,`,a, δ, P) where Q is a finite set of control states, A is a finite input alpha-

bet, Γ ⊇ A is a finite tape alphabet, q0 ∈ Q is the initial control state, `,a ∈ Γ are

the left-end and the right-end markers, δ : Q × Γ → 2Q×Γ×{L,R} is a transition function,

and P = (Q∀, Q∃, Qacc, Qrej) is a partition of control states into universal, existential,

accepting and rejecting states.

W.l.o.g. we assume that Q ∩ Γ = ∅ and that δ(q,A) has exactly two elements

(q1, A1, D1), (q2, A2, D2) where q1 6= q2 for every q ∈ Q and A ∈ Γ . A computational

tree for T on a word u ∈ A∗ is a tree T satisfying the following: the root of T is (labeled

by) the initial configuration for u, and ifN is a node of T labeled by a configuration with

a control state q, then the following holds:

• if q is accepting or rejecting, then N is a leaf;

• if q is existential, then N has one successor labeled by a configuration reachable

from the configuration of N in one step;

• if q is universal, then the successors of N are the two configurations reachable

from the configuration of N in one step.

T accepts u iff there is a finite computational tree T for T on u such that all leafs of T

are accepting. We can safely assume that all computational trees for T are finite. Config-

urations of T are written as words over the alphabet Ξ = Q∪ Γ in the standard way; for

example, the initial configuration for u is written as q0`ua. Depending on the control

state of a configuration, we call a configuration universal, existential, accepting or reject-

ing. Another standard result is that one can efficiently compute the set Comp(T ) ⊆ Ξ6

of all compatible 6-tuples such that for each configuration c (written as a word over Ξ)
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we have that c ′ ∈ Ξ∗ is a one-step successor of c iff c ′ has the same length as c and for all

1 ≤ i ≤ |c| − 2we have that (c(i), c(i+ 1), c(i+ 2), c ′(i), c ′(i+ 1), c ′(i+ 2)) ∈ Comp(T ).

Let T = (Q,A, Γ, q0,`,a, δ, P) be an alternating LBA and u ∈ A∗ an input word of

length z. We construct (in polynomial time) a qualitative PCTL formulaϕ such thatϕ is

satisfiable iff T accepts u. The formulaϕwill be chosen so that each model must encode

a computational tree in the way that will be explained later.

In the following, we denote r the length of a configuration of T , i.e. r = z + 3. We

also use (X=1)n to denote string of n iterations of X=1. For example, (X=1)2p stands for

X=1X=1p. Very same notation is also used for other modal operators.
Let us fix fresh atomic propositions q̂ and q for each q ∈ Q, and an atomic proposi-

tion t for each t ∈ Ξ. Also, let us fix a distinguished proposition start. The formula ϕ is
of the following form:

ϕ ≡ Struct∧ Init∧ CState∧NState∧ Compat∧UnivStates∧Acc

The formula Struct encodes the syntactical structure of computational trees.

Struct ≡ Props∧ start∧ G=1
(
start ⇒ (Config∧ States∧Delim)

)
Here, the formula Props says that exactly one of atomic propositions occurring in ϕ

holds in each state (it is straightforward to encode it in PCTL). The formula Delim
says that the atomic proposition start occurs on every path after each r + 3 steps. For-
mally, Delim ≡

(
(X=1)r+3start

)
. Formulae Config and States enforce a certain atomic

propositions to hold between each two states in which start holds. Formally, Config
and States are defined as follows:

Config ≡
(∨

t∈Ξ(X=1)1t
)

∧ . . .∧
(∨

t∈Ξ(X=1)rt
)

States ≡
(∨

q∈Q(X=1)r+1q̂
)

∧
(
(X=1)r+2

∨
q∈Q q

)
To satisfy Struct, each run initiated in the initial state must be composed of sequences

(we call them chunks) s0s1 . . . sr+2 of states of the following form:

• s0 |= start;

• si |= ti for all 1 ≤ i ≤ rwhere each ti is from Ξ;

• sr+1 |= q̂ for some q ∈ Q and

• sr+2 |= q ′ for some q ′ ∈ Q.
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Intuitively, we intend each chunk to “encode” a configuration of T , with redundant

information about a current control state at (r+ 2)-th position, and information about a

control state that will be used in the next chunk at (r+ 3)-th position.
The formula Init enforces the first chunk of every run to encode the initial configu-

ration of T . Formally, it is defined by

Init ≡
(
(X=1)1c(0)

)
∧ . . .∧

(
(X=1)rc(r− 1)

)
where c = q0`ua is the initial configuration.

The formula CState ensures that a state that occurs at (r+ 2)-th position in a chunk
is the same as the one that occurs in the configuration encoded by the chunk.

CState ≡
∧
q∈Q

G=1
(
q ⇒ (¬startU=1q̂)

)

The formulaNState ensures that a state that occurs at (r+ 3)-th position in a chunk
is equal to the one that occurs in the configuration encoded by the adjacent chunk.

NState ≡
∧
q∈Q

G=1
(
q ⇒ (X=1)2(¬startU=1q)

)

The formula Compat ensures that if there are two adjacent chunks encoding config-
urations c and c ′, then c ′ is a one step successor of c.

Compat ≡ G=1
∧

t1t2t3t
′
1t
′
2t
′
3∈Ξ6\Comp(T )

¬
(
Current∧ (X>0)r+3Next

)

Here, the formula Current is equal to t1 ∧ X=1t2 ∧ (X=1)2t3, the formula Next is

equal to t ′1 ∧ X=1t ′2 ∧ (X=1)2t ′3.
Formula UnivStates says that whenever a universal control state occurs in the

chunk, then a model branches so that both successive configurations are explored.

UnivStates ≡
∧
q∈Q∀

(
q̂ ⇒ ∨

p,p ′∈Q,p6=p ′
(X>0p∧ X>0p ′)

)

Finally, the formulaAcc ensures that an accepting state will be reached almost surely
(note that because all computational trees are finite, this ensures that accepting state will
be reached surely).

Acc ≡ F=1
∨

q∈Qacc

q̄
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It remains to argue that the formula ϕ is satisfiable iff T accepts u. First, suppose

that ϕ is satisfiable. Let M be a model of ϕ, let ν be a valuation and let s be a state of

M such that M,s |=ν ϕ. Let w be a path of length r + 1 initiated in s. We label root of T

with a configuration c encoded by w(1) . . . w(r) (i.e., the only configuration c satisfying

w(i+ 1) |= c(i) for all 1 ≤ i ≤ r). Now letN be a node of T labeled with a configuration

encoded by some path s1 . . . sr. We construct successors of N as follows.

• if N is labeled by an accepting configuration, then N is a leaf;

• if N is labeled by an existential configuration, then N has exactly one

successor which is labeled by a configuration encoded by v1 . . . vr, where

srsr+1sr+2sr+3v1 . . . vr is a path inM

• if N is labeled by a universal configuration, then N has exactly two successors

which are labeled by a configurations encoded by v1 . . . vr and v ′1, . . . v
′
r satis-

fying the following. There are states q1, q2 ∈ Q (where q1 6= q2) and paths

srsr+1sr+2sr+3v1 . . . vr and srsr+1s
′
r+2s

′
r+3v

′
1 . . . v

′
r in M such that sr+2 |= q1 and

s ′r+2 |= q2. Observe that the existence of such sequences is ensured by the formula

ϕ.

Note that there may be several possibilities how to choose sequences in the second and

third step of the procedure. Depending on this choice, different computational trees

may be produced. However, each of these trees is accepting.

The construction of a model for ϕ from an accepting computational tree is similar.

The graph of the model is the computational tree, where each configuration c is replaced

by the following graph:

• a path sc1 · · · crtuwhere s |= start, ci |= c(i), t |= q̂, u |= pwhere q is an existential

state in c and p is the state in the next configuration;

• a path sc1 · · · crt with t having two successors u1 and u2 where s |= start, ci |=

c(i), t |= q̂, u1 |= p1, u2 |= p2 where q is a universal state in c and pi are the states

in the next configurations and the transitions to the next configurations lead from

their respective ui’s.

• a path sc1 · · · crtu where s |= start, ci |= c(i), t |= q̂, u |= q where q is an accepting

state in c and we add a transition u → s.

All probability distributions are uniform.
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Proof of Theorem 4.1 (sketch)

We show how to modify the proof of high undecidability of the strategy synthesis prob-

lem for 11
2
-games with PCTL objectives to prove high undecidability of the satisfiability

of PCTL formulae.

A 11
2
-player game is a tuple G = (V, E, (V�, V©),Prob) where V is a finite set of ver-

tices, E ⊆ V ×V is a total transition relation, V� and V© partition the set of vertices V into

non-deterministic and stochastic vertices, respectively, and Prob assigns to each probabilis-

tic vertex a positive probability distribution over the set of its outgoing transitions. A

strategy is a function σwhich to everywv ∈ V∗V� assigns a probability distribution over

the set of outgoing transitions of v. A game G together with a strategy σ determine a

Markov chain Gσ = (V+, ↪→,Prob ′), wherewv ↪→ wvv ′ for allw ∈ V∗, v, v ′ ∈ V such that

v→ v ′, and Prob ′(wv) is either Prob(v) or σ(wv), depending on whether v is stochastic

or non-deterministic, respectively. Every valuation ν : V → 2Ap uniquely determines a

valuation ν̄ : V+ → 2Ap by ν̄(wv) = ν(v).

Let G be a game, vin a vertex of G, and ν a valuation. It is shown in [3] that the

problem whether there is a strategy σ such that Gσ, vin |=ν̄ ϕ is highly undecidable. The

proof proceeds by reduction from the problem whether an initial instruction of a non-

deterministic Minsky machine is executed infinitely many times. More concretely, given

a Minsky machine, we construct a game G, a vertex vin, a valuation ν, and a formula ϕ

such that the Minsky machine executes the initial configuration infinitely many times

iff there is a strategy σ satisfying Gσ, vin |=ν̄ ϕ. The crucial observation is that the

construction can be modified so that G, ϕ, and ν satisfy the following conditions:

1. every stochastic vertex has exactly k successors;

2. every non-deterministic vertex has k+1 successors and every strategy σ satisfying

Gσ, vin |=ν̄ ϕ assigns non-zero probabilities precisely to k successors of every non-

deterministic state.

Essentially, it suffices to add, for each stochastic (or non-deterministic) vertex v with n

successors, a k-clique of stochastic vertices together with k− n transitions (or k− n+ 1

transitions, respectively) from v to different vertices of this clique. Furthermore, we

modify the construction of the formula ϕ to enforce the condition 2.
Now we show how to encodeG andϕ to a single formulaψ such thatψ has a model

iff there is σ satisfying Gσ, vin |=ν̄ ϕ. For each vertex v ∈ V we introduce a fresh atomic
proposition pv with the intended meaning of being in v. Given a vertex v ∈ V� we
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denote Succk(v) = {A ⊆ V | |A| = k, ∀u ∈ A : (v, u) ∈ E} the set of all k-element sets
of successors of v. In order to describe the game graph transitions and the valuation,
we define a formula ϕv for each vertex v ∈ V as follows (here At is the set of atomic
propositions occurring in ϕ): For v ∈ V� we put

ϕv ≡ pv ⇒ ( ∨
A∈Succk(v)

(
∧
u∈A

X>0(pu) ∧
∧
u/∈A

¬X>0(pu)) ∧
∧

a∈ν(v)∩At

a∧
∧

a∈At\ν(v)

¬a
)

For v ∈ V© we put

ϕv ≡ pv ⇒ ( ∧
(v,u)∈E

X=Prob(v→u)(pu) ∧
∧

a∈ν(v)∩At

a∧
∧

a∈At\ν(v)

¬a
)

We set ψ = pvin ∧ G=1(
∧
v∈V ϕv) ∧ G=1(

∨
v∈V(pv ∧

∧
u6=v ¬pu)) ∧ ϕ to state that we

start in v, the transitions in a model have always to respect the game graph, the original

valuation is respected, and ϕ is satisfied.

Assume that Gσ, vin |=ν̄ ϕ for a strategy σ. We may safely assume that for every

v ∈ V we have that pv ∈ ν(v) and that pu 6∈ ν(v) for u 6= v. It is easy to verify that Gσ is

k-branching (due to 2.) and Gσ, vin |=ν̄ ψ.

On the other hand, assume thatM,sin |=µ ψwhereM = (S, ↪→,Prob ′) is k-branching.

Note that every state of M satisfies precisely one of the propositions of the form pv.

Let us define a strategy σ as follows: Let v0 · · · vn ∈ V∗V�. If there is a (unique) path

s0, · · · , sn in M such that s0 = sin and pvi ∈ µ(si) for every i ≥ 0, then for every u sat-

isfying pu ∈ µ(s) where sn x→ s we define σ(v0 · · · vn)(vn, u) = x. Otherwise, we define

σ(v0 · · · vn) arbitrarily. By the construction of ψ and the fact that M is k-branching, the

strategy σ is well defined. In fact, Gσ corresponds to an “unfolding” of the model M.

Hence Gσ, vin |=ν̄ ϕ.

Proof of Lemma 4.2

Let us at first assume that I = N. A convex combination of vectors v1, . . . , vm ∈ Rn is

a sum
∑m
i=1 aivi where ai ≥ 0 and

∑m
i=1 ai = 1. A countable convex combination of

v1, v2, . . . ∈ Rn is a sum
∑∞
i=1 aivi where ai ≥ 0 and

∑∞
i=1 ai = 1. Given a set A ⊆ Rn of

vectors we denote CH(A) and CCH(A) the sets of all convex combinations and countable

convex combinations, respectively, of vectors of A. The core is to prove that

CCH({ui | i ∈ N}) ⊆
∞⋃
j=1

CH({ui | i ≤ j})

Then v is an element of a polyhedron CH({ui | i ≤ j}) with vertices from the set

{ui | i ≤ j}. The same holds when I is finite. The polyhedron can be triangulated, and
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v lies in at least one of the n-simplices, hence it is a combination of n + 1 points of

{ui | i ≤ j}.
Firstly, let v ∈ CCH({ui | i ∈ N}) be an interior point. As v has a neighbor-

hood in this interior, there are n + 1 points yk 6= v from this neighborhood such that

CH({yk | k ≤ n+ 1}) contains a neighborhood of v. We can take e.g. vertices of a reg-

ular n-simplex barycentered in v. Consider a function f : (Rn)n+1 → R defined as

follows. f(δ1, . . . , δn+1) is the radius of a maximal ball centered in v that is contained in

CH({yk + δk | k ≤ n + 1}) or 0 if there is none. As f(0, . . . , 0) > 0 and f is continuous,

there is ε > 0 such that narrowing of f to arguments lesser than ε is positive. In other

words, there is ε > 0 such that if we take any point zk from each ε-neighborhood of yk,

then CH({zk | k ≤ n+ 1}) always contains v.

Every yk is an infinite sum of points. Consider the sequences of partial sums such

that the weights are normalized so that the sum of weights is always 1. Since these

sequences converge to yk’s, there is m ∈ N such that the m-th normalized partial sums

lie in the respective ε-neighborhoods. Hence we receive the desired zk’s, each of which

is a convex combination of m points from {ui | i ∈ N}. Altogether, v is a combination of

at mostm · (n+ 1) points.

Secondly, let v ∈ CCH({ui | i ∈ N}) be a boundary point. We consider a support-

ing hyperplane, i.e., a hyperplane containing v and determining an open half space

not containing any point of the CCH({ui | i ∈ N}). It exists for CCH({ui | i ∈ N})

is clearly convex, and thus we can apply the supporting hyperplane theorem on its

closure. The intersection of the hyperplane and CCH({ui | i ∈ N}) is CCH({ui | i ∈
N, ui lies in the hyperplane}). Indeed, if the sum expressing a point p in the intersec-

tion included akuk where the distance between hyperplane and uk is δ > 0, then the

distance between p and the hyperplane would be at least akδ, since there are no points

in the other half space, a contradiction.

By induction, either (i) v is an interior point of CCH({ui | i ∈ K}) for some K ⊆ N, a

"face" of the original CCH({ui | i ∈ N}), of dimension 1 ≤ dim < n, and we conclude by

the above argument, or (ii) v is an element of a zero dimensional countable convex hull,

ergo is one of the ui’s, whence the assertion.
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