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Abstract

Exploiting the concepts of social networking representsweehapproach to the approximate
similarity query processing. We present an unstructuretldymamic P2P environment in
which a metric social network is built. Social communitidgpeers giving similar results
to specific queries are established and such ties are esgblimit answering future queries.
Based on the universal law of generalization, a new quewrydatting algorithm is introduced
and evaluated. The same principle is used to manage quéoyiéssof individual peers with
the possibility to tune the tradeoff between the extentetiistory and the level of the query-
answer approximation. All proposed algorithms are testedeal data and medium-sized
P2P networks consisting of tens of computers.



1 Introduction

The area of similarity searching is a very hot topic for babaarch and commercial applications.
Current data processing applications use data with coraditjeless structure and pose much less
precise queries than traditional database systems. Erarapt multimedia data like images or
videos that offer query-by-example search, product cgsalbat provide users with preference-
based search, scientific data gathered from observatioesparimental analyses such as bio-
chemical and medical data, or XML documents that come frotarbgeneous data sources on
the Web or in intranets and thus does not exhibit a globalmaeheSuch data collections can
neither be ordered in a canonical manner nor meaningfudycbked by precise database queries
that would return exact matches.

This novel situation is what has given rise to similarityrebing, also referred to as content-
based or similarity retrieval. The most general approadiruolarity search, still allowing con-
struction of index structures, is modeled in metric spacanywindex structures were developed
and surveyed recently [29, 21]. However, the current egpeg with centralized methods [13]
reveals a strong correlation between the dataset size anchseosts. Thus, the ability of cen-
tralized indexes to maintain a reasonable query respomse wihen the dataset multiplies in
size, i.e., thescalability, is limited. The latest efforts in the area of similarity sgang focus
on the design of distributed access structures which exploie computational and storage re-
sources [4, 14, 6, 5, 25]. Current trends are optimizing améhg the well-known distributed
structures towards better utilization of the availabletgses.

Another approach to design the access structure suitablerfee scale similarity query pro-
cessing emerges from the notionswcial network A social network is a term that is used in
sociology since the 1950s and refers to a social structyseaple, related either directly or indi-
rectly to each other through a common relation or interes} [@sing this notion, our approach
places the peers of the distributed access structure imtb®fpeople in the social network and
creates relationships among them according to the sityilafithe particular peer’s data. The
query processing then represents the search for the cortynafrpeople — peers related by a
common interest — similar data.

Using this data point of view, our designed metric socialveek is acognitive knowledge
networkaccording to the terminology stated in [19]. As for the natign, social networks
exhibit thesmall world network topolog28] where most pairs of nodes are reachable by a short
chain of intermediates — usually the average pairwise atpth is bound by a polynomial in
logn. Therefore it is anticipated that a small amount — around-giktransitions will be needed



to find the community of peers holding the answer to a querggas any of the participating
peers in the network. This concept is closely relatedeimantic overlay networksghich relate
peers in the network semantically. One can view semantiesvaay of expressing similarity.
Semantic overlays are defined over an existing P2P netwotkey can exploit properties of the
underlying network, such as navigation. Unlike the usuakas structures that retrieve a total
answer to each query, the presented approach focuses ewingfrthesubstantial parof the
answer yet wittpartial costscompared to the usual query processing.

The paper is structured as follows. In the following two sdt®ns, we summarize the
related work and specify the contributions of this paper.Séttion 2, we provide the reader
with the necessary background. Section 3 contains a codeseription of our metric social
network, originally proposed in [22], the basic search athm along with its analysis and a
sketch of experiment trials. We specify a fully-adaptivarsé algorithm and its theoretical basics
in Section 4. Experimental evaluation of the new algorithmd af the query history management
procedure is presented in Section 5. Finally, the conchsséwe drawn in Section 6.

1.1 Related Work

P2P networks were traditionally used for file-sharing (NepsGnutella, Freenet). Semantic
overlays created upon an ordinary P2P network connect saralnsimilar peers via relation-
ships in order to route queries efficiently or to speed up fiesnloading. Tribler [20], Sripanid-
kulchai et al. [24] are representatives of system for filerigiga Indexing documents by terms
or keywords is used in PROSA [7], Jin et al. [15], SempreX §8,[3] and Routing Index [12].
Resource Document Format (RDF) as a model is used in REMINEBN INGA [18] and Grid-
Vine [2]. Linari et al. [17] uses language models. PARIS [di&fines a schema of peers’ data.
A concise survey of semantic overlay networks from difféggerspectives given as a tutorial is
available in [1]. These systems relate peers accordingetglttbal knowledge about all data in
the peer or according to the results returned by a specifigygiost systems are based on the
former approach. The latter alternative allows the tiesdortore semantically related, so the
navigation can be more effective. REMINDIN, INGA as well ag mnetric social network use
this strategy.

1.2 Contributions

The metric social network differs from the other works cuathg available in two aspects: the
relations among peers are defined per query and the metde sigsad as a model offers greater



extensibility. In this respect, the metric social netwoak de applied not only to text keywords,
but also to images or video, etc.

In this paper, we address the major disadvantages of thacnseirial network presented
in [22], i.e., the poor behavior in larger P2P networks. Belee summarize the contributions of
this paper:

e Extending the concept afonfusability— the confusability of two items originally based
only on their distance [23] is not sufficient for social netk®because it does not take into
account an internal structure of the items (e.g., queryi)radithe temporal aspect. The
time influences the reliability of items — an ancient pieceadial information is not very
useful in dynamic environments.

e Adaptive search algorithm — based on the term of confuggbélinew search algorithm
capable of forming suitable social communities is specified

e Managing the query history — the metric social network stéhe social information with
respect to a specific query, so this information (the quesyohy) must be maintained in
order to avoid duplicating and aging.

2 Background

A very useful, if not necessary, search paradigm is to qfyathie proximity, similarity, or dissim-
ilarity of a query object versus the objects stored in a databasesedbehed. Roughly speaking,
objects that ar@eara given query object form the query response set. A useftitaadt®on for
nearness is provided by the mathematical notiomefric spacg16]. We consider the problem
of organizing and searching large datasets from the pergpexf genericor arbitrary metric
spaces, sometimes conveniently labalesfance spaces

2.1 Metric Space

Suppose a metric spagel = (D, d) defined for a domain of objects (or the objedtsysor
indexed featurgsD and a total (distance) functiod. In this metric space, the properties of
the functiond : D x D — R, sometimes called themetric space postulatesre typically
characterized as:

vx,y € D,d(x,y) >0 non-negativity,
Vx,y € D,d(x,y) = d(y, x) symmetry,
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Vx,y e D,x =y & d(x,y) =0 identity,
vx,y,z € D,d(x,z) < d(x,y) +d(y,z) triangle inequality.

Examples of distance functions akg metrics (City-block, Euclidean, or maximum dis-
tance), the edit distance, or the quadratic-form distataceame a few.

2.2 Similarity Query

Probably the most common type of similarity query is taage queryR(q,r). The query is
specified by a query objeet € D, with some query radiug as the distance constraint. The
guery retrieves all objects found within distancgom g from a databasX c D, formally:

R(q,7) ={o € X,d(o,q) <r}.

An alternative way to search for similar objects is to ngarest neighbor queriesSpecif-
ically, kNN (q) query retrieves th& nearest neighbors of the objegt If the collection to be
searched consists of fewer th&arobjects, the query returns the whole database. Formaéy, th
response set can be defined as follows:

kNN(q) ={R € X,[R| =k AVx € R,y € X—R:d(q,x) < d(q,y)}

3 Metric Social Network

In this section, we give a short overview of the architectfréhe metric social network proposed
in [22]. This network operates in an ordinary peer-to-pesirenment. The peers of the network
are capable of storing their own data and querying other ortyweers. Interconnection of
peers is based on the query-answer paradigm, i.e., therahips between peers are formed by
guerying some peers and analyzing the results obtainedtfrem.

3.1 Architecture

In the metric social network, each peer organizes a piecataf dan pose similarity queries, and
returns answers to the queries. In addition, each peer anasna list of queries it has asked or
answered, called query history This represents the peer’'s knowledge about the network and
is exploited by search algorithms. Every query in the quéstohny has associated a list of peers
that participated in the query answering, which forms retethips among peers with respect to



the particular query. Let assume the pBgr.: poses a query). A search algorithm exploits
the query history to locate the most similar query (a teneptptery)Q. and forwards the query
Q to all peers in the list associated wi@,. The contacted peers then evaluate the query on
their data and return the partial respondes(Q). The final answer i\ (Q) = [Ji; Ap, (Q)
wheren denotes the total number of peers that participated on theexing. In general, a peer
to which Q was forwarded, can also inspect the query history for bettaplate queries and can
forward Q further. In this respect, the relationships defined by this lin the query history can
be observed as communities of peers that share similar elatant to the particular query. So,
the process of searching can be perceived as locating thedremunity which is then contacted
in order to obtain the query results.

A network peerP is P = (X,H) whereX = {o1,...0¢} represents a piece of data and
H = {hy,...hn}, hi = (Q,tm,L5(Q),LEY(Q)) represents the query history, where each
item has the quer®) with the timestampgm when it was issued and the pair of ordered lists of
identified acquaintances and friends regarding the qQery

In the following, we define the quality of answer which is cegsently used to define the
terms of friends and acquaintances.

3.2 Measuring Quality

To distinguish which peer answered better, qoality is measured by definingguality measur-
ing functionQual(Ap, (Q)). It returns a quality object; that represents the quality of the peer’s
answer. Since this object is not necessarily a number, veed&ne a function to compare two
quality objects:

—1 T, is better tharr,
comparequq(ti,T2) = 0 T isthe same as,

1 T, isworse tham,

The quality of the total answer is determined by applying tlity measuring function
to A(Q). An ordering < which we call thet -ordering is defined on the peers’ answers
Ap, (Q),...,Ap, (Q) in A(Q) according to their qualities. The sequence of peers’ arswer
is ordered by decreasing quality when the following holds:

H.ooini T, 2T, & a<bAcomparequa(Ti, , Ty, ) # 1

Intuitively, thet -ordering orders the peers by their ability to answer théi@adar queryQ.



3.3 Acquaintances and Friends

As we mentioned before, we distinguish two relationshipthemetric social network. Firstly,
the friend relationship represents the similarity of nodds/o nodes give a similar answer to
same query. Secondly, the acquaintance relationship eletioat the target of the relationship
took part in the answer passed to the recipient. Acquaietaplay an important role in searching
because they can be viewed as links to different communitiethe following, we will use the
answer size in objects as the measure of quality,Qeql(Ap(Q)) = |Ap(Q)|.

A set of acquaintances for a given quddyis defined as a set of participating peers in the
total answerAcq(Q) = {P,Ap(Q) # 0}. Friends are identified in the set of acquaintances as
peers that contributed to the answer with a significant glaatiswer:Fri(Q) = {P, |Ap(Q)| >
c-|A(Q)|}, wherec is a positive-value constant.

Every peelP that is identified as a friend or has initiated the query sttiie quenQ with the
guery-issuing timestampm and the lists of acquaintances and friends defined as follbaih
aret -ordered):

L9Q) =

{(Py, 1 )IPi € Acq(Q) Aty = Qual(Ap (Q))} if P € Fri(Q) U{Pstart |
0 otherwise

Q) — {{m,Ti JIPs € Fri(Q) Ati = Qual(Ap,(Q))) if P € Fri(Q)

0 otherwise

In other words P« remembers just the list of acquaintances (i.e., no frieretx)gnized
unless it appears among the friends.

3.4 Search Algorithm

The query processing using the social network follows theroon world concepts for searching.
Basically, the best acquaintance (peer) regarding thepkt subject is located and then all its
friends are contacted to return their part of the answ@x{g. .

Initially, the P goes through its query history and finds tieenplate querythe most
similar query)Q. to the quenQ that it is processing now. In our setting, we express thearityi
of two queries as the distance between their query objegtexploiting the list of acquaintances
of Q, we obtain the best acquaintance to which the queris forwarded. This concept is
formalized in Algorithm 1. The process of the query forwagican be repeated more times to
locate the peer that is most promising to hold the searchied é each peer, a different query



Algorithm 1 Unidirectional Query Forwarding Algorithihor war dQuery

Input: Py , CONtacted ped?, queryQ, last peer’s qualitytyyre,
1: getentryE = (Qy, tm, Lf,‘cq(Qt), L5 Qy)) from the query historyH with Q. most similar

toQ
get(Py, T, ) corresponding to the best acquaintance fﬂ.CQﬁq(Qt)
if comparequai(Tt, Tprev ) < 0then

forwardQueryPsiart » Pt, Q, T¢)
else

forall (F,t¢) € LFH(Qy) do

answerQuenf, Psiart » Q)
end for

get all objects that satisfQ)

-
e

send retrieved objects backRg,
11: end if

can be retrieved from the query history. The query forwagditops when the contacted peer’s
quality (t,e, in the algorithm) is better than any of its acquaintanceshhvit could possibly
pass the query. Initiallyy,.., is setto zero.

When the best acquaintance regarding the particular gedound, it returns its part of the
guery answer to the querist. Then it looks up in the quenohystor the template queries and
retrieves the sets of friends associated with that quendd@wardsQ to them as described in
Algorithm 2. The query is passed also to friends becausesiipposed that they hold similar
data which will form substantial parts of the query answef)). After contacting, the peers

return their partial answep, (Q) to Pgiqrt -

Cost Analysis The search algorithm is finite because the peer’s quality, can only be im-
proved. So, the query forwarding converges. In the worse,ciee query can be forwarded
through all peers in the network. From our experience, thmbrar of forwarding steps is, how-
ever, constant and equal to four (for both the small and laegeorks). This also confirms the
validity of the small world phenomenon. By spreading thergwser the community formed by
friends, the query answer is improved in terms of completen&ending the query repetitively
to all friends can lead to an infinite loop. This is restraifigdnot allowing a peer to evaluate
the same query twice. In reality, the social communitiesied are compact and the number of

friend-contacting steps is usually one or two.



Algorithm 2 Friend-of-Friend Simple Query Answering Procedarswer Query

Input: current peeP, Pgiqart , queryQ
1: S ={(Qq,tm, L5%(Qy), LE(Q4))| the query object o€, satisfiesQ}
2: forall (Q, LH9(Qy),LE(Qy)) € S do

3 forall (F,t¢) e LE(Qy) do

4: answerQuenk, Psiart » Q)

5. end for

6: end for

7. get all objects that satisfQ)

8

. send retrieved objects back®g,

Experiment Trials To demonstrate the properties of this search algorithm,sserabled the
metric social network consisting of forty-seven peers pigjag 100,000 3-D vectors (three val-
ues of color histograms of images) compared using the eaalidistance. The initial state of the
network was random — in the query history, every peer had fiezigs with the random number
of randomly selected friends (one to fifteen) scored by aoanquality. The data was distributed
into the peers using the M-tree [10] metric tree structureeng the content of each leaf node
was stored in one peer. The M-tree is used to obtain prece@nplete query results. It also
forms the baseline in terms of costs, i.e., the percentageask that participate in the answering.
The M-tree access structure is required only to compareahdts, so theecall of the metric
social network can be evaluated. The metric social netwodsaot rely on it and can operate
independently.

Figure 1 presents results obtained by executing rangeegu@ri= 200) in the metric social
network. Average values of recall and costs were measureal fred test series of twenty
range queries. Between two test series a batch of fifty rahdpioked queries with the same
radius was executed. These queries were adapting the sdoiahation. The adaptation of the
network was naturally turned off during test series. Froergsults, the reader can observe that
the search algorithm is capable of evolving in terms of iasheg the recall even if the initial
state was completely random, thus, unreliable. The quests@e more or less constant. Their
reduction after thd 0*™" series is caused by intentionally deleting the initial amdstate. This
proves that the network no longer uses the randomly-gestesaicial information to navigate
and answer queries.

We have also run this experiment on a larger network congisti 150 peers initialized in the
very same way. However, the results revealed that thisls@dgorithm is incapable of increasing
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Figure 1: Recall and costs of the social network compareldeadi-tree.

the recall. This is caused by the much lower connectivithia hetwork compared to the smaller
one.

Overall, the disadvantages of this search algorithm aréobaioFirst, the algorithm requires
a highly-connected network in order to operate at highealt@alues. Second, the peers’ query
history is not maintained in any way, so obsolete querigs (ge initial random state) cannot be
superseded and increase the search costs. In the followengropose a new adaptive algorithm
which solves these issues.

4  Adaptive Search Algorithm

In this section, we define a new search algorithm which is @gajn sending the query to
more acquaintances considering the closeness of quetiiesee from the query history. In this
respect, it allows contacting more acquaintances when tgogdlate queries cannot be found.

First, we define confusability on top of which the adaptivarsh algorithm is built. Second,
the adaptive search algorithm is described. Third, theusatdility is exploited in a query-history
management.

4.1 Confusability

In [23], Shepard proposed a “Universal Law of Generalizatihich was further studied and
reformed by Chater and Vitanyi [8]. The law states that thabpbility of confusing two items
x andy is a negative exponential function of the distad¢e, y). By exploiting this, we define
the confusabilityof two queries as the weighted compound of distance sirtyiléiollowing the

original proposal), query intersection, and time similariThe value of confusability controls
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the number of template queries used for searching in thetiadagearch algorithm (refer to
Section 4.2).

Confusability(Q, Q¢) =wp - D(Q, Q) +wr- I[(Q, Q) + wr - T(Q, Q4)

The weights must satisfy0 < wpr < 1 andwp + w; + wy = 1. So, the higher the
confusability of the new quer®) and a template querg), is, the better the quer®, is for
searching. The values of confusability are between zeramard The individual similarities are
defined as follows:

e The distance similarityp (Q, Q) expresses the Shephard’s confusability of quefiesd
Q. with respect to the distance between their query objgesdq;.

D(Q, Q) = A - e e

The constanA is set to one in order to keep the values returned betweenaref@ne.
The constanB depends on the distance functidrand the dataset. For our experiments
on 3-D data, we fixed = ﬁ because we required low similarity of two queries with
r = 100 touching each other, i.eQ(Q, Q) = 0.37 whered(q, q¢) = 200. If the distance

of 400, the similarity is only0.13.

e The intersection functioh(Q, Q) expresses the similarity in terms of the intersecting area
of the corresponding query regions (ball regions in the chsange queries). It is defined

as the intersection of the ball regions in 2-D space and nirethusing the area covered
Ve region(Q) Nregion(Q,)|
region region
1(Q,Q) = R el PO D
region(Q)l2p

The main reason for defining it is as follows: a new query wattgé radius is to be an-

swered; two template queries at approximately the samandistare retrieved, however,
the first is smaller than the second. Because the second qastgarge area with the new
guery in common, it is more profitable from the searching pofrview.

e The functionT(Q, Q) expresses the similarity of queri€sand Q. with respect to their
time difference. In the query history, each qu&y has a timestampm, assigned. It
corresponds to the time when the qué€lywas inserted into the query history. The time
can be expressed absolutely (wall-clock time) or relagiyalsequence number).

tmMopax — |t —t
T(Q,Qu) = max (o, Mmax —[tMo mQ")

tmmax

11



The constantm,,,o should be set to a reasonable value which will mark archagcigs.
For our experiments, we used the relative timestamps and fixe,.., to 4,000, i.e., a
guery is considered obsolete after the system processed 0€¥ queries.

4.2 Adaptive Search Algorithm

The adaptive search algorithm we propose follows the saee & the previous search algo-
rithm. The pseudo-code is available in Algorithm 3 preseémeSection 3.4. Its adaptability is
wired in an automatic increase or decrease of the floodirgrfacring query forwarding. In our
setting, we defined the most simple variant which, howeuendd out to be very effective. We
defined a threshold valugéreshold..s = 0.2 and a step value @25 to establish five intervals
having the increasing flooding factors assigned:

Confusability > || 0.90 | 0.65 | 0.40 | 0.15 | 0.00
floodingFactor || 1 2 3 4 5

In particular, we retrieve five closest template queriesmftbe query history with respect
to the distance between the query objects, ke= 5, and compute their confusabilities with
respect to the quer§). Depending on the maximum of the confusabilities, one totiéveplate
gueries are used for query forwarding. As usual, the bestaotances of template queries are
picked and the querQ is forwarded to them. Notice that different template quedan have
the same best acquaintance, hence the query is forwardgdmee. Finally, data satisfying the
queryQ are retrieved from friends — the functieamswerQuery() is called (Algorithm 2). The
experimental evaluation of properties of the adaptive rétlgm is presented in Section 5.

4.3 Managing the Query History

The other drawback of the basic search algorithm preseatdidras the lack of any management
of the query history on peers. The query history was unlidhitesize, which is not usually
feasible in production applications. Furthermore, eadtr pas to search its query history for
the most similar queries. Such a process has to be optimalbedhe query can be forwarded
several times, so searching in the query history forms aegg@l step in the query evaluation.
As a result, the size of the query history should be kept itageboundaries. The content of
query history is important as well since obsolete queriad te increased query costs, which has
been depicted in Figure 1 in case of the random initial state.the template queries becoming
obsolete should be naturally expelled.

12



Algorithm 3 Adaptive Query forwarding algorithrihor war dQuer yAdapt

Input: Py , CONtacted ped?, queryQ, last peer’s qualitytyyre,

1: get thek most similar entrieg from the query historyH

2: for each entrjE = (Qy, tm, L3°Y(Qy), LE(Q.)) retrieveddo

3: computeConfusability(Q, Q)

4: end for

5. order entries by decreasing confusability

6: confq = Maximum confusability among all entriés

7: n =floodingFactor¢onf q)

8: for all n first entriesE = (Qy, tm, L7hY(Qy), Li(Q,)) do

9: get(P, ¢ ) corresponding to the best acquaintance fl[(ﬁﬁq(Qt)

10:  if comparequai(Te, Tprev ) < Othen

11: forwardQueryAdap®iart , Pi, Q, T¢)
12:  else

13: forall (F,t¢) € Li(Qy) do

14: answerQuenf|, Psiart » Q)

15: end for

16: get all objects that satisfQ

17: send retrieved objects back R,
18:  endif

19: end for

We introduce the query history management procedure wigtimzes the content of query
history and by tuning its parameters it can control the lergtquery history too. The pro-
cedure is specified in Algorithm 4. This piece of code is exetwatP ., after a queryQ
has been evaluated. The algorithm decides not to insertatvequeryQ into the query his-
tory if its confusability to a queny; that is already present in the query history, is high, i.e.
Confusability(Q, Q) > threshold..ns. In other words, the quer®), is up-to-date and
very close to the new querg, so there is no need to update the social information in tie ne
work. If the confusability is not very high, the new quegy is inserted into the query his-
tory and some obsolete items can get deleted. The obsodets i@re selected among tke
most similar template queries retrieved during the evaduaif search algorithm (Algorithm 3).
A template queryQ, gets replaced if itgeplaceabilityis higher than a threshold value, i.e.
Replaceability(Q, Q) > threshold,ep.

13



Algorithm 4 Management of the query history

Input: a queryQ

11:
12:
13:
14:
15:
16:

1
2
3
4
5:
6
7
8
9

: use thek most similar entrie retrieved in

forwardQueryAdapt()

. for each entrfE = (Qq, tm, L2°Y(Q4), Li(Q4)) do

computeConfusability(Q, Q)
end for

. conf o, = Maximum confusability among all entriés
- if conf e > threshold ons then

exit {no management necessary}

:end if

10:

insert a new entry corresponding@into H
for each entnfE = (Qy, tm, L7°9(Qy), LE(Q4)) do
computeReplaceability(Q, Q)
if Replaceability(Q, Q) > threshold,¢p then
delete the entrg from H
end if
end for

The replaceability is defined in the similar way as the coalfiigy. However, for the sake of

managing the query history, the time component plays thergav/role:

Replaceability(Q, Qi) =wp - D(Q, Qd) + wr- I(Q, Q¢) + wr - (1 =T(Q, Q)

The higher the replaceability, the greater the need to ceplae template quer@, with Q is.

To put it in a different way, the template que@, should be replaced witQ if the queries are

similar andQ; is old. In Section 5, we evaluate this management procedure.

5

Experimental Results

In this section, we present an experimental evaluation efpttoposed adaptive navigation al-

gorithm for searching in metric data. The experiments haenlbconducted on two real-life

datasets represented by vectors having forty five and thmeendions compared using the eu-

clidean distance, respectively. The 45-D vectors reptesdracted color image features. The

distribution of the dataset is quite uniform and such a ldghensional data space is extremely
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Figure 2: Distance densities of datasets: 3-D vectorg @eid 45-D vectors (right).

sparse. The 3-D vectors were obtained as the three mosttampdimensions of the 45-D vec-
tors. The number of vectors in each dataset was 200,000re=iydepicts distance densities of
the particular datasets.

5.1 Network Initialization

The datasets were distributed over peers using the M-tdsxistructure [10], where the content

of each leaf node was stored in one peer. Besides this, thredatas used to obtain precise and
complete query results. In particular, the M-tree is creéate the provided dataset. Next, the
peers are assigned their pieces of dafde initial state of the network is random — in the query
history, every peer has five queries with the random numberafomly selected friends (one to

fifteen) scored by a random quality.

5.2 Methodology

In the individual graphs, we present values of recall andscoBtained by executing test series
for one-hundred times. The test serie consists of twentgeajueries with randomly picked
objects and the radii fixed tt00 and1, 500 for the 3-D and 45-D data, respectively. The values
of recall and costs are averages over the results of thedaes gjueries. On average, queries
with the selected query radii return 0.8% of the dataset.chs¢s represent the ratio between the
number of accessed peers and the number of all peers in therkeil he evolution of the metric
social network is ensured by executing a batch of 150 randogries having the same radius as
the test queries. Remark that any adaptation of the socialonle information was suspended

IFor both datasets, the M-tree consists of 150 leaf nodesthieedata objects are distributed among 150 peers.
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Figure 3: Learning abilities of the metric social networkiwiheforwardQueryAdaphavigation
algorithm: 3-D vectors (left) and 45-D vectors (right).

during the test series. Moreover, we also present the bethaf/ihe number of template queries
stored in each peer’s query history. We provide the read#r the minimum, maximum and
average values over all peers.

5.3 Recall and Costs

In this section, we present the ability of the metric socetiwork to self-learn towards better
guery processing when the proposed adaptive navigatiamitdm is employed. The results are
demonstrated in Figure 3. The recall values are presentad3i (the metric social network)
and mSNMax which corresponds to the recall that could haga bbtained if the best peers had
been contacted (the same number as mSN did, of course).

For the experiment, we set the weights of the confusabilibcfionConfusability(Q, Q)
towp = 0.77, w; = 0.0, andwy = 0.23, i.e., we naturally put greater emphasis on the distance
but we also use the time similarity to implement aging. Weoignthe intersection similarity
since the query radii are the same. So, the influence of teesettion similarity was added to
the distance similarity. The parameteof the distance similarity was set % andm%) for 3-D
and 45-D data, respectively. Both the values correspongpoaimately the same similarity on
both the datasets.

Due to the social information adjustments, the metric $ew@awork is improving. In the be-
ginning, the confusability of template queries retrievezhf the query history was low, so more
gueries were used for navigation (as controlled byftbedingFacto). After several iterations,
the social information was updated and the confusabilityegaincreased, so the flooding of the
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Figure 4: Minimum, maximum and average length of peers’ gestories for the 3-D and 45-D
vectors without any query history management.

network was decreased automatically. Finally, after ai bandred iterations of the test series,
the recall values reached 95% and 90% for the 3-D and 45-Dbreatespectively, while the
costs are still decreasing. This is attributed to the disad use of template queries containing
initial randomly-generated social information. Theserggestopped being used due to their ag-
ing (the influence of the time similarity of confusabilityhe reader can observe that the amount
of the peers contacted is smaller than the amount of the #itiaf nodes in the case of the 3-D
data. The gap between those is substantially greater fo43He data. This is caused by the
sparseness of the data space and the construction prsoiplee M-tree.

5.4 Managing the Query History

In this stage, we study the metric social network from thespective of peers’ query histories.
In Figure 4, their lengths are depicted, namely the minimomaximum and average over all
peers. These results and results in Figure 3 were obtain@agdihe same experimental trial.
Without any management of query history, the peers storallies passed and the peers’ query
histories can become overwhelming after a long run-timer eth the datasets, the average
length of query history is around 500 after the last iterabbthe test series.

By applying the procedure outlined in Algorithm 4, we woukglto maintain the content of
peers’ query histories and keep them in certain bounds.eA¢dime time, the search costs should
decrease because obsolete template queries would beegkpelimanently. We used the same
weights for the replaceability functidkeplaceability(Q, Q) as for the confusability function.
The threshold values for confusability and replaceabivgre 0.9 and0.75, respectively. We
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Figure 5: Minimum, maximum and average length of peers’ yjiestories for the 3-D vectors
with the query history management.

present results obtained by experimenting on the 3-D datadg because the results for the
other dataset were very much alike.

In Figure 5, the evolution of lengths of peers’ query histeris depicted by curves labeled
with Min, Max andAvg. We can observe that the number of stored queries does netago
fast as it did in Figure 4. Such a behavior was expected. Iy stages (first twenty iterations),
the social information was poor, so the peers’ query hisgogrew rapidly — new queries were
inserted in the query history and none were deleted becduse walues of both the confus-
ability and replaceability functions. Next, the length ofegy histories became saturated and the
replaceability function instructed the query history mgeraent algorithm to supersede some
template queries. After all one hundred iterations of tls¢ $eries, the average length of peers’
guery histories was 165 which is nearly three times fewen thighout any management, while
the quality of the query results (recall) was maintainedhatstame level, please refer to Figure 6.

In some applications, there is a limited amount of memorycWidgan be allocated for the
query history. We tried to model such a situation by posingual Himit on the length of the
query history. If the length of the query history on a peereexted one hundred queries, the
oldest query was removed until the constraint was met. Theldpment of lengths of peers’
guery histories is depicted by curves labeled wihin100, Max100 andAvg100 in Figure 5.
Such a hard limit had surprisingly no impact on the recallgal We attribute such a stable
behavior to the high adaptability of the proposed algoritbrwardQueryAdapand fine-tunable
guery history management. Both these algorithms syndlgioaoperate and increase flooding
of the network or storing important queries when necessary.
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6 Concluding Remarks and Future Work

Distributed processing of similarity queries currentlyradts a lot of attention because of its
inherent capability of solving the issue of data scalahilitVe have proposed two algorithms
which address two drawbacks of the metric social networkmelg the navigation algorithm
which limited exploration of the network and the ever-gnogviquery history which contained
also obsolete items. The principles of both the algorithwaét so-call confusabilitywhich

is based on théaw of generalization The presented experiment trails confirm suitability and
auspiciousness of such advances.

In our system, we have no automatic exploration implememedoackground actions are
done by peers automatically, and peers do not exchange afileprabout their data but the
guery results. We did not experiment on an actual peer-to-pé&rastructure where peer discon-
nections happen frequently due to shutting down the peenetveork failure. Dealing with such
environments is the future work.

Another research challenge is to study the behavior of thaes®cial network when the data
is partitioned differently (the M-tree tries to cluster aabr when the data change not only in
terms of adding or deleting data items but also in terms ééiht domains, e.g., music, video,
or text. We also plan to verify the metric social network pdjes on large-scale networks
consisting of hundreds or thousands of peers.
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