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Vlastislav Dohnal

Pavel Zezula

FI MU Report Series FIMU-RS-2007-06

Copyright c© 2007, FI MU November 2007



Copyright c© 2007, Faculty of Informatics, Masaryk University.

All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

Publications in the FI MU Report Series are in general accessible

via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics

Masaryk University

Botanická 68a

602 00 Brno

Czech Republic



Adaptive Approximate Similarity Searching

through Metric Social Networks

Jan Sedmidubský

Masaryk University, Brno, Czech Republic

xsedmid@fi.muni.cz

Stanislav Bartǒn
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Abstract

Exploiting the concepts of social networking represents a novel approach to the approximate

similarity query processing. We present an unstructured and dynamic P2P environment in

which a metric social network is built. Social communities of peers giving similar results

to specific queries are established and such ties are exploited for answering future queries.

Based on the universal law of generalization, a new query forwarding algorithm is introduced

and evaluated. The same principle is used to manage query histories of individual peers with

the possibility to tune the tradeoff between the extent of the history and the level of the query-

answer approximation. All proposed algorithms are tested on real data and medium-sized

P2P networks consisting of tens of computers.
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1 Introduction

The area of similarity searching is a very hot topic for both research and commercial applications.

Current data processing applications use data with considerably less structure and pose much less

precise queries than traditional database systems. Examples are multimedia data like images or

videos that offer query-by-example search, product catalogs that provide users with preference-

based search, scientific data gathered from observations orexperimental analyses such as bio-

chemical and medical data, or XML documents that come from heterogeneous data sources on

the Web or in intranets and thus does not exhibit a global schema. Such data collections can

neither be ordered in a canonical manner nor meaningfully searched by precise database queries

that would return exact matches.

This novel situation is what has given rise to similarity searching, also referred to as content-

based or similarity retrieval. The most general approach tosimilarity search, still allowing con-

struction of index structures, is modeled in metric space. Many index structures were developed

and surveyed recently [29, 21]. However, the current experience with centralized methods [13]

reveals a strong correlation between the dataset size and search costs. Thus, the ability of cen-

tralized indexes to maintain a reasonable query response time when the dataset multiplies in

size, i.e., thescalability, is limited. The latest efforts in the area of similarity searching focus

on the design of distributed access structures which exploit more computational and storage re-

sources [4, 14, 6, 5, 25]. Current trends are optimizing and tuning the well-known distributed

structures towards better utilization of the available resources.

Another approach to design the access structure suitable for large scale similarity query pro-

cessing emerges from the notion ofsocial network. A social network is a term that is used in

sociology since the 1950s and refers to a social structure ofpeople, related either directly or indi-

rectly to each other through a common relation or interest [27]. Using this notion, our approach

places the peers of the distributed access structure in the role of people in the social network and

creates relationships among them according to the similarity of the particular peer’s data. The

query processing then represents the search for the community of people – peers related by a

common interest – similar data.

Using this data point of view, our designed metric social network is acognitive knowledge

networkaccording to the terminology stated in [19]. As for the navigation, social networks

exhibit thesmall world network topology[28] where most pairs of nodes are reachable by a short

chain of intermediates – usually the average pairwise path length is bound by a polynomial in

logn. Therefore it is anticipated that a small amount – around six– of transitions will be needed
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to find the community of peers holding the answer to a query posed at any of the participating

peers in the network. This concept is closely related tosemantic overlay networkswhich relate

peers in the network semantically. One can view semantics asa way of expressing similarity.

Semantic overlays are defined over an existing P2P network, so they can exploit properties of the

underlying network, such as navigation. Unlike the usual access structures that retrieve a total

answer to each query, the presented approach focuses on retrieving thesubstantial partof the

answer yet withpartial costscompared to the usual query processing.

The paper is structured as follows. In the following two subsections, we summarize the

related work and specify the contributions of this paper. InSection 2, we provide the reader

with the necessary background. Section 3 contains a concisedescription of our metric social

network, originally proposed in [22], the basic search algorithm along with its analysis and a

sketch of experiment trials. We specify a fully-adaptive search algorithm and its theoretical basics

in Section 4. Experimental evaluation of the new algorithm and of the query history management

procedure is presented in Section 5. Finally, the conclusions are drawn in Section 6.

1.1 Related Work

P2P networks were traditionally used for file-sharing (Napster, Gnutella, Freenet). Semantic

overlays created upon an ordinary P2P network connect semantically similar peers via relation-

ships in order to route queries efficiently or to speed up filesdownloading. Tribler [20], Sripanid-

kulchai et al. [24] are representatives of system for file sharing. Indexing documents by terms

or keywords is used in PROSA [7], Jin et al. [15], SempreX [9],6S [3] and Routing Index [12].

Resource Document Format (RDF) as a model is used in REMINDIN[26], INGA [18] and Grid-

Vine [2]. Linari et al. [17] uses language models. PARIS [11]defines a schema of peers’ data.

A concise survey of semantic overlay networks from different perspectives given as a tutorial is

available in [1]. These systems relate peers according to the global knowledge about all data in

the peer or according to the results returned by a specific query. Most systems are based on the

former approach. The latter alternative allows the ties to be more semantically related, so the

navigation can be more effective. REMINDIN, INGA as well as our metric social network use

this strategy.

1.2 Contributions

The metric social network differs from the other works currently available in two aspects: the

relations among peers are defined per query and the metric space used as a model offers greater
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extensibility. In this respect, the metric social network can be applied not only to text keywords,

but also to images or video, etc.

In this paper, we address the major disadvantages of the metric social network presented

in [22], i.e., the poor behavior in larger P2P networks. Below we summarize the contributions of

this paper:

• Extending the concept ofconfusability– the confusability of two items originally based

only on their distance [23] is not sufficient for social networks because it does not take into

account an internal structure of the items (e.g., query radii) or the temporal aspect. The

time influences the reliability of items – an ancient piece ofsocial information is not very

useful in dynamic environments.

• Adaptive search algorithm – based on the term of confusability, a new search algorithm

capable of forming suitable social communities is specified.

• Managing the query history – the metric social network stores the social information with

respect to a specific query, so this information (the query history) must be maintained in

order to avoid duplicating and aging.

2 Background

A very useful, if not necessary, search paradigm is to quantify theproximity, similarity, ordissim-

ilarity of a query object versus the objects stored in a database to besearched. Roughly speaking,

objects that areneara given query object form the query response set. A useful abstraction for

nearness is provided by the mathematical notion ofmetric space[16]. We consider the problem

of organizing and searching large datasets from the perspective of genericor arbitrary metric

spaces, sometimes conveniently labeleddistance spaces.

2.1 Metric Space

Suppose a metric spaceM = (D, d) defined for a domain of objects (or the objects’keysor

indexed features) D and a total (distance) functiond. In this metric space, the properties of

the functiond : D × D 7→ R, sometimes called themetric space postulates, are typically

characterized as:

∀x, y ∈ D, d(x, y) ≥ 0 non-negativity,

∀x, y ∈ D, d(x, y) = d(y, x) symmetry,
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∀x, y ∈ D, x = y ⇔ d(x, y) = 0 identity,

∀x, y, z ∈ D, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality.

Examples of distance functions areLp metrics (City-block, Euclidean, or maximum dis-

tance), the edit distance, or the quadratic-form distance,to name a few.

2.2 Similarity Query

Probably the most common type of similarity query is therange queryR(q, r). The query is

specified by a query objectq ∈ D, with some query radiusr as the distance constraint. The

query retrieves all objects found within distancer from q from a databaseX ⊂ D, formally:

R(q, r) = {o ∈ X, d(o, q) ≤ r}.

An alternative way to search for similar objects is to usenearest neighbor queries. Specif-

ically, kNN(q) query retrieves thek nearest neighbors of the objectq. If the collection to be

searched consists of fewer thank objects, the query returns the whole database. Formally, the

response set can be defined as follows:

kNN(q) = {R ⊆ X, |R| = k ∧ ∀x ∈ R, y ∈ X − R : d(q, x) ≤ d(q, y)}

3 Metric Social Network

In this section, we give a short overview of the architectureof the metric social network proposed

in [22]. This network operates in an ordinary peer-to-peer environment. The peers of the network

are capable of storing their own data and querying other network peers. Interconnection of

peers is based on the query-answer paradigm, i.e., the relationships between peers are formed by

querying some peers and analyzing the results obtained fromthem.

3.1 Architecture

In the metric social network, each peer organizes a piece of data, can pose similarity queries, and

returns answers to the queries. In addition, each peer maintains a list of queries it has asked or

answered, calleda query history. This represents the peer’s knowledge about the network and

is exploited by search algorithms. Every query in the query history has associated a list of peers

that participated in the query answering, which forms relationships among peers with respect to
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the particular query. Let assume the peerPstart poses a queryQ. A search algorithm exploits

the query history to locate the most similar query (a template query)Qt and forwards the query

Q to all peers in the list associated withQt. The contacted peers then evaluate the query on

their data and return the partial responsesAPi
(Q). The final answer isA(Q) =

⋃n

i=1 APi
(Q)

wheren denotes the total number of peers that participated on the answering. In general, a peer

to whichQ was forwarded, can also inspect the query history for bettertemplate queries and can

forwardQ further. In this respect, the relationships defined by the lists in the query history can

be observed as communities of peers that share similar data relevant to the particular query. So,

the process of searching can be perceived as locating the best community which is then contacted

in order to obtain the query results.

A network peerP is P = (X,H) whereX = {o1, . . . ol} represents a piece of data and

H = {h1, . . . hm}, hi = (Q, tm, L
Acq
P (Q), LFri

P (Q)) represents the query history, where each

item has the queryQ with the timestamptm when it was issued and the pair of ordered lists of

identified acquaintances and friends regarding the queryQ.

In the following, we define the quality of answer which is consequently used to define the

terms of friends and acquaintances.

3.2 Measuring Quality

To distinguish which peer answered better, thequality is measured by defining aquality measur-

ing functionQual(APi
(Q)). It returns a quality objectτi that represents the quality of the peer’s

answer. Since this object is not necessarily a number, we also define a function to compare two

quality objects:

comparequal(τ1 , τ2 ) =






−1 τ1 is better thanτ2

0 τ1 is the same asτ2

1 τ1 is worse thanτ2

The quality of the total answer is determined by applying thequality measuring function

to A(Q). An ordering� which we call theτ -ordering is defined on the peers’ answers

AP1
(Q), . . . , APn

(Q) in A(Q) according to their qualities. The sequence of peers’ answers

is ordered by decreasing quality when the following holds:

i1 . . . in : τia � τib ⇔ a < b ∧ comparequal(τia , τib ) 6= 1

Intuitively, theτ -ordering orders the peers by their ability to answer the particular queryQ.
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3.3 Acquaintances and Friends

As we mentioned before, we distinguish two relationships inthe metric social network. Firstly,

the friend relationship represents the similarity of nodes– two nodes give a similar answer to

same query. Secondly, the acquaintance relationship denotes that the target of the relationship

took part in the answer passed to the recipient. Acquaintances play an important role in searching

because they can be viewed as links to different communities. In the following, we will use the

answer size in objects as the measure of quality, i.e.,Qual(AP(Q)) = |AP(Q)|.

A set of acquaintances for a given queryQ is defined as a set of participating peers in the

total answerAcq(Q) = {P,AP(Q) 6= ∅}. Friends are identified in the set of acquaintances as

peers that contributed to the answer with a significant partial answer:Fri(Q) = {P, |AP(Q)| >

c · |A(Q)|}, wherec is a positive-value constant.

Every peerP that is identified as a friend or has initiated the query stores the queryQ with the

query-issuing timestamptm and the lists of acquaintances and friends defined as follows(both

areτ -ordered):

L
Acq
P (Q) =






{(Pi, τi )|Pi ∈ Acq(Q) ∧ τi = Qual(APi
(Q))} if P ∈ Fri(Q) ∪ {Pstart }

∅ otherwise

LFri
P (Q) =






{(Pi, τi )|Pi ∈ Fri(Q) ∧ τi = Qual(APi
(Q))} if P ∈ Fri(Q)

∅ otherwise

In other words,Pstart remembers just the list of acquaintances (i.e., no friends)recognized

unless it appears among the friends.

3.4 Search Algorithm

The query processing using the social network follows the common world concepts for searching.

Basically, the best acquaintance (peer) regarding the particular subject is located and then all its

friends are contacted to return their part of the answer toPstart .

Initially, the Pstart goes through its query history and finds thetemplate query(the most

similar query)Qt to the queryQ that it is processing now. In our setting, we express the similarity

of two queries as the distance between their query objects. By exploiting the list of acquaintances

of Qt, we obtain the best acquaintance to which the queryQ is forwarded. This concept is

formalized in Algorithm 1. The process of the query forwarding can be repeated more times to

locate the peer that is most promising to hold the searched data. At each peer, a different query
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Algorithm 1 Unidirectional Query Forwarding AlgorithmforwardQuery

Input: Pstart , contacted peerP, queryQ, last peer’s qualityτprev

1: get entryE = (Qt, tm, L
Acq
P (Qt), L

Fri
P (Qt)) from the query historyH with Qt most similar

to Q

2: get(Pt, τt ) corresponding to the best acquaintance fromL
Acq
P (Qt)

3: if comparequal(τt , τprev ) < 0 then

4: forwardQuery(Pstart , Pt, Q, τt )

5: else

6: for all (F, τf ) ∈ LFri
P (Qt) do

7: answerQuery(F, Pstart , Q)

8: end for

9: get all objects that satisfyQ

10: send retrieved objects back toPstart

11: end if

can be retrieved from the query history. The query forwarding stops when the contacted peer’s

quality (τprev in the algorithm) is better than any of its acquaintances to which it could possibly

pass the query. Initially,τprev is set to zero.

When the best acquaintance regarding the particular query is found, it returns its part of the

query answer to the querist. Then it looks up in the query history for the template queries and

retrieves the sets of friends associated with that queries and forwardsQ to them as described in

Algorithm 2. The query is passed also to friends because it issupposed that they hold similar

data which will form substantial parts of the query answerA(Q). After contacting, the peers

return their partial answersAPi
(Q) to Pstart .

Cost Analysis The search algorithm is finite because the peer’s qualityτprev can only be im-

proved. So, the query forwarding converges. In the worst case, the query can be forwarded

through all peers in the network. From our experience, the number of forwarding steps is, how-

ever, constant and equal to four (for both the small and largenetworks). This also confirms the

validity of the small world phenomenon. By spreading the query over the community formed by

friends, the query answer is improved in terms of completeness. Sending the query repetitively

to all friends can lead to an infinite loop. This is restrainedby not allowing a peer to evaluate

the same query twice. In reality, the social communities formed are compact and the number of

friend-contacting steps is usually one or two.
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Algorithm 2 Friend-of-Friend Simple Query Answering ProcedureanswerQuery

Input: current peerP, Pstart , queryQ

1: S = {(Qt, tm, L
Acq
P (Qt), L

Fri
P (Qt))| the query object ofQt satisfiesQ}

2: for all (Qt, L
Acq
P (Qt), L

Fri
P (Qt)) ∈ S do

3: for all (F, τf ) ∈ LFri
P (Qt) do

4: answerQuery(F, Pstart , Q)

5: end for

6: end for

7: get all objects that satisfyQ

8: send retrieved objects back toPstart

Experiment Trials To demonstrate the properties of this search algorithm, we assembled the

metric social network consisting of forty-seven peers organizing 100,000 3-D vectors (three val-

ues of color histograms of images) compared using the euclidean distance. The initial state of the

network was random – in the query history, every peer had five queries with the random number

of randomly selected friends (one to fifteen) scored by a random quality. The data was distributed

into the peers using the M-tree [10] metric tree structure, where the content of each leaf node

was stored in one peer. The M-tree is used to obtain precise and complete query results. It also

forms the baseline in terms of costs, i.e., the percentage ofpeers that participate in the answering.

The M-tree access structure is required only to compare the results, so therecall of the metric

social network can be evaluated. The metric social network does not rely on it and can operate

independently.

Figure 1 presents results obtained by executing range queries (r = 200) in the metric social

network. Average values of recall and costs were measured ona fixed test series of twenty

range queries. Between two test series a batch of fifty randomly-picked queries with the same

radius was executed. These queries were adapting the socialinformation. The adaptation of the

network was naturally turned off during test series. From the results, the reader can observe that

the search algorithm is capable of evolving in terms of increasing the recall even if the initial

state was completely random, thus, unreliable. The query costs are more or less constant. Their

reduction after the10th series is caused by intentionally deleting the initial random state. This

proves that the network no longer uses the randomly-generated social information to navigate

and answer queries.

We have also run this experiment on a larger network consisting of 150 peers initialized in the

very same way. However, the results revealed that this search algorithm is incapable of increasing
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Figure 1: Recall and costs of the social network compared to the M-tree.

the recall. This is caused by the much lower connectivity in this network compared to the smaller

one.

Overall, the disadvantages of this search algorithm are twofold. First, the algorithm requires

a highly-connected network in order to operate at higher recall values. Second, the peers’ query

history is not maintained in any way, so obsolete queries (e.g. the initial random state) cannot be

superseded and increase the search costs. In the following,we propose a new adaptive algorithm

which solves these issues.

4 Adaptive Search Algorithm

In this section, we define a new search algorithm which is adaptive in sending the query to

more acquaintances considering the closeness of queries retrieved from the query history. In this

respect, it allows contacting more acquaintances when goodtemplate queries cannot be found.

First, we define confusability on top of which the adaptive search algorithm is built. Second,

the adaptive search algorithm is described. Third, the confusability is exploited in a query-history

management.

4.1 Confusability

In [23], Shepard proposed a “Universal Law of Generalization" which was further studied and

reformed by Chater and Vitanyi [8]. The law states that the probability of confusing two items

x andy is a negative exponential function of the distanced(x, y). By exploiting this, we define

theconfusabilityof two queries as the weighted compound of distance similarity (following the

original proposal), query intersection, and time similarity. The value of confusability controls
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the number of template queries used for searching in the adaptive search algorithm (refer to

Section 4.2).

Confusability(Q,Qt) = wD · D(Q,Qt) + wI · I(Q,Qt) + wT · T(Q,Qt)

The weights must satisfy:0 ≤ wD,I,T ≤ 1 and wD + wI + wT = 1. So, the higher the

confusability of the new queryQ and a template queryQt is, the better the queryQt is for

searching. The values of confusability are between zero andone. The individual similarities are

defined as follows:

• The distance similarityD(Q,Qt) expresses the Shephard’s confusability of queriesQ and

Qt with respect to the distance between their query objectsq andqt.

D(Q,Qt) = A · e−B·d(q,qt)

The constantA is set to one in order to keep the values returned between zeroand one.

The constantB depends on the distance functiond and the dataset. For our experiments

on 3-D data, we fixedB = 1
200

because we required low similarity of two queries with

r = 100 touching each other, i.e.,D(Q,Qt) = 0.37 whered(q, qt) = 200. If the distance

of 400, the similarity is only0.13.

• The intersection functionI(Q,Qt) expresses the similarity in terms of the intersecting area

of the corresponding query regions (ball regions in the caseof range queries). It is defined

as the intersection of the ball regions in 2-D space and normalized using the area covered

by Q.

I(Q,Qt) =
|region(Q) ∩ region(Qt)|2D

|region(Q)|2D

The main reason for defining it is as follows: a new query with large radius is to be an-

swered; two template queries at approximately the same distance are retrieved, however,

the first is smaller than the second. Because the second queryhas large area with the new

query in common, it is more profitable from the searching point of view.

• The functionT(Q,Qt) expresses the similarity of queriesQ andQt with respect to their

time difference. In the query history, each queryQt has a timestamptmQt
assigned. It

corresponds to the time when the queryQt was inserted into the query history. The time

can be expressed absolutely (wall-clock time) or relatively (a sequence number).

T(Q,Qt) = max

(

0,
tmmax − |tmQ − tmQt

|

tmmax

)
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The constanttmmax should be set to a reasonable value which will mark archaic queries.

For our experiments, we used the relative timestamps and fixed tmmax to 4, 000, i.e., a

query is considered obsolete after the system processed next 4, 000 queries.

4.2 Adaptive Search Algorithm

The adaptive search algorithm we propose follows the same idea as the previous search algo-

rithm. The pseudo-code is available in Algorithm 3 presented in Section 3.4. Its adaptability is

wired in an automatic increase or decrease of the flooding factor during query forwarding. In our

setting, we defined the most simple variant which, however, turned out to be very effective. We

defined a threshold valuethresholdconf = 0.9 and a step value of0.25 to establish five intervals

having the increasing flooding factors assigned:

Confusability ≥ 0.90 0.65 0.40 0.15 0.00

floodingFactor 1 2 3 4 5

In particular, we retrieve five closest template queries from the query history with respect

to the distance between the query objects, i.e.,k = 5, and compute their confusabilities with

respect to the queryQ. Depending on the maximum of the confusabilities, one to fivetemplate

queries are used for query forwarding. As usual, the best acquaintances of template queries are

picked and the queryQ is forwarded to them. Notice that different template queries can have

the same best acquaintance, hence the query is forwarded only once. Finally, data satisfying the

queryQ are retrieved from friends – the functionanswerQuery() is called (Algorithm 2). The

experimental evaluation of properties of the adaptive algorithm is presented in Section 5.

4.3 Managing the Query History

The other drawback of the basic search algorithm presented earlier is the lack of any management

of the query history on peers. The query history was unlimited in size, which is not usually

feasible in production applications. Furthermore, each peer has to search its query history for

the most similar queries. Such a process has to be optimal because the query can be forwarded

several times, so searching in the query history forms a sequential step in the query evaluation.

As a result, the size of the query history should be kept in certain boundaries. The content of

query history is important as well since obsolete queries lead to increased query costs, which has

been depicted in Figure 1 in case of the random initial state.So, the template queries becoming

obsolete should be naturally expelled.
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Algorithm 3 Adaptive Query forwarding algorithmforwardQueryAdapt

Input: Pstart , contacted peerP, queryQ, last peer’s qualityτprev

1: get thek most similar entriesE from the query historyH

2: for each entryE = (Qt, tm, L
Acq
P (Qt), L

Fri
P (Qt)) retrieveddo

3: computeConfusability(Q,Qt)

4: end for

5: order entries by decreasing confusability

6: confmax = maximum confusability among all entriesE

7: n =floodingFactor(confmax)

8: for all n first entriesE = (Qt, tm, L
Acq
P (Qt), L

Fri
P (Qt)) do

9: get(Pt, τt ) corresponding to the best acquaintance fromL
Acq
P (Qt)

10: if comparequal(τt , τprev ) < 0 then

11: forwardQueryAdapt(Pstart , Pt, Q, τt )

12: else

13: for all (F, τf ) ∈ LFri
P (Qt) do

14: answerQuery(F, Pstart , Q)

15: end for

16: get all objects that satisfyQ

17: send retrieved objects back toPstart

18: end if

19: end for

We introduce the query history management procedure which optimizes the content of query

history and by tuning its parameters it can control the length of query history too. The pro-

cedure is specified in Algorithm 4. This piece of code is executed atPstart after a queryQ

has been evaluated. The algorithm decides not to insert the new queryQ into the query his-

tory if its confusability to a queryQt that is already present in the query history, is high, i.e.

Confusability(Q,Qt) ≥ thresholdconf. In other words, the queryQt is up-to-date and

very close to the new queryQ, so there is no need to update the social information in the net-

work. If the confusability is not very high, the new queryQ is inserted into the query his-

tory and some obsolete items can get deleted. The obsolete items are selected among thek

most similar template queries retrieved during the evaluation of search algorithm (Algorithm 3).

A template queryQt gets replaced if itsreplaceability is higher than a threshold value, i.e.

Replaceability(Q,Qt) ≥ thresholdrepl.
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Algorithm 4 Management of the query history

Input: a queryQ

1: use thek most similar entriesE retrieved in

2: forwardQueryAdapt()

3: for each entryE = (Qt, tm, L
Acq
P (Qt), L

Fri
P (Qt)) do

4: computeConfusability(Q,Qt)

5: end for

6: confmax = maximum confusability among all entriesE

7: if confmax ≥ thresholdconf then

8: exit {no management necessary}

9: end if

10: insert a new entry corresponding toQ into H

11: for each entryE = (Qt, tm, L
Acq
P (Qt), L

Fri
P (Qt)) do

12: computeReplaceability(Q,Qt)

13: if Replaceability(Q,Qt) ≥ thresholdrepl then

14: delete the entryE from H

15: end if

16: end for

The replaceability is defined in the similar way as the confusability. However, for the sake of

managing the query history, the time component plays the inverse role:

Replaceability(Q,Qt) = wD · D(Q,Qt) + wI · I(Q,Qt) + wT · (1 − T(Q,Qt))

The higher the replaceability, the greater the need to replace the template queryQt with Q is.

To put it in a different way, the template queryQt should be replaced withQ if the queries are

similar andQt is old. In Section 5, we evaluate this management procedure.

5 Experimental Results

In this section, we present an experimental evaluation of the proposed adaptive navigation al-

gorithm for searching in metric data. The experiments have been conducted on two real-life

datasets represented by vectors having forty five and three dimensions compared using the eu-

clidean distance, respectively. The 45-D vectors represent extracted color image features. The

distribution of the dataset is quite uniform and such a high-dimensional data space is extremely
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Figure 2: Distance densities of datasets: 3-D vectors (left) and 45-D vectors (right).

sparse. The 3-D vectors were obtained as the three most-important dimensions of the 45-D vec-

tors. The number of vectors in each dataset was 200,000. Figure 2 depicts distance densities of

the particular datasets.

5.1 Network Initialization

The datasets were distributed over peers using the M-tree index structure [10], where the content

of each leaf node was stored in one peer. Besides this, the M-tree was used to obtain precise and

complete query results. In particular, the M-tree is created on the provided dataset. Next, the

peers are assigned their pieces of data.1 The initial state of the network is random – in the query

history, every peer has five queries with the random number ofrandomly selected friends (one to

fifteen) scored by a random quality.

5.2 Methodology

In the individual graphs, we present values of recall and costs obtained by executing test series

for one-hundred times. The test serie consists of twenty range queries with randomly picked

objects and the radii fixed to100 and1, 500 for the 3-D and 45-D data, respectively. The values

of recall and costs are averages over the results of the test series queries. On average, queries

with the selected query radii return 0.8% of the dataset. Thecosts represent the ratio between the

number of accessed peers and the number of all peers in the network. The evolution of the metric

social network is ensured by executing a batch of 150 random queries having the same radius as

the test queries. Remark that any adaptation of the social network information was suspended

1For both datasets, the M-tree consists of 150 leaf nodes, i.e., the data objects are distributed among 150 peers.

15



 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90  100

%

test series

mSN recall
mSNMax recall

M-tree costs
mSN costs

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90  100

%

test series

mSN recall
mSNMax recall

M-tree costs
mSN costs

Figure 3: Learning abilities of the metric social network with theforwardQueryAdaptnavigation

algorithm: 3-D vectors (left) and 45-D vectors (right).

during the test series. Moreover, we also present the behavior of the number of template queries

stored in each peer’s query history. We provide the reader with the minimum, maximum and

average values over all peers.

5.3 Recall and Costs

In this section, we present the ability of the metric social network to self-learn towards better

query processing when the proposed adaptive navigation algorithm is employed. The results are

demonstrated in Figure 3. The recall values are presented for mSN (the metric social network)

and mSNMax which corresponds to the recall that could have been obtained if the best peers had

been contacted (the same number as mSN did, of course).

For the experiment, we set the weights of the confusability functionConfusability(Q,Qt)

to wD = 0.77, wI = 0.0, andwT = 0.23, i.e., we naturally put greater emphasis on the distance

but we also use the time similarity to implement aging. We ignore the intersection similarity

since the query radii are the same. So, the influence of the intersection similarity was added to

the distance similarity. The parameterB of the distance similarity was set to1
200

and 1
3000

for 3-D

and 45-D data, respectively. Both the values correspond to approximately the same similarity on

both the datasets.

Due to the social information adjustments, the metric social network is improving. In the be-

ginning, the confusability of template queries retrieved from the query history was low, so more

queries were used for navigation (as controlled by thefloodingFactor). After several iterations,

the social information was updated and the confusability values increased, so the flooding of the
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Figure 4: Minimum, maximum and average length of peers’ query histories for the 3-D and 45-D

vectors without any query history management.

network was decreased automatically. Finally, after all one hundred iterations of the test series,

the recall values reached 95% and 90% for the 3-D and 45-D vectors, respectively, while the

costs are still decreasing. This is attributed to the diminished use of template queries containing

initial randomly-generated social information. These queries stopped being used due to their ag-

ing (the influence of the time similarity of confusability).The reader can observe that the amount

of the peers contacted is smaller than the amount of the M-tree leaf nodes in the case of the 3-D

data. The gap between those is substantially greater for the45-D data. This is caused by the

sparseness of the data space and the construction principles of the M-tree.

5.4 Managing the Query History

In this stage, we study the metric social network from the perspective of peers’ query histories.

In Figure 4, their lengths are depicted, namely the minimum,maximum and average over all

peers. These results and results in Figure 3 were obtained during the same experimental trial.

Without any management of query history, the peers store allqueries passed and the peers’ query

histories can become overwhelming after a long run-time. For both the datasets, the average

length of query history is around 500 after the last iteration of the test series.

By applying the procedure outlined in Algorithm 4, we would like to maintain the content of

peers’ query histories and keep them in certain bounds. At the same time, the search costs should

decrease because obsolete template queries would be expelled permanently. We used the same

weights for the replaceability functionReplaceability(Q,Qt) as for the confusability function.

The threshold values for confusability and replaceabilitywere0.9 and0.75, respectively. We
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Figure 5: Minimum, maximum and average length of peers’ query histories for the 3-D vectors

with the query history management.

present results obtained by experimenting on the 3-D dataset only because the results for the

other dataset were very much alike.

In Figure 5, the evolution of lengths of peers’ query histories is depicted by curves labeled

with Min, Max andAvg. We can observe that the number of stored queries does not grow as

fast as it did in Figure 4. Such a behavior was expected. In early stages (first twenty iterations),

the social information was poor, so the peers’ query histories grew rapidly – new queries were

inserted in the query history and none were deleted because of low values of both the confus-

ability and replaceability functions. Next, the length of query histories became saturated and the

replaceability function instructed the query history management algorithm to supersede some

template queries. After all one hundred iterations of the test series, the average length of peers’

query histories was 165 which is nearly three times fewer than without any management, while

the quality of the query results (recall) was maintained at the same level, please refer to Figure 6.

In some applications, there is a limited amount of memory which can be allocated for the

query history. We tried to model such a situation by posing a hard limit on the length of the

query history. If the length of the query history on a peer exceeded one hundred queries, the

oldest query was removed until the constraint was met. The development of lengths of peers’

query histories is depicted by curves labeled withMin100, Max100 andAvg100 in Figure 5.

Such a hard limit had surprisingly no impact on the recall values. We attribute such a stable

behavior to the high adaptability of the proposed algorithmforwardQueryAdaptand fine-tunable

query history management. Both these algorithms synergically cooperate and increase flooding

of the network or storing important queries when necessary.
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6 Concluding Remarks and Future Work

Distributed processing of similarity queries currently attracts a lot of attention because of its

inherent capability of solving the issue of data scalability. We have proposed two algorithms

which address two drawbacks of the metric social network – namely the navigation algorithm

which limited exploration of the network and the ever-growing query history which contained

also obsolete items. The principles of both the algorithms exploit so-callconfusabilitywhich

is based on thelaw of generalization. The presented experiment trails confirm suitability and

auspiciousness of such advances.

In our system, we have no automatic exploration implemented, no background actions are

done by peers automatically, and peers do not exchange any profiles about their data but the

query results. We did not experiment on an actual peer-to-peer infrastructure where peer discon-

nections happen frequently due to shutting down the peer or anetwork failure. Dealing with such

environments is the future work.

Another research challenge is to study the behavior of the metric social network when the data

is partitioned differently (the M-tree tries to cluster data) or when the data change not only in

terms of adding or deleting data items but also in terms of different domains, e.g., music, video,

or text. We also plan to verify the metric social network properties on large-scale networks

consisting of hundreds or thousands of peers.
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