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Abstract

This report targets the area of wireless sensor networks, and in particular their secu-

rity. Probabilistic key pre-distribution schemes were developed to deal with limited

memory of a single node and high number of potential neighbours. We present

a new idea of group support for authenticated key exchange that substantially in-

creases the resilience of an underlaying probabilistic key pre-distribution scheme

against the threat of node capturing.

We also propose a new method for automatic protocol generation which utilizes

Evolutionary Algorithms (EA). The approach is verified on the automatic genera-

tion of secrecy amplification protocols for wireless sensor networks. All human-

designed secrecy amplification protocols proposed so far were re-invented by the

method. A new protocol with better fraction of secure links was evolved. An alter-

native construction of secrecy amplification protocol was designed which exhibits

only linear (instead of exponential) increase of needed messages when the number

of communication neighbours is growing. As a message transmission is a battery

expensive operation, this more efficient protocol can significantly save this resource.
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1 Introduction

Recent advances in micro-electro-mechanical systems technology, wireless communica-

tions, and a digital electronics have enabled the development of low-cost, low-power,

multifunctional devices that are small in size and communicate only at short distances.

These devices can be used to form a new class of applications, Wireless Sensor Networks

(WSNs). WSNs consist of a mesh of a several powerful devices (denoted as base stations,

sink or cluster controller) and a high number (103 − 106) of a low-cost devices (denoted

as nodes or motes), which are constrained in processing power, memory and energy. The

nodes are equipped with an environment sensor (e.g., heat, pressure, light, movement).

Events recorded by the sensor nodes are locally collected and then forwarded to a base

station (BS) using multi-hop paths for further processing.

Wireless networks are widely used today and they will spread even more with in-

creasing number of personal digital devices that people are going to use in near future.

Sensor networks form just a small fraction of future applications, but they abstract some

of the new concepts in distributed computing.

WSNs are considered for and deployed in a multitude of different scenarios such

as emergency response information, energy management, medical monitoring, wildlife

monitoring or battlefield management. Resource-constrained nodes render new chal-

lenges for suitable routing, key distribution, and communication protocols. Still, the

notion of sensor networks is used in several different contexts. There are projects tar-

geting development of very small and cheap sensors (e.g. [SD]) as well as research in

middleware architectures [YB05] and routing protocols (AODV [Cha99], DSR [DBJ01],

TORA, etc.) for self-organising networks – to name a few.

No common hardware architecture for sensor nodes WSN is postulated and will

depend of the target usage scenario. Currently available hardware platforms for sensor

nodes ranges from Mica Motes [MIC] equipped with 8-bits Atmel ATmega 128L down

to Smart Dust motes [SD] with their total size around 1mm3 and extremely limited

computational power. No tamper resistance of node hardware is assumed so far.

Security often is an important factor of WSN deployment, yet applicability of some

security approaches is often limited. Terminal sensor nodes can have no or little phys-

ical protection and should therefore be assumed as untrusted. Also, network topology

knowledge is limited or not known in advance. Due to the limited battery power, commu-
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nication traffic should be kept as low as possible and most operations should be done

locally, not involving the trusted BS.

The main contribution of this report is a protocol design for authenticated key ex-

change with an improved resilience against the threat of node capturing over existing

probabilistic pre-distribution schemes and method for automatic design of secrecy am-

plification protocols based on Evolutionary Algorithms.

This report presents several key distribution schemes for WSNs and discuss its prop-

erties, namely the node capture resilience. We then focus on extension protocols, that

are able to improve the security for the price of an additional communication. The pro-

tocol described in section 2 uses combination of group support from neighbour nodes

and probabilistic pre-distribution to provide authenticated key exchange and introduce

the concept of probabilistic authentication. Section 3 describes the framework for an

automatic generation of other types of an extension so-called secrecy amplification pro-

tocols. The resulting protocols with their analysis and efficiency are presented in for

two patterns of the partially compromised networks as well as comparison with proto-

cols designed using conventional “human” design. This is followed by a conclusions in

section 4 of this report.

Parts of this report originated in conference papers previously published in [CS05]

(PUSH amplification protocol), [SO05] (early stage of group supported protocol without

probabilistic pre-distribution), [SM07] (group supported protocol) and [Sve07] (basic

framework for automatic protocol generation).

1.1 Node-compromise attacker model

Common attacker model in the network security area is the extension of the classic

Needham-Schroeder1 model [NS78] called the node-compromise model [EG02, CPS03,

DDHV03, DDHV04], described by the following additional assumptions:

A1: The key pre-distribution site is trusted – Before deployment, nodes can be pre-

loaded with secrets in a secure environment. Our work aims to omit this phase

as is a cheaper to produce identical nodes (even at the memory level).

A2: The attacker is able to capture fraction of deployed nodes – No physical control

over deployed nodes is assumed. An attacker is able to physically gather nodes

1An intruder can interpose a computer on all communication paths, and thus can alter or copy parts

of messages, replay messages, or emit false material.
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either randomly or selectively based on additional information about the nodes

role and/or carried secrets.

A3: The attacker is able to extract all keys from a captured node – No tamper resis-

tance of nodes is assumed. This lowers the production cost and enables produc-

tion of a high number of nodes, but call for novel approaches in security protocols.

The attacker model is in some cases (Key Infection [ACP04]) weakened by the fol-

lowing assumption:

A4: For the short interval the attacker is able to monitor only a fraction of a links –

This assumption is valid only for a certain period of time after deployment and

then reverts to stronger attacker with ability to eavesdrop all communication. The

attacker can selectively eavesdrop only a fraction of links and the rational reason

behind this assumption is based on specifics of WSNs:

a) Locality of eavesdropping – low communication range of nodes allows for

the frequent channel reuse within the network and detection of extremely strong

signal, so it is not possible for an attacker to place only one eavesdropping device

with a highly sensitive and strong antenna.

b) Low attacker presence during deployment – low threat in most scenario during

first few seconds before he realizes, that target area is in use. If the attacker’s

nodes are already presented in given amount in the target location, we can deploy

network with density and node range such, that ratio between legal nodes and

attacker’s eavesdropping devices is such, that secure network can be formed.

Note that the attacker model for WSNs is stronger than the original Needham-

Schroeder, because nodes are not assumed to be tamper resistant and attacker is able

capture them and extract all carried sensitive information.

1.2 Cryptographic issues in network bootstrapping and main results

Security protocols for WSNs deal with very large networks of very simple nodes. Such

networks are presumed to be deployed in large batches followed by a self-organising

phase. The later is automatically and autonomously executed after a physical deploy-

ment of sensor nodes.

Deployment of a sensor network can be split into several phases. The following list

is adjusted to discern important processes of key pre-distribution, distribution and key

exchange protocols. The main phases are as follows:
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1. Pre-deployment initialisation – performed in trusted environment.

2. Physical nodes deployment – random spreading (performed manually, from

plane, . . . ) of sensors over a target area in one throw or in several smaller batches.

3. Neighbour discovery – sensors are trying to find their direct neighbours (nodes

which can be directly reached with radio) and establish communication channels.

4. Key setup – key discovery or key exchange between direct neighbours.

5. Key update – periodic update of initial keys based on events like secrecy amplifi-

cation, join to cluster, node revocation or new nodes redeployment.

6. Establishment of point-to-point keys – the final goal is always to transmit data

securely from sensors to one of a few BS. Point-to-point keys are pairwise keys

between sensors and BS (or distant sensors).

7. Message exchange – the production phase of the network.

Main issues in the area of the key distribution for WSNs can be summarised as fol-

lows:

Master key scheme – One of the simplest solutions for key establishment is to use one

network-wide shared key. This approach has minimal storage requirements, un-

fortunately a compromise of even one single node in the network enables decryp-

tion of all traffic. The master key scheme has no resilience against node capture.

As recognised in [CPS03], this approach is suitable only for a static network with

tamper resistant nodes.

Full pairwise key scheme – A contrast to the master key scheme, where a unique pair-

wise key exists between each two nodes. As shown in [DDHV03], this scheme

has got a perfect resilience against node capture. However, this approach is not

scalable as each node needs to maintain n − 1 secrets, where n is the total number

of nodes in the network.

Asymmetric cryptography – Usage of PKI for WSNs is often assumed as unaccept-

ably expensive in terms of special hardware, energy consumption and processing

power [PST+02, EG02, ACP04]. Usage of asymmetric cryptography can lead to

energy exhaustion attacks by forcing the node to frequently perform expensive
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signature verification or creation [ANL02]. Energy efficient TinyPK architecture

based on elliptic curves is proposed in [WKC+04]. Maintaining fresh revocation

list, its verification and attacks like collusion attack [Moo05] remains a concern.

Base station as trusted third party – Centralised approaches like the SPINS architec-

ture [PST+02] use the BS as a trusted mediator when establishing pairwise key

between two nodes. Each node initially share the unique key with BS. This ap-

proach is scalable and memory efficient, but has high communication overhead as

each key agreement needs to contact the BS and this causes non-uniform energy

consumption inside the network [OS06].

Probabilistic pre-distribution – Various variants of random pre-distribution were pro-

posed to ensure that neighbours will share a common key only with a certain

probability, but still high enough to keep whole network connected [EG02, CPS04,

CPS03, DDHV03]. During the pre-deployment initialisation, keys for each node

are randomly chosen and assigned from a large key pool without replacement.

After deployment, nodes search in their key rings for shared key(s) and use it as a

link key, if such key(s) exist. Variants based on threshold secret sharing provide a

better resilience against the node capture.

Deployment knowledge pre-distribution – Efficiency of probabilistic pre-distribution

can be improved if certain knowledge about the final node position or likely neigh-

bours is known in advance. Ring keys selection processes based on node physical

distribution allocation are proposed in [DDHV04, CYZ04, LN03b]. The nodes that

have a higher probability to be neighbours have higher probability to share a com-

mon key.

Key infection approach – Unconventional approach that requires no pre-distribution

is proposed in [ACP04]. The weakened attacker with limited ability to eaves-

dropping is assumed for a short period after the deployment. Initial exchange

key exchange between neighbours is performed in plaintext and then the num-

ber of compromised keys is further decreased by secrecy amplification techniques

[ACP04, KKLK05, CS05].

Impact of Sybil and collusion attack – Powerful attacks against known key pre-

distribution protocols are presented in [NSSP04, Moo05]. In the Sybil attack, the

attacker is able to insert many new bogus nodes equipped with secrets extracted
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from the captured nodes. In the collusion attack, compromised nodes are sharing

their secrets to highly increase the probability of establishing a link key with an

uncompromised node. This attack shows that a global usage of secrets in a dis-

tributed environment with lack of physical control poses a serious threat, which is

hard to protect against.

Our work relates mainly on problem of node capture resilience of key distribution

protocols as all known suitable protocols are to some extent vulnerable against variants

of such attack [NSSP04, Moo05, DDHV03]. We aim to show that substantial improve-

ments in resilience against node capture can be achieved when a group of neighbouring

nodes cooperates in additional protocol. In the first case, the group of neighbours cre-

ates large virtual keyring and thus boosts resiliency against the scenario where each

node has only its own limited keyring available. Probabilistic pre-distribution is used

as the underlaying key distribution method here. In the second case, the group is prop-

agating fresh new keys and thus helps to potentially secure again some of the compro-

mised links. Secrets that are valid only locally are introduced, serving as a protection

against Sybil-like attacks. Here, we based our work on the novel concept of plaintext

key exchange and additional secrecy amplification introduced in [ACP04] and extended

in [KKLK05].

1.3 Secure link communication

Secure link communication is the building block for most of the security functions main-

tained by the network. Aggregation of the data from separated sensors needs to be

authenticated, otherwise the attacker can inject his own bogus information. Routing

algorithms need to utilize authentication of packets and neighbours to detect and drop

malicious messages and thus prevent network energy depletion and route messages

only over trustworthy nodes. Data encryption is vital for preventing the attacker from

obtaining knowledge about actual value of sensed data and can also help to protect

privacy of the sensed environment. On top of these common goals, secure and authen-

ticated communication can be used to build more complex protocols designed to detect

majority of the malicious nodes even in a partially compromised network. The gener-

ally restricted environment of WSNs is a challenge for designing of such protocols.

In a static WSN, nodes are assumed to have a fixed position and a relatively static set

of neighbours. New nodes are only introduced during the redeployment, to replenish
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the nodes with exhausted batteries. Authentication and key exchange are performed

with direct neighbours only, and thus with a very small subset (typically 5-40 nodes) of

the total amount of nodes. However, neighbours of a particular node typically are not

known before the deployment. Pre-distribution of pairwise authentication keys is thus

not possible due to the potentially high number of neighbours and limited memory of

a single node. The following text will provide a summary of related work in the area of

key (pre-)distribution.

1.3.1 Random key pre-distribution

Most common key pre-distribution schemes expect that any two nodes can always es-

tablish a link key if they appear as physical neighbours within their mutual transmission

range. This property can be weakened in such a way that two physical neighbours can

establish the link key only with a certain probability, which is still sufficient to keep the

whole network connected by secured links. A trade-off between the graph connectivity

of link keys and the memory required to store keys in a node is introduced. Even when

the number of keys carried by each node is relatively small, probability that two nodes

will share at least one key is surprisingly high (e.g., 60% probability to share at least

one key if each node carries 100 keys and the initial key pool has 10000 keys). If the

network detects that it is disconnected, a range extension through higher radio power

can be performed to increase the number of physical neighbours (for the price of higher

energy spending).

The idea of random key pre-distribution for WSNs is introduced for the first time

by [EG02] (referred to as EG scheme) and is based on a simple but elegant idea. At

first, a large key pool of random keys is generated. For every node, randomly chosen

keys from this pool are assigned to its (limited) key ring, yet these assigned keys are not

removed from the initial pool. Hence the next node can also get some of the previously

assigned keys. Due to the birthday paradox, probability of sharing at least one common

key between two neighbours is surprisingly high even for a small size of the key ring

(e.g., 100 keys). That makes this EG scheme suitable for memory-constrained sensor

nodes. Resilience of known pre-distribution schemes against the threat as described in

(1) above is evaluated in [CPS03]. Attacker obtains some keys from the initial key pool

by picking and reverse-engineering captured nodes. These keys are then used to de-

crypt eavesdropped messages. The success rate of decryptions depends on the number

of compromised keys (nodes). We argue that (2) is not a real problem if we ensure that
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a new node comes from the same deploying authority rather than actually care about

the identity of the node itself (can be viewed as a variation of group authentication).

[CPS03] extends the EG schema by q-composite random key pre-distribution, requir-

ing at least q shared keys instead of one (referred to as q-EG). Link key is constructed

using hash function from at least q shared keys. The number of a required shared keys

makes it exponentially harder for an attacker to compromise the link key with a given

subset of already compromised keys, but also lowers the probability of establishing a

link key. If the node key ring size m is fixed, total size of key pool S must be reduced

to preserve same key establishment probability, and thus the attacker obtains a larger

fraction of S from a single node. A formula for optimum tradeoff is given. Impact of

multi-path key reinforcement, introduced by [ACP04] together with q-EG is studied.

The random pairwise scheme is also described (see 1.3.2).

[PMM03] extends the EG scheme using pseudo-random generation of key indexes

rather than completely random (referred to as seed-based key deployment). The ad-

vantage is that two neighbours can compute identification (not the key value) of their

shared keys only from their node identifications with no additional communication

messages. A co-operative version of the seed-based key deployment protocol is de-

scribed, performing secrecy amplification with a set of common neighbours of partic-

ipants A and B. A chooses randomly the set of B-neighbours (mediators Ci) and asks

them for computation of HMAC(IDA, KCiB). Resulting values from each mediator are

XORed together with the original key value KAB and used as the new key value. Node

B can compute new key value only from the information who were the mediators used,

with no additional messages.

As one key is known to more than two nodes, node-to-node authentication cannot

be provided in contrast to the pairwise key pre-distribution. The q-EG scheme [CPS03]

provides significantly better node-capture resilience than basic EG [EG02] until some

threshold is reached.

1.3.2 Pairwise key pre-distribution

Pairwise key pre-distribution scheme is a scheme where a given key is shared between

two nodes. In a basic pairwise scheme, each node shares a unique key with every other

node in the network (referred to as (n-1) pairwise scheme). This scheme is perfectly

resilient against the node capture2, but is poorly scalable and has high memory require-

2No other keys are compromised but from the captured node.
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ments. Note that perfect resilience against the node capture does not mean that an

attacker cannot obtain a significant advantage by combining keys from the captured

nodes (e.g., collusion attack [Moo05]).

In [CPS03], a modification of the basic pairwise scheme (referred to as CPS scheme)

is proposed. Based on the required probability p that two physical neighbours will share

a key, unique pairwise keys for X are generated, but only for m other randomly chosen

nodes. In a contrast to the EG scheme, node-to-node authentication can be performed.

Total number of nodes in a network is limited by n = m/p. Support for distributed

revocation of a compromised node is proposed. During the initialisation phase, each

node Yi sharing key with node X obtains also a secret voting information, which can be

used against malfunction X when detected. The vote can be then broadcasted and node

X marked by Yi as revoked if the number of received votes exceeds a specific thresh-

old value. Merkle hash tree is used to decrease storage needs. A masking mechanism

that allows only direct neighbours of X to vote against X serves as a prevention to the

revocation attack, where an attacker uses captured votes against legal nodes. A valid

vote key can be constructed after deployment only if the masked key is combined (e.g.,

XORed) with some secret information carried by X.

A key pre-distribution scheme (referred as Blom scheme) that allows any pair of

nodes to find a pairwise secret key is proposed in [Blo84]. Blom scheme requires sub-

stantially less memory than (n-1) pairwise key scheme and still allows for computing

pairwise keys between each two nodes. However, Blom scheme is perfectly resilient

only if not more than λ nodes are compromised (λ-secure property). If only one global

key space of Blom scheme is used, λ must be unwieldy high and so does the required

memory to resist against the node capture. Scalability of such approach is then poor.

A solution based on multiple key spaces is proposed in [DDHV03] (referred to as

DDHV scheme). Instead of one global key space a large key pool S of key spaces KSi is

generated and m randomly chosen key spaces KSi are assigned to each node, analogi-

cally as for the EG scheme (see 1.3.1). The basic Blom scheme is used for each separate

key space. Whole approach can be viewed as a combination of the EG key pool scheme

and single space approaches like Blom’s one. Probability that two nodes can establish a

pairwise key is equal to the probability that they share at least one key space.

DDHV scheme provides a very good node capture resilience in comparison to EG

and CPS schemes until some threshold value of total number of compromised nodes is

reached. Then the whole network rapidly becomes completely insecure.
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Hwang and Kim [HK04] revisit the basic random pre-distribution EG scheme (1.3.1),

CPS scheme (1.3.2) and DDHV (1.3.2) using the giant graph component theory by Erdös

and Réney to show that even when the number of a node’s neighbours is small, most

nodes in the whole network stay connected. If the network connectivity requirements

are weakened only to some big graph component (e.g., 98% of nodes), substantial im-

provements of local connectivity or lower memory requirements can be obtained. Re-

sults for various trade-offs between connectivity, key ring size and security are pre-

sented [HK04]. Because of optimal network capacity, average node degree between 5

and 8 is suggested. Local flooding and mediator support approaches are proposed to

establish link keys between two yet unconnected nodes.

The hypercube pre-distribution based on multiple key spaces of Blom’s polynomial

is proposed in [LN03a]. Prior to deployment, the nodes are arranged in a virtual hy-

percube (so-called grid in two-dimensional case) and shared Blom’s polynomials are

assigned to all nodes having same coordinates within a given dimension (same row or

column for grid case). This scheme is inspected in more details in sections 1.8.1 and 2.6

as it is closely related to our work.

Summary of random pre-distribution schemes covering EG scheme, q-EG scheme,

CPS scheme and multi path key reinforcement can be found in [CPS04].

Impact of node replication (Sybil) attack against EG, q-EG and Blom scheme is evalu-

ated in [FKZZ05]. This paper evaluates how much can an adversary gain after injecting

certain number of replicated nodes and which scheme is most resilient against the repli-

cation attack, both through theoretical and experimental results. It is shown that success

of the replication attack grows with the network density.

A novel collusion attack against the pairwise key pre-distribution schemes is pre-

sented in [Moo05]. Compromised nodes are sharing their secrets to increase probability

that one of them will be able to establish the link key with its neighbours. This attack

differs from the Sybil attack as node identities are not randomly generated, but instead

are reused according to the available pairwise keys. A distributed voting scheme can be

undermined by a 5% colluding minority since this minority is able to establish approx-

imately one half of valid communication channels.

The pairwise key schemes can provide node-to-node authentication, but support a

lower number of nodes in the network in comparison to the EG scheme. Combination of

the ideas from EG scheme and Blom scheme (DDHV scheme) provides better resilience

against node capture, until some threshold is reached (see Figure 6).
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1.4 Limited neighbour knowledge schemes

Previous schemes presume that the probability that any two nodes will appear as phys-

ical neighbours is equal for any two nodes (network is flat). Yet in many practical

scenarios, some probabilistic deployment knowledge about the node’s final ground-

ing position can be available a priori. An additional setup phase before random key

pre-distribution is introduced, exploiting this knowledge.

[LN03b] presents two schemes that are using certain deployment knowledge. The

CPS scheme is used (see 1.3.2), but pairwise keys are generated only for such nodes,

which have high probability to be physical neighbours after the deployment, based

on some probability density function of deployment error with respect to node’s ex-

pected position (referred to as closest pairwise key scheme). An extended version using

a pseudo-random function (PRF) for pairwise key computation is introduced. During

deployment, pairwise key Kuv between nodes u and v is created as Kuv = PRFKv(idu),

where Kv is the master key for node v. The node u (called slave node) carries the value

Kuv directly, whereas node v (called master node) carries function PRF and its key value

Kv. Thus node v is able to compute Kuv after deployment for any (possibly later de-

ployed) node u.

The second scheme uses threshold key distribution protocol based on bivariate poly-

nomials. Target deployment area is divided into sectors with a suitable size. Multiple

key spaces are used, each one for a group of neighbour sectors. Pairwise keys are gen-

erated only for the nodes from close sectors inside a corresponding key space.

In [DDHV04] the target deployment area is divided into sectors, each correspond-

ing to a group of nodes, which are to be deployed from the same position. For each

group, there is a key pool constructed in such way that there are overlaps with key

pools for neighbouring groups. Only groups with direct neighbouring sectors share

some amount of keys.

Similar approach that divides the original single group of all nodes to a network

into smaller subgroups is presented in [CYZ04]. Nodes that will share the same “mis-

sion task” and should be able to communicate with each other are placed in the same

subgroup.

A key management scheme using attack probabilities is presented in [CPS05]. Nodes

are divided into different subgroups based on the expected attack probability. Groups

with higher probability are equipped with more keys drawn from a larger key pool
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than nodes from a less risky group. If such attack probabilities are known in advance,

substantial improvements of the node capture resilience can be obtained.

In [HMMH04] the assumption about a random node capture and resulting resilience

of previously proposed schemes against such capture is pointed out as too weak. A se-

lective node capture algorithm is presented and vulnerability of known schemes against

such type of capture is examined. Vulnerability of known schemes against node fabrica-

tion attack is pointed out. Grid-group deployment scheme that should be more resistant

to selective node capture and node fabrication is proposed. The target area is divided

into multiple squares areas (zones) based on the expected nodes deployment pattern.

A distinct key pool is generated for each zone, using the DDHV scheme (see 1.3.2) with

fixed value of τ = 2 (called I-Scheme). No more than λ rows from one key space can

be distributed among nodes, thus the attacker can never reconstruct whole key space

from captured nodes and cannot add new fabricated nodes with keys of unused rows

from the given key space. Additionally, each node obtains a special pairwise key (eight

in total) for a randomly chosen “bridge” node from each one neighbour zone (called

E-scheme) during pre-deployment phase. Nodes are then deployed uniformly over the

assigned zone. Key establishment inside the zone (I-scheme) follows the original DDHV

scheme. Missing pairwise keys can be established using neighbours (from the current

zone) or bridge node(s) using a multi-hop key establishment method.

All presented schemes use the same idea of dividing originally flat network into

smaller subparts based on the pre-deployment knowledge about the nodes that are

more likely to communicate (location, mission task) or require more or less resilience

against the node capture based on attack probability (if some parts of the network are

likely to have more compromised nodes). Degree of partitioning can substantially in-

crease of connection probability, keeping node’s key ring at the same size. Alternatively,

size of the initial key pool can be increased keeping the connection probability same, re-

sulting in an increased resilience against the node capture.

1.5 Seed-based pre-distribution

Seed-based pre-distribution is an extension of a given pre-distribution scheme, intro-

duced by [PMM03]. Rather than completely random, a pseudo-random generation

is used to determine key indexes of the keys that will be assigned to a given node.

The advantage is that two neighbours can compute identification (not the key value)

of their shared keys only from their node identifications with no additional communi-
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cation messages. Suitable key assignment rule for probabilistic pre-distribution can be

constructed in the following way:

1. Generate an initial key pool with poolSize keys inside.

2. Generate a random identity IDx for a new node from large space (e.g., 16B).

3. Use IDx as the initial seed for a pseudo-random generator and generate the set of

pseudo-random values Ri, i ∈ {1, ..., ringSize}.

4. For each Ri calculate IDKi = Ri modulo poolSize.3

5. For each IDKi, assign the node IDx with the IDKi-th key from the initial key pool.

This process is directly usable for the EG pre-distribution scheme. With small

changes, it can be also used with others. The key thing here is the fact that keys carried

by the node can be computed by other locally, without any additional communication

except for retrieving the target node’s ID.

1.5.1 Selective node capture attack

The seed-based pre-distribution suffers from an important weakness with respect to the

attacker capable of performing selective node capture as described in [HMMH04]. As

the identification of all carried keys can be computed from a node’s ID alone, knowl-

edge of a node’s ID can be utilised by an attacker to selectively capture such nodes that

maximise the number of compromised keys. To prevent this, the following defense can

be used, inspired by Merkle’s work on puzzles [Mer78]. Existing nodes in the network

do not use their original IDs for communication, they use fresh randomly generated

identifiers instead. The original ID of a particular node as used for the seed-based pre-

distribution is only known to the node’s direct neighbours as follows from the proposed

scheme below.

Key discovery between direct neighbours deployed in the first round is not based

on the exchange of nodes’ IDs, but on a more communication expensive exchange of

“puzzles” created using carried keys. At first, both neighbouring nodes A and B gen-

erate separate random challenges NA (node A) and NB (node B) and exchange them in

plaintext. Node A then computes set CA of “puzzles” CAi = MACKi
(hash(0|NA|NB))

3Note that for equal probability of all possible values of IDKi, the greatest common divisor of maxi-

mum value of Ri and poolSize should be equal to poolSize.
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using all its keys. A similar set CB is computed as CBi = MACKi
(hash(1|NB|NA)) by

the node B. The way how the values NA and NB are combined serves as a protection

against an active attacker trying to obtain a valid MAC with the key Ki applied to a

selected value. Note that the size of sets CA and CB is equal to the node ring size. Both

sets CA and CB are exchanged between A and B. The node A then locally computes

the set C ′
B in the same way CB is constructed, but using its own keys and then checks

C ′
B and CB for intersecting values. The keys used by A to create intersecting values are

the keys shared with the node B. A similar process is used by the node B. The shared

keys are used to establish a secure channel. Note that an attacker does not obtain any

information about the keys carried by any node during this process. Original node’s

ID is exchanged later only if a secure channel can be set up using shared keys between

neighbours. An attacker thus does not have any information about a particular node’s

ID until she captures the node itself, or one of its direct neighbours.

Note that there can be a significant communication overhead when puzzles are ex-

changed. This can be reasonable as it has to be performed only once before the secure

link is established. Identity of a new node joining the group can be then broadcasted

over secure links only by one of the group members.

1.6 Key infection

A modified attacker model, where an attacker is not able to eavesdrop all communi-

cation lines, is introduced in [ACP04]. Under the assumptions of this model, a plain-

text key exchange protocol with no pre-distributed keys is described. An attacker is

assumed to have (black) nodes with the same receiver quality as our (white) nodes

have. After the deployment, physical neighbours exchange a link key value with no

additional security. The transmission range is increased by small steps (referred to as

whispering) until a neighbour can hear a key value (when its hardware is capable to do

so). An attacker will compromise a link key when being able to record the key exchange

transmission.

Two methods which should further decrease the fraction of compromised keys (gen-

erally called secrecy amplification) are described. These methods can be viewed as an ex-

tension of the basic plaintext exchange and are discussed in more details in section 1.8.

Generally, secrecy amplification works better in more dense networks.

A variant of initial key exchange (denoted as COMODITY) without secrecy ampli-

fication is presented in [KKLK05]. The node A sends same key K1 to nodes B and C
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in plaintext. Then K1 is used to secure the distribution of initial key material EK1
(B|K2)

and EK1
(C|K3) between (A, B) and (A,C). Final key between (A,B) is constructed as

K12 = hash(K3, hash(K2, K1)). Formal security proof of the proposed scheme is pre-

sented in the paper. No estimate of the number of compromised link keys is given.

In the key infection approach, weakened attacker model is necessary for the first

stage (plaintext key exchange) and in some cases also during secrecy amplification.

Length of this interval, together with the resilience of used exchange and subsequent

secrecy amplification, determines the cost for an attacker to successfully attack the net-

work.

In section 3, we focus on an automatic generation of such protocols using Evolu-

tionary Algorithms to generate candidate solutions and a network simulator to eval-

uate them. Such approach enables us to find personalized protocols that work well

against a given attacker and her tactics, avoiding unnecessary messages and thus also

significantly reducing the communication overhead and making Secrecy Amplification

protocols more practical.

1.7 Key distribution and resulting compromise patterns

Key distribution schemes behave differently when the network is attacked and partially

compromised. We will focus on two types of network compromise patterns:

1.7.1 Random compromise pattern

The first one is the Random compromise pattern, where the probability that a given link is

compromised is almost independent of other links. Especially, whether a link to partic-

ular node is compromised should be almost independent of a compromise of another

links from the same node. This compromise pattern may arise when a probabilistic

pre-distribution and later variations are used and an attacker extracts keys from several

randomly captured nodes.

Note that in the case of probabilistic pre-distribution, the compromise status of links

from same node is still slightly correlated – if one link is compromised, other links from

the same node may be established using same key(s) as the compromised one. This cor-

relation quickly decreases with the size of key ring on each node and e.g., for 200 keys in

ring is negligable. For links constructed from pre-distributed symmetric cryptography

keys holds if the link A → B is compromised, then also A ← B is compromised.
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1.7.2 Key Infection pattern

Compromised networks resulting from Key Infection key distribution [ACP04] form the

second inspected pattern. Here, link keys are exchanged in plaintext and an attacker can

compromise them if the transmission can be recorded. The weakened attacker model

assumes that an attacker is not able to eavesdrop all transmissions, yet has a limited

number of restricted eavesdropping nodes in the field. The closer is the link transmis-

sion to the listening node and the longer the distance between link peers, the higher the

probability of a compromise. Typically, if the eavesdropping node is close to the legal

node, most of the links to the latter can be compromised. Note that there can be a dif-

ference between the compromise status of the link A → B and the link A ← B. This is

another difference from the Random compromise pattern.

1.8 Extension protocols

Extension protocol is an additional process executed by the nodes in the network after

the basic link key establishment. We will target such protocols that involve other nodes

in the network (typically the direct neighbours) as a group of supporting entities to

improve the security of the partially compromised network. Here, we provide short

overview of selected extension protocols related to key distribution that are related to

our work presented in section 2 and 3.

1.8.1 Hypercube pre-distribution

The extension protocol for probabilistic polynomial pre-distribution called hypercube

scheme is presented in [LN03a]. Before the deployment, the nodes are arranged into

a layered hypercube-like structure (grid in case of two-dimensions). The basic pool of

key spaces is generated, same as for the multi-space polynomial scheme [DDHV03].

Then nodes with the same index within a given dimension (rows and columns in 2-

dimensional case, shown on Figure 1) are assigned with a polynomial from the same

key space and thus are able to establish shared pairwise key directly. Nodes are then

deployed and perform ordinary neighbour discovery phase. If two nodes A and B

wish to establish a pairwise key, all indexes of nodes within all dimensions are com-

pared. If at least one index is shared then a key can be directly established. Otherwise

other nodes are asked for cooperation such that virtual path from A to B can be formed

(A,C1, C2, . . . Cn, B), where A is able to establish direct pairwise key with C1 (they have
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Figure 1: Polynomial assignment in two-dimension hypercube (grid). Nodes in the

same row or column can establish key directly, otherwise with the help of neighbours

in virtual grid. Figure taken from [LN03a].

same index in at least one dimension), Ci with Ci+1 and Cn with B. New pairwise key is

then generated on A and transported with re-encryptions over intermediate nodes Cj to

node B. The proposed scheme assumes that compromised nodes/links are known and

thus the non-compromised path can be selected. With the growing dimension of the

hypercube, number of such paths is significant. If at least one non-compromised path

exists, secure pairwise key can be established. Knowledge of compromise nodes/links

is vital for the scheme – otherwise all possible paths must be tried with related signif-

icant communication overhead to obtain level of node capture resilience analyzed by

authors of the scheme. Moreover, some matching between virtual hypercube layout

and physical layout of nodes after deployment should be maintained. Otherwise nodes

close on a virtual path can be in distant parts of the network physically, connectable

only by the multi-hop communication and key exchange then poses a significant com-

munication overhead.

The node capture resilience is significantly increased by the hypercube scheme as

presented on Figure 2. Comparison with our group supported scheme (will be de-

scribed later) is presented in section 2.6.
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Figure 2: Node capture resilience of hypercube scheme, ring size equal to 200 keys.

Figure taken from [LN03a].

1.8.2 Secrecy amplification

Secrecy amplification protocols were originally introduced for the Key Infection plain-

text key exchange, but can be used also for partially compromised network resulting

from a node capture.

In the multi-path key establishment, node A generates q different random values and

sends each one along a different path over node(s) Ci to node B, encrypted with existing

link keys (will be denoted as the PUSH protocol). All values combined together with the

already existing key between A and B are used to create the new key value. An attacker

must eavesdrop all paths to compromise the new key value. Second method, called

multi-hop key amplification, is basically a 1-path version of the multi-path key establish-

ment with more than 1 intermediate node Ci. Simulations in [ACP04] for attacker/legal

nodes ratio up to 5% are presented, showing that the plaintext key exchange followed

by the secrecy amplification is suitable within this attacker model.

A variant of initial key exchange (denoted as COMODITY) without secrecy ampli-

fication is presented in [KKLK05]. The node A sends same key K1 to nodes B and C

in plaintext. Then K1 is used to secure distribution of initial key material EK1
(B|K2)

and EK1
(C|K3) between (A, B) and (A,C). Final key between (A,B) is constructed as
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K12 = hash(K3, hash(K2, K1)). Formal security proof of the proposed scheme is pre-

sented. No estimate of the number of compromised link keys is given.

A variant of the PUSH protocol called PULL protocol is presented in our work

[CS05]. Initial key exchange is same as for the PUSH protocol, but node C decides

to help improving secrecy of the key between nodes A and B instead of node A as in the

PUSH protocol. This decreases the area affected by the attacker eavesdropping node

and thus increases the number of non-compromised link keys. Impact of key composi-

tion called mutual whispering on subsequent amplification is examined. Mutual whis-

pering is key exchange where a pairwise key between A and B is constructed simply

as K12 = K1 ⊕ K2, where K1 is the key whispered from A to B and K2 from B to A. Ex-

perimental results show that mutual whispering followed by the PUSH protocol gives

us equivalent fraction of secure links as basic whispering followed by the PULL pro-

tocol for Key Infection compromise pattern. Repeated iterations of the PULL protocols

lead to strong majority of secure links even in the networks with up top 20% of attack-

ers’ eavesdropping nodes. Graphical representation of the PUSH and PULL protocol

messages is shown on Figure 3.

Comparing PUSH, PUSH and COMODITY protocols, COMODITY requires the

shortest period of weakened attacker model (transmission of only one key K1), but

K1 can be intercepted from a larger distance than keys in PUSH and PULL protocols.

This results in a higher probability of attacker interception. An additional problem ex-

ploitable by an attacker is such that an intermediate node W2 knows the value of key

between W1 and W3. PUSH protocol results in a significantly lower number of com-

promised link keys than PULL, especially for a dense enough network (more than 15

average neighbours).

An impact of PUSH, PULL, mutual whispering and new automatically found pro-

tocols (described in section 3) for Random compromise pattern and Key Infect compro-

mise pattern are shown on Figure 16 and 17. The PULL protocol provides better results

than PUSH protocol for the Key Infection pattern, but has no advantage in the Random

pattern. Mutual whispering improves security in the Key Infection pattern, but no im-

provement is visible for the Random pattern. Combination of mutual whispering with

the PUSH protocol gives the same results as the PULL protocol alone in the Key Infec-

tion pattern. See [CS05] for a more detailed comparison of protocols and the impact of

repeated runs of amplification (not shown here).
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Figure 3: Graphic representation of the simplest version PUSH and PULL amplification

protocols with only one intermediate node C. Red circle highlights the node generating

fresh new random secret N. Kxy is the existing directional key between nodes x and y.

These results should demonstrate that amplification protocols may significantly in-

crease the fraction of secure links and have a different impact for different compromise

patterns. The protocols can be also combined together, but the impact of such compo-

sition is dependent on a particular compromise pattern and not necessarily beneficial.

As each protocol requires significant number of messages, their inefficient combination

should be avoided. Automated design of an efficient is proposed in section 3.

2 Group supported key exchange

We aim to achieve secure authenticated key exchange between two nodes, where the

first node is integrated into the existing network, in particular knows IDs of its neigh-

bours and has established secure link keys with them. The main idea comes from the

behavior of social groups. When Alice from such a group wants to communicate with

a new incomer Bob, then she asks other members whether anybody knows him. The

more members know him, the higher confidence in the profile of the incomer. A rep-

utation system also functions within the group – a member that gives references too

often can become suspicious, and those who give good references for malicious persons

become less trusted in the future (if the maliciousness is detected, of course).
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2.1 Authenticated key exchange with group support

We adapt this concept to the environment of a wireless sensor network. The social

group is represented by neighbours within a given radio transmission range. The

knowledge of an unknown person is represented by pre-shared keys. There should

be a very low probability of an attacker to obtain a key value exchanged between two

non-compromised nodes and thus compromise further communication send over this

link. Key exchange authentication is implicit in such sense that an attacker should not

be able (with a high probability) to invoke key exchange between the malicious node

and a non-compromised node. Only authorised nodes should be able to do so.

In short, A asks her neighbours inside group around him to provide “onion” keys

that can also be generated by the newcomer B. The onion keys are generated from a

random nonce Rij, RB and keys pre-shared between A’s neighbours and B. All of these

onion keys are used together to secure the transport of the key KAB. The valid node B

will be able to generate all onion keys and then to recover KAB.

Note that the key exchange secured only by the basic EG scheme is a special case of

group supported protocol with the group size equal to one.

The protocol consists of the following steps:

1. The node B generates a random nonce RB and sends message (“hello”,B,RB) to A.

2. The node A does for each neighbour node Ni, including itself, the following:

(a) Based on the seed based pre-distribution, A is able to decide without any

communication overhead whether Ni shares any key with B. Steps 2b to 2d

are then executed only if there are any shared keys.

(b) A sends ID of B and RB to Ni using a secure channel shared with Ni.

(c) Ni computes ID(s) {IDi1, IDi2, . . . , IDim} of keys shared between B and Ni.

Again, this can be done without any additional communication due to the

seed-based pre-distribution.

(d) For each shared key IDij, Ni generates a random nonce Rij and computes

onion key K ′
ij = hash(KIDij

, Rij, RB). (K ′
ij, IDij, Rij) is sent back using the se-

cure channel between A and Ni.
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3. If the number of distinct shared keys among all neighbours is less than the thresh-

old given as a preset global parameter by the network owner, A refuses to ex-

change the key with B and quits.

4. A generates key KAB that she wishes to exchange securely with B.

5. A applies all onion keys K ′
ij over the KAB value in the onion encryption fashion,

EK ′ = EK ′11
(EK ′12

(. . . ((KAB) . . .)). The order of application of keys K ′
ij is given by

the order of respective IDij within B’s key ring and can be encoded as a bit mask

bitMask indicating which keys were used.4 This is done without any additional

communication and with a small message.

6. A sends to B message {M|MACKAB
(M)}, where M =

{RB|{R11, . . . , Rij}|bitMask|EK ′} with Rij sequenced by the order of usage given by

bitMask.

7. B uses bitMask to determine which keys from its key ring were used for the gen-

eration of onion keys. B then uses Rij and RB to generate onion keys as described

in step (2d) and removes onion encryption layers step by step. Recovered key KAB

is then used to check integrity of the original message M.

8. B sends back to A the value CR = MACKAB
(hash(RB, R11|R12| . . . Rij)) as a confir-

mation of a correctly and completely decrypted message M.

9. A verifies the correctness CR and then sets KAB as a node to node key for commu-

nication with node B.

2.2 Probabilistic authentication

This protocol can be also used as a building block for probabilistic entity authentication.

Probabilistic authentication means that a valid node can convince others with a high

probability that it knows all keys related to its ID. A malicious node with a forged ID

will fail (with a high probability) to provide such a proof. We propose to use the term

probabilistic authentication for authentication with following properties:
4As only the keys from B’s ring can be used, the bit mask will have the size of ringSize bits. Due

to the seed-based pre-distribution, keys in B’s ring can be ordered by the sequence of the key identity

generation, e.g. the first value obtained from the pseudo-random generator corresponds to the first key

and to the first bit in the bit mask. Value ‘1’ of the i-th bit of the mask signalizes that i-th key was used for

onion encryption.
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1. Each entity is uniquely identifiable by its ID.

2. Each entity is linked to the keys with the identification publicly enumerable5 from

its entity ID.

3. A honest entity is able to convince another entity that she knows keys related

to her ID with some (high) probability. For practical purposes, this probability

should be as high as possible to enable authentication between as many other

nodes as needed.

4. Colluding malicious entities can convince other entities that they know keys re-

lated to an ID of a not-captured node only with a low probability.

This approach to authentication enables a tradeoff between security and computa-

tion/storage requirements for each entity. As a potential number of neighbours in

WSNs is high, memory of each node is severely limited and an attacker can capture

nodes, this modification allows us to obtain reasonable security in the WSN context.

No modification of the proposed protocol core is necessary for authentication pur-

poses: if the node B wants to authenticate itself to A, then it will do so by sending its ID,

which will initialize a key exchange as described above. Node A accepts authentication

only if B is able to respond with a valid CR in the 8th step.

However, special attention must be paid to the actual meaning of the authentication

in case of a group supported protocol. Firstly, as we assume that a part of the group can

be compromised, verification of B’s claims can be based on a testimony of compromised

neighbours. Secondly, node A has a special role in the protocol execution and can be

compromised as well. The neighbours should not rely on an announcement from node

A that node B was correctly authenticated to it. The special role of A can be eliminated if

the protocol is re-run against all members of the group with a different central node each

time. Yet this would introduce an additional communication overhead compared to the

approach where a single member of the group will announce result of the authentication

to others. Note that the number of messages for a single protocol run is reasonably low

due to the seed-based pre-distribution.

5Only the key identification can be obtained from entity ID, not the key value itself.

24



0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Fraction of compromised nodes in group

P
ro

b
ab

ili
ty

 o
f 

at
ta

ck
er

 w
in

n
in

g

1 node [avg. 25.5 runs]
3 nodes [avg. 38.2 runs]
5 nodes [avg. 38.8 runs]
all nodes [39  runs]
0.5 node [avg. 12.8 runs]
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2.2.1 Probabilistic authentication with majority decision

The following tradeoff between security and communication overhead can be intro-

duced: The protocol is re-run k-times only with randomly selected central nodes and

a majority rule is applied in order to obtain a result for the whole group. The random

selection resilient against certain fraction of compromised nodes can be done as follows:

1. Every node broadcasts a set of p randomly selected IDs of its neighbours.

2. Each selected node performs the protocol as a central node with B and distributes

the result using authenticated channel to each of the requesting nodes.

3. Every node then separately applies majority rule over p responses from its set,

obtains partial result Mi and then broadcast it through an authenticated channel.

4. The majority rule is applied again over all partial results Mi by every node to

obtain the final result of the authentication.

Note that the requirement of randomly selecting the “central” nodes is critical, other-

wise an attacker can force a selection of compromised nodes only and will be certainly

successful when controlling at least dk/2e + 1 nodes inside group. See Fig. 4 for proba-

bility of attacker’s success for different values of p and of the compromised fraction of

a group.

2.2.2 Evaluation of the communication and computation overhead

Number of additional (to a basic key exchange between two nodes only) messages is at

most equal to 2 * number of applied onion keys. We require two additional messages

per single neighbour that shares at least one key with B. Most commonly, a neighbour-

ing node will share only one key with B (otherwise pool size can be set significantly

larger for particular settings). Threshold of minimum of required keys for exchange is

given by a global preset security parameter T . There can be key exchanges with more

onion keys applied. For a fixed pool size, more applied keys mean lower probability

that an attacker will be able to decrypt a message so more applied keys mean higher

communication overhead (more neighbours to be contacted), but also direct increase

in the exchange security. Most commonly, there will not be significantly more applied

keys than the preset parameter T (otherwise the pool size can be again set significantly

larger). As a result, there will be only about twice as many additional messages than the
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required preset treshold T for minimum of required keys. Our experiments reveal this

T is most commonly expected to be between 1 to 5, and the communication overhead is

then very reasonable.

The size of messages exchanged between A to Ni in steps 2b and 2d is small, only the

message sent from A to B in step 6 is larger. This message carries information about used

keys and random nonces Ri. The information about used keys takes m bits as explained

in step 5, where m is the ring size. E.g., for a scenario with a 3-key treshold, 200 keys

in the ring and 16-byte identificators/nonces/keys, this message will be around 120

bytes6.

The computation overhead consists of additional encryptions/decryptions, hash

function computations and random number generation. There will be additional en-

cryptions given by the number of applied onion keys. Same holds for number of de-

cryptions and random number generations.

We would like to stress that the overhead is independent of the group size (larger

group allows to set up a higher treshold for minimum shared keys). If more than T keys

are shared between the group and B, then the overhead will increase (by a fraction of

additional shared keys) but the exchange will have a higher probability of being secure.

2.3 Group support with EG scheme

Our work has been motivated by poor node-capture resilience (NCR) of known PKPSs.

We evaluate NCR improvements obtained by the group support protocol with the EG

scheme as the underlaying PKPS as well as providing details of calculating relevant

probabilities. The results were experimentally verified by series of simulations with

40000 nodes on our simulator described in section 3.3.2.

2.3.1 Evaluation of node capture resilience improvements

Lemma 1: Keys capture probability – EG.

The probability that an attacker will know each key from k randomly chosen keys after

capturing c random nodes, where m is size of the node’s key ring and S is the key pool

size:

PKC(k, c) =

(
1 −

(
1 −

m

S

)c)k

64 * 16B nonces + 25B used keys + 16B KAB + 16B MACKAB
(M)
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Proof: The probability that a particular key will not appear in a key ring of any

captured node is equal to (1 − m
S
)c. The complement gives us the probability that a

particular key will be captured and this must hold for each of the k keys.

Lemma 2: Group key share probability.

The probability that a group G of n randomly chosen nodes will share exactly k keys

with another randomly chosen distinct node B:

PGKS(k, n) =

(
m

k

)
∗

(
1 −

(
S − m

S

)n)k

∗
(

S − m

S

)n∗(m−k)

Proof: The probability that a particular key from B’s key ring is shared with group G is

equal to 1 - probability that this key is shared between B and no Gi node. Probability that

a particular key is not shared between B and Gi is (S−1
m )

(S
m)

= S−m
S

. There is n such Gi nodes,

thus PkeyNotShared_1 = (S−m
S

)n. Then the probability that exactly k keys from B key ring

are shared is equal to PkeyShared_k =
(

m
k

)
(1 − PkeyNotShared_1)

k ∗ (PkeyNotShared_1)
m−k,

where (1 − PkeyNotShared_1)
k stands for exactly k keys being shared while at the same

time remaining (m − k) of keys in key ring are not shared.
(

m
k

)
stands for the number

of positions where shared keys can be placed inside B’s key ring.

Lemma 3: Onion decryption probability.

The probability that an attacker will know all the keys shared between the node X (with

a random ID) and group G of n randomly selected non-compromised nodes after cap-

turing c randomly selected nodes. At least minK keys are used for onion encryption:

ringSize∑
i=minK

PKC(i, c) ∗ PGKS(i, n)

Proof: The probability that G will share exactly i keys with X is given by PGKS(i, n).

Probability that the attacker will know these i keys after capturing c nodes is given by

PKC(i, c). No more than ringSize keys can be shared.

2.3.2 Options and settings

Node capture resilience can be evaluated for particular parameters of a sensor network

according to the lemmas from 2.3.1. We assume that the maximum number of keys

carried by a single node is fixed and given as a manufacturing parameter. More keys

carried in a node generally imply better resilience for any PKPS.
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Figure 6: Node capture resilience of the basic EG scheme and the variant with group

supported key exchange. Key ring size is fixed to 200 keys, group size to 40 nodes.

The pool size differs with minimum of required shared keys to maintain a constant

probability 90% that the exchange will be possible.
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We choose to fix this parameter to 200 keys to enable a comparison with the cur-

rently best-performing multi-space pairwise keys scheme [DDHV03] (DDHV scheme

for short). DDHV scheme with 0.33 connection probability is perfectly secure until

around 400 nodes are captured. Then it quickly becomes insecure, having more than

98% communication insecure when 700 nodes are captured.

As shown in Fig. 6, our protocol with 40 neighbours and required minimum of 3

shared keys results only in 0.25% compromised exchanges when 400 nodes are cap-

tured. When 700 nodes are captured, only around 1.3% exchanges are compromised.

More than 3000 nodes need to be captured to compromise half of the key exchanges.

The relation between the increasing number of required shared keys and the resilience

is as follows: If the pool size and ring sizes are fixed, then a higher value of minimum of

required shared keys implies a decrease in the probability of the group sharing enough

keys with the new node. To increase this probability, the pool size must be decreased.

Smaller pool size implies a higher fraction of keys captured by the attacker after a node

compromise.

In case that even better resilience for a low number of captured nodes is required,

minimum of required shared keys can be increased. For example, when 10 keys are

required, there is only around 0.025% compromised exchanges for 400 captured nodes.

However, there is a tradeoff introduced: half of the compromised exchanges is reached

faster (around 1700 captured nodes).

As we target static WSNs with immobile nodes (after the deployment), we choose

to calculate the appropriate pool size value such that there is probNoShare = 10%

probability not to find the required amount of shared keys. In such cases, the protocol

will abort in the 3rd step. This situation can be solved by increasing the group size by

involving neighbours two hops away at the cost of additional communication (see 2.4

for details). Based on the usage scenario, probNoShare can be set to a higher value,

e.g. if the node can move to another location or if fraction of nodes can be “sacrificed”

for sake of better network resilience. This increases the pool size and thus consequently

increases the node capture resilience. Example of impact for minimum of 3 required

keys is shown on Fig. 7.

The significant increase of NCR can be obtained when probNoShare = 90% is set.

However, this means that in the basic version of protocol, only 10% of new nodes will

be able to join to the group. This can be acceptable in the scenario with mobile nodes.

Otherwise, group enlargement (see section 2.4) can be performed.
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1 minimum key required 3 minimum keys required

basic group enlarged group basic group enlarged group

10% 0.1% 10 % < 10−5 %

50 % 6.25 % 50 % 0.16 %

90 % 65.59 % 90 % 18.43 %

Table 1: Decrease of probability of impossible key exchange probNoShare when also

the nodes two hops away are used. Basic group consists of 40 nodes, the enlarged

group of 160 nodes (assumed to be reachable in two hops). Results valid for both EG

and multi-space polynomial underlaying pre-distribution schemes.

We would like to stress out that our protocols do not provide defense against Sybil

[NSSP04] or collusion [Moo05] attacks, where direct clones of the captured node are

populated over the network. Here we rely on some replication detection algorithm like

[PPG05]. Design of such efficient protocol with a reasonable communication overhead

is still an open question.

2.4 Group enlargement

If a node is capable to remember IDs of nodes that are two hops away (direct neighbours

of its direct neighbour), then the size of the group will increase fourfold. Yet the number

of additional messages will increase only twice due to the need for message routing (two

hops instead of one). The total number of contacted nodes will remain the same and –

due to the seed-based pre-distribution – no messages are required to compute IDs of

nodes that will be contacted. The group enlargement can be employed in the following

scenarios:

• There are too few direct neighbours for creating a group capable of executing the

protocol with a required node capture resilience.

• Not enough keys are shared between the group and the incoming node B.

The table 1 shows the impact of the group enlargement in case of 1, resp. 3 minimum

required keys with 40 nodes reachable in one hop. Note that the increase in probability

of possible key exchange is more significant with more minimum keys required.
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Together with the results shown in Fig. 7, one can set a larger key pool, obtain

better NCR and ask nodes two hops away in case of missing keys. E.g., when the basic

group has 40 members and T = 3 minimum keys are needed, probability of possible key

exchange can be set to 50%. Then approximately a half of the requests will invoke the

need for group enlargement (approximately 160 nodes in the enlarged group) and only

less than 0.2% of valid nodes will be rejected in total.

Even after group enlargement, the communication overhead remains reasonable and

proportional to the required security given by the threshold T. Only such nodes that are

actually sharing key with incoming node B are contacted. Increased messages comes

only from the fact that nodes in the enlarged group are not reachable directly, but more

intermediate nodes must be involved in a multi-hop communication. For example, if the

group consist from the nodes up to 2-hop away, communication overhead will increase

twice with the energy consumption distributed regularly over nodes in the group. On

the other side, the storage overhead increases more significantly, as each node must

remember IDs of the nodes two hops away. Note, that IDs of direct neighbours is most

probably stored for routing purposes anyway.

The tradeoff between communication and storage overhead can be introduced here:

the central do not store all IDs of the nodes up to two hops away, but rather ask his

direct neighbours to provide list of their neighbours for the expense of few additional

messages only when necessary for protocol run. However, possibility of an attacker

injecting fake ID through a compromised node must be considered.

2.5 Group support with multi-space polynomial scheme

Basic evaluations of group supported protocol properties were provided, with EG

scheme as the underlaying pre-distribution scheme. Other pre-distribution can be

transparently used as well. Here we will discuss polynomial-based pre-distribution

introduced in [DDHV03]. Instead of assigning direct keys as in the EG scheme, we

select Blom’s key space from key spaces pool during the pre-deployment. Selec-

tion is again done according to seed-based pre-distribution. For each selected space,

Blom’s polynomials are generated. To keep the same ring size, there can be up to

numberOfPolynomials = bm/cc polynomials, where m is node ring size and c is

degree of Blom’s polynomial. We choose to fix c = t + 1, where t is Blom’s thresh-

old security parameter to minimize memory footprint of one polynomial. Limitation

is that when using this settings, only up to c nodes can be assigned by different poly-
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Figure 8: Node capture resilience of group supported scheme with Blom’s treshold se-

cret sharing scheme as an underlaying pre-distribution. Group size 40 nodes. Ring size

is equal to 200 keys.

nomial share from one polynomial space and this may limit total supported network

size. However, as we will be using group support, the probability of sharing key space

between two nodes will be much lower than probability in the original multi-space

polynomial scheme and thus the supported network size remains sufficient.

2.5.1 Evaluation of node capture resilience improvements

Lemma 4: Probability of i shares compromise.

Probability, that attacker will be able to compromise exactly i shares of particular poly-

nomial after capturing of c nodes, where S is the key pool size, m ′ is number of polyno-

mials in one node’s key ring (m ′ = m/d) and d is degree of polynomial:

PCS(i) =

(
c

i

)
∗

(
m ′

S

)i

∗
(
1 −

m ′

S

)c−i

Proof: Particular polynomial cannot be compromised until an attacker compromise at

least (t + 1) shares of this polynomial (proof given in [Blo84]), where t is pre-specified

threshold. The probability that given polynomial was chosen for a sensor node is m ′
S

.

To compromise exactly i shares of this polynomial, share from this polynomial must

be captured exactly i times from the captured nodes with share and not being present

on remaining c − i nodes. There is
(

c
i

)
ways how the i compromised shares can be
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Figure 9: Node capture resilience of group supported scheme with Blom’s treshold se-

cret sharing scheme as an underlaying pre-distribution. Group size 160 nodes. Ring

size is equal to 200 keys.

distributed among c captured nodes.

Lemma 5: Probability of polynomial compromise.

The probability that an attacker will know all shares necessary to compromise every

polynomial from k randomly chosen polynomials after capturing c random nodes is

given by:

PKP(t) =


1 −

t∑
i=0

PCS(i)




k

Proof: The sum gives as the probability, that attacker will compromise less or equal to t

shares from particular polynomial. If the attacker compromise more than t shares, than

particular polynomial is compromised and this must hold for every of the k polynomi-

als.

2.5.2 Impact of polynomial security threshold

Impact of different degree of the polynomials is shown of Figure 10 (basic group with

40 neighbours) and Figure 11 (enlarged group with 160 neighbours). Again, the original

ring size is assumed to allow for up to 200 ordinary keys and the number of selected

key spaces and number of stored polynomials on every node are set to fit this memory
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Figure 10: Impact of number of polynomial security threshold. Group size is 40 nodes.

Ring size is equal to 200 keys.

restriction as numberOfPolynomials = b200/cc. Tested polynomial degrees were 5

(40 polynomials per node), 10 (20), 20 (10), 40 (5), 50 (4) and 66 (3). Larger degrees of

polynomial were not tested as the resulting node capture resilience do not increase for

our settings.

2.5.3 Impact of minimal shared keys threshold

Similarly to the group supported scheme with EG pre-distribution, threshold of mini-

mal keys can be required in step 3 of the protocol. As we are using multi-space polyno-

mial scheme now, the threshold of minimal shared key spaces is checked. The results

are significantly different from the EG scheme as shown on Figures 12 (basic group with

40 neighbours) and Figure 13 (enlarged group with 160 neighbours). Increased thresh-

old of minimal required shared keys does not improve the node capture resilience. As

the single polynomial requires more memory to store than single key in EG scheme re-

quires, there is a lower number of key spaces in the key pool for polynomial scheme than

the number of simple keys in key pool in case of the EG scheme. Increased threshold of

minimal required shared keys (more than one) thus implies a to significant decrease of

the pool size to maintain fixed probability that key exchange will be possible. Resulting

node capture resilience against an attacker randomly capturing the nodes is weakened.

However, this threshold increases the resiliency against an attacker who tries to find the
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Figure 11: Impact of number of polynomial security threshold. Group size is 160 nodes.

Ring size is equal to 200 keys.

part of the network where he is able to introduce malicious node with forged ID. With

increased threshold there is a higher probability that the group will know at least one

key connected to this forged ID, but unknown to an attacker. The threshold thus should

be set according to expected threats to particular network. The analysis shows that a

lower degree of polynomial is better for higher number of minimal required shared

keys (see Figure 12).

2.6 Comparison with hypercube scheme

Direct comparison between group supported and hypercube scheme is not really pos-

sible, as both schemes use different assumptions and resulting node capture resilience

depends on several input variables used for the analysis.

The hypercube scheme is more suitable for structured deployments with position of

nodes such that real length of paths (number of hops) during key establishment is rea-

sonable small to prevent unwanted communication overhead. Additionally, the actual

compromise status of links must be known as well, otherwise all possible paths between

two nodes must be used to establish a new pairwise key to obtain indicated node cap-

ture resilience. Usage of all paths is possible, but results in a very high communication

overhead. The scheme has low storage overhead, as the ID of nodes necessary to form
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Figure 12: Impact of number of minimum required keys during the group support pro-

tocol. Group size is 40 nodes. Ring size is equal to 200 keys.
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Figure 13: Impact of number of minimum required keys during the group support pro-

tocol. Group size is 160 nodes. Ring size is equal to 200 keys.
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Group supported Hypercube based

Communication over-

head

only messages to the direct radio

neighbours

if no special deployment is used,

then nodes that have to be con-

tacted can be in any part of the net-

work

Storage overhead basic keys + ID of nodes inside the

group

basic keys only + compromise sta-

tus of links

Knowledge of compro-

mised links

not required high communication overhead if

not known

Deployment pattern not required, group always formed

from the direct neighbours

if not, than high communication

overhead (distant nodes)

Usability with other

PKPS

any, but node capture resilience

may vary. Differences only in pro-

cess of selection keys (seed-based)

analyzed for Bloom polynoms, but

can be adjusted. Node capture re-

silience may vary.

Selective node capture threat as the node ID can be used to

enumerate carried keys

low threat, an attacker may target

nodes on short paths

Table 2: Comparison of the properties of group supported and hypercube-based predis-

tribution schemes.

key establishment path can be computed from ID of source and target node. However,

the storage of status of compromised links implies an additional overhead.

The group supported scheme is more suitable for scenarios with randomly deployed

dense networks. The group support is formed from neighbouring nodes only and thus

does not create a long communication paths. Due to seed-based pre-distribution, com-

munication overhead is low, but IDs of nodes within group must be stored on each

node (storage already used for routing purposes can be used to lower this overhead).

Knowledge of link key compromise status is not required and group supported scheme

is tolerant to a partial group compromise.

2.7 Possible attacks and defenses

Increased resilience does not come for free and involvement of neighbours opens pos-

sibility for new attacks. Impact and defenses against such attacks are discussed, with

respect to passive and active attackers.
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2.7.1 Passive attacker

A passive attacker can either randomly or selectively [HMMH04] compromise a fraction

of nodes, extract all their keys, and access the relayed communication, but the compro-

mised nodes do not misbehave in the protocol execution.

1. An attacker may try to selectively capture nodes based on the knowledge of their

IDs in order to obtain most keys for its forged node ID – as described in section

1.5.1, actual IDs of nodes distributed in the first round can be kept secret just be-

tween a node and its direct neighbours, never transmitted over a non-encrypted

channel.

2. An attacker will use a node with a random forged ID – based on previous analyt-

ical results, group of nodes will have a very high probability to share at least one

key that the attacker does not know and thus to detect cheating.

3. An attacker will try to generate a random forged ID, for which he knows most of

the keys (for feasibility evaluation – see 2.3.1, Lemma 2 – results for 200 keys in

a ring show that such attack is computationally infeasible even when the attacker

knows 1/3 of the initial key pool.)

4. An attacker will select such a position within the network so that neighbouring

nodes only know the keys known to the attacker – there are the following defenses:

(a) At least minAuthKeys are required to enable the key exchange. This security

parameter prohibits poorly secured exchanges.

(b) Use of fresh random identifier instead of original ID as described in section

1.5.1 for selective capture of nodes above to minimize attacker knowledge

about nodes in network.

5. An attacker will use node(s) with same ID(s) as the captured one(s) – known as the

Sybil attack. Our protocol offers no defense here, and we rely on other replication

detection mechanisms.

2.7.2 Active attacker

An active attacker can not only do all that the passive attacker can, e.g. extract secrets

from captured nodes, but also place them back to the field and actively control them

during the protocol execution.
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1. An attacker will compromise one of A’s neighbours and supply an incorrect onion

key value when asked for keys causing rejection of a valid node B. After rejection

of node B, A can initiate the compromise detection phase: A gradually removes

onion keys from EK ′ to detect when B will be able to successfully decrypt KAB,

detecting the incorrect onion key supplier.

2. An attacker will compromise some node N and relay part of the protocol messages

for node X with a forged ID to neighbours of node N pretending that there is an

authentication process between N and X going on to obtain correct onion keys

usable elsewhere. Here the following policy can be introduced as a defense: Ni

will not respond to N until a ‘hello from X’ packet from the first step of the protocol

is received. The random nonce Rij generated by each node prevents creation of

same onion key multiple times.

3. An attacker may try to insert bogus messages impersonating some party partici-

pating in the protocol. Integrity, confidentiality and freshness of all messages from

step 2 are protected by the pre-existing link secure channel. The message from step

6 is integrity-protected by the key KAB. Integrity can be checked backwards after

a successful recovery of the key KAB. Note that a denial of service by a corruption

of this message is possible here (A and B will not be able to establish shared key).

However, if an attacker is able to modify the original transmission and to insert

his modified message, he can achieve the same goal only by garbling anyway. In-

tegrity of the message in step 8 is protected with the key KAB, with implications

same as for step 6.

2.8 Summary of the protocol

We propose a novel idea for key exchange and entity authentication based on the ran-

dom pre-distribution scheme. Results of this enhancement of the EG pre-distribution

scheme [EG02] and polynomial scheme by [DDHV03] show that a substantial node

capture resilience can be obtained. Probabilistic key pre-distribution schemes gener-

ally exhibit the property that the probability of key sharing rapidly increases with the

number of keys in a node’s key ring. Our group supported protocol exploits this be-

haviour to create large virtual key rings. However, this improvement does not come

for free. Firstly, some additional communication is required. We have shown that sub-

stantial improvements in the node capture resiliency can be obtained with a reasonable
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communication overhead that is proportional to the minimum of required shared keys

(security parameter) rather than the size of supporting group. Secondly, a node relies

on the security of previously established link keys with its neighbours. This opens a

possibility for additional attacks, which were discussed together with possible counter-

measures.

Combination of the group supported protocol with multi-space polynomial pre-

distribution provides a better node capture resiliency if the polynomial scheme can be

efficiently computed on the nodes. See [LN03a] for discussion of efficient implementa-

tion.

Future work will thoroughly examine other possible attacks against the proposed

protocol, namely the deeper analysis of impact of compromised neighbours and selec-

tive node capture.

3 Localized secrets and secrecy amplification

The uncertainty about direct neighbours identity after the deployment prior to it nat-

urally results in such property of the key distribution schemes that most of the nodes

in the network should be able to establish shared key (either directly or with support

from other nodes). At the same time, this property implies one of the main problems for

maintaining secure network in presence of the adversary with ability to capture nodes.

As the extracted secrets can be commonly used in any part of the network, various Sybil

and replication attacks can be mounted (e.g., to join an existing cluster with a captured

node clone). Moreover, even when the compromised node is detected and its keys are

revoked, revocation list must be maintained for the whole network (e.g., if the revo-

cation list is maintained in a completely decentralized way then ultimately every node

must store the copy of the list). A common way and good practice to introduce localized

secrets is not to use pre-distributed keys for ordinary communication, but only to secure

key exchange of fresh new keys, which are locally generated only by nodes involved in

exchange. If the usage of the pre-distributed keys is allowed only for a certain time (or

treated with more scrutiny later), such practice can limit the impact of the node capture

as the localized keys have no validity outside the area of their generation. An attacker is

forced to mount his attack only during a limited time interval and it is thus reasonable

to expect that the number of compromised nodes will be lower. When such localized

secrets are established with the support from other (potentially compromised) nodes,
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secrecy of the resulting key can be violated. To tackle this threat, secrecy amplification

protocols were proposed.

3.1 Secrecy amplification protocols

Secrecy amplification protocol (will be denoted as SA; also known as privacy amplifica-

tion protocol) describes an additional process executed by nodes within a network after

the basic link key establishment. Fresh new secrets are locally generated and distributed

using existing links with associated security. As a result new link keys are constructed.

These are different from pre-shared secrets. Especially in WSNs, secrets usable only

locally should be preferred due to possibility for various Sybil-like attacks (spread of

malicious clones of captured legal nodes). Moreover, some links can be secured, even

when the original link was compromised as was already discussed in 1.8.

The protocols described in section 1.8.2 can be extended both in the number of used

distinct paths (multi-path key amplification) and their lengths (multi-hop key amplifi-

cation). In the multi-path amplification, several different random values are sent along

different paths to A and to B, encrypted with existing link keys (the original PUSH and

PULL are 2-path versions, the mutual whispering is also 2-path, where these paths over-

lap). All values combined together with the already existing key between A and B are

used to create a new key value. An attacker must eavesdrops all paths to compromise

the new key value. Multi-hop key amplification involves several intermediate nodes Ci

between A and B (mutual whispering is 1-hop (no intermediate node), the PUSH and

PULL are 2-hop).

What is commonly unknown to the nodes in the network is the fact which links are

actually compromised. Still, we can execute the amplification protocol “just to be sure”,

even when the link between A and B is secure against the attacker (but we do not know

that). If we create a new link key as K ′
AB = f(KAB, K ′), where KAB is the original link

key and f is cryptographically strong one-way function, we will obtain a secure link if

either the original link is already secure or K ′ can be securely transported to both A and

B over some existing path. Such process poses a significant communication overhead

as number of such paths is significant, but may also significantly improve the overall

network security.

Eventually, more iterations of the amplification protocol can be performed. Link

keys security can be further improved as links newly secured in the previous iteration

can help to secure a new link in the next one.
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There is no difference between passive and active attackers for amplification pro-

tocol. An active attacker controlling the node is equivalent to a passive one that com-

promised all links to the node and thus all passing messages are intercepted. A denial-

of-service attack can be mounted if intermediate nodes propagate incorrect values, but

will be detected after the construction of a new link key, because two non-compromissed

nodes will not be able to establish a functional key. By gradually removing keys used

in the construction, they can spot the node or path which contributed the defective key

and ignore it for later protocol runs. The opposite attack must be considered as well

as two compromised nodes may blame legal node for providing the incorrect key. The

jammed link is equivalent to a missing connection.

3.2 Automatic protocol design

In this report, we propose a way how new SA protocols can be automatically generated

for an arbitrary compromise pattern with a minimal effort from a human designer. Evo-

lutionary Algorithms (EAs) are used to construct new protocols. Candidate protocols

are evaluated using a network simulator.

Designing new protocols is a time consuming process and present flaws may remain

undetected for a long time. Various formal verification tools currently exist to verify the

correctness of a proposed protocol (see [Mea03] for an extended review). Automatic

protocol generation (APG) was proposed to automatically generate new protocols with

desired properties using a brute-force space search and with their correctness verified

by formal tools [SBP01]. Unfortunately, there are still limits due to the rapid increase of

possible configurations of non-trivial protocols.

However, the formal verification approach can be avoided for APG if a new protocol

can be securely composed from simpler (secure) protocols. See [Cho06] for an extended

overview of possible approaches to automatic protocol generation and protocol com-

position. Fortunately, this is the case of SA protocols – SA protocol specifies the way

how fresh key values are propagated and combined by parties involved. Thus an SA

protocol can be viewed as a composition of few simpler protocols. Namely, we need

only a protocol for secure message exchange between two nodes sharing a secret key

and a secure composition of two or more values.

This is an important difference to former approaches to APG – as the composition of

selected secure protocols will be also secure (see [Cho06] for such protocols; note that

composition is not secure in general), we can skip the formal verification of the compos-
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ite all together. Instead, we have to verify how many keys from freshly generated secrets

will be compromised by an attacker after a SA protocol execution. An attacker is able

to eavesdrop the content of some SA messages as he knows some of the keys used (par-

tially compromised network). This is a deterministic process – if we know exactly which

keys are known to the attacker – and thus can be simulated. Even if we know only the

expected fraction of compromised keys and the average pattern of compromised links,

we can perform a probabilistic evaluation. As the number of nodes and links in WSNs

is expected to be high, such average case will be a reasonable approximation of secure

links after SA execution in a real network.

Although the space of potential protocols is still large, we can substitute a formal ver-

ification tool by a network simulator with faster evaluation. Moreover, we will obtain

a smoother indication how good a candidate protocol is. Instead of binary indication

“secure or flawed”, we will get the number of links additionally secured by a particular

protocol7. Hence we can use some kind of informed search instead of an exhaustive

search. In our case, we will use Evolutionary Algorithms.

3.3 Evolutionary Algorithms intro

Evolutionary Algorithms (EAs) are stochastic search algorithms inspired by Darwin’s the-

ory of evolution. Instead of working with one solution at a time (as random search, hill

climbing and other search techniques), these algorithms operate with the population of

candidate solutions (candidate SA protocol in our case). Every new population is formed

by genetically inspired operators such as crossover (part of protocol’s instruction are

taken from one parent, rest from another one) and mutation (change of instruction type

or one of its parameter(s)) and through a selection pressure, which guides the evolu-

tion towards better areas of the search space. The Evolutionary Algorithms receive this

guidance by evaluating every candidate solution to define its fitness value. The fitness

value (fraction of secure links here), calculated by the fitness function (network simulator

here), indicates how well the solution fulfills the problem objective (improving network

security here). In addition to the classical optimization, EAs have been utilized to create

engineering designs in the recent decade. For example, computer programs, electronic

circuits, antennas or optical systems are designed by genetic programming [KIAK99]. In

contrast to the conventional design, the evolutionary method is based on the gener-

ate&test approach that modifies properties of the target design in order to obtain the
7In degenerated case, this can still be only “0% or 100%” links secure.
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required behavior. The most promising outcome of this approach is that an artificial

evolution can produce intrinsic designs that lie outside the scope of conventional meth-

ods. In this work, we will use linear genetic programming (LGP) to generate the proto-

cols. LGP represents a candidate program as a sequence of instructions [BNKF98].

3.3.1 Primitive instructions set

Each party (sensor node) in the protocol is modeled as a computing unit with a lim-

ited number of memory slots, where all local information is stored. The memory slot

can be loaded with a) random value, b) encryption key and c) message. The follow-

ing primitive instructions are defined, having one or two parameters Nx indicating the

node(s) that will execute a given instruction (e.g., local generation of a random value

will have only one node parameter; sending a message between nodes will have two

parameters) and up to three parameters Rx for the identification of used memory slots.

These instructions were selected such that allow us to describe all published SA proto-

cols and are using only (cryptographic) operations available on real nodes. A candidate

SA protocol is represented as an array of bytes.

The instructions set is as follows:

• NOP – No operation is performed.

• RNG Na Ri – Generate a random value and store the result in the slot Ri.

• CMB Na Ri Rj Rk – Combine values from slots Ri and Rj and store results in the

slot Rk. The combination function may vary on the application needs (e.g., cryp-

tographic hash function such as SHA-1).

• SND Na Nb Ri Rj – Send a value from node Na to Nb. The message is taken from

Na’s slot Ri and stored in Nb’s slot Rj.

• ENC Na Ri Rj Rk – Encrypt a value from the slot Ri using the key from slot Rj and

store encrypted result in slot the Rk.

• DEC Na Ri Rj Rk – Decrypt a value from the slot Ri using the key from the slot Rj

and store decrypted result in the slot Rk.

Each instruction has an additional boolean switch, which can turn the operation off

(equivalent of NOP), without changing the instruction itself. This allows the EA to

temporarily disable or enable a single instruction. Node identifications Na and Nb can
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be either fixed (the index) in case of node-oriented protocols or distance-relative in a

group-oriented protocol. These variants are discussed later in sections 3.4 and 3.5.

Using this set of primitive instructions, a simple plaintext key exchange can be writ-

ten as {RNG N1 R1; SND N1 N2 R1 R1;}, a PUSH protocol as {RNG N1 R1; SND N1 N3 R1

R1; SND N3 N2 R1 R1;}, a PULL protocol as {RNG N3 R1; SND N3 N1 R1 R1; SND N3 N2

R1 R1;} and a multi-hop version of PULL as {RNG N3 R1; SND N3 N1 R1 R1; SND N3 N4

R1 R1; SND N4 N2 R1 R1;}.

Note that the protocol space is extremely large even for small protocols with six

instructions for four nodes, each with six memory slots only, having more than 1021

possible configurations8.

3.3.2 Network simulator

Candidate protocols are evaluated using our own simulator that was developed specif-

ically for security analyses of the key distribution protocols and message routing. The

simulator is capable of performing:

• Random or patterned deployment of a network with up to 105 nodes together with

neighbours discovery, secure links establishment and simple routing of messages.

• Deployment of attacker’s nodes and their eavesdropping impact on the network.

• Evaluation of the number of secure links of published protocols for secrecy ampli-

fication of “Key Infection” approach (see [ACP04] for details).

• Evaluation of the number of secure links of probabilistic key pre-distribution pro-

tocols as described in [CPS04].

• Support for the execution of amplification protocols in the metalanguage using

primitive instructions (see section 3.3.1).

• Support for Evolutionary Algorithms employed in an automatic generation of

protocols in the metalanguage and consequent simulation(s) with the fraction of

secure links as a fitness value. Implementation of the EA is based on the GALib

package9.

8(6× 4× 6× 6× 6)6

9GALib - C++ Genetic Algorithms Library

46



Figure 14: Automatic protocol generation process with fitness evaluation. The new

population of genotypes is transcribed into candidate protocols. Using our network

simulator and a given partially compromised network (dotted links), the fitness value

(fraction of secured links) is calculated for each candidate protocol.

3.4 Evolution of node-oriented protocols

In this part, we focus on an automatic generation of amplification protocol for the fixed

number of k parties, i.e. the same scenario as used in [ACP04, CS05]. Such protocol is

executed for all possible k-tuples of neighbours in the network. Note that the number

of such k-tuples can be high10, especially for dense networks (e.g. more than 10 direct

neighbours) and resulting communication overhead is then significant. However, this

approach provides an upper bound on the success rate of a given protocol as no k-tuple

is omitted.

Initially, we generate few protocols with several hundred randomly selected primi-

tive instructions. These candidate protocols form the initial population for the EA. Ev-

ery protocol is then simulated and the number of secured links serves as a fitness value.

Protocols with the best fitness value are selected to serve as parents for the next gener-

ation which is created by applying crossover and mutation operators. New population

is thus consisting of better parts of the previous one (an offspring protocol combined

from two good parents will be possibly better than parents). Also, new “ideas” are

10E.g., (total_nodes ∗avg_neigh) ∗ (avg_neigh − 1) ∗msg_per_protocol_execution for a three-party

protocol, where avg_neigh is the average number of neighbours.
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introduced by rare mutations. Commonly, first generations are not able to secure any

additional link, but as evolution proceeds, there are more and more secured links. The

evolution can be stopped when a sufficiently good protocol is found or the best fitness

value has stagnated for some time.

The fitness landscape11 for node-oriented protocols seems to have a “cascade-like”

form. There are only a few significant fitness values in the search space. A small popu-

lation with the rapid mutation is suitable for solving such problems (Cartesian Genetic

Programming (CGP) [MS06]). Candidate protocols contain up to 200 primitive instruc-

tions. Each party has 8 memory slots for storing intermediate values. The population

size is 5. The mutation operator is applied with the probability 10%. Similarly to the

CGP, crossover is not used. Simulations are performed for three distinct network de-

ployments (the average fraction of secured links is used as the resulting fitness value),

each with 100 legal and 20 eavesdropping nodes having 9 white neighbours on average.

The protocol success rate was verified using larger networks with 2500 white nodes at

the end of evolution.

The best performing 4-party protocol discovered by EA was found within 4 days on

a 3GHz processor in the 62786th generation. The protocol consists of the instructions

shown on Figure 15. This is a “pruned” version of the original 200-instructions long

protocol found by evolution. Importance of each instruction was tested by its temporal

disabling – if the instruction is important, then the fitness decreases and the instruction

is preserved; otherwise, it is discarded from the protocol. Typically, only 5-10% instruc-

tions contribute to the fitness value (i.e., there is analogy to exons and junk DNA in the

human genome).

This protocol can be further post-processed – only three memory slots are actually

required on each node instead of eight that was given to use for evolution.

All amplification protocols we are aware of at the start of our work were re-

discovered here by EA. The simple key transfer between neighbours is encoded in steps

{4,8}. The PUSH protocol by [ACP04] is encoded in steps {1,2,3}. The PULL protocol

by [CS05] is encoded in steps {0,6,9}. The multi-hop version [CPS04] of PULL ampli-

fication is encoded in steps {0,6,7,9}. Moreover, the new protocol outperforms existing

amplification protocols, as shown on Figures 16 and 17.

11The fitness values for each possible instance in the search space. We cannot compute whole landscape

in a reasonable time – if we can, then there is no need for any EA – we can obtain a fitness maximum

directly.
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Figure 15: Evolved node-oriented 4-party secrecy amplification protocol. This is a

pruned version from a 200 instruction protocol, no other post-processing was applied.

A circle denotes RNG instruction, an arrow denotes SND instruction and a box a trans-

mitted value. Values shared between N1 and N2 are the same color.

The evolved protocol also exhibits an interesting feature of “polymorphic” instruc-

tion. At the first look, instruction 5 (RNG N4 R4) seems to be redundant as a newly

generated random value by node N4 stored in the slot R4 is immediately overwritten by

the instruction 6 (SND N3 N4 R1 R4). However, in the case when node N3 is not a direct

neighbour of node N4, the message in instruction 6 cannot be transmitted and R4 is not

overwritten. The exact behavior of the consequent instruction 7 will vary as R4 can be

filled either with a newly generated random value or the value received from node N3.

Such kind of “polymorphic” instructions enable protocol execution even when only a

limited number of nodes is reachable. However, it would be hard for a human designer

to propose such protocol as a dependency between the instructions and neighbour lay-

out is rather complex, especially for group-oriented protocols (discussed later).

Note that automatic design of the node-oriented protocols with 5+ parties was not

possible as the number of messages to be simulated grows exponentially with the num-

ber of parties involved. The simulator is not able to evaluate such protocols fast enough

to obtain a fitness value and prevents evolution to proceeds towards better solution in

reasonable time.

An interesting result is that despite the fact that encryption (ENC) and decryption

(DEC) is included in the set of primitive instructions, none of them was used in the

evolved protocols. There can be multiple reasons for this: At first, useful usage of the

ENC and DEC instruction may exist, but the evolution was not able to find it. Second,

more probable reason can arise from the applied evolution speed-up trick used during
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Figure 16: Increase in the number of secured links after SA protocols in the Random

compromise pattern. The PUSH and PULL protocols give same results, mutual whis-

pering does not improve security at all.

the evaluation of the candidate protocol. If the link already has some assigned key, this

key is transparently used for encryption, as it is obviously useful thing to do (if the key

is compromised we will obtain the same result as sending message un-encrypted, but if

the key is secure then message secrecy will be protected). Series of the evolutions was

performed for the case when the transparent link encryption was not used. Evolution

was significantly slower to achieve the same fraction of secured links, but essentially

developed link encryption by existing keys anyway.

3.5 Evolution of group-oriented protocols

As we have already mentioned, node-oriented protocols introduce a high communica-

tion overhead – all k-tuples of neighbours must be executed by such protocol. Another

issue is an unknown number of direct neighbours and their exact placement. All neigh-

bours can theoretically participate in the protocol and help to improve the fraction of

secure links, but it is much harder to design an efficient protocol for ten nodes instead

of three or four nodes. And finally, due to the random placement of nodes in the sensor

networks, the number of direct neighbours may vary significantly and protocol for the

fixed number of parties can even fail to have enough participants. Due to the broad-

cast nature of the wireless transmission, nodes’ geographic position also influences the

result of amplification.

We present a different approach to the design of amplification protocols. Identi-

fication of the parties in protocol is no more “absolute” (e.g., node number “1”), but
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Figure 17: Key Infection compromise pattern. Average 8.0 white neighbours. The PULL

protocol provides better results than the PUSH protocol here and combination of mutual

whispering with the PUSH protocol gives the same results as PULL alone.

given by the relative distance from other parties (we will use distance from two distinct

nodes). We assume that each node knows the distance to its direct neighbours. This

distance can be approximated from the minimal transmission power needed to com-

municate with a given neighbour. If the protocol has to express the fact that two nodes

Ni and Nj are exchanging a message over the intermediate node Nk, only relative dis-

tances of such node Nk from Ni and Nj are indicated in the protocol (e.g., N(0.3_0.7) is a

node positioned 0.3 of the maximum transmission range from Ni and 0.7 from Nj; EAs

are searching for distance values.) Based on the actual distribution of the neighbours,

the node closest to the indicated distance(s) is chosen as the node Nk. There is no need

to re-execute the protocol for all k-tuples as the protocol can utilize all neighbours in a

single execution and thus significantly reduce the communication overhead. The rela-

tive position of nodes can be expressed as well. The variation in an actual number of

direct neighbours poses no problem here – the protocol parties will always be found

(but its actual position may be more or less dissimilar from relative distances indicated

in the protocol).

The group protocol evaluation process is more complex than for the node-oriented

protocols, but the number of totally exchanged messages is significantly lower.

The evaluation is based on the following rules:

1. Every node in the network is processed separately and independently once in the

role of a central node NC for each amplification iteration. Only direct neighbours

of NC (group) are involved in the protocol execution.
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Figure 18: Total number of messages per single node required to perform a 3-party,

4-party and group-oriented secrecy amplification protocol.

2. A separate protocol execution is performed once for each direct neighbour that

will have a special role and will be denoted as NP (e.g., if there are 10 direct neigh-

bours around NC, then there will be only 10 protocol executions with the same

central node NC, each one with a different NP). This is a key difference from nodes-

oriented protocols, and thus saves a considerable communication overhead.

3. The memory slots of the neighbours involved (for the same NC) are not cleared

between the protocol executions. This enables the evolution to find a protocol that

propagates values among a group of neighbours.

4. The node NP provides a list of distances from all its neighbours (as the minimal

transmission power needed to communicate with a given neighbour) to node NC.

Based on the actual deployment of nodes in the group, parties from the protocol

are replaced by real identification of the nodes closest to the relative identification

from NC and NP.

5. When the next node is executed as a central node NC, the nodes memories are

cleared (memory values cannot propagate between executions with a different

central node NC).

Note, that the spared messages come from the change of the secrecy amplification

rules, not the Evolutionary Algorithms itself. The role of the Evolutionary Algorithm is

to find a protocol that will operate in the described restricted scenario and still be able

to perform comparably to the node-oriented protocols in terms of secure links. Figure
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18 compares the number of necessary messages for the three/four-party node-oriented

protocol and the group-oriented protocol constructed using the above described pro-

cess.

For the purpose of evolution speedup, we introduced the automatic actions that do

not have to be evolved as they are obviously beneficial:

• Each message transmission (SND instruction) is transparently encrypted using ex-

isting link key (which can be either secure or compromised by eavesdropping)

even when not stated explicitly in the protocol.

• The shared values later used for the creation of new link keys are automatically

found in memory slots of NC and its neighbours Nx at the end of each execution

for a fixed node NC. Again, this speeds up the search. In the actual execution of

the protocol, this can be achieved efficiently using Bloom filters [Blo70] without a

transmission of the values or better by the post-processing of an evolved protocol

(re-order of memory slots and additional CMB instructions).

As for node-oriented protocols, more iterations (amplification repeats) can be exe-

cuted. For the purpose of evaluation, the results within one iteration are independent

and may influent only the next iteration, not the current one (links secured during an

actual iteration will not help to secure other links during the same iteration). At the end

of each iteration, the link security status is evaluated and updated. Evaluation process

is thus not dependent on the processing nodes order inside the simulator.

Well performing group-oriented protocols with the fraction of secure links compa-

rable to node-oriented protocols are usually evolved in 105 generations (see Figures 16

and 17 for the performance of evolved protocols). Such a protocol has typically 10-15

important instructions and uses neighbours from 5-7 different areas. The SND instruc-

tion is the most common one, forming 60-80% of instructions of discovered protocols.

Example of such evolved protocol is presented on Figure 19 and its analysis in section

3.6. Around 80% of EA runs are able to provide protocols with almost the same success

ratio that differ in their instruction order (remaining runs stay in some sub-optimal local

maximum). So there is not only one “best” protocol – instead, most of EA runs provide

some useful amplification protocols. This may serve as a kind of obfuscation – a “new”

protocol can be evolved for each new network. In contrary to node-oriented protocols,

instructions of the evolved protocols are more difficult to understand as the parties are

not directly specified any more.
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3.5.1 Methods for analysis of evolved protocols

Various techniques like real-time visualization of message transmission, analysis of

memory store/load sequences or visualization of probable areas of relatively identi-

fied parties (see Figure 20) can be used to recognize actual purpose and importance of

the instructions.

Real-time visualization of message transmission – Initial protocol overview can be

obtained by observing the visual representation of the protocol execution with a

set of nodes with fixed position. One limitation of this approach is that only execu-

tion for a given distribution of nodes is obtained and the behaviour of instructions

for different nodes distribution can be overlooked.

Instructions cross-dependency using pruning-like process – Fitness reduction effect

can be studied to identify groups of instructions with cross-dependent fitness. As

the protocol has already been pruned, removing every single instruction I will

cause a fitness decrease. An additional pruning process over the reduced protocol

(without I) gives us the difference in the fitness gain for every of remaining instruc-

tion (some instructions may be completely be removed if they have no function

without I). The higher the decrease in the fitness gain by a particular instruction

J, the stronger the dependency of J on removed I.

Analysis of memory store/load sequences – As described in section listing primitive

instructions, each party has a limited number of memory slots that are used to

store intermediate values. A chain of memory slots connected by the edges repre-

senting a particular instruction can be established for graph-like visualization of

process. More precisely, if there is an instruction I that reads from a memory slot

Mi and writes in a memory slot Mj, we can connect state Mi with Mj in graph by

an edge with label I.

Probable areas for position of parties identified by the relative distance – Visualiza-

tion of areas, where nodes referenced in the protocol will most probably posi-

tioned is an important source of information how the protocol works. Note that

these areas are not static for all nodes NP, but differ significantly with the distance

between central node NC and its special partner for protocol NP. A change of the

position and the shape of areas with distance between NC and NP also reveals

information how the fresh key values are propagated in the group. Using this
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Figure 19: Example group oriented secrecy amplification protocol found by the evo-

lution. Selected node-relative identification of involved parties are displayed as the

geographically most probable areas, where such nodes will be positioned.

technique, we can conclude that instruction 3 sends a value stored by the instruc-

tion 9 in the previous run of the protocol when NP was around 0.6 of the maximum

transmission range far from NC and in the layout area B. The reason is that in this

distance, the layout area B overlaps with position of the node NP and these two

parties in the protocol are most probably mapped to the same node.

Note that removal of a single instruction I can not only decrease the fitness value,

but also a fitness gain to other instruction(s) J. There are two reasons for this behavior:

1) Instruction I was really harming the fitness gain from instruction J, but the caused

harm is lower than the fitness gain and thus I remains in the pruned protocol. 2) In-

struction J is able to compensate (at least partially) the loss caused by I’s removal and it

is able to secure some links originally secured by the instruction I. Analysis of separate

instructions shows that the second case is much more common. Evolved protocol thus

exhibits “defense in depth” property – when some instructions cannot be executed (due

to missing, unreachable or compromised party), other instructions are able to (partially)

compensate for the decrease in the number of secured links. Similar behavior was also

observed for the evolved nodes-oriented protocol.
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3.6 Functional analysis of evolved group-oriented protocol

Using the instruction cross-dependency technique, we can conclude that the group of

instructions {2,5 and 7} is responsible for most of the secured links. A new random value

is generated in the node NP and sent to the node Nx positioned in the middle between

NP and NC. Node Nx then re-sends this value to the node NC. This group of instruc-

tions is responsible for securing 80-95% of all secured links (depending on the average

number of neighbours and the number of attacker’s black nodes / compromised links).

When instructions {2,5 and 7} are removed from the protocol, fraction of secured links

decreases by about 20-40%, rest of links being secured by the other group of instruc-

tions {0,1,10 and 11} which secures part of the links originally secured by the removed

instructions.

The fraction of secure links remains almost stable when more amplification iterations

are executed with these two groups ({2,5,7} and {0,1,10,11}) of instructions separated.

But when both groups of instructions are used together (original protocol), improve-

ment by more iterations of the amplification protocol is possible. A 5-10% increase in

number of secured links can be expected when the number of iterations is increased

from 2 to 5. Note that obtaining even small improvements here is difficult, because we

are very close to the theoretical maximum of secure links for a given number of black

nodes/compromised links.

First two SND instructions may appear useless (no value is available in the memory

slot 6 for the first run of the protocol), but as the protocol is executed repeatedly for

all nodes within a group, this value can actually be present in memory slot 6 from a

previous execution as a result of the instruction 7 or 10. Again, evolution is able to

include such “overlapping executions” in the protocol, while this might be difficult for

a human designer.

Surprisingly, the most important intermediate node is not positioned in the middle

between two nodes (area A) trying to establish it keys. Instead, most probable position

for that intermediate node is area C shown on Figure 20. Note that the area C is dif-

ferently positioned based on the distance between nodes NC and NP. When these two

nodes are close to each other then C is “behind” the node NC (Figure 20, part a)). As

the nodes move away from each other, the area C moves around the NC to the position

shown on Figure 20, part b). When both nodes are very close to the maximum trans-

mission range then C is in one third of the distance between NC and NP, closer to NC

(Figure 20, part c)).
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Figure 20: Layout of areas for potential parties when the distance between the central

node NC and node NP is a) 0.1 of the maximum transmission range, b) 0.6 range and c)

the maximum transmission range.

3.7 EA settings

The following reference settings for the evolution was used: target plane was 3x3 units

large with 100 deployed white nodes. Each node has 0.5 unit maximum transmission

range, which results in 8.2 white neighbours on average. There was 10% of black eaves-

dropping nodes nodes. In this settings, the average success of the PULL protocol is

93.70% for three amplification iterations and 94.24% of secured links for ten iterations.

The numbers of nodes was intentionally kept low to make simulator evaluation as fast

as possible. The functionality of the evolved protocol was later verified on much larger

network with 4000 white nodes.

The fitness landscape for the group-oriented protocols seems to be smoother than for

node-oriented protocols. We have utilized 20 individuals in the population and a single

point crossover operator applied with the probability 70%. Mutation with a 5% rate

was used. Fitness evaluation was significantly faster (less messages to be simulated)

than for the node-oriented candidate protocols and therefore larger populations with

more individuals and significantly more generations could be used.

3.8 Summary for secrecy amplification protocols

We examined the area of secrecy amplification protocols and their relation to under-

laying key distribution protocol. We have targeted particularly the scenario of the key

establishment in wireless sensor networks to provide evidence of improvements over

human-designed protocols, but the approach is not limited only to such networks.
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For example, some SA protocols may work well for the networks with randomly

compromised links, but may give a sub-optimal performance when applied to more

correlated compromise patterns arising from distribution approaches such as Key Infec-

tion. Moreover, some parts of the SA protocol may be pointless for a given compromise

pattern as they do not improve secrecy of any link – and thus pose only an unnecessary

message overhead.

We have described a more flexible approach based on the fact that the effectiveness

of SA protocols can be automatically evaluated using a network simulator. An auto-

matic search for a well performing SA was demonstrated based on Evolutionary Algo-

rithms. We were able to rediscover all published protocols for secrecy amplification we

are aware of and to find a new protocol that outperforms these. The new protocol oper-

ates with four parties, but is able to operate even when only three parties are available.

A single iteration of the SA protocol can increase secure links from 60% to more than

95% and 88% for the Random and Key Infection compromise pattern, respectively.

A significant disadvantage of existing secrecy amplification protocols is their high

communication overhead as the number of required messages grows exponentially

with the number of direct neighbours. By change of established secrecy amplification

design from node-oriented to group-oriented and using EA, we were able to find a pro-

tocol with a comparable fraction of secured links, but with only a linear (instead of

exponential) increase of required messages with respect to the increasing number of

neighbours. This is especially important for dense networks with more than 10 neigh-

bours.

4 Conclusions

In this report, we first survey probabilistic pre-distribution schemes suitable for use in

memory- and energy-restricted environment of the wireless sensor networks. Then we

focus on the aspect of the resilience of key pre-distribution schemes against node cap-

ture and propose an extension protocol in section 2. This protocol utilizes group support

from the direct neighbours to provide authenticated key exchange with a significantly

better node capture resilience than that of an underlaying probabilistic pre-distribution

scheme. Large virtual key ring is created from neighbours’ keys and is maintained in

an efficient way with a low communication overhead. Node capture resilience for two

probabilistic pre-distribution schemes (EG scheme [EG02] and multi-space polynomial
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scheme [DDHV03]) is analyzed and simulated. Approximately up to 10000 captured

nodes can be tolerated in a dense networks with 40 neighbours and key ring memory

able to store up to 200 keys when multi-space polynomial pre-distribution as an under-

laying scheme is used.

Third part of this report deals with the issue of localized secrets as a defense against

the Sibyl-like attacks. Localized secrets are introduced by a secrecy amplification mech-

anism that propagates new keys over multiple paths involving network neighbours in

a specified way. Moreover, such protocols are able to secure links that were previously

compromised by an attacker. Different key distribution approaches result in different

compromise patterns when attacker captures some nodes and extracts their secrets. The

performance (number of secured links) of a particular amplification protocol may vary

between such patterns. Human design of an efficient protocol without unnecessary

steps for a particular pattern is time consuming. We proposed a framework for auto-

matic generation of personalized amplification protocol with effective-only steps. Evo-

lutionary Algorithms are used to generate candidate protocols and our own network

simulator then provides metric of success in terms of secured links. The approach was

verified on two compromise patterns that arise from Key Infection approach and prob-

abilistic key pre-distribution. For these patterns, all published protocols we were aware

of were rediscovered and a new protocol that outperforms them was found. More than

90% of secure link can be obtained after a single run of secrecy amplification protocol

even in the network with half of compromised links.

The practical disadvantage of established design of secrecy amplification protocols

(node-oriented) is a significant communication overhead, especially for dense networks.

We propose a group-oriented design, where possibly all direct neighbours can be in-

cluded in a single protocol run. Only a very small fraction of messages is necessary to

obtain a comparable number of secured links with respect to the node-oriented design.

Moreover, a linear increase of necessary messages instead of exponential increase with

increasing density of the network is obtained. This makes our approach practically us-

able for networks where energy-expensive transmissions should be avoided as far as

possible.
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