
}w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

LTL model checking with I/O-Efficient
Accepting Cycle Detection

by

Jiří Barnat
Luboš Brim

Pavel Šimeček

FI MU Report Series FIMU-RS-2007-01

Copyright c© 2007, FI MU January 2007

Copyright c© 2007, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

LTL model checking with I/O-Efficient
Accepting Cycle Detection

JIŘÍ BARNAT, LUBOŠ BRIM, PAVEL ŠIMEČEK∗

Faculty of Informatics

Masaryk University

Brno, Czech Republic

{barnat,brim,xsimece1}@fi.muni.cz

February 6, 2007

Abstract

We show how to adopt existing non-DFS-based algorithm OWCTY [ČP03] for ac-

cepting cycle detection to the I/O efficient setting and compare the I/O efficiency

and practical performance of the adopted algorithm to the existing I/O efficient LTL

model checking approach of Edelkamp et al. [EJ06]. We show that while the new

algorithm exhibits similar I/O complexity with respect to the size of the graph, it

avoids the quadratic increase in the size of the graph of the approach of Edelkamp

et al. Therefore, the absolute numbers of I/O operations are significantly smaller

and the algorithm exhibits better practical performance.

1 Introduction

LTL model checking [CGP99] became one of the standard technique for verification of

hardware and software systems even though the class of the systems that can be fully

verified, is fairly limited due to the well known state explosion problem [CGP99]. The

commonly used automata-based approach to LTL model checking [Var96] reduces the

problem of model checking to the problem of accepting cycle detection in a graph of a

Büchi automaton. Due to the state explosion problem, the graph to be searched for the

∗This work has been supported by the Grant Agency of Czech Republic grant No. 201/06/1338 and

the Academy of Sciences grant No. 1ET408050503.

1

presence of an accepting cycle tends to be extremely large. For that reason, the size of the

graph poses real limitation to the verification process if performed on a single worksta-

tion. Many more-or-less successful reduction techniques have been introduced [CGP99]

to fight the problem and to move the frontier of still tractable systems further. Never-

theless, for real-life industrial systems the reduction techniques are not efficient enough

to make the verification tractable. A possible solution is to increase the computational

resources available to the verification process. The two major approaches applied to

increase the computational resources include the usage of clusters of workstations and

the usage of external memory devices (disks).

Regarding external memory devices, the main limiting factor of the approach is the

amount of I/O operations an algorithm has to perform to complete its task. This is

because the access to information stored on the external device is in order of magnitude

slower than the access to information stored in the main memory. Thus, it became

common to measure the efficiency of an I/O algorithm in the number of I/O operations

such as random accesses, scans, and sorts [AJ88].

A lot of effort has been put to research on I/O efficient algorithms working with

explicitly stored graphs [KM02, MM02, KS96, CGG+95]. For explicitly stored graph, an

I/O algorithm has to perform a random access operation every time it needs to enumer-

ate edges incident with a given vertex. However, for the model checking purposes, it is

common that the graph is given implicitly meaning that the edges incident with a given

vertex can be computed locally from the vertex proper. Thus, an algorithm working

with implicit definition may save up to |V | random access operations, which may have

significant impact on the performance of the algorithm in practice.

A distinguished technique that allowed implementation of I/O efficient graph

traversal procedures is the so called delayed duplicate detection [KS05, Kor04, SD98].

A traversal procedure has to maintain a set of visited vertices to prevent their re-

exploration. Since the graphs are large, the set cannot be completely kept in the main

memory and must be stored on the external memory device. When a new vertex is gen-

erated it is checked against the set to avoid its re-exploration. The idea of the delayed

duplicate detection technique is to postpone the checks and perform them in a group

for the price of a single scan operation instead of a bunch of random access operations.

Unfortunately, the delayed duplicate detection technique is incompatible with the

depth-first search (DFS) of a graph [EJ06]. Therefore, most approaches to I/O effi-

cient (LTL) model checking suggested so far, have focused on the state space genera-

2

tion and verification of safety properties only. The first I/O efficient algorithm for state

space generation has been implemented in Murϕ [SD98]. Later on several heuristics

for the state space generation were suggested and implemented in various verification

tools [KM03, HW06, JE05]. First attempt to verify more than safety properties was de-

scribed in [JM04], however, the suggested approach uses the random search to find a

counterexample to a given property, therefore, it is incomplete in the sense that it is not

able to prove validity of the property.

To our best knowledge, the only complete I/O efficient LTL model checker was sug-

gested in [EJ06] where the problematic DFS-based algorithm was avoided by the reduc-

tion of the accepting cycle detection problem to the reachability problem whose I/O

efficient solution was further improved with the directed (A∗) search and parallelism.

Nevertheless, the suggested reduction transforms the graph so that the size of the graph

after the transformation is asymptotically quadratic with respect to the original size.

More precisely, the resulting graph is of size |F|× |G|, where |G| is the size of the original

graph and |F| is the number of accepting vertices. As the I/O approach is meant to be

applied first of all to large scale graphs, the quadratic increase in the size of the graph

is significant and according to our experience often results in unsuccessful termination

of the algorithm due to the lack of space. This is especially the case, if the model is

valid and the graph has to be traversed completely to prove the absence of an accepting

cycle. The approach is thus mainly useful for finding counterexamples in the case the

standard verification tools fail to do so due to the lack of memory. The completeness of

LTL model checking is, however, very important. A typical scenario is that if the sys-

tem is invalid and the counterexample found, the system is corrected and the property

verified again. In the end, the graph must be traversed completely anyway.

Since DFS-based algorithms cannot be used for I/O efficient solution to the accept-

ing cycle detection, a non-DFS algorithm is required. The situation resembles the sit-

uation in the field of the cluster-based approach to LTL model checking [Bar04]. The

main problem of the approach is that the standard algorithm Nested DFS [HPY96] is

inherently sequential, so difficult to be parallelized [Rei85]. Fortunately, new paral-

lel algorithms avoiding the problematic DFS have been introduced [BBS01, BvKP01,

ČP03, BBC03, BČMŠ04]. In this paper we show how to adopt existing non-DFS-based

from [ČP03] for accepting cycle detection to the I/O efficient setting and compare the

I/O efficiency and practical performance of the algorithm to the existing I/O efficient

LTL model checking approach of Edelkamp et al. [EJ06].

3

2 Algorithm

2.1 Algorithm of Černá and Pelánek [ČP03]

As discussed above, I/O efficient solution to LTL model checking has to build upon a

non-DFS algorithm. A particularly interesting non-DFS algorithm for enumerative LTL

model checking was described in [ČP03]. The idea of the algorithm is to compute the

set of vertices that are reachable from an accepting cycle. If the set is empty, there is no

accepting cycle in the graph, otherwise the presence of an accepting cycle is ensured.

The algorithm repeatedly computes approximations of the target set until a

fixpoint is reached. All reachable vertices are inserted into the approximation

set (ApproxSet) within the procedure INITIALIZE-APPROXSET. After that, ver-

tices violating the condition are gradually removed from the approximation set

using procedures ELIM-NO-ACCEPTING and ELIM-NO-PREDECESSORS. Procedure

ELIM-NO-ACCEPTING removes those vertices from the approximation set that have

no accepting ancestors in the set, i.e. vertices that lie on leading non-accepting cycles.

Procedure ELIM-NO-PREDECESSORS removes vertices that have no ancestors at all, i.e.

leading vertices lying outside a cycle. The pseudo-code is given as Algorithm 1.

The approximation set induces an approximation graph. The in-degree of a vertex in

the approximation graph corresponds to the number of its immediate predecessors in

the approximation set. To identify vertices without ancestors in the approximation set,

the in-degree is maintained for every vertex of the approximation graph. The procedure

ELIM-NO-PREDECESSORS then works as follows. All vertices from the set with a zero

in-degree are moved to a queue. Vertices are then dequeued one by one, eliminated

from the set, and the in-degrees of its descendants updated. If an in-degree drops to

zero, the corresponding vertex is inserted into the queue to be eliminated as well. The

procedure eliminate vertices in a topological order, so the queue becomes empty as soon

as all vertices preceding a cycle are eliminated.

Procedure ELIM-NO-ACCEPTING works as follows. If a vertex has an accepting an-

cestor in the approximation set, it has to be reachable from some accepting vertex in

the set. In particular, the procedure first removes all non-accepting vertices from the set

and sets the numbers of predecessors of all vertices remaining in the set to zero. Then a

forward search is performed starting from the vertices remaining in the set. During the

search all visited vertices are re-inserted to the approximation set and the numbers of

immediate predecessors of vertices in the set are properly counted.

4

Algorithm 1 DETECTACCEPTINGCYCLE

Require: Implicit definition of G=(V,E,ACC)

1: INITIALIZE-APPROXSET()

2: oldSize←∞
3: while (ApproxSet.size 6= oldSize) ∧ (ApproxSet.size > 0) do

4: oldSize← ApproxSet.size

5: ELIM-NO-ACCEPTING()

6: ELIM-NO-PREDECESSORS()

7: return ApproxSet.size > 0

2.2 I/O efficient Implementation

There are three major data structures used by the algorithm. These are Candidates,

ApproxSet, and Open. Candidates is a set of vertices strictly kept in memory that is

used for the delayed detection technique. It keeps vertices that have been processed

and are waiting to be checked against the set of vertices stored on the external device.

ApproxSet is a set of vertices belonging to the current approximation set. It is imple-

mented as a linear list and stored externally. Together with Candidates, it is used as the

set of already visited vertices during the forward exploration of the graph in procedure

ELIM-NO-ACCEPTING. For that purpose, both Candidates and ApproxSet data structures

are modified to keep not only vertices, but also the corresponding numbers of relevant

immediate predecessors. The number associated with a particular vertex s is referred

to as the appendix of the vertex and is set and read with methods setAppendix(s) and

getAppendix(s) , respectively. Finally, data structure Open is a queue of vertices. It is

used to keep open vertices during the breadth-first exploration of the graph within pro-

cedure ELIM-NO-ACCEPTING, and vertices to be eliminated (vertices with zero prede-

cessors) during the execution of procedure ELIM-NO-PREDECESSORS. Data structure

Open is stored in the external memory, however, vertices are inserted into and taken

from the structure in a strict FIFO manner. Thus, a possible I/O overhead could be

minimized using appropriate buffering mechanism.

In some phases, the algorithm performs a scan through the externally stored set of

vertices (ApproxSet) and decides about every vertex if it should be removed from the

set or not. To preserve the I/O efficiency of such an operation, a temporary external

data structure ApproxSet’ is introduced. In particular, vertices that should remain in the

set are copied to the temporary structure. Once the scan is complete, the content of the

5

Algorithm 2 MERGE

1: if mode = Elim-No-Accepting then

2: for all s ∈ ApproxSet do

3: if s ∈ Candidates then

4: app← Candidates.getAppendix(s)

5: app’← ApproxSet.getAppendix(s)

6: Candidates← Candidates \ {s}

7: ApproxSet.setAppendix(s, app + app’)

8: for all s ∈ Candidates do

9: Open.pushBack (s)

10: ApproxSet← ApproxSet ∪ {s}

11: else

12: ApproxSet’← ∅
13: for all s ∈ ApproxSet do

14: app’← ApproxSet.getAppendix(s)

15: if s ∈ Candidates then

16: app← Candidates.getAppendix(s)

17: if (app + app’) = 0 then

18: Open.pushBack (s)

19: else

20: ApproxSet’← ApproxSet’ ∪ {s}

21: ApproxSet’.setAppendix(s, app + app’)

22: else

23: ApproxSet’← ApproxSet’ ∪ {s}

24: ApproxSet’.setAppendix(s, app’)

25: ApproxSet← ApproxSet’

26: Candidates← ∅

original ApproxSet is discarded and replaced with the content of the temporary structure

ApproxSet’.

Having described the data structures we are ready to introduce several auxil-

iary subroutines that the algorithm employs. The most important auxiliary proce-

dure is procedure MERGE that is responsible for merging information about vertices

stored in the memory (Candidates) and vertices stored externally (ApproxSet). The

6

procedure can operate in two different modes according to the value of the variable

mode. The two modes correspond to the top most procedures ELIM-NO-ACCEPTING

and ELIM-NO-PREDECESSORS. In the mode Elim-No-Accepting, vertices from set

Candidates are merged with vertices from ApproxSet and the result is stored externally

to the set ApproxSet. For vertices visited before, only the corresponding appendices

are combined and stored externally. Moreover, newly discovered vertices are inserted

into the queue of vertices to be further processed (Queue). In the mode Elim-No-

Predecessors, no new vertices are discovered, so only the appendices are combined.

Vertices with zero in-degrees are removed from the external memory and are inserted

in the queue so the in-degrees of their immediate descendants could be appropriately

decreased. For details see the pseudo-code of Algorithm 2.

Another auxiliary procedure is procedure STOREORCOMBINE whose purpose is to

insert a vertex into the candidate set if the vertex is not present in the set, or modify the

corresponding appendix of the vertex, otherwise. New vertices are inserted into the set

with the incoming appendices, for vertices already stored, both the stored and incoming

appendices are combined and the originally stored appendix is replaced with the new

combination. Once the main memory becomes full, vertices from the candidate set are

processed and the candidate set is emptied by calling procedure MERGE.

Algorithm 3 STOREORCOMBINE

Require: s, app

1: if s ∈ Candidates then

2: app’← Candidates.getAppendix(s)

3: Candidates.setAppendix(s, app+app’)

4: else

5: Candidates← Candidates ∪ {s}

6: Candidates.setAppendix(s, app)

7: if MEMORYISFULL() then

8: MERGE()

The last auxiliary function is a function to check the emptiness of the queue of ver-

tices to be processed (Open). If the queue is empty, procedure OPENISNOTEMPTY calls

procedure MERGE to perform the delayed duplicate detection. The procedure returns

False, if Open is empty and the merging has not brought any new vertices to be pro-

cessed.

7

Algorithm 4 OPENISNOTEMPTY

1: if Open.isEmpty() then

2: MERGE()

3: return ¬Open.isEmpty()

Algorithm 5 ELIM-NO-ACCEPTING

1: mode← Elim-No-Accepting

2: ApproxSet’← ∅
3: for all s ∈ ApproxSet do

4: if ISACCEPTING(s) then

5: Open.pushBack (s)

6: ApproxSet’← ApproxSet’ ∪ {s}

7: ApproxSet’.setAppendix(s, 0)

8: ApproxSet← ApproxSet’

9: while OPENISNOTEMPTY() do

10: s← Open.popFront()

11: for all t ∈ GETSUCCESSORS(s) do

12: STOREORCOMBINE(t, 1)

Algorithm 6 ELIM-NO-PREDECESSORS

1: mode← Elim-No-Predecessors

2: ApproxSet’← ∅
3: for all s ∈ ApproxSet do

4: if ApproxSet.getAppendix(s) = 0 then

5: Open.pushBack (s)

6: else

7: ApproxSet’← ApproxSet’ ∪ {s}

8: ApproxSet← ApproxSet’

9: while OPENISNOTEMPTY() do

10: s← Open.popFront()

11: for all t ∈ GETSUCCESSORS(s) do

12: STOREORCOMBINE(t,−1)

8

Algorithm 7 INITIALIZE-APPROXSET

1: mode← Elim-No-Accepting

2: Candidates← ∅
3: s← GETINITIALVERTEX()

4: ApproxSet← {s}

5: if ¬ ISACCEPTING(s) then

6: Open.pushBack (s)

7: while OPENISNOTEMPTY() do

8: s← Open.popFront()

9: for all t ∈ GETSUCCESSORS(s) do

10: if ISACCEPTING(t) then

11: ApproxSet← ApproxSet ∪ {t}

12: else

13: STOREORCOMBINE(t, 0)

Algorithm 5 and Algorithm 6 give pseudo-codes of the two main procedures.

Note that the algorithm uses functions GETINITIALVERTEX, GETSUCCESSORS, and

ISACCEPTING to traverse the graph and to check whether a vertex is accepting or

not. These functions are part of the implicit definition of the graph. Procedure

ELIM-NO-ACCEPTING has actually two goals. First, to eliminate vertices from the

approximation set that are unreachable from the accepting vertices in the set, and

second, to properly count the in-degrees in the approximation graph. Procedure

ELIM-NO-PREDECESSORS employs the numbers of predecessors computed by proce-

dure ELIM-NO-ACCEPTING to recursively remove vertices without predecessors from

the approximation set. The procedure actually performs I/O efficient topological sort-

ing.

An important observation is that it is not necessary to initialize the approximation set

with all the vertices. Since the first procedure in the very first iteration of the while loop

performs forward exploration of the graph starting from accepting vertices in the set, it

is enough to initialize the set with "leading" accepting vertices only, i.e. those accepting

vertices that have no accepting ancestors. Such vertices can be identified with a simple

forward traversal that is allowed to explore descendants of non-accepting vertices only.

See the pseudo-code given as Algorithm 7.

9

3 Complexity Analysis and Comparison

A widely accepted model for the analysis of the complexity of I/O algorithms is the

model of Aggarwal and Vitter [AJ88], where the complexity of an I/O algorithm is mea-

sured in terms of the numbers of external I/O operations only. This is motivated by the

fact that a single I/O operation is by approximately six orders of magnitude slower than

a computation step performed in the main memory [Vit01]. Therefore, an algorithm that

does not perform the optimal amount of work but has a lower I/O complexity, may be

faster in practice compared to an algorithm that performs the optimal amount of work,

but has a higher I/O complexity. The complexity of an I/O algorithm in the model

model of Aggarwal and Vitter is further parametrized with M, B, and D, where M de-

notes the number of items that fits in the internal memory, B denotes the number of

items that can be transferred in a single I/O operation, and D denotes the number of

blocks that can be transferred in parallel, i.e. the number of independent parallel disks

available. The abbreviations sort(n) and scan(n) stand for θ(N/(DB)logM/B(N/B))

and θ(N/(DB)), respectively. In this section we show the I/O complexity of our algo-

rithm and compare it with the complexity of the algorithm from [EJ06].

3.1 I/O Complexity

The I/O complexity of our algorithm DETECTACCEPTINGCYCLE follows from the

I/O complexities of functions INITIALIZE-APPROXSET, ELIM-NO-ACCEPTING, and

ELIM-NO-PREDECESSORS.

To give the complexity precisely, we first remind several graph theory terms. BFS tree

is a tree given by the graph traversal from the initial set of vertices in the breadth-first

order. Its height is called BFS height and is denoted as hBFS, its levels are called BFS levels.

SCC graph is a directed acyclic graph, whose vertices are maximal strongly connected

components of the graph and the edges are given according to the reachability relation

between the components. Let lSCC denote the length of the longest path in the SCC

graph.

The complexities of individual procedures are given by the following lemmas start-

ing with the complexity of the auxiliary function MERGE that is responsible for most

I/O operations performed in all main procedures.

Lemma 3.1. The I/O complexity of procedure MERGE is O(scan(|V |)).

10

Proof. The loop on lines 2–7 of the pseudo-code scans the approximation set on the disk

and updates appendices of revisited vertices. Each vertex is stored externally together

with its appendix, so the access to the appendix (getAppendix, setAppendix) of the

currently processed vertex does not produce any additional I/O operations. Since the

approximation set keeps at most |V | vertices, the loop performs O(scan(|V |)) I/O oper-

ations. The loop on lines 13–24 behaves in a similar way, but instead of changing appen-

dices of visited vertices, it appends every processed vertex to either Open or ApproxSet’

data structures, which results in additional O(scan(|V |)) I/O operations. Finally, the

loop on lines 8–10 appends newly discovered vertices to both Open and ApproxSet data

structures for the price of O(scan(|V |)) I/O operations. Therefore, the total I/O com-

plexity of the procedure is O(scan(|V |)).

Lemma 3.2. The I/O complexity of ELIM-NO-ACCEPTING is O((hBFS + |E|/M) ·scan(|V |)).

Proof. In the first part (lines 3–7 of the pseudo-code), the algorithm makes one scan

through the entire approximation set and gradually creates its subset ApproxSet’ and

fills queue Open with its initial contents. This part of the algorithm writes and reads

sequentially at most 2 · |ApproxSet| data. Thus, the first part costs at most O(scan(|V |)).

The second part of the algorithm (lines 9–12) repeatedly merges Candidates with

ApproxSet (the merging procedure is hidden in the functions OPENISNOTEMPTY and

STOREORCOMBINE). The merge occurs every time the candidate set exhausts the in-

ternal memory or the queue Open becomes empty. It is guaranteed that each vertex is

explored (i.e. its successors are generated) exactly once, because the vertex gets into the

queue Open at the moment it is added to the approximation set (see line 9 in MERGE).

Therefore, each vertex v is inserted into Candidates at most in-degree(v)-times. Conse-

quently, the candidate set can consume the memory at most (|E|/M)-times. The queue

becomes empty exactly once for each BFS level that is smaller than M. Therefore, the

merge procedure is called at most (hBFS + |E|/M)-times and the total I/O complexity of

the procedure is O((hBFS + |E|/M) · scan(|V |)).

Lemma 3.3. The I/O complexity of procedure INITIALIZE-APPROXSET is at most O((hBFS +

|E|/M) · scan(|V |)).

Proof. The proof of the I/O complexity of procedure INITIALIZE-APPROXSET is simi-

lar to the proof of complexity of the procedure ELIM-NO-ACCEPTING. The procedure

INITIALIZE-APPROXSET performs in essence the same state space traversal as procedure

ELIM-NO-ACCEPTING. The only difference is that it might terminate earlier.

11

Lemma 3.4. The I/O complexity of procedure ELIM-NO-PREDECESSORS is O((|p| + |E|/M) ·
scan(|V |)), where p is the longest path going through trivial strongly connected components

(without self-loops) and starting from a vertex without predecessors in the approximation set.

Proof. Let p be the longest path going through trivial strongly connected components

and starting from a vertex without predecessors in the approximation set.

The procedure at first performs a single scan through the entire approximation set

to divide the vertices between ApproxSet’ and Open (lines 3–7 in the pseudo-code). This

costs at mostO(scan(|V |)) I/O operations. After that, Open contains all vertices without

predecessors in the approximation set.

The second part of the algorithm (lines 9–12) repeatedly merges Candidates with

ApproxSet (the merging procedure is hidden in the functions OPENISNOTEMPTY and

STOREORCOMBINE). The merge occurs every time the candidate set exhausts the inter-

nal memory or the queue Open becomes empty.

As soon as all vertices from Open are processed, i.e. they are eliminated from the

approximation set, the length of p must have been shortened. Otherwise, p was not

the longest path satisfying the condition. After all vertices from path p are eliminated,

there is no other vertex, that has no predecessor in the approximation set, therefore,

the procedure terminates. Thus, the number of merge procedures called due to the

emptiness of the queue Open is bounded by length of p.

Since each vertex is inserted into Open at most once, every edge is traversed at

most once and consequently, every vertex v can be inserted into Candidates at most

in-degree(v)-times. Thus, the candidate set can consume the memory at most (|E|/M)-

times.

Therefore, within a single call to procedure ELIM-NO-PREDECESSORS, the merge

procedure is called at most (|p| + |E|/M)-times and the I/O complexity of the procedure

is O((|p| + |E|/M) · scan(|V |)).

Lemma 3.5. The total I/O complexity of the algorithm DETECTACCEPTINGCYCLE is

O((lSCC · (hBFS + |E|/M) +
∑

i |pi|) · scan(|V |)),

where pi is the longest path going through trivial strongly connected components (without self-

loops) and starting from a vertex without predecessors in the approximation set during the i-th

call of ELIM-NO-PREDECESSORS.

Proof. The algorithm begins with execution of INITIALIZE-APPROXSET, which costs

O((hBFS + |E|/M) · scan(|V |)). After that, the algorithm enters the main loop (lines 3–6).

12

The number of iterations of the external loop can be bounded with lSCC [ČP03].

Therefore, procedure ELIM-NO-ACCEPTING brings in total O(lSCC · (hBFS + |E|/M) ·
scan(|V |)).

A single call of ELIM-NO-PREDECESSORS costs O((|pi| + |E|/M) · scan(|V |)). Then

the total complexity for all calls of the procedure is O((
∑

i |pi| + |E|/M) · scan(|V |)).

Together, the I/O complexity of the algorithm is in O((hBFS + |E|/M) · scan(|V |) +

lSCC ·(hBFS + |E|/M) ·scan(|V |)+(
∑

i |pi|+ |E|/M) ·scan(|V |)) = O((lSCC ·(hBFS + |E|/M)+∑
i |pi|) · scan(|V |)).

Theorem 3.6. The I/O complexity of algorithm DETECTACCEPTINGCYCLE is

O(lSCC · (hBFS + |pmax| + |E|/M) · scan(|V |)),

where pmax is the longest path in the graph going through trivial strongly connected components

(without self-loops).

Proof. The theorem immediately follows from Lemma 3.5, since lSCC · |pmax| ≥
∑

i |pi|.

This result is a good compromise between accuracy of the upper complexity bound and

comprehensibility of used notation.

3.2 Comparison

For the purpose of comparison we refer to our new algorithm as to algorithm DAC and

to the algorithm of Edelkamp et al [EJ06] as to algorithm EDL. [EJ06, Theorem 1] claims

that with the algorithm EDL it is possible to detect accepting cycles with I/O complexity

O(sort(|F||E|) + l · scan(|F||V |)), where |F| is the number of accepting states and l is the

length of the shortest counterexample.

The complexity of algorithm EDL is not easy to compare with our results, because

the algorithms use different ways to maintain the set of candidates. The candidate set

can be either stored externally (algorithm EDL) or internally (algorithm DAC). In the

case that the candidate set is stored externally, it is possible to perform merge operation

on a BFS level independently of the size of the main memory. Therefore, this approach

is suitable for those cases where memory is small, or the graph is by the orders of mag-

nitude larger. The disadvantage of the approach is that it needs sort operations and

it cannot be combined with heuristics, such as bit-state hashing and a lossy hash ta-

ble [HW06]. Fortunately, both algorithms EDL and DAC are modular enough to be

able to work in both modes. Table 1 gives I/O complexities of all four variants, where

13

Candidate set in the main memory:

EDL’ O((l + |F||E|/M) · scan(|F||V |))

DAC O(lSCC · (hBFS + pmax + |E|/M) · scan(|V |))

Candidate set in the external memory:

EDL O(l · scan(|F||V |) + sort(|F||E|))

DAC’ O(lSCC · ((hBFS + pmax) · scan(|V |) + sort(|E|)))

Table 1: I/O complexity of algorithms for both modes of storage of the candidate set.

EDL ′ denotes algorithm EDL modified so that the candidate set is kept in the internal

memory, and DAC ′ denotes algorithm DAC modified so that the candidate set is stored

externally.

Note that for model checking graphs the numbers lSCC, pmax and hBFS are typically

smaller by several orders of magnitude than the number of vertices. However, the num-

ber of accepting vertices (F) is typically in the same order of magnitude as the number

of vertices. Therefore, EDL ′ and EDL suffer from the graph blow-up and perform much

more I/O operations compared to DAC and DAC ′, respectively. On the other hand,

EDL ′ and EDL can outperform DAC and DAC ′ on the graphs with small number of

accepting vertices and short counterexamples.

3.3 Space Complexity

Regarding space complexity, the comparison is clear. Since algorithm EDL ′ needs to

remember all visited pairs of vertices, where the pair is made by an accepting vertex an

arbitrary vertex, the space complexity of the algorithm is O(|F||V |), i.e. asymptotically

quadratic in the size of the graph. On the other hand, the space complexity of algorithm

DAC is O(|V |), as it only needs to maintain the approximation set, queue and the can-

didate set whose sizes are always bounded by the number of vertices. The same holds

for the pair of algorithms EDL and DAC ′.

4 Experimental evaluation

In order to obtain experimental evidence about how our algorithm behaves in practice,

we implemented two verification tools and mutually compared their performance as

well as we compared their performance with the performance of the popular model

14

Valid properties on large models.

SPIN LaS-BFS Our algorithm

States Time RAM Time Disk Time Disk

Phils(16,1),P3 61,230,206 Out of memory Out of memory 02:01:11 5.5 GB

MCS(5),P4 119,663,657 Out of memory Out of memory 03:32:41 8 GB

Szymanski(5),P4 419,183,762 Out of memory Out of memory 44:49:36 32 GB

Elevator2(16),P4 76,824,540 Out of memory Out of memory 11:37:57 9.2 GB

Leader Fil.(7),P2 431,401,020 00:01:35 1369 MB Out of memory 32:03:52 42 GB

Lamport(5),P4 76,824,540 00:00:59 469 MB Out of memory 02:44:38 4.4 GB

Valid properties on small models.

SPIN LaS-BFS Our algorithm

States Time RAM Time Disk Time Disk

Lamport(3),P4 56,377 00:00:01 18 MB 00:55:34 799 MB 00:00:19 6,1 MB

Anderson(4),P2 58,205 00:00:01 20 MB 00:11:11 153 MB 00:00:18 6,1 MB

Peterson(4),P4 2,239,039 00:00:08 85 MB Out of memory 00:04:44 159 MB

Invalid properties.

SPIN LaS-BFS Our algorithm

States Time RAM Time Disk Time Disk

Bakery(5,5),P3 506,246,410 00:00:01 16 MB 01:34:13 5,4 GB 69:27:58 38 GB

Szymanski(4),P2 4,555,287 00:00:01 18 MB 00:59:00 203 MB 00:19:55 205 MB

Elevator2(7),P5 43,776 00:00:01 17 MB 00:01:15 121 MB 00:00:18 6,1 MB

Table 2: Run times and memory consumption on a single workstation with 2 GB of

RAM and 60 GB of available hard disk space. The time is given in hh:mm:ss format.

checker SPIN with all the default reduction techniques (including partial order) turned

on.

Regarding our algorithm, we implemented procedure DetectAcceptingCycle (DAC)

upon DiVinE Library [BBvv05] providing the state space generator, and STXXL Library

[DKS05] providing the necessary I/O primitives. As for the algorithm of Edelkamp et

al, we implemented a procedure that performs the graph transformation as suggested

in [EJ06] and then employs I/O efficient breadth-first search to check for the counterex-

ample. Note that our implementation of [EJ06] does not have the A∗ heuristics and

so it can be less efficient in the search for the counterexample when it is present. The

procedure is referred to as Liveness as Safety with BFS (LaS-BFS).

We have measured run times and a memory consumption of SPIN, LaS-BFS

and DAC on a collection of systems and their LTL properties taken from BEEM

15

project [Pel07]. Note that since DiVinE and SPIN have different input languages, we

take special care of the equivalency of the models we used during the experimental

evaluation. The models were selected so that the state spaces generated by SPIN and

DiVinE were exactly the same size. As all used models are parametrized, the equality

of state spaces has been verified using smaller instances of used models 1. The experi-

mental results are listed in Table 2.

Measurements on large systems with valid formulas demonstrate that DAC is able

to successfully prove the correctness of systems, on which SPIN and LaS-BFS run out

of memory. However, there are systems and valid formulas, which take a long time to

verify by our algorithm, but can be verified quickly using SPIN (e. g. model Leader Fil-

ters). It is due to the partial order reduction technique, which is extraordinarily efficient

in this case. Results on small systems show the state space blow-up in case of LaS-BFS.

E. g. on model Lamport, 6,1 MB of disk space is enough for DAC to store the entire state

space, but LaS-BFS needs 799 MB. As for systems with invalid formulas, the new algo-

rithm is slow, since it is not on-the-fly. Nevertheless, it is able to finish if the state space

fits in the external memory. Moreover, it is faster than LaS-BFS on systems with long

counterexamples as the space space blow-up takes effect when LaS-BFS has to traverse

a substantial part of the state space (e. g. model Elevator2).

In summary, the new algorithm is especially useful for verification of large systems

with valid formulas where SPIN fails due to the limited size of the main memory and

LaS-BFS runs out of the available external memory because of a large amount of ac-

cepting states. On systems with invalid formulas it finishes if the state space fits in the

external memory, but it may take quite a long time, since the algorithm does not work

on-the-fly.

5 Conclusions

In this paper we presented a new I/O efficient algorithm for accepting cycle detec-

tion on implicitly given graphs. To our best knowledge, the algorithm is the first al-

gorithm that exhibits linear space complexity while preserving practically reasonable

I/O complexity. A distinguished contribution of the paper is that we were also the first

1State space sizes of Promela models were measured using commands spin -a -o2 model.pm; gcc

-O2 -DNOREDUCE pan.c; ./a.out -E -m1000000 -w22

16

who introduced I/O efficient topological sorting on implicitly given graphs (procedure

ELIM-NO-PREDECESSORS).

Our experimental evaluation confirmed that the new I/O algorithm is able to fully

solve instances of the LTL model checking problem that cannot be solved either with

the standard LTL model checker SPIN or using so far the best I/O efficient approach

of Edelkamp et al [EJ06]. The approach of Edelkamp et al fails especially if the verified

formula is valid, which is because after the transformation, the graph becomes too large

to be kept even in the external memory.

On the other hand, unlike SPIN and the approach of Edelkamp et al, our algorithm

does not work on-the-fly. The on-the-fly algorithms are particularly successful if the

property is violated and the counterexample can be found early during the state space

exploration.

5.1 Future work

As our algorithm is based on the algorithm which can be easily parallelized [ČP03], it

should be easy to develop a parallel version of our algorithm and thus, get the algorithm

for verification of yet larger systems. It also seems promising to make other BFS-based

verification algorithms I/O efficient [BBS01, BvKP01, BBC03, BČMŠ04]. Some of them

are on-the-fly and so they could outperform both, our new algorithm and the algorithm

of Edelkamp et al [EJ06].

An open problem for which we still do not know a practically good solution, is

the inefficiency of the delayed duplicate detection technique on graphs with the big

BFS height and small BFS levels. Since the merge procedure taking several minutes

on reasonably large graphs is called after every BFS level traversal, the speed of the

exploration falls down to few vertices per minute. It would be sometimes more efficient

to generate several BFS levels and remove all duplicates at once. Nevertheless, it is not

easy to estimate a number of levels to generate at once, since a computing time needed

for exploration of duplicate vertices can surpass the time saved by omitting several

merge operations.

References

[AJ88] Alok Aggarwal and S. Vitter Jeffrey. The input/output complexity of sorting

and related problems. Commun. ACM, 31(9):1116–1127, 1988.

17

[Bar04] Jiří Barnat. Distributed Memory LTL Model Checking. PhD thesis, Faculty of

Informatics, Masaryk University Brno, 2004.

[BBC03] J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL

Model-Checking. In 18th IEEE International Conference on Automated Software

Engineering (ASE’03), pages 106–115. IEEE Computer Society, Oct. 2003.

[BBS01] J. Barnat, L. Brim, and J. Stříbrná. Distributed LTL Model-Checking in SPIN.

In Proc. SPIN Workshop on Model Checking of Software, volume 2057 of LNCS,

pages 200 – 216. Springer, 2001.

[BBvv05] J. Barnat, L. Brim, I. Černá, and P. Šimeček. Divine - the distributed ver-

ification environment. In M. Leucker and J. van de Pol, editors, Proc. of

4th International Workshop on Parallel and Distributed Methods in verifiCation

(PDMC05), pages 89–94, 2005.

[BČMŠ04] L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting predecessors are bet-

ter than back edges in distributed ltl model-checking. In 5th International

Conference on Formal Methods in Computer-Aided Design (FMCAD’04), volume

3312 of LNCS, pages 352–366. Springer-Verlag, 2004.

[BvKP01] L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL model checking

based on negative cycle detection. In Proc. of Foundations of Software Technol-

ogy and Theoretical Computer Science (FST TCS 2001), volume 2245 of LNCS,

pages 96–107. Springer, 2001.

[CGG+95] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia,

Darren Erik Vengroff, and Jeffrey Scott Vitter. External-memory graph algo-

rithms. In SODA ’95: Proceedings of the sixth annual ACM-SIAM symposium on

Discrete algorithms, pages 139–149, Philadelphia, PA, USA, 1995. Society for

Industrial and Applied Mathematics.

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, 1999.

[ČP03] I. Černá and R. Pelánek. Distributed explicit fair cycle detection (set based

approach). In T. Ball and S.K. Rajamani, editors, Model Checking Software.

10th International SPIN Workshop, volume 2648 of Lecture Notes in Computer

Science, pages 49 – 73. Springer Verlag, 2003.

18

[DKS05] Roman Dementiev, Lutz Kettner, and Peter Sanders. STXXL: Standard

template library for XXL data sets. In Gerth Stølting Brodal and Stefano

Leonardi, editors, Algorithms - ESA 2005 : 13th Annual European Symposium,

volume 3669 of Lecture Notes in Computer Science, pages 640–651, Palma de

Mallorca, Spain, 2005. EATCS, Springer.

[EJ06] Stefan Edelkamp and Shahid Jabbar. Large-scale directed model checking

ltl. In SPIN, pages 1–18, 2006.

[HPY96] G.J. Holzmann, D. Peled, and M. Yannakakis. On Nested Depth First Search.

In The SPIN Verification System, pages 23–32. American Mathematical Society,

1996. Proc. of the 2nd SPIN Workshop.

[HW06] Moritz Hammer and Michael Weber. To store or not to store reloaded: Re-

claiming memory on demand. In FMICS, 2006.

[JE05] Shahid Jabbar and Stefan Edelkamp. I/o efficient directed model checking.

In VMCAI, pages 313–329, 2005.

[JM04] Michael Jones and Eric Mercer. Explicit state model checking with hopper.

In SPIN, pages 146–150, 2004.

[KM02] Irit Katriel and Ulrich Meyer. Elementary graph algorithms in external mem-

ory. In Algorithms for Memory Hierarchies, pages 62–84, 2002.

[KM03] Lars Michael Kristensen and Thomas Mailund. Efficient path finding with

the sweep-line method using external storage. In ICFEM, pages 319–337,

2003.

[Kor04] Richard E. Korf. Best-first frontier search with delayed duplicate detection.

In AAAI, pages 650–657, 2004.

[KS96] Vijay Kumar and Eric J. Schwabe. Improved algorithms and data structures

for solving graph problems in external memory. In SPDP ’96: Proceedings of

the 8th IEEE Symposium on Parallel and Distributed Processing (SPDP ’96), page

169, Washington, DC, USA, 1996. IEEE Computer Society.

[KS05] Richard E. Korf and Peter Schultze. Large-scale parallel breadth-first search.

In AAAI, pages 1380–1385, 2005.

19

[MM02] K. Mehlhorn and U. Meyer. External-memory breadthfirst search with sub-

linear i/o. In l0th Annual European Symposium on Algorithms, pages 723–735.

Springer, 2002.

[Pel07] R. Pelánek. BEEM: BEnchmarks for Explicit Model checkers. http://anna.

fi.muni.cz/models/index.html, February 2007.

[Rei85] J.H. Reif. Depth-first search is inherrently sequential. Information Processing

Letters, 20(5):229–234, 1985.

[SD98] U. Stern and D. L. Dill. Using magnetic disk instead of main memory in the

murphi verifier. In Computer Aided Verification. 10th International Conference,

pages 172–183, 1998.

[Var96] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic.

In Proceedings of the VIII Banff Higher order workshop conference on Logics for

concurrency : structure versus automata, pages 238–266, Secaucus, NJ, USA,

1996. Springer-Verlag New York, Inc.

[Vit01] Jeffrey Scott Vitter. External memory algorithms and data structures: dealing

with massive data. ACM Comput. Surv., 33(2):209–271, 2001.

20

