
}w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

LanQ – Operational Semantics
of Quantum Programming Language LanQ

by

Hynek Mlnařík

FI MU Report Series FIMU-RS-2006-10

Copyright c© 2006, FI MU December 2006

Copyright c© 2006, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Operational Semantics
of Quantum Programming Language LanQ

Hynek Mlnařík∗

Faculty of Informatics, Masaryk University

Brno, Czech Republic

xmlnarik@fi.muni.cz

December 21, 2006

Abstract

We present new imperative quantum programming language LanQ which was de-

signed to support combination of quantum and classical programming and basic

process operations – process creation and interprocess communication. The lan-

guage can thus be used for implementing both classical and quantum algorithms

and protocols. Its syntax is similar to that of C language what makes it easy to learn

for existing programmers. In this paper, we present operational semantics of the

language. We provide an example run of a quantum random number generator.

1 Introduction

Quantum computing is a young branch of computer science. Its power lies in employ-

ing quantum phenomena in computation. These laws are different to those that rule

classical world: Quantum systems can be entangled. Quantum evolution is reversible.

One can compute exponentially many values in one step.

Quantum phenomena were successfully used for speeding up a solution of compu-

tationally hard problems like computing discrete logarithm or factorisation of integers

[Sho94]. Another successful application of quantum phenomena in computing, namely

in cryptography, is secure quantum key generation [BB84, Eke91, Ben92]. Quantum key

∗This work has been supported by the grants No. 201/04/1153 and MSM0021622419.

1

generation overcomes the classical in the fact that its security relies on the laws of na-

ture, while classical key generation techniques rely on computational hardness of solv-

ing some problems. A nice example of quantum phenomena usage is a teleportation of

an unknown quantum state [BBC+93].

For the formal description of quantum algorithms and protocols, several quantum

programming languages and process algebras have already been developed. Some of

them support handling quantum data only, however most of them allow combining of

quantum and classical computations. Obtaining classical data from quantum systems

is done by measurement which is probabilistic by its nature. This implies that quantum

formalisms must be able to to handle probabilistic computation.

Existing formalisms are usually based on existing classical programming languages

and process algebras. From imperative languages, we should mention Ömer’s QCL

(Quantum Computation Language, [Öme00]) whose syntax is based on that of C lan-

guage; Betteli, Calarco and Serafini’s Q language built as an extension of C++ basic

classes [BCS01]. However, semantics of these imperative languages is not formally

defined formally. Zuliani’s qGCL (quantum Guarded Command Language, [Zul01])

based on pGCL (probabilistic Guarded Command Language) has denotational seman-

tics defined but does not support recursion.

Many of developed languages are functional because of relatively straightforward

definition of its operational semantics. Van Tonder developed a quantum λ-calculus

[vT03]; quantum λ-calculus was also developed by Selinger and Valiron [SV05]; Selinger

proposed functional static-typed quantum flow-chart programming language QFC and

its text form QPL [Sel04]. Another functional programming language QML was devel-

oped by Altenkirch and Grattage [AG04] and refined into nQML in [LGP06].

Quantum process algebras differ to classical ones in the way they handle quantum

systems. The main issue solved here is that they must guarantee that any quantum

system is accessible by only one process at one time (because of the no-cloning theorem

[WZ82]). The quantum process algebras QPAlg by Lalire and Jorrand [LJ04, JL04, Lal05]

and CQP by Gay and Nagarajan [GN04, GN05, GN06] can describe both classical and

quantum interaction and evolution of processes. QPAlg was inspired by CCS, originally

using nontyped channels for interprocess communication. Recently [Lal06], Lalire has

added support for fixpoint operator and typed channels to QPAlg.

The presented language LanQ is an imperative quantum programming language. It

allows combination of quantum and classical computations to be expressed. Moreover,

2

it has features of quantum process algebras – it supports new process creation and in-

terprocess communication. Its syntax is similar to the syntax of C language. The formal

definition of syntax can be found in Appendix B. In the present paper, we define its

internal syntax and operational semantics.

The paper is structured as follows: we start with an example of an program written

in LanQ. Internal syntax is defined in Section 3. The main result is operational semantics

which is presented in Section 4. An example of a simple program execution can be found

in Appendix A.

2 Informal introduction

We begin our description of LanQ by an example of implementation of a well-known

multiparty quantum protocol – teleportation [BBC+93]. Teleportation can be written as

the program shown in the Figure 1.

void main() {
qbit ψA, ψB;
ψEPR aliasfor [ψA, ψB];
channel[int] c withends [c0, c1];

ψEPR = createEPR();
c = new channel[int]();
fork bert(c0, ψB);

angela(c1, ψA);
}

void angela(channelEnd[int] c0, qbit ats) {
int r;
qbit φ;

φ = doSomething();
r = measure (BellBasis, φ, ats);
send (c0, r);

}

int bert(channelEnd[int] c1, qbit stto) {
int i;

i = recv (c1);
if (i == 0) {

opB0(stto);
} else if (i == 1) {

opB1(stto);
} else if (i == 2) {

opB2(stto);
} else {

opB3(stto);
}
doSomethingElse(stto);
return i;

}

Figure 1: Teleportation implemented in LanQ

We now briefly describe the program. In LanQ, a program is a set of methods. Three

methods, main, angela and bert, are defined. The control is passed to a method called

main() when the program is run. This method can be invoked with no parameters. It

3

returns no value what can be seen from the word void in front of the method name.

Method angela() has to be invoked with two parameters – a channel end of a channel

that can be used to send values of type int and one qubit (ie. a quantum bit). It also

returns no value. Method bert() takes a channel and a qubit and returns a value of type

int.

Method main() declares variables used in the method body in its first three lines. The

type of variables ψA, ψB is qbit. Variable ψEPR is declared to be an alias for a compound

system ψA ⊗ψB. Channel c capable of sending integer numbers is declared on the next

line. The individual channel ends are named c0 and c1.

On next lines, method main invokes method createEPR() which creates an EPR-pair

and stores reference to the created pair into variable ψEPR. After that, a new channel is

allocated and assigned to variable c. The next command causes the running process to

split into two. One of the processes continues its run and invokes method angela(). The

second process starts its run from method bert().

Method angela() receives one channel end and one qubit as arguments. After declar-

ing variables r andφ, it assigns a result of running of method doSomething() toφ. Then

it measures qubits φ and ats in the Bell basis, assigns the result of the measurement to

variable r and sends it over the channel end c0.

Method bert() receives one channel end and one qubit as arguments. After declaring

variable i, it receives an integer value from the channel end c1 and assigns it to variable

i. Depending on the received value it applies one of the operators opB0, opB1, opB2 and

opB3 onto qubit stto. Then, it invokes method doSomethingElse() and passes variable

stto as an argument of this method. Finally, it returns the value of variable i to the

caller.

3 Internal syntax

In this section, we define the internal syntax of LanQ.

Using the concrete syntax, a LanQ program is written as a set of method declara-

tions. This notation does not allow direct execution of the program. Hence we need a

representation of the program execution – a syntax that allows us evaluation of a pro-

gram by means of rewriting program terms. The rewriting rules are then presented in

the Section 4 where operational semantics is defined.

4

The internal syntax is defined in the Figure 2. We need the following basic syn-

tactic entities: numbers (N), lists (L), recursive lists (RL), references (R), constants (C),

identifiers (I), types (T) and values (v). The processes (P) consist of statements (S) or

expressions (E). Several expressions are classified as promotable expressions (PE) – ex-

pressions that can act as statements when postfixed by semicolon. For the evaluation

of subexpressions we need a concept of a hole (•) which stands for the awaited result of

subexpression evaluation. The syntactic entities Sc (resp. Ec) represent partially eval-

uated statements (resp. expressions) whose subexpression is being evaluated, ie. they

represent evaluation contexts.

Remark 3.1. For the sake of clarity, we use the following notation in the rule body. We denote

by S̄ an abbreviation of BNF rule body “(S)∗”, and by Ẽ an abbreviation of “(E (, E)∗)?”.

N ::= 0 | 1 | . . .

L ::= [] | [Ñ]

RL ::= L | [R̃L]

R ::= none | (Classical,N) | (Quantum,RL) | (Channel,N) |

(ChannelEnd0,N) | (ChannelEnd1,N) | (GQuantum,L) | (GChannel,N)

C ::= true | false | ⊥ | . . . | R | . . .

I ::= x | y | z | . . . | + | − | . . .

T ::= void | int | qbit | channel[T] | channelEnd[T] | T ⊗ T | . . .

v ::= < R,C >

PE ::= new T() | I = E | I(Ẽ) | measure(Ẽ) | recv(E)

E ::= C | I | v | (E) | PE

VD ::= T Ĩ; | channel[T] I withends[I, I]; | I aliasfor [̃I];

S ::= ; | PE; | ◦L | {B̄} | if (E) S else S | while (E) S |

◦M | return; | return E; | fork I(Ẽ); | send(E, E);

B ::= VD | S

P ::= 0 | (P ‖ P) | S | E

Ec ::= I = • | I(ṽ, •, Ẽ) | measure(ṽ, •, Ẽ) | recv(•)
Sc ::= •; | if (•) S else S | fork I(ṽ, •, Ẽ); | send(•, E); | return •;

Figure 2: Internal syntax

Before a method can be invoked to be run, we must rewrite its body so that it is

derivable using internal syntax rules. Fortunately, the method bodies derived using

concrete syntax and internal syntax rules differ only in the following:

5

• In internal representation, all if statements have else part, ie. a statement if (E) P

is rewritten to if (E) P else ; where ; denotes a skip statement,

• In internal representation, all operators are written in the prefix notation and seen

as a method call, ie. E � F is converted to �(E, F).

Obviously, there is an algorithm which rewrites any method body derived using

concrete syntax to the internal representation.

An example of a block written using concrete syntax and its representation in inter-

nal syntax is shown in the Figure 3.

{
int r;
qbit φ;

φ = doSomething();
r = measure (BellBasis, φ, ats);
send (c0, r);
if (r == 0) {

measure (StdBasis, φ);
}

}
(a)

{
int r;
qbit φ;

φ = doSomething();
r = measure (BellBasis, φ, ats);
send (c0, r);
if (== (r, 0)) {

measure (StdBasis, φ);
} else ;

}

(b)

Figure 3: Block derived using concrete syntax (a) and the same block converted to inter-
nal syntax (b).

4 Operational semantics

In this section, we introduce operational semantics of LanQ programming language.

4.1 Notation

We use the following notation in the text:

• Set of natural numbers with zero: N0 = N ∪ {0}

• Let S be a set, ⊥ /∈ S. S⊥ = S ∪ {⊥}

• Let S be a set. S-list s = [s1, . . . , sn] is a list where n ∈ N0 and s1, . . . , sn ∈ S

6

• Let S be a set. Set of finite S-lists: S[] = {s | s is a finite S-list}

• Length of a list L: |L|

• Concatenation of two lists: [l1,1, . . . , l1,n]·[l2,1, . . . , l2,m] = [l1,1, . . . , l1,n, l2,1, . . . , l2,m]

• Set of items of a list L = [l1, . . . , ln]: set(L) = {l1, . . . , ln}

Let S be a set. We define a recursive S-list recursively as:

• any S-list [s1, . . . , sk] is a recursive S-list for any k ∈ N0

• [e1, . . . , em] is a recursive S-list for anym ∈ N0 if e1, . . . , em are recursive S-lists

The set of finite recursive S-lists is denoted by S[�].

For example, [[[1, 2, 3], [2, 3]], [1]] and [] are recursive N-lists.

A linearization function linearize : S[�] → S[] which converts a recursive S-list into

an S-list can be now defined:

linearize(s)
def
= s if s ∈ S[]

linearize([e1, . . . , em])
def
= linearize(e1) · . . . · linearize(em) where e1, . . . , em ∈ S[�]

For a set S⊥ with a special element⊥ ∈ S⊥ we define a function linearize⊥ : (S⊥)[�] →
(S⊥)[] ∪ {⊥} as:

linearize⊥(s)
def
=

linearize(s) = [s1, . . . , sn] if si 6= ⊥ for 1 ≤ i ≤ n

⊥ otherwise

Let S be a set, we define set[�] : S[�] → S as set[�]
def
= set ◦ linearize. We also define

function for getting length of a recursive list | − |[�] : S[�] → N as |l|[�]
def
= | linearize(l)|.

A memory reference specifies position of a value in memory. We distinguish global and

local references:

• References to global channel storage: RefGCh = {⊥} ∪ ({GChannel}× N⊥).

• References to global quantum storage: RefGQ = {⊥} ∪ ({GQuantum}× N[]).

• References to local classical value storage: RefCl = {none} ∪ ({Classical}× N⊥).

• References to local quantum systems reference storage:

RefQ = {none} ∪ ({Quantum}× (N⊥)[�]).

7

• References to local channel reference storage: RefCh = {none}∪ ({Channel}×N⊥).

• References to local channel end reference storage:

RefChE = {none} ∪ ({ChannelEnd0, ChannelEnd1}× N⊥).

We define none to be a special reference that refers to no value. We define sets RefG =

RefGCh ∪ RefGQ of global references, RefL = RefCl ∪ RefQ ∪ RefCh ∪ RefChE of local

references and Ref = RefG ∪ RefL. A memory reference is therefore an element from

the set Ref. We denote by Refnd = RefQ ∪ RefCh ∪ RefChE the set of references to non-

duplicable values.

We define a countable set Types of types of classical values. Among others, void ∈
Types, boolean ∈ Types, real ∈ Types, int ∈ Types and in particular, the type of refer-

ences Ref corresponding to the set Ref belongs to Types. We denote by val(T) a set of

values of type T.

We define a set Values as a set of values of all types:

Values =
⋃

T∈Types

val(T).

4.2 Configuration

Configuration of the abstract machine which realizes operational semantics is composed

of two basic parts – global and local. Global part of the configuration stores information

about quantum state of the whole system and relations between channels and their

ends. Local part of the configuration stores information about individual processes –

state of their classical memory, variables and term to be evaluated.

A configuration is written as [gs | ls1 ‖ · · · ‖ lsn]. Global part of a configuration is rep-

resented by gs. Local configurations of n processes running in parallel are represented

by ls1 ‖ · · · ‖ lsn, where lsj represents local configuration of j-th process.

A configuration can evolve by a probabilistic transition to a mixture of configura-

tions. A probabilistic mixture of configurations is written as:

�q
i=1pi • [gsi | lsi,1 ‖ · · · ‖ lsi,n].

It represents configurations of q different computational branches, each of them will

run with probability pi.

Configuration is composed of the following components:

• Global part of the configuration is a pair (Q,C) where:

8

– Q describes quantum part of the configuration.

In the present paper, we represent quantum state of the system by a pair

(ρ, L) of a finite density matrix and a finite list of natural numbers. The list

represents dimensions of individual quantum subsystems. The order of list

elements is given by order of quantum system allocations.

– C represents channel part of the configuration.

Channels and their ends are stored as pairs (c0, c1) written as c0|==

|=

c1 where

c0, c1 represent channel ends.

• Local part of the configuration is a tuple (lms, vp, ts) where:

– Local memory configuration is a tuple lms = (lmsCl, lmsQ, lmsCh, lmsChE)

which stores state of classical memory and references to non-duplicable re-

sources which are available to the process:

∗ lmsCl : RefCl ⇀ Values⊥ is a partial function which returns a classical

value stored at given position in memory. Set of all such partial functions

is denoted by LMSCl.

∗ lmsQ : RefQ ⇀ (RefGQ)⊥ returns a reference to a global quantum mem-

ory. Set of all such partial functions is denoted by LMSQ.

∗ lmsCh : RefCh ⇀ (RefGCh)⊥ returns a reference to the channel. Set of all

such partial functions is denoted by LMSCh.

∗ lmsChE : RefChE ⇀ (RefGCh)⊥ returns a reference to the channel corre-

sponding to the channel end. Set of all such partial functions is denoted

by LMSChE.

To simplify notation, we formally regard lms itself as a partial function. Note

that RefGQ ⊆ Values and RefGCh ⊆ Values. Now we can define lms =

(lmsCl, lmsQ, lmsCh, lmsChE) : Ref ⇀ Values⊥ where:

lms(r) =



lmsCl(r) if r ∈ RefCl

lmsQ(r) if r ∈ RefQ

lmsCh(r) if r ∈ RefCh

lmsChE(r) if r ∈ RefChE

⊥ if r = none

Set of all such quadruples lms is denoted by LMS.

9

– Variable properties are stored in a list vp of lists of partial function tuples

f = (fvar, fch, fqa) where:

∗ fvar : Names ⇀ Refmaps a variable name to a reference.

∗ fch : Names ⇀ Names×Names maps a channel variable name to vari-

able names representing ends of the channel.

∗ fqa : Names ⇀ Names[] maps a variable name representing a quantum

system to variable names that represent its subsystems.

We define VarProp to be a set of all finite lists of lists of such partial func-

tion tuples f. An element of VarProp represents stack state during a program

run. The inner list (whose elements are concatenated by ◦L) follows the block

structure of method, the outer list (elements concatenated by ◦G) represents

the sequence of method calling. The creation of stack is shown in the Subsec-

tion 4.3.

We define an empty variable properties tuple as a partial function tuple f =

(fvar, fch, fqa) where dom(fvar) = dom(fch) = dom(fqa) = ∅.

– Term stack ts: stack of terms to be evaluated. We use such a notation where

individual stack items are underlined for readability. The empty term stack

is denoted by ε.

4.3 Variable stack

Variable stack stores properties of variables. In LanQ, the properties of a variable are:

value of the variable (the value is a memory reference), ends of a channel represented

by the variable (if the variable represents a channel with channel end variables declared

using withends primitive) and quantum systems that the variable is composed of (if

the variable is declared to be a composition of other quantum systems using aliasfor

primitive). Therefore we have a tuple of three partial functions that represent variable

properties: f = (fvar, fch, fqa).

The variable stack must also respect the variable scope:

• A variable can be accessed only from within the block where it was declared. This

is ensured by using a list of tuples separated by ◦L, where a new tuple is appended

to the list when a block is started and removed when the block ends.

10

• Only variables from the running method are accessible to the running method.

This is ensured by using a list of lists of tuples separated by ◦G, where the tuples

are appended to the list when a method is invoked and removed when a method

ends.

This can be seen from the following example. The right side gives a method, the

left side gives the variable stack as the method is run. For the sake of brevity, we use a

symbol ♦ for an empty variable properties tuple (ie. for ([],[],[])) and � for an empty list

of variable properties tuples (ie. for []):

1 int a(int c) [vpG ◦G [� ◦L ([c 7→ rc], [], [])]]

2 { [vpG ◦G [[� ◦L ([c 7→ rc], [], [])] ◦L ♦]]

3 bool b; [vpG ◦G [[� ◦L ([c 7→ rc], [], [])] ◦L ([b 7→ none], [], [])]]

4 b = true; [vpG ◦G [[� ◦L ([c 7→ rc], [], [])] ◦L ([b 7→ rb], [], [])]]

5 if (b) { [vpG ◦G [[[� ◦L ([c 7→ rc], [], [])] ◦L ([b 7→ rb], [], [])] ◦L ♦]]

6 int i; [vpG ◦G [[[� ◦L ([c 7→ rc], [], [])] ◦L ([b 7→ rb], [], [])] ◦L ([i 7→ none], [], [])]]
...

7 } [vpG ◦G [[� ◦L ([c 7→ rc], [], [])] ◦L ([b 7→ rb], [], [])]]

8 } [vpG ◦G [� ◦L ([c 7→ rc], [], [])]]

When a method a is called, a list of variable properties tuples [� ◦L ([c 7→ rc], [], [])] is

appended to the caller variable stack vpG ([vpG ◦G [� ◦L ([c 7→ rc], [], [])]], line 1). In this

appended list, method parameters values are passed to the called method; in our case,

the value of the method parameter c is stored in the memory in the place referred by the

reference rc. On line 2 a new block is started, therefore a new empty variable properties

tuple is appended ([[� ◦L ([c 7→ rc], [], [])] ◦L ♦]). On the next line, a variable b is declared

and written onto the head element of the local stack. On line 4, b is assigned a value true

which is stored into memory in a place referred by rb. On line 5, a new block is started,

therefore a new empty variable properties tuple is appended. On line 6, a new integer

variable i is declared and stored into the stack head. On lines 7 and 8, two blocks end

and the appropriate local stacks are discarded.

11

4.4 Variable stack and memory handling functions

In this subsection, we define functions for memory and variable handling.

Let f : X ⇀ Y be a partial function. We define a partial function f[x 7→ y] : X ⇀ Y∪{y}:

f[x 7→ y](a)
def
=

y if a = x and f(x) is defined

f(a) otherwise

Note that the f[x 7→ y](x) is defined iff f(x) is defined.

Let f : X ⇀ Y be a partial function. We define a partial function f[x 7→ y]+ : X∪ {x} ⇀
Y ∪ {y}:

f[x 7→ y]+(a)
def
=

y if a = x

f(a) otherwise

Note that the f[x 7→ y]+(x) is defined even if f(x) is not defined.

A partial function tuple is a tuple f = (f0, . . . , fn) where f0, . . . , fn are partial functions.

We will need a list of partial function tuples to represent scope of variables in a

method. We define list of partial function tuples recursively as:

• [] = � is a list of partial function tuples.

• [L ◦L f] is a list of partial function tuples if L is a list of partial function tuples and

f is a partial function tuple.

We also define a replacement L[x 7→ y]i and an update L[x 7→ y]+,i of outermost x in an

i-th partial function of a list of partial function tuples L as:

[L ◦L (f0, . . . , fn)][x 7→ y]i
def
=

[L ◦L (f0, . . . , fi[x 7→ y], . . . , fn)] if fi(x) is defined

[L[x 7→ y]i ◦L (f0, . . . , fn)] otherwise

�[x 7→ y]i
def
= �

[L ◦L (f0, . . . , fn)][x 7→ y]+,i
def
= [L ◦L (f0, . . . , fi[x 7→ y]+, . . . , fn)]

�[x 7→ y]+,i
def
= �

To capture variable scope between method calls we define a list of lists of partial func-

tion tuples recursively as:

12

• [] = � is a list of lists of partial function tuples.

• [L1 ◦G L2] is a list of lists of partial function tuples if L1 is a list of lists of partial

function tuples and L2 is a list of partial function tuples.

In the case of lists of lists of partial function tuples, a replacement L[x 7→ y]i and an

update L[x 7→ y]+,i of mapping of x in the outermost list of partial function tuples is

defined as:

[L1 ◦G L2][x 7→ y]i
def
= [L1 ◦G L2[x 7→ y]i]

�[x 7→ y]i
def
= �

[L1 ◦G L2][x 7→ y]+,i
def
= [L1 ◦G L2[x 7→ y]+,i]

�[x 7→ y]+,i
def
= �

The list of partial function tuples represents variable stack of a method run. The list

of lists of partial function tuples represents variable stack of the whole program run.

Next, we define a function varRef which returns a reference to value of given vari-

able, a function chanEndswhich returns variable names that represent ends of a given

channel and a function aliasSubsyst which returns names of variables that a com-

pound system of a given system is composed of.

A function varRef : Names× VarProp → RefL for getting references to values from

a variable name and a list of lists of partial function tuples is defined as:

varRef(x, [L1 ◦G L2])
def
= varRefL(x, L2)

varRef(x,�)
def
= none

where varRefL : Names × VarPropL → RefL is a function for getting references to

values from a variable name and a list of partial function tuples:

varRefL(x, [L ◦L (fvar, fch, fqa)])
def
=

fvar(x) if fvar(x) is defined

varRefL(x, L) otherwise

varRefL(x,�)
def
= none

13

Analogously, we define a function chanEnds : Names × VarProp → (Names ×
Names)⊥ for getting variable names that represent individual ends of a given channel

from a name of the channel and a list of lists of partial function tuples:

chanEnds(x, [L1 ◦G L2])
def
= chanEndsL(x, L2)

chanEnds(x,�)
def
= ⊥

where chanEndsL : Names × VarPropL → (Names × Names)⊥ is a function for

getting variable names that represent individual ends of a given channel from a name

of the channel and a list of partial function tuples:

chanEndsL(x, [L ◦L (fvar, fch, fqa)])
def
=

fch(x) if fch(x) is defined

chanEndsL(x, L) otherwise

chanEndsL(x,�)
def
= ⊥

Next, we define a function aliasSubsyst : Names × VarProp → (Names[])⊥ for

getting a list of variable names that represent individual parts of a compound system

from a name of the compound system and a list of lists of partial function tuples:

aliasSubsyst(x, [L1 ◦G L2])
def
= aliasSubsystL(x, L2)

aliasSubsyst(x,�)
def
= ⊥

where aliasSubsystL : Names × VarPropL → (Names[])⊥ is a function for getting

a list of variable names that represent individual parts of a compound system from a

name of the compound system and a list of partial function tuples:

aliasSubsystL(x, [L ◦L (fvar, fch, fqa)])
def
=

fqa(x) if fqa(x) is defined

aliasSubsystL(x, L) otherwise

aliasSubsystL(x,�)
def
= ⊥

We define a function localAliasedVars : VarProp → Names[] for getting the list of

all names of variables representing compound systems in the local variable list from a

14

list of lists of partial function tuples:

localAliasedVars([L1 ◦G L2])
def
= localAliasedVarsL(L2)

localAliasedVars(�)
def
= []

where localAliasedVarsL : Names → Names[] is a function for getting the list of

all names of variables representing compound systems in the local variable list from a

list of partial function tuples:

localAliasedVarsL([L ◦L (fvar, fch, fqa)])
def
= [qa1, . . . , qan] · localAliasedVarsL(L)

where {qa1, . . . , qan} = dom(fqa)

localAliasedVarsL(�)
def
= []

We define a function unmapnd : RefL × LMS → LMS for unmapping a reference to

a non-duplicable value from local memory:

unmapnd((refType, n), lms)
def
=



unmapQ(n, lms) if refType = Quantum

unmapCh(n, lms) if refType = Channel

unmapChE((i, n), lms) if refType = ChannelEndi

lms otherwise

where

• Function unmapQ : N[�] × LMS → LMS is defined as:

unmapQ(n, (lmsCl, lmsQ, lmsCh, lmsChE)) = (lmsCl, lms
′
Q, lmsCh, lmsChE).

where lms ′Q is defined as:

lms ′Q((Quantum, l))
def
=

lmsQ((Quantum, l)) if set[�](n) ∩ set[�](l) = ∅

⊥ otherwise

• Function unmapCh : N× LMS → LMS is defined as:

unmapCh(n, (lmsCl, lmsQ, lmsCh, lmsChE)) = (lmsCl, lmsQ, lms
′
Ch, lms

′
ChE).

where lms ′Ch
def
= lmsCh[(Channel, n) 7→ ⊥]

lms ′ChE
def
= lmsChE[(ChannelEnd0, n) 7→ ⊥, (ChannelEnd1, n) 7→ ⊥]

15

• Function unmapChE : N× N× LMS → LMS is defined as:

unmapChE(i, n, (lmsCl, lmsQ, lmsCh, lmsChE)) = (lmsCl, lmsQ, lms
′
Ch, lms

′
ChE).

where lms ′Ch
def
= lmsCh[(Channel, n) 7→ ⊥]

lms ′ChE
def
= lmsChE[(ChannelEndi, n) 7→ ⊥]

We extend the function unmapnd so that we can also use any set of references as the

first argument, ie. for any R = {r1, . . . , rk} ⊆ Refwe define:

unmapnd(R, lms)
def
= unmapnd(r1, unmapnd(r2, . . . unmapnd(rk, lms) . . .)).

4.5 Functions for handling aliasfor constructs

Handling the aliasfor construction is a little complicated. Two cases must be handled:

• A quantum variable p, which is possibly used in several aliasfor constructs as a

subsystem, is assigned a value. Then this variable and all the compound systems

using this variable are to be updated.

• A variable q, which is an alias for a compound quantum system, is associated

a value. Then all its subsystems must be appropriately modified. However, the

subsystems can be also used in several other aliasfor constructs as subsystems and

all these compound quantum systems are to be updated.

To handle the cases we define four functions (we assume that the assigned variable

is q):

• Function fassignQSystem that updates variable references and local memory state of

all variables where q is used as a subsystem including q itself.

• Function fassignQSystemDirect that updates variable references and local memory

state of q itself.

• Function fassignQSystemInAlias that updates variable references and local memory

state of all systems where q is used as a subsystem.

• Function fassignQAlias that updates variable references and local memory state of

all variables that are subsystems of q.

16

Function fassignQSystem : LMSQ × VarProp×Names× RefQ → LMSQ × VarProp is

defined as:

fassignQSystem(lmsQ, vp, name, value)
def
= (lmsQ,ret, vpret)

where (lmsQ,0, vp0) = fassignQSystemDirect(lmsQ, vp, name, value),

(lmsQ,i, vpi) = fassignQSystemInAlias(lmsQ,i−1, vpi−1, qcsi, value, li) for all 1 ≤ i ≤ k
lmsQ,ret = lmsQ,k, vpret = vpk

given that QCS = {qcs ∈ set(localAliasedVars(vp))| name ∈ set(aliasSubsyst(qcs, vp)}

QCS is indexed by numbers i ∈ N : 1 ≤ i ≤ k
qcsi ∈ QCS
aliasSubsyst(qcsi, vp) = [qcsi,1, . . . , qcsi,mi

]

qcsi,li = name

Function fassignQSystemDirect : LMSQ×VarProp×Names×RefQ → LMSQ×VarProp
is defined as:

fassignQSystemDirect(lmsQ, vp, name, value)
def
= (lmsQ,ret, vpret)

where lmsQ,ret = lmsQ[(Quantum,q) 7→ gq]vpret = vp[name 7→ value]var

given that value = (Quantum,q)

gq =

⊥ if linearize⊥(q) = ⊥

(GQuantum, linearize⊥(q)) otherwise

Function fassignQSystemInAlias : LMSQ × VarProp ×Names × RefQ × N → LMSQ ×
VarProp is defined as:

fassignQSystemInAlias(lmsQ, vp, name, value, index)
def
= (lmsQ,ret, vpret)

where (lmsQ,0, vp0) = fassignQSystemDirect(lmsQ, vp, name, value),

(lmsQ,i, vpi) = fassignQSystemInAlias(lmsQ,i−1, vpi−1, qcsi, value, li) for all 1 ≤ i ≤ k

vpret = vp[name 7→ (Quantum, [v ′1, . . . , v
′
k])v

′
j =

value if j = index

vj otherwise

lmsQ,ret = lmsQ[(Quantum, [v ′1, . . . , v
′
k]) 7→ gq]

given that value = (Quantum, [v1, . . . , vk])

gq =

⊥ if linearize⊥(q) = ⊥

(GQuantum, linearize⊥(q)) otherwise

17

Function fassignQAlias : LMSQ × VarProp × Names × RefQ → LMSQ × VarProp is

defined as:

fassignQAlias(lmsQ, vp, name, value)
def
= (lmsQ,ret, vpret)

where lmsQ,0 = lmsQ, vp0 = vp

(lmsQ,i, vpi) = fassignQAlias(lmsQ,i−1, vpi−1, qi, (Quantum, vi)) for all 1 ≤ i ≤ k
lmsQ,ret = lmsQ,k, vpret = vpk

given that aliasSubsyst(name, vp) = [q1, . . . , qk]

value = (Quantum, [v1, . . . , vk])

4.6 Methods

Methods are reusable parts of the code. One can pass zero or many parameters to the

methods and a method can return zero or one return value as its result. A method must

be declared before it can be used. A method declaration consists of two parts, a method

header and a method body. Method header specifies a name and a type of the method.

A sequence of computational steps that describe method computation is specified in the

method body. We define a partial function methodBody which given a method name,

returns this method’s body transformed into internal syntax representation.

In the following example, a method named mBody of type T1, . . . ,Tn → T is de-

clared. The parts of the method declaration are annotated on the right side.

TmName(T1 a1, . . . ,Tn an) } method header

{

... statements ...

}

 method body written using concrete syntax

4.7 Internal values

Expressions evaluate to values and possibly to references. Operational semantics uses

both values and references so we define internal value to be a pair < ref, val >∈ RefL ×
Values.

4.8 Transitions

We define operational semantics in terms of the following relations:

18

• −→v – This defines transitions of expressions to values

• −→e – This defines transitions of expressions to expressions – the order of evalua-

tion is encoded here.

• −→s – This defines transitions of statements to statements, used for execution of a

statement.

• −→r – This defines transitions of statements to statements, used for rewriting of

abbreviation statement to corresponding statements.

• −→p – This defines transitions of processes.

• p
−→ – This defines probabilistic transitions of processes, p is the probability of the

transition.

The relations −→v,−→e,−→s, −→r and p
−→ define deterministic and probabilistic

single process evolution. Nondeterminism is introduced by parallel evolution of pro-

cesses but there is no nondeterminism in the evolution of individual processes even

when run in parallel with other processes. This is an improvement over existing quan-

tum process algebras where it is possible for three or more processes to share one chan-

nel. In these algebras, when these processes use the channel simultaneously, the result-

ing behaviour is nondeterministic. This type of nondeterminism is avoided by using

channel ends for communication instead of channels and imposing a constraint that

one channel end is owned by exactly one process at one time. This approach was also

studied in the context of π-calculus in [KPT96, GH05].

When probabilistic and nondeterministic choice are to be evaluated simultaneously,

we must decide which choice is resolved first. We have taken the same approach as

many other authors (eg. [LJ04, GN04]): the nondeterministic choice must be resoved

first.

When we get to the situation when no rule is applicable to the configuration, the con-

figuration becomes stuck. Because LanQ is a typed language, many of such situations

can be avoided by proving series of standard lemmas in style of Wright and Felleisen

([WF94]). However, there exist some unavoidable cases caused by by-reference han-

dling of variables. For example, a process P can send a qubit referred by variable ψ

to other process and then try to measure qubit referred by ψ, but there is none. This

way the process configuration becomes stuck. In future, such cases will be handled by

runtime errors.

19

4.9 Processes

Let gs be a global configuration state, lms, lmsi be local memory states and vp, vpi be

variable properties.

We define special processes start, 0 and a set of local process configurations 0c as:

start def
= [(((1), []), []) | (([], [], [], []),�,main())]

0 def
= ((((1), []), []) | (([], [], [], []),�, ε)

0c
def
= {(lms, vp, ε) | lms ∈ LMS, vp ∈ VarProp}

The terminal process configuration is defined as

[gs | (lms1, vp1, v1) ‖ · · · ‖ (lmsn, vpn, vn)] where vi is either ε or a value.

4.9.1 Structural congruence

SC-NIL [gs |P ‖ 0] ≡ [gs |P] for any 0 ∈ 0c

SC-COMM [gs |P ‖ Q] ≡ [gs |Q ‖ P]

SC-ASSOC [gs | (P ‖ Q) ‖ R] ≡ [gs |P ‖ (Q ‖ R)]

4.9.2 Nondeterminism and parallelism

NP-PROPAGPROB
[gs |P] −→p �i pi • [gsi |Pi]

[gs |P ‖ Q] −→p �i pi • [gsi |Pi ‖ Q]

NP-CONG
[gs |P] −→p �i pi • [gsi |Pi] P ≡ P ′ Pi ≡ P ′

i for all i
[gs |P ′] −→p �i pi • [gsi |P

′
i]

NP-PROBEVOL �i pi • [gsi |Pi]
pi

−→ [gsi |Pi]

20

4.10 Evaluation

4.10.1 Basic rules

The first four rules define configuration change on a skip statement (rule OP-SKIP), con-

stant (OP-CONST), variable (OP-VAR) and bracketed expression (OP-BRACKET). Next

rule (OP-BLOCKHEAD) is used to evaluate sequence of statements from first to last. Last

two rules (OP-SUBSTE and OP-SUBSTS) defines substitution of evaluated expressions.

OP-SKIP [gs | (lms, vp, ; ts)] −→s [gs | (lms, vp, ts)]

OP-CONST [gs | (lms, vp, c ts)] −→v [gs | (lms, vp,< none, c > ts)]

if c is a constant

OP-VAR [gs | (lms, vp, x ts)] −→v [gs | (lms, vp,< ref, lms(ref) > ts)]

where ref = varRef(x, vp)

OP-BRACKET [gs | (lms, vp, (E) ts)] −→e [gs | (lms, vp, E ts)]

OP-BLOCKHEAD [gs | (lms, vp, B̃ ts)] −→r [gs | (lms, vp, head(B̃) tail(B̃) ts)]

OP-SUBSTE [gs | (lms, vp,v Ec ts)] −→e [gs | (lms, vp, Ec[v] ts)]

OP-SUBSTS [gs | (lms, vp,v Sc ts)] −→e [gs | (lms, vp, Sc[v] ts)]

4.10.2 Promotable expressions

Promotable expressions are expressions that can be turned into statements by append-

ing a semicolon. The expression is evaluated (rule OP-PROMOEXPR) but the resulting

value is then forgotten (rule OP-PROMOFORGET).

21

OP-PROMOEXPR [gs | (lms, vp, PE; ts)] −→e [gs | (lms, vp, PE •; ts)]

OP-PROMOFORGET [gs | (lms, vp,v; ts)] −→s [gs | (lms, vp, ts)]

4.10.3 Allocation

Allocating a resource is performed by an evaluation of expression “new T()” where T is

a type of the resource, ie. a type of a channel or a quantum system. Type of quantum

systems of dimension d are denoted by Qd, eg. qbit = Q2.

Allocation of a channel resource is handled by rule OP-ALLOCC, quantum resource

allocation is handled by rule OP-ALLOCQ.

OP-ALLOCQ [gs | (lms, vp,new Qd() ts)] −→v

[gs ′ | (lms ′, vp,< (Quantum, [l]), (GQuantum, [l]) > ts)]

where l = |L|

gs ′ = ((ρ⊗ (1
d
Id), L · [d]), C)

lms ′ = (lmsCl, lms
′
Q, lmsCh, lmsChE)

lms ′Q = lmsQ[(Quantum, [l]) 7→ (GQuantum, [l])]

given that gs = ((ρ, L), C)

lms = (lmsCl, lmsQ, lmsCh, lmsChE)

OP-ALLOCC [gs | (lms, vp,new channel[T]() ts)] −→v

[gs ′ | (lms ′, vp,< (Channel, l), (GChannel, l) > ts)]

where l = |C|

gs ′ = (Q,C · [c0|==

|=

c1])

lms ′ = (lmsCl, lmsQ, lms
′
Ch, lms

′
ChE)

lms ′Ch = lmsCh[(Channel, l) 7→ (GChannel, l)]

lms ′ChE = lmsChE[(ChannelEnd0, l) 7→ (GChannel, l),

(ChannelEnd1, l) 7→ (GChannel, l)]

given that gs = (Q,C)

lms = (lmsCl, lmsQ, lmsCh, lmsChE)

22

4.10.4 Variable declaration

Variable declaration is an addition of a variable to the innermost list of mappings of

variable names to references. We consider any variable declaration of multiple variables

of the same type: T a, b, c; to be an abbreviation of T a; T b; T c;.

For declaration of a quantum compound system a construction q aliasfor [q0, . . . , qn]

is used where q0, . . . , qn are names of quantum variables. Some of them can again be

compound systems. To deal with this feature, all variables from {q0, . . . , qn} that repre-

sent compound systems are expanded. This can be seen from the following example –

we require the declarations on the left and right side to be equivalent:

qbit q0, q1, p;

q aliasfor [q0, q1];

r aliasfor [p, q];

qbit q0, q1, p;

q aliasfor [q0, q1];

r aliasfor [p, q0, q1];

23

OP-VARDECLMULTI [gs | (lms, vp, T x, Ĩ; ts)] −→r

[gs | (lms, vp,T x; T Ĩ; ts)]

OP-VARDECL [gs | (lms, [L ◦G [S1 ◦L S2]], T x; ts)] −→s

[gs | (lms, [L ◦G [S1 ◦L S
′
2]], ts)]

where S ′2 = S2[x 7→ none]+,var

OP-VARDECLCHE [gs | (lms, [L ◦G [S1 ◦L S2]], channel[T] c withends[c0, c1]; ts)] −→s

[gs | (lms, [L ◦G [S1 ◦L S
′
2]], ts)]

where S ′2 = S2[c 7→ none]+,var[c0 7→ none]+,var[c1 7→ none]+,var[c 7→ (c0, c1)]+,ch

OP-VARDECLALF [gs | (lms, [L ◦G [S1 ◦L S2]], q aliasfor [q0, . . . , qn]; ts)] −→s

[gs | (lms, [L ◦G [S1 ◦L S
′
2]], ts)]

where S ′2 = S2[q 7→ (Quantum, [l0, . . . , ln])]+,var[q 7→ [q ′
0, . . . , q

′
n]]+,qa

given that li =

l if varRefL(qi, [S1 ◦L S2]) = (Quantum, l)

⊥ otherwise

q ′
i =

p0, . . . , pk if aliasSubsystL(qi, [S1 ◦L S
′
2]) = [p0, . . . , pk]

qi otherwise

varRefL(qi, [S1 ◦L S
′
2]) is defined for 0 ≤ i ≤ n

4.10.5 Assignment

Assignment command x = e has to be divided into two rules: one where expression

e is evaluated (OP-ASSIGNEXPR) and the other where the result of evaluation of e is

bound to variable x and possibly stored into memory (rules OP-ASSIGNNEWVALUE

and OP-ASSIGNVALUE). The value is stored into memory if it was not there yet what is

indicated by reference part of the internal value equal to none.

Assigning a quantum system to a variable can be complicated when the variable

was declared using the aliasfor construct. For example, let ψ be a variable that

represents a quantum system composed of systems ψA and ψB (it was declared as:

ψ aliasfor [ψA, ψB]). Assigning a value toψmust appropriately modify bothψA andψB

24

and can be only performed if the assigned value represents a compound system made of

two subsystems (rule OP-ASSIGNQAVALUE). Similarly, assigning a value to ψA must

also modify ψ (rule OP-ASSIGNQVALUE).

OP-ASSIGNEXPR [gs | (lms, vp, x = e ts)] −→e [gs | (lms, vp, e x = • ts)]

OP-ASSIGNNEWVALUE [gs | (lms, vp, x = v ts)] −→v [gs | (lms ′, vp ′, < lr ′, lv > ts)]

where lr ′ = (Classical, nc)

lms ′Cl = lmsCl[lr
′ 7→ lv]+

vp ′ = vp[x 7→ lr ′]var

given that v =< lr, lv >

nc is some natural number such that lmsCl((Classical, nc)) is not defined
lms = (lmsCl, lmsQ, lmsCh, lmsChE)

lms ′ = (lms ′Cl, lmsQ, lmsCh, lmsChE)

lr = none ∧ lv 6= ⊥

OP-ASSIGNQVALUE [gs | (lms, vp, x = v ts)] −→v [gs | (lms ′, vp ′,v ts)]

where (lms ′Q, vp
′) = fassignQSystem(lmsQ, vp, x, lr)

given that v =< lr, lv >

lr = (Quantum,q) and aliasSubsyst(x, vp) is not defined

lms = (lmsCl, lmsQ, lmsCh, lmsChE)

lms ′ = (lmsCl, lms
′
Q, lmsCh, lmsChE)

OP-ASSIGNQAVALUE [gs | (lms, vp, x = v ts)] −→v [gs | (lms ′, vp ′,v ts)]

where (lms ′Q, vp
′) = fassignQAlias(lmsQ, vp, x, lr)

given that v =< lr, lv >

lr = (Quantum,q) and aliasSubsyst(x, vp) is defined

lms = (lmsCl, lmsQ, lmsCh, lmsChE)

lms ′ = (lmsCl, lms
′
Q, lmsCh, lmsChE)

25

OP-ASSIGNVALUE [gs | (lms, vp, x = v ts)] −→v [gs | (lms, vp ′,v ts)]

where vp ′ =


vp[x 7→ lr]var[x0 7→ lr]var[x1 7→ lr]var if lr = (Channel, x)

and chanEnds(x, vp) = (x0, x1)

vp[x 7→ lr]var otherwise

given that v =< lr, lv >

(lr = none ∧ lv = ⊥) ∨ (lr 6= (Quantum,q))

4.10.6 Block

Block command is used to limit scope of variables and to execute multiple statements:

OP-BLOCK [gs | (lms, [vpG ◦G vp], {B̄} ts)] −→s

[gs|(lms, [vpG ◦G [vp ◦L �]], B̄ ◦L ts)]

OP-BLOCKEND [gs | (lms, [vpG ◦G [vp ◦L vpL]], ◦L ts)] −→s

[gs|(lms, [vpG ◦G vp], ts)]

4.10.7 Conditional statement – if

Conditional expression if (E) S1 else S2 has to be split into three rules: one where the

condition is evaluated (OP-IFEXPR) and rules for reduction when the condition evalu-

ates to true (OP-IFTRUE) and false (OP-IFFALSE).

26

OP-IFEXPR [gs | (lms, vp, if (E) S1 else S2 ts)] −→e (lms, vp, E if (•) S1 else S2 ts)]

OP-IFTRUE [gs | (lms, vp, if (v) S1 else S2 ts)] −→s [gs | (lms, vp, S1 ts)]

if isTrue(v)

OP-IFFALSE [gs | (lms, vp, if (v) S1 else S2 ts)] −→s [gs | (lms, vp, S2 ts)]

if isFalse(v)

4.10.8 Conditional cycle – while

While is syntactically converted to a corresponding if statement.

OP-WHILE [gs | (lms, vp,while (E) S ts)] −→r

[gs | (lms, vp, if (E) {S while (E) S} else ; ts)]

4.10.9 Method call

Call of a method m whose parameters are expressions is rewritten to a call of method

m whose parameters are values. Parameters passed to the method are evaluated in the

original variable context vp (rule OP-METHODCALLEXPR).

The call of the method m with value parameters is evaluated in two different ways

depending on whetherm represents a classical method or a quantum operator.

In the case whenm represents a classical method, the call of a methodm is rewritten

to the unwound body of method m (rule OP-DOMETHODCALLCL) translated to the

internal syntax by functionmethodBody.

If m represents a quantum operator Em, the operator Em is applied to a quan-

tum subsystem specified by the parameters v1 =< r1, v1 >, . . . ,@vn =< rn, vn >.

Values v1, . . . , vn are either global references to quantum storage (GQuantum, lr1
),

. . . , (GQuantum, lrn) or ⊥. In the case when ⊥ is referred, a configuration becomes

stuck (a run-time error occurs in a real implementation).

27

The condition that all manipulated quantum system are physically different can be

reformulated as: all the indices in lists lr1
, . . . , lrn are mutually different, ie. set[�](lrj

) ∩
set[�](lrk

) = ∅ and |lrj
|[�] = | set[�](lrj

)| for all 1 ≤ j, k ≤ n, j 6= k.

The list qsi of indices of quantum systems to be measured is given by a concate-

nation of individual linearized lists: qsi = lr1
· . . . ·lrn , which determines quantum sys-

tem qqsi. Dimension dqqsi
of the quantum system ql is calculated from the global part

((ρ, L), C) of the configuration as

dqqsi
=

|qsi|∑
i=1

Lqsii.

We denote d the order of matrix ρ and d̄ the dimension of untouched part of the system,

d̄ = d/dqqsi
(rule OP-DOMETHODCALLQ).

OP-METHODCALLEXPR [gs | (lms, vp,m(ṽ, E, Ẽ) ts)) −→e

[gs | (lms, vp, E m(ṽ, •, Ẽ) ts)]

OP-DOMETHODCALLCL [gs | (lms, vp,m(v1, . . . ,vn) ts)) −→e

[gs | (lms, [vp ◦G [� ◦L vp
′
M]],methodBody(m) ◦M ts)]

where vp ′
M = ([a1 7→ r1, . . . , an 7→ rn], [], [])

given that v1 =< r1, v1 >, . . . ,vn =< rn, vn >

m represents a classical method and

Tm(T1 a1, . . .Tn an) is a header of methodm

28

OP-DOMETHODCALLQ [gs | (lms, vp,m(v1, . . . ,vn) ts)) −→v

[gs ′ | (lms, vp,< none,⊥ > ts)]
where gs ′ = ((ρ ′, L), C)

ρ ′ = ΠT (Em ⊗ Id̄(ΠρΠT))Π

given that v1 =< r1, v1 >, . . . ,vn =< rn, vn >

gs = ((ρ, L), C)

v1 = (GQuantum, lr1
), . . . , vn = (GQuantum, lrn)

set[�](lrj
) ∩ set[�](lrk

) = ∅ for all 1 ≤ j, k ≤ n, j 6= k

|lrj
|[�] = | set[�](lrj

)| for all 1 ≤ j ≤ n
Π is a permutation matrix which places affected quantum

systems to the head of ρ in the order given by v1, . . . ,vn

m represents a quantum operator Em

4.10.10 Returning from a method

When a method is ended, the control is passed back to its caller. The place where the

called method was invoked by the caller is marked by the ◦M symbol. If a method

returns no value, it can either end without return statement just by evaluating the last

statement in the method (handled by OP-RETURNVOIDIMPL) or by explicit return state-

ment. In that case the return statement pops everything from the term stack until it finds

the symbol ◦M (OP-RETURNVOIDIMPL). When the method returns a value, the return

value is evaluated first (OP-RETURNEXPR) and the return value is then left on top of

the stack (OP-RETURNVALUE).

29

OP-RETURNVOID [gs | (lms, [vp ◦G vpM], return; tsM ◦M ts)] −→v

[gs | (lms, vp,< none,⊥ > ts)]

OP-RETURNVOIDIMPL [gs | (lms, [vp ◦G vpM], ◦M ts)] −→v

[gs | (lms, vp,< none,⊥ > ts)]

OP-RETURNEXPR [gs | (lms, [vp ◦G vpM], return E; tsM ◦M ts)] −→e

[gs | (lms, vp, E return •; tsM ◦M ts)

OP-RETURNVALUE [gs | (lms, [vp ◦G vpM], return v; tsM ◦M ts)] −→v

[gs | (lms, vp,v ts)]

4.10.11 Forking

Forking is similar to method call, therefore the rule OP-FORKEXPR is similar to the

rule OP-METHODCALLEXPR. In the rule OP-DOFORK, a new process is started, values

passed as parameters to the forked method are copied to the new process memory and

non-duplicable values passed as parameters to the forked method are unmapped from

the parent process memory.

OP-FORKEXPR [gs | (lms, vp, forkm(ṽ, E, Ẽ); ts)] −→e

[gs | (lms, vp, E forkm(ṽ, •, Ẽ); ts)]

OP-DOFORK [gs | (lms, vp, forkm(v1, . . . ,vn); ts)] −→p

[gs | (lms ′1, vp, ts) ‖ (lms ′2, [� ◦G [� ◦L vp
′
M]],methodBody(m) ◦M)]

where vp ′
M = ([a1 7→ v1, . . . , an 7→ vn], [], [])

lms ′1 = unmapnd({r1, . . . , rn}, lms1)

lms ′2 = lms1 restricted to domain {r1, . . . , rn}

given that v1 =< r1, v1 >, . . . ,vn =< rn, vn >

Tm(T1 a1, . . .Tn an) is a header of methodm

30

4.10.12 Measurement

Measurement is performed when measure(b, e1, . . . , en) primitive method is invoked.

Its first argument b determines measurement basis, the other arguments determine

quantum systems that are to be simultaneously measured. Arguments e1, . . . , en eval-

uate to internal values v1 =< r1, v1 >, . . . ,vn =< rn, vn >. Values v1, . . . , vn are either

global references to quantum storage (GQuantum, lr1
), . . . , (GQuantum, lrn) or ⊥. In

the case when ⊥ is referred, a run-time error must occur, therefore we do not provide

any rule for this case.

The condition that all the measured system are physically different can be refor-

mulated as: all the indices in lists lr1
, . . . , lrn are mutually different, ie. set[�](lrj

) ∩
set[�](lrk

) = ∅ and |lrj
|[�] = | set[�](lrj

)| for all 1 ≤ j, k ≤ n, j 6= k.

The list qsi of indices of quantum systems to be measured is given by a concate-

nation of individual linearized lists: qsi = lr1
· . . . ·lrn , which determines quantum sys-

tem qqsi. Dimension dqqsi
of the quantum system ql is calculated from the global part

((ρ, L), C) of the configuration as

dqqsi
=

|qsi|∑
i=1

Lqsii.

We denote d the order of matrix ρ and d̄ the dimension of unmeasured part of the

system, d̄ = d/dqqsi
. Now we can formulate rules for measurement:

31

OP-MEASUREEXPR [gs | (lms, vp,measure(ṽ, E, Ẽ) ts] −→e

[gs | (lms, vp, Emeasure(ṽ, •, Ẽ) ts)]

OP-DOMEASURE [gs | (lms, vp,measure(vb,v1, . . . ,vn) ts)] −→v

�i pi • [gsi | (lms, vp,< none, λi > ts)]

where gsi = ((ρi, L), C)

pi = Tr [ΠT (Pi ⊗ Id̄)ΠρΠT (Pi ⊗ Id̄)†Π]

ρi =
ΠT (Pi ⊗ Id̄)ΠρΠT (Pi ⊗ Id̄)†Π

pi

given that v1 =< r1, v1 >, . . . ,vn =< rn, vn >

v1 = (GQuantum, lr1
), . . . , vn = (GQuantum, lrn)

gs = ((ρ, L), C)

set[�](lrj
) ∩ set[�](lrk

) = ∅ for all 1 ≤ j, k ≤ n, j 6= k

|lrj
|[�] = | set[�](lrj

)| for all 1 ≤ j ≤ n∑
i λiPi is a spectral decomposition of a measurement in

the basis given by vb

Π is a permutation matrix which places measured quantum systems

to the head of ρ in the order given by v1, . . . ,vn

4.10.13 Communication

Communication is performed when there is one process sending a value over a chan-

nel end and another process waiting to receive a value over a channel end provided that

both channel ends belong to the same channel. This condition is equivalent to the condi-

tion that both channel ends refer to the same channel. First three rules (OP-SENDEXPR1,

OP-SENDEXPR2 and OP-RECVEXPR) are to evaluate statement arguments and the rule

OP-SENDRECV performs the communication.

Unique ownership of resources (both quantum and channel) is ensured by unmap-

ping them from the local memory of the sender process using the function unmapnd.

32

OP-SENDEXPR1 [gs | (lms, vp, send(E1, E2); ts)] −→e [gs | (lms, vp, E1 send(•, E2); ts]

OP-SENDEXPR2 [gs | (lms, vp, send(vc, E); ts)] −→e [gs | (lms, vp, E send(vc, •); ts]

OP-RECVEXPR [gs | (lms, vp, recv(E) ts)] −→e [gs | (lms, vp, E recv(•) ts]

OP-SENDRECV [gs | (lms1, vp1, send(vc1
,ve); ts1) ‖ (lms2, vp2, recv(vc2

) ts2)] −→p

[gs | (lms ′1, vp1, ts1) ‖ (lms ′2, vp2, < lr
′
2, lv

′
2 > ts2)]

where lms ′1 = unmapnd(sentRef, lms1)

lr ′2 =

lr1 if sentRef ∈ Refnd

none otherwise

lv ′2 = sentVal

lms ′2 =

lms2[sentRef 7→ sentVal] if sentRef ∈ Refnd

lms2 otherwise

given that ve =< sentRef, sentVal >

vc1
=< c1Ref, c1Val >

vc2
=< c2Ref, c2Val >

c1Ref 6= none and c2Ref 6= none

c1Val = c2Val (both ends refer to the same channel)

5 Conclusion and future work

We have described internal syntax and operational semantics of LanQ programming

language. This language can be used for implementation of both quantum algorithms

and quantum protocols. An example of a program run can be found in Appendix A.

After proving series of standard lemmas in style of Wright and Felleisen [WF94],

it will be possible to use the language to prove correctness of quantum protocols and

algorithms. Proving these lemmas is planned for the nearest future.

By-reference usage of variables causes sometimes unwanted behaviour: now it is

possible to declare a program where a process sends a qubit and then it attempts to

measure it. This is impossible as the qubit is then not owned by the process. Currently,

33

this leads to a stuck configuration. In future, this situation will be handled by runtime

errors what will also help in debugging programs and protocols written using LanQ.

The simulator of LanQ is also being developed and will be publicly available.

Acknowledgements

I would like to express my thanks to Simon Gay, Philippe Jorrand, Rajagopal Nagarajan

and Nick Papanikolaou for their invaluable comments on LanQ and related discussions.

I wish also thank my supervisor, prof. Jozef Gruska, for his guidance.

References

[AG04] Thorsten Altenkirch and Jonathan Grattage. A functional quantum program-

ming language. quant-ph/0409065, 2004.

[BB84] C.H. Bennett and G. Brassard. Quantum Cryptography: Public Key Distribu-

tion and Coin Tossing. In Proceedings of IEEE International Conference on Com-

puters Systems and Signal Processing, pages 175–179, India, December 1984.

Bangalore.

[BBC+93] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Woot-

ers. Teleporting an unknown quantum state via dual classical and Einstein-

Podolsky-Rosen channels. Physical Review Letters, (70):1895–1899, 1993.

[BCS01] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum

programming, 2001.

[Ben92] C. H. Bennett. Quantum cryptography using any two nonorthogonal states.

Phys. Rev. Lett., 68(21):3121–3124, 1992.

[Eke91] Artur K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev.

Lett., 67(6):661–663, 1991.

[GH05] Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus.

Acta Informatica, 42(2):191–225, 2005.

[GN04] Simon J. Gay and Rajagopal Nagarajan. Communicating Quantum Processes.

quant-ph/0409052, 2004.

34

[GN05] Simon J. Gay and Rajagopal Nagarajan. Communicating quantum processes.

In POPL ’05: Proceedings of the 32nd ACM Symposium on Principles of Program-

ming Languages, pages 145–157, 2005.

[GN06] Simon J. Gay and Rajagopal Nagarajan. Types and typechecking for Commu-

nicating Quantum Processes. Mathematical. Structures in Comp. Sci., 16:375–

406, 2006.

[JL04] Philippe Jorrand and Marie Lalire. Toward a quantum process algebra. In

CF ’04: Proceedings of the 1st conference on Computing frontiers, pages 111–119,

New York, NY, USA, 2004. ACM Press.

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and

the pi-calculus. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 358–371, New York,

NY, USA, 1996. ACM Press.

[Lal05] Marie Lalire. A Probabilistic Branching Bisimulation for Quantum Processes.

quant-ph/0508116, 2005.

[Lal06] Marie Lalire. Développement d’une notation alorithmique pour le calcul quantique.

PhD thesis, 2006.

[LGP06] M. Lampis, K. G. Ginis, and N. S. Papaspyrou. Quantum data and control

made easier. In Peter Selinger, editor, Preliminary Proceedings of the 4th Inter-

national Workshop on Quantum Programming Languages, pages 73–86, 2006. The

final version will be published in Electronic Notes in Theoretical Computer

Science.

[LJ04] Marie Lalire and Philipe Jorrand. A process-algebraic approach to concur-

rent and distributed quantum computation: operational semantics. quant-

ph/0407005, 2004.

[Öme00] B. Ömer. Quantum programming in QCL. Master’s thesis, TU Vienna, 2000.

[Sel04] Peter Selinger. Towards a quantum programming language. Mathematical.

Structures in Comp. Sci., 14(4):527–586, 2004.

35

[Sho94] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and

factoring. In Proceedings of the 35th Annual Symposium on Foundations of Com-

puter Science. IEEE Computer Society Press, 1994.

[SV05] Peter Selinger and Benoît Valiron. A Lambda Calculus for Quantum Com-

putation with Classical Control. Lecture Notes in Computer Science, 3461 /

2005:354–368, 2005.

[vT03] André van Tonder. A Lambda Calculus for Quantum Computation. quant-

ph/0307150, 2003.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type

soundness. Information and Computation, 115(1):38–94, 1994.

[WZ82] W.K. Wootters and W.H. Zurek. A single quantum cannot be cloned. Nature,

299:802–803, 1982.

[Zul01] Paolo Zuliani. Quantum Programming. PhD thesis, University of Oxford, 2001.

36

A Program execution example

The probabilistic nature of measurement of quantum particles allows us to create gen-

erator of truly random numbers: Let us have a quantum particle in the state |ψ〉 =

1
2
(|0〉+ |1〉). Now we apply a measurement of this particle in the basis {|0〉, |1〉} (so called

standard basis). The result of the measurement is 0 or 1 with equal probability.

The random number generator can be implemented as shown in the Figure 4.

int main() {
qbit q;
q = new qbit();
return measure (StdBasis, q);

}

Figure 4: Program example: Random number generator

Before the execution, we must specify the methodBody function. We have a pro-

gram containing only a method main, hence the domain of methodBody function is

{main}. methodBody is then specified as:

methodBody(main) = { qbit q; q = new qbit(); return measure (StdBasis, q); }

The execution of the program is shown in Figure 5.

B Concrete syntax

Concrete syntax of LanQ language is shown in the Figure 6. The reserved words of the

language are written in bold and the identifier names are in italic. Grammar is given

in nondeterministic extended Backus-Naur form (EBNF). The root of grammar is the

nonterminal program.

37

st
ar

t=
[(

((
1)
,[

])
,[

])
|(

([
],

[]
,[

],
[]
),

�
,m
a
in

()
)]

↓ eO
P

-D
O

M
E

T
H

O
D

C
A

L
L

C
L

[(
((
1
),

[]
),

[]
)
|(

([
],

[]
,[

],
[]
),

[�
◦ G

[�
◦ L

�
]]
,{

qb
it
q

;q
=

ne
w

qb
it(

);
re

tu
rn

m
ea

su
re

(S
td
B
a
si
s,
q

);
}◦

M
)]

↓ sO
P

-B
L

O
C

K

[(
((
1
),

[]
),

[]
)
|(

([
],

[]
,[

],
[]
),

[�
◦ G

[[
�
◦ L

�
]
◦ L

�
]]
,

qb
it
q

;q
=

ne
w

qb
it(

);
re

tu
rn

m
ea

su
re

(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ rO
P

-B
L

O
C

K
H

E
A

D

[(
((
1
),

[]
),

[]
)
|(

([
],

[]
,[

],
[]
),

[�
◦ G

[[
�
◦ L

�
]
◦ L

�
]]
,

qb
it
q

;q
=

ne
w

qb
it(

);
re

tu
rn

m
ea

su
re

(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ sO
P

-V
A

R
D

E
C

L

[(
((
1
),

[]
),

[]
)
|(

([
],

[]
,[

],
[]
),

[�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→no

ne
]]
],
q

=
ne

w
qb

it(
);

re
tu

rn
m

ea
su

re
(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ rO
P

-B
L

O
C

K
H

E
A

D

[(
((
1
),

[]
),

[]
)
|(

([
],

[]
,[

],
[]
),

[�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→no

ne
]]
],
q

=
ne

w
qb

it(
);

re
tu

rn
m

ea
su

re
(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ eO
P

-P
R

O
M

O
E

X
P

R

[(
((
1
),

[]
),

[]
)
|(

([
],

[]
,[

],
[]
),

[�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→no

ne
]]
],
q

=
ne

w
qb

it(
)•

;r
et

ur
n

m
ea

su
re

(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ eO
P

-A
SS

IG
N

E
X

P
R

Fi
gu

re
5:

Pr
og

ra
m

ex
am

pl
e:

R
an

do
m

nu
m

be
r

ge
ne

ra
to

r
ex

ec
ut

io
n

(t
o

be
co

nt
in

ue
d)

38

↓ eO
P

-A
SS

IG
N

E
X

P
R

[(
((
1
),

[]
),

[]
)
|(

([
],

[]
,[

],
[]
),

[�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→no

ne
]]
],

ne
w

qb
it(

)q
=
•
•

;r
et

ur
n

m
ea

su
re

(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ vO
P

-A
L

L
O

C
Q

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→no

ne
]]
],

<
(Q
u
a
n
tu
m
,[
1
])
,(
G
Q
u
a
n
tu
m
,[
1
])
>
q

=
•
•

;r
et

ur
n

m
ea

su
re

(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ eO
P

-S
U

B
ST

E

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→no

ne
]]
],

q
=
<

(Q
u
a
n
tu
m
,[
1
])
,(
G
Q
u
a
n
tu
m
,[
1
])
>
•

;r
et

ur
n

m
ea

su
re

(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ vO
P

-A
SS

IG
N

Q
V

A
L

U
E

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

<
(Q
u
a
n
tu
m
,[
1
])
,(
G
Q
u
a
n
tu
m
,[
1
])
>
•

;r
et

ur
n

m
ea

su
re

(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ eO
P

-S
U

B
ST

S

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

<
(Q
u
a
n
tu
m
,[
1
])
,(
G
Q
u
a
n
tu
m
,[
1
])
>

; r
et

ur
n

m
ea

su
re

(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ sO
P

-P
R

O
M

O
FO

R
G

E
T

Fi
gu

re
5

(c
on

ti
nu

ed
):

Pr
og

ra
m

ex
am

pl
e:

R
an

do
m

nu
m

be
r

ge
ne

ra
to

r
ex

ec
ut

io
n

(t
o

be
co

nt
in

ue
d)

39

↓ sO
P

-P
R

O
M

O
FO

R
G

E
T

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

re
tu

rn
m

ea
su

re
(S
td
B
a
si
s,
q

);
◦ L
◦ M

)]

↓ eO
P

-R
E

T
U

R
N

E
X

P
R

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

m
ea

su
re

(S
td
B
a
si
s,
q
)

re
tu

rn
•;
◦ L
◦ M

)]

↓ eO
P

-M
E

A
SU

R
E

E
X

P
R

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

S
td
B
a
si
s

m
ea

su
re

(•
,q

)
re

tu
rn

•;
◦ L
◦ M

)]

↓ vO
P

-C
O

N
ST

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

<
no

ne
,S
td
B
a
si
s
>

m
ea

su
re

(•
,q

)
re

tu
rn

•;
◦ L
◦ M

)]

↓ eO
P

-S
U

B
ST

E

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

m
ea

su
re

(<
no

ne
,S
td
B
a
si
s
>
,q

)
re

tu
rn

•;
◦ L
◦ M

)]

↓ eO
P

-M
E

A
SU

R
E

E
X

P
R

Fi
gu

re
5

(c
on

ti
nu

ed
):

Pr
og

ra
m

ex
am

pl
e:

R
an

do
m

nu
m

be
r

ge
ne

ra
to

r
ex

ec
ut

io
n

(t
o

be
co

nt
in

ue
d)

40

↓ eO
P

-M
E

A
SU

R
E

E
X

P
R

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

q
m

ea
su

re
(<

no
ne
,S
td
B
a
si
s
>
,•

)
re

tu
rn

•;
◦ L
◦ M

)]

↓ vO
P

-V
A

R

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

<
(Q
u
a
n
tu
m
,[
1
])
,(
G
Q
u
a
n
tu
m
,[
1
])
>

m
ea

su
re

(<
no

ne
,S
td
B
a
si
s
>
,•

)
re

tu
rn

•;
◦ L
◦ M

)]

↓ eO
P

-S
U

B
ST

E

[(
(

1 2

(1
0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

m
ea

su
re

(<
no

ne
,S
td
B
a
si
s
>
,<

(Q
u
a
n
tu
m
,[
1
])
,(
G
Q
u
a
n
tu
m
,[
1
])
>

)
re

tu
rn

•;
◦ L
◦ M

)]

↓ vO
P

-D
O

M
E

A
SU

R
E

0
.5
•

[(
((1

0

0
0

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

<
no

ne
,0
>

re
tu

rn
•;
◦ L
◦ M

)]

�
0
.5
•

[(
((0

0

0
1

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

<
no

ne
,1
>

re
tu

rn
•;
◦ L
◦ M

)]

0
.5
↙

N
P

-P
R

O
B

E
V

O
L

↘0
.5

Ev
ol

ut
io

n
of

m
ea

su
re

m
en

tb
ra

nc
h

0
Ev

ol
ut

io
n

of
m

ea
su

re
m

en
tb

ra
nc

h
1

Fi
gu

re
5

(c
on

ti
nu

ed
):

Pr
og

ra
m

ex
am

pl
e:

R
an

do
m

nu
m

be
r

ge
ne

ra
to

r
ex

ec
ut

io
n

(t
o

be
co

nt
in

ue
d)

41

W
e

co
nt

in
ue

sh
ow

in
g

th
e

pr
og

ra
m

ev
ol

ut
io

n
of

th
e

br
an

ch
w

he
re

th
e

m
ea

su
re

m
en

tr
et

ur
ne

d
th

e
va

lu
e

0
on

ly
.T

he
ot

he
r

m
ea

su
re

m
en

tb
ra

nc
h

ev
ol

ve
s

ob
vi

ou
sl

y
th

e
sa

m
e

w
ay

,t
he

on
ly

di
ff

er
en

ce
is

in
th

e
m

ea
su

re
d

va
lu

e
an

d
th

e
gl

ob
al

qu
an

tu
m

st
at

e. ↓0
.5

N
P

-P
R

O
B

E
V

O
L

[(
((1

0

0
0

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

<
no

ne
,0
>

re
tu

rn
•;
◦ L
◦ M

)]
↓ eO

P
-S

U
B

ST
S

[(
((1

0

0
0

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],

re
tu

rn
<

no
ne
,0
>

;◦
L
◦ M

)]
↓ vO

P
-R

E
T

U
R

N
V

A
L

U
E

[(
((1

0

0
0

) ,[
2
])
,[

])
|(

([
],

[(
Q
u
a
n
tu
m
,[
1
])
7→(G

Q
u
a
n
tu
m
,[
1
])

],
[]
,[

])
,[

�
◦ G

[[
�
◦ L

�
]
◦ L

[q
7→(Q

u
a
n
tu
m
,[
1
])

]]
],
<

no
ne
,0
>

)]

Fi
gu

re
5

(c
on

ti
nu

ed
):

Pr
og

ra
m

ex
am

pl
e:

R
an

do
m

nu
m

be
r

ge
ne

ra
to

r
ex

ec
ut

io
n

42

Code
program ::= method+
code ::= ; | pExpr ; | fork | send | return |

block | if | while
pExpr ::= assignment | methodCall | recv | measurement |

new nonDupType ()
methodCall ::= methodName ((methodParams)?)
methodParams ::= expr (, expr)*
assignment ::= variableName = expr
measurement ::= measure (basisName (, variableName)+)
expr ::= indivExpr (op expr)?
indivExpr ::= const | variableName | (expr) | pExpr
op ::= + | – | ⊗ | etc.

Block structure
method ::= methodHeader block
block ::= { (seq)? }
seq ::= varDeclaration (seq)? | code (seq)?
methodHeader ::= type methodName (methodDeclParamList?)
methodDeclParamList ::= methodDeclParam (, methodDeclParam)*
methodDeclParam ::= nonVoidType paramName
varDeclaration ::= nonVoidType variableName (, variableName)* ; |

channelType variableName withends
[variableName , variableName] ; |

variableName aliasfor
[variableName (, variableName)*] ;

Program flow
fork ::= fork methodCall ;
return ::= return (expr)? ;

Conditionals and loops
if ::= if (expr) code (else code)?
while ::= while (expr) code

Communication
recv ::= recv (expr)
send ::= send (expr , expr) ;

Types
type ::= void | nonVoidType
nonVoidType ::= dupType | nonDupType
dupType ::= int | boolean | etc.
nonDupType ::= channelEnd [nonVoidType] | channelType | qType
channelType ::= channel [nonVoidType]
qType ::= qBasicType (⊗ qType)?
qBasicType ::= qbit | qtrit | etc.

Figure 6: Concrete syntax

43

	Introduction
	Informal introduction
	Internal syntax
	Operational semantics
	Notation
	Configuration
	Variable stack
	Variable stack and memory handling functions
	Functions for handling aliasfor constructs
	Methods
	Internal values
	Transitions
	Processes
	Structural congruence
	Nondeterminism and parallelism

	Evaluation
	Basic rules
	Promotable expressions
	Allocation
	Variable declaration
	Assignment
	Block
	Conditional statement -- if
	Conditional cycle -- while
	Method call
	Returning from a method
	Forking
	Measurement
	Communication

	Conclusion and future work
	Program execution example
	Concrete syntax

