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AbstratProbabilisti proesses are used to model onurrent programs that exhibit uner-tainty. The state explosion problem for probabilisti systems is more ritial than inthe non-probabilisti ase. In the paper we propose a luster-based algorithm forqualitative LTL model heking of �nite state Markov deision proesses. We use�This work has been partially supported by the Grant Ageny of Czeh Republi grant No.201/06/1338 and the Aademy of Sienes grant No. 1ET408050503.1



the automata approah whih redues the model heking problem to the questionof existene of an aepting end omponent. The algorithm uses repeated reahabil-ity whih systematially eliminates states that annot belong to any aepting endomponent. A distinguished feature of the distributed algorithm is that its omplex-ity meets the omplexity of the best known sequential algorithm.1 IntrodutionProbabilisti systems like Markov hains and Markov deision proesses provide a rea-sonable semantis for systems that exhibit unertainty. A number of qualitative andquantitative model heking algorithms for �nite state probabilisti systems have beenproposed [18, 29, 11, 1, 12, 20, 13℄. In a qualitative setting it is heked whether a prop-erty holds with probability 0 or 1; in a quantitative setting it is veri�ed whether theprobability for a ertain property meets a given lower or upper bound.For probabilisti systems the state explosion problem is more ritial than in thenon-probabilisti ase. Several methods that have been developed for non-probabilistisystems to avoid the state explosion were adapted to probabilisti systems. For branh-ing time logis these are the symboli approah [4℄ implemented in the model hekerPRISM [22, 19℄ and the MDP model heker RAPTURE [8℄ whih uses an iterativeabstration re�nement. For linear time logi the most prominent partial order ap-proah has been reently adapted as well [5, 3℄ and implemented in the veri�ationtool LiQuor [9℄.Over the past deade, many tehniques using distributed and/or parallel proess-ing have been proposed to ombat the omputational omplexity of non-probabilistiveri�ation, model heking in partiular. However, not muh has been done in apply-ing these tehniques to the veri�ation and analysis of probabilisti systems. A notableexeption is the work on parallelizing the symboli model heker PRISM [33, 34, 23℄.In this paper we fous on the qualitative model heking of �nite state Markov dei-sion proesses (MDPs) against LTL properties. We propose a distributed-memory algo-rithm that solves the problem and exhibits the omplexity of the sequential approah.This is a surprising result as the parallelization of LTL model heking usually ostsextra time or spae.We use the automata-theoreti approah [29, 12, 14℄. From the negation of a formulawe onstrut a deterministi automaton on in�nite words and hek the existene of an2



aepting end omponent in the produt-MDP resulting from the given MDP and theonstruted automaton (probabilisti satisfation problem).It is very important to stress that this approah requires a determinization of theBühi automaton obtained from the LTL formula. If the initial Bühi automaton is de-terministi, the probabilisti emptiness problem an be solved in polynomial time [31℄.As deterministi Bühi automata are stritly less powerful than nondeterministi, onehas to go to a more general type of !-automaton. In [29℄ deterministi Rabin automataare used, while in [12℄ the authors onsider Bühi automata deterministi in limit whihleads to a slight improvment of the omplexity of [29℄. In the sequential ase the LTLmodel heking problem for MDPs is hard for doubly exponential time, and an besolved in time doubly exponential in the spei�ation and quadrati in the size of theprogram.The sequential algorithms hek the probabilisti satisfation problem by repeateddeomposition of the produt graph into strongly onneted omponents and subse-quent removing of states that violate the �ergodi� ondition. Distributed deomposi-tion of a graph into SCCs is dif�ult to parallelize. Therefore, our new algorithm relieson a radially different approah for heking the probabilisti satisfation problem.The basi idea omes from the distributed SCC-based algorithm for LTL model hek-ing of non-probabilisti systems. To hek the probabilisti satisfation problem it is notneessary to deompose the graph into SCCs as the existene of an aepting end om-ponent an be heked easier by repeated reahability whih systematially eliminatesstates that annot belong to any aepting end omponents. Our algorithm as presentedhere has the omplexity O(jMj2 � 22O(j'j)).2 Qualitative LTL Model ChekingRabin automata. A deterministi Rabin automaton is a tuple A = (�;Q; qinit; Æ; A),where � is a �nite alphabet, Q is a �nite set of states, qinit 2 Q is an initial state, Æ :Q � � ! Q is a (omplete) transition funtion and A = [(L1; U1); : : : ; (Lk; Uk)℄, withLi; Ui � Q for i = 1; : : : ; k, is an aeptane ondition.A run of A over an in�nite word w = a1a2 : : : is a sequene q0; q1; : : : ; where q0 =qinit and Æ(qi-1; ai) = qi for all i � 1. Aeptane is de�ned in terms of limits. The limitof a run r = q0; q1; : : : is the set lim(r) = fq j q = qi in�nitely ofteng. A run r is aepting
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if lim(r)\ Li 6= ; and lim(r)\Ui = ; for some i. We denote by L(A) the set of all in�nitewords with an aepting run.Linear Temporal Logi (LTL). Formulas of LTL are built from a setAP of atomi propo-sitions and are losed under the appliation of Boolean onnetives, the unary temporalonnetive X (next), and the binary temporal onnetive U (until). LTL is interpretedover omputations. A omputation is a funtion � : ! ! AP, whih assigns truth val-ues to the elements of AP at eah time instant and as suh an be viewed as in�nitewords over the alphabet 2AP. For an LTL formula ' we denote by L(') the set of allomputations satisfying '.Proposition 2.1 ([32, 28℄). Given an LTL formula ', one an build a deterministi RabinautomatonAwith 22O(j'j�j log'j) states and 2O(j'j) pairs in aeptane ondition, suh that L(A) =L(').The transformation from LTL formulas to deterministi Rabin automata via nonde-terministi Bühi automata [32℄ and Safra's [28℄ algorithm leads to a worst ase doubleexponential blowup, whih roughly meets the lower bound established in [21℄.Markov deision proess (MDP). We use MDP as a model of asynhronous proba-bilisti systems. In an MDP, any state s might have several outgoing ation-labeledtransitions, eah of them is assoiated with a probability distribution whih yields theprobabilities for the suessor states. In addition, a labeling funtion attahes to anystate s a set of atomi propositions that are assumed to be ful�lled in state s. The atomipropositions will serve as atoms to formulate the desired properties in a temporal logiframework.Formally, a Markov deision proess [16, 26, 30℄ is a tupleM = (S;At; P; sinit; AP; L),where S is a �nite set of states, At is a �nite set of ations, P : (S � At � S) ! [0; 1℄ isa (three-dimensional) probability matrix, sinit 2 S is the initial state , AP is a �nite setof atomi propositions, and L : S ! 2AP is a labeling funtion. At(s) denotes the set ofations that are enabled in state s, i.e. the set of ations � 2 At suh that P(s; �; t) >0 for some state t 2 S. For any state s 2 S, we require that At(s) 6= ; and 8� 2At(s):Ps 02S P(s; �; s 0) = 1.The intuitive operational semantis of an MDP is as follows. If s is the urrent statethen an ation � 2 At(s) is hosen nondeterministially and is exeuted leading to astate t with probability P(s; �; t). We refer to t as an �-suessor of s if P(s; �; t) > 0.4



State s is alled deterministi if only one ation is enabled in s. If all states of an MDP aredeterministi, the MDP is alledMarkov hain.An in�nite path in an MDP is a sequene � = s0; �1; s1; �2; : : : 2 (S�At)! suh that�i 2 At(si-1) and P(si-1; �i; si) > 0 for any i � 1. A trajetory of a path � is the wordL(s0); L(s1); L(s2); : : : over the alphabet 2AP obtained by the projetion of � to the statelabels. Finite paths are �nite pre�xes of in�nite paths that end in a state. We use thenotation last(�) for the last state of a �nite path �.A sheduler is a funtion whih resolves the nondeterminism of MDP, and thus, ityields an exat probability measure on sets of paths of an MDP. We onsider determin-isti history dependent shedulers whih are given by a funtion D assigning an ationD(�) 2 At(last(�)) to every �nite path �. Given a a sheduler D, the behavior of Munder D an be formalized as a (possibly in�nite state) Markov hain.Verifying LTL Spei�ations. Let AP be the alphabet of LTL spei�ation '. For anMDPM and a sheduler D the set of trajetories that satisfy the spei�ation ' is mea-surable [29℄. We use PrM;D(L(')) to denote the probability that a trajetory of M un-der D satis�es the spei�ation '. We say that M satis�es ' if for all shedulers D,PrM;D(L(')) = 1.Our distributed algorithm omes out from the automata-based approah to LTLmodel heking. As in the non-probabilisti ase, the model is synhronized with theautomaton orresponding to the negation of the formula. However, unlike the non-probabilisti ase, deterministi automata have to be used instead of non-deterministiBühi automata. Sine we onsider deterministi Rabin automata, the synhronizationresults in an MDP with Rabin aeptane ondition in our ase. The model hekingproblem is thus redued to the non-emptiness problem for the produt MDP.Let M = (S;At; P; sinit; AP; L) be an MDP. Let A = (2AP; Q; qinit; Æ;[(L1; U1); : : : ; (Lk; Uk)℄) be a deterministi Rabin automaton. The synhronized prod-ut of M and A is an MDP M � A = (S � Q;AtM�A; PM�A; init; AP; LM�A) withRabin aeptane ondition AM�A = [(S � L1; S � U1); : : : ; (S � Lk; S � Uk)℄, whereAtM�A((u; v)) = At(u), init = (sinit; qinit), LM�A((u; v)) = L(u), andPM�A((s; p); �; (t; q)) = Æ P(s; �; t) if Æ(p; L(s)) = q0 otherwise.
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Our algorithm rests upon a onnetion between stohasti properties of anMDP andits struture when viewed as a graph-like struture. This is exempli�ed by notions ofend omponents and aepting end omponents [14, 12℄.LetM�A be a produt MDP with Rabin aeptane ondition. Consider a diretedlabeled graph GM�A = (S � Q; init; E) where init is an initial state of GM�A, E �(S�Q)�At� (S�Q), and E = f(u; �; v) j PM�A(u; �; v) > 0g.A subgraph (V 0; E 0) of GM�A forms a strongly onneted omponent (SCC) if for anytwo verties u; v 2 V 0 there is a path from u to v in (V 0; E 0). SCC is non-trivial if it has atleast one edge. SCC is terminal if there is no edge (u; �; v) 2 E outgoing from SCC, i.e.suh that u 2 V 0 and v 62 V 0. Let (V 0; E 0) be a subgraph of GM�A. A vertex u 2 V 0 islosed in (V 0; E 0) if� there is � 2 AtM�A(u) and v 2 V 0 suh that (u; �; v) 2 E 0� if (u; �; v) 2 E 0, then (u; �;w) 2 E 0 for every w 2 V suh that (u; �;w) 2 E.A subgraph (V 0; E 0) of GM�A is losed under the positive probabilisti transitions (losed forshort) if every state in V 0 is losed in (V 0; E 0).An end omponent (EC) in GM�A is a strongly onneted omponent of GM�A that isreahable from the initial state init and is losed under the positive probabilisti transi-tions. The end omponent (V 0; E 0) is alled maximal if there is no other end omponentof GM�A ontaining all verties and all edges from (V 0; E 0). End omponent is alledterminal if it is a terminal SCC.End omponent (V 0; E 0) is aepting (AEC) with respet to the Rabin aeptane on-dition if for some i, 1 � i � k, we have V 0\ (S� Li) 6= ; and V 0\ (S�Ui) = ;. We referto the index i as a valid index.Proposition 2.2 ([30℄). Let M be an MDP and ' an LTL property. Let A be a deterministiRabin automaton with L(A) = L('). Then there exists a shedulerD suh that PrM;D(L(')) >0 if and only if there is an aepting end omponent in the graph GM�A.The qualitative LTL model heking of MDPs is thus redued to the questionwhether the GM�A for a given MDP with the Rabin aeptane ondition ontains anaepting end omponent.A sequential algorithm for AEC detetion is given in [30, 14℄ and for a similar prob-lem in [12℄. The idea is to deompose the given graph GM�A = (V; init; E) with theRabin aeptane ondition AM�A into strongly onneted omponents, and to test6



every omponent for losure under positive probabilisti transitions and for its aep-tane with respet to individual pairs (L;U) 2 AM�A. If either of the two onditionsis violated, the blamed states are removed from the graph and the omponent is againdeomposed into SCCs. The graph ontains an AEC if and only if the �nal deompo-sition is nonempty. The omplexity of the algorithm is determined by the number ofaeptane pairs in AM�A, the omplexity of the SCC deomposition, and the num-ber of repeated SCC deompositions till stabilization. The SCC deomposition an beperformed with Tarjan's algorithm in time linear in the size of the graph, the number ofSCC deompositions is bounded by the number of verties. Hene, the omplexity ofthe algorithm is O(jAM�Aj � n2), where n is the number of verties.3 Approximation Set AlgorithmIn this setion we present a new sequential algorithm, prove its orretness, and givea omplexity bound. The distributed version of the algorithm is disussed in the nextsetion.If we follow the lassi�ation of SCC-detetion algorithms as presented in [27, 17℄,then the above skethed sequential algorithm an be lassi�ed as an AEC-enumerationalgorithm as it enumerates all aepting end omponents of a graph. Contrary to this,the presented (distributed) algorithm an be lassi�ed as an AEC-hull algorithm as itomputes the set of states that ontains all aepting end omponents. In partiular,the algorithm maintains approximation set of states that may belong to an AEC. The al-gorithm repeatedly re�nes the approximation set by loating and removing states thatannot belong to an AEC, we all this a pruning step. The ore of the algorithm areonditions determining the states to prune.Formally, letM�A be a produt MDP, GM�A = (S�Q; init; E) be its orrespondinggraph, and AM�A = [(S � L1; S � U1); : : : ; (S � Lk; S � Uk)℄ be the Rabin aeptaneondition. Without lost of generality we suppose that all verties in S�Q are reahablefrom the vertex init. The algorithm tests eah index i, i = 1; : : : ; k whether it is valid ornot. We heneforth assume a �xed index i and denote the pair (S� Li; S�Ui) as (L;U)and refer to the verties from L and U as L-states and U-states, respetively.An approximation graph is a subgraph (AS; EAS) of the graph GM�A suh that AS \U = ; and (AS; EAS) ontains all aepting end omponents of GM�A. Our goal is toformulate riteria for eliminating verties and edges from the approximation graph.7



pro DETECT-AEC((S�Q; init ; E); (L ;U))AS := S�QrUEAS := Eto-eliminate := UCLOSURE()oldSize := 0while (jASj 6= oldSize ^ jASj > 0) dooldSize := jASjL-REACHABILITY()CLOSURE()odreturn(kASk > 0)endpro L-REACHABILITY()an-reah-L := ;;to-explore := AS \ Lwhile (to-explore 6= ;) dopik and remove q from to-exploreforeah (r; �; q) 2 EAS doif (r 62 an-reah-L )then an-reah-L := an-reah-L [ frgto-explore := to-explore [ frg�ododto-eliminate := ASr an-reah-LAS := AS \ an-reah-Lendpro CLOSURE()while (to-eliminate 6= ;) dopik and remove q from to-eliminateforeah (q; �;p) 2 EAS doEAS := EAS r f(q; �;p)godforeah (r; �; q) 2 EAS doforeah (r; �;p) doEAS := EAS r f(r; �;p)godAtM�A(r) := AtM�A(r)r f�gif (AtM�A(r) = ; ^ r 2 AS )then to-eliminate := to-eliminate [ frgAS := AS r frg�ododend Figure 1: Sequential algorithm8
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Figure 2: Example of a produt MDP.Let (AS; EAS) be an approximation graph. Then the following two onditions areneessary for a vertex v 2 AS to belong to an AEC:1. There is an L-state whih is reahable from v along a non-trivial path1 in (AS; EAS).2. The vertex v is losed in (AS; EAS).The �rst ondition orrespond to the aeptane ondition for EC (here we remind thatthe approximation set does not ontain U-states). The seond ondition onforms withthe loseness under the positive probabilisti transitions.Lemma 3.1. Graph GM�A = (S � Q; init; E) ontains an AEC if and only if there is a non-empty approximation graph (AS; EAS) suh that all verties from AS meet the onditions 1 and2.Proof: Any AEC in GM�A is an approximation graph with verties omplying bothonditions.For the opposite ase, let us assume that (AS; EAS) is an approximation graph and allverties in the set ASmeet the onditions 1 and 2. Let X be a terminal SCC of (AS; EAS).By the ondition 1, X ontains at least one L-state and is nontrivial. From the ondition2 we have that X is losed under positive probabilisti transitions. Altogether, X is anaepting end omponent. �1A path in a graph is non-trivial if it ontains at least one edge.9



The pseudo-ode of the algorithm DETECT-AEC is given in Figure 1. The algorithmstarts with an approximation graph ontaining all verties from GM�A exept U-states.In eah iteration of the while loop, the verties violating ondition 1 are pruned in theproedure L-REACHABILITY while verties violating the ondition 2 are eliminated inthe proedure CLOSURE. The iterations of the proedure DETECT-AEC are alled external.The omputation of the proedure DETECT-AEC an be illustrated on the produtMDP depited in Figure 2. Verties 5, 10, and 12 are L-states; verties 4 and 9 areU-states. Initially, AS = f1; 2; 3; 5; 6; 7; 8; 10; 11; 12g and to-eliminate= f4; 9g. First ex-eution of CLOSURE removes from EAS the edges inident to verties 4 and 9, i.e.,(4; �; 7); (4; �; 8); (1; �; 4); (9; �; 10); (10; �; 9). This auses that AtM�A(10) = ; andthe vertex 10 is not losed in the urrent approximation graph. Therefore, the ver-tex is added to the set to-eliminate and removed from AS. Consequently, the edges(6; Æ; 10); (6; Æ; 11), and (11; Æ; 10) are removed from EAS as well. We haveAtM�A(11) =;, the vertex 11 is added to to-eliminate and removed from AS. Then (7; �; 11) is re-moved from EAS. As the set to-eliminate is now empty, the proedure CLOSURE termi-nates. The �rst external iteration is now started. The value of oldSize is 8. The pro-edure L-REACHABILITY detets verties 6 and 7 as those from whih none L-state isreahable and sets to-eliminate to f6; 7g and AS to f1; 2; 3; 5; 8; 12g. Subsequent all to theproedure CLOSURE removes the edges (7; ; 6); (8; ; 7), (6; ; 7), and (3; �; 6); (3; �; 5)from EAS. AtM�A(3) beomes empty, therefore, the vertex 3 is added to to-eliminateand removed from AS. Then the edges (1; Æ; 3); (2; �; 3); (5; �; 3) are removed from EAS,the vertex 5 is added to to-eliminate and removed from AS. Finally, the edge (2; ; 5)is removed from EAS. The set to-eliminate is now empty and the proedure CLOSUREterminates. In the seond external iteration the value of oldSize is 4. The proedureL-REACHABILITY eliminates the verties 1 and 2 and the proedure CLOSURE removesthe edges (1; �; 2); (2; Æ; 1) from EAS. There are no more verties eliminated in the thirdexternal iteration. As the resulting approximation graph is non-empty, the proedureDETECT-AEC returns true.In what follows we prove the orretness of the algorithm and analyze its omplex-ity. (AS; EAS) denotes the approximation graph at the beginning of an external iterationand (AS; EAS) denotes the graph after the iteration has �nished. jGM�Aj denotes the sizeof the produt graph GM�A.
10



Lemma 3.2. Upon termination of the proedure CLOSURE, EAS ontains only edges inident toverties from AS and all verties in AS are losed in (AS; EAS). The omplexity of CLOSURE isO(jGM�Aj).Proof: Let the set to-eliminate ontains all verties diretly violating the losure propertyin (AS; EAS). Every iteration of the proedure maintains this property, whih an beeasily seen from the pseudo-ode. Eah vertex in to-eliminate is eventually removed andnever inserted into the set again. As soon as the set is empty, the proedure terminates.�Lemma 3.3. Upon termination of the proedure L-REACHABILITY, AS � AS and AS on-tains only those verties from whih an L-state is reahable in (AS; EAS). The omplexity ofL-REACHABILITY is O(jGM�Aj).Proof: The proedure adds verties to the set an-reah-L only when an edge leading toan L-state, or leading to a vertex from an-reah-L, is disovered. No vertex lying outsideofAS an be added to the set an-reah-L as only edges in EAS are explored and (AS; EAS)is losed. This is due to Lemma 3.2 and the fat that eah all to L-REACHABILITY ispreeded by a all to CLOSURE.The omplexity is given by the fat that every edge in EAS is explored at most one.The proedure proeeds by bakward searh as this minimizes its omplexity. If a for-ward searh was employed the omplexity would be jASj times the omplexity of theforward searh. �Lemma 3.4. Upon termination of the proedure DETECT-AEC every vertex in the approxima-tion set AS meets the onditions 1 and 2.Proof: The proedure DETECT-AEC removes allU-states from V and applies CLOSURE toensure that all verties in AS are losed (Lemma 3.2). Due to Lemmas 3.2 and 3.3 onlyverties violating either 1 or 2 are removed from the approximation set in eah externaliteration. One the external iteration does not hange the approximation set all vertiesin ASmeet both onditions. �To prove the omplexity bound we need to give an upper bound on the number ofexternal iterations. A trivial upper bound is jS�Qj as in eah external iteration the sizeof AS is dereased. However, a more preise bound an be given in terms of maximalend omponents. At the very beginning, the algorithm DETECT-AEC removes from the11



graph all U-states and some edges to guarantee that all remaining verties are losed.We refer to this graph as GM�A rU.Lemma 3.5. The number of external iterations of DETECT-AEC is no more than the number ofmaximal end omponents in GM�A rU.Proof: The key observation is that in eah external iteration of DETECT-AEC either allverties from at least one maximal end omponent in GM�A r U are removed from theapproximation set, or the approximation set is not hanged at all (and the omputationof DETECT-AEC �nishes). Furthermore, at the beginning of eah external iteration theapproximation graph is losed (Lemma 3.2).Let C = (VC; EC) be a maximal EC in GM�A r U. Let us suppose that in someexternal iteration a vertex q 2 VC is removed from the approximation set. If the vertexq is removed by the proedure L-REACHABILITY beause none L-state is reahable fromq, then together with q the whole VC is removed from the approximation set (EC isstrongly onneted). If no vertex is removed by L-REACHABILITY, then no vertex an beremoved by CLOSURE as the approximation graph is losed and the algorithm wouldterminate. �Theorem 3.1. LetM be an MDP and ' be an LTL formula. Then the question whether for allshedulersD, PrM;D(L(')) = 1, an be orretly solved by the DETECT-AEC algorithm in timeO(jMj2 � 22j'j�log j'j).Proof: Lemma 3.4 together with Lemma 3.1 give orretness of the DETECT-AEC algo-rithm.If we start with an MDP M that has m states and e transitions, then GM�A has nomore thanm � 22j'j�log j'j verties and e � 22j'j�log j'j edges, i.e. the size of the produt graphGM�A is O(jMj � 22j'j�log j'j). Complexity of DETECT-AEC is in the worst ase quadrati inthe size of the produt graph (though Lemma 3.5 gives a more preise bound). The al-gorithm is performed for every aeptane pair in the orresponding Rabin automaton.� Couroubetis and Yannakakis [12℄ give an algorithm for qualitative LTL modelheking of MDP with somewhat better omplexity O(jMj2 � 22O(j'j)). This is due to thefat that their algorithm translates the veri�ed property to a Bühi automaton whihis deterministi in limit. However, our algorithm is based on a translation to a deter-ministi Rabin automaton. The approah we present is independent of the type of the12



431 2��� ��Figure 3: Modi�ation of Condition 1.!-automaton. Therefore, using Bühi automata that are deterministi in limit our algo-rithm exhibits the same asymptoti omplexity O(jMj2 � 22O(j'j)).Our algorithm stores edges to enumerate predeessors. A natural question is,whether this is really neessary. While the ondition 1 an be replaed by a symmet-ri ondition requiring that the vertex u is reahable from an L-state along a non-trivialpath in (AS; EAS) and tested by a forward reahability without using bakward edges,the symmetri approah does not work in the ase of the ondition 2. This is illustratedon the graph in Figure 3 where all verties are reahable from the L-state (its number is1) and are losed, but the graph does not ontain any AEC.If anMDP ontains deterministi states only (theMDP is aMarkov hain), then everyend omponent of the orresponding graph GM�A r U is a terminal one. As arguedin the proof of Theorem 3.5 every terminal SCC is removed ompletely in an externaliteration or it remains in the approximation graph forever. Therefore, the DETECT-AECalgorithm terminates on Markov hains after one iteration and its omplexity is linearwith respet to the size of the produt graph.4 Distributed Implementation of The AlgorithmIn the distributed setting, suh as the network of workstations, the graph to be exploredis partitioned among the workstations using the so alled partition funtion so that ev-ery single workstation is responsible for the subgraph assigned to it. For the prinipleof partitioning see e.g. [6, 24℄. As workstations work onurrently and ommuniateby means of message passing, parallelism is introdued in the omputation.The graphs to be explored are given impliitly by the desription of the initial vertexand a set of rules speifying how for a given vertex all of its immediate suessors anbe generated. In pratial terms, we are thus able to ompute immediate suessors of13



while (:Finished ) doPROCESS-INCOMING-MESSAGES()if (to-explore 6= ;)then pik and remove q from to-exploreforeah (r; �; q) 2 EAS doif (PARTITION(r) is loal )then if (r 62 an-reah-L )then an-reah-L := an-reah-L [ frgto-explore := to-explore [ frg�else send r to an-reah-L and to-exploreon PARTITION(r)�od�od Figure 4: Main loop of the distributed proedure L-REACHABILITY.a given vertex, but we are not able to diretly enumerate its predeessors. As our algo-rithm requires predeessors, verties of the graph have to be generated �rst and all theedges stored. In partiular, every vertex has an assoiated list of (pointers to) its imme-diate predeessors allowing thus every single workstation to enumerate suessors aswell as predeessors of verties it is responsible for.The implementation of the algorithm requires also a few other values to be storedat eah vertex. In partiular, these are the bit to distinguish whether the vertex belongsto the approximation set AS and list of ations AtM�A whose orresponding edges arestill onsidered to be a part of the approximation set. The global sets to-eliminate,an-reah-L, and to-explore are partitioned using the same partition funtion as thegraph. If a vertex is about to be inserted into one of these sets, it is at �rst judged bythe partition funtion and then sent to the workstation owning the vertex in order to beinserted in the orresponding loal part of the set.The main loop of the proedure L-REACHABILITY is replaed with the pseudo-odegiven in Figure 4 in the ase of the distributed algorithm. The loop in the new pseudo-ode terminates when all sent messages have been delivered and all loal sets to-explore are empty, whih is deteted using the standard distributed termination de-tetion proedure and indiated with the �ag Finished.Proedure CLOSURE is modi�ed following the same sheme. A spei� problemarises when all edges with a given ation are about to be removed from the set EAS foran immediate predeessors of a given vertex. Consider the situation as depited on theleft hand side of Figure 5. Let vertex 1 be piked and removed from the set to-eliminate14



II

I

IV

II

I

IV

II

I

IV

1

3 4 4

11

4

2

III III III

2

33

2

��� � �� ��Æ Æ Æ
  

Figure 5: Distributed losure omputation on approximation sets.on the workstation III. Sine it has no outgoing edges (AtM�A(1) is empty) the list ofimmediate predeessors assoiated with the vertex is leared, and the immediate pre-deessors are told to remove the orresponding ation from their sets of valid ations.The only immediate predeessor of the vertex 1 is the vertex 3 that is assigned to theworkstation I. Thus, a message requesting removal of the ation � from the vertex 3 issent from the workstation III to the workstation I and the vertex 1 is removed from theset AS of verties remaining in the approximation set (the bit representing its presenein the set is set to false). This is exempli�ed in the middle of the Figure. One the work-station I reeives the message it appropriately modi�es the set AtM�A(3), and sendsmessages to the workstations II and IV responsible for verties 2 and 4, respetively,in order to update the orresponding lists of immediate predeessors of these verties.As soon as this is done, the omputation of the losure proedure for the vertex 1 isomplete (see the situation on the right hand side of Figure 5).5 ConlusionsWe addressed the problem of qualitative veri�ation of �nite state Markov deision pro-esses with respet to spei�ations expressed in linear temporal logi LTL. An optimalsequential algorithm for the problem is given in [12℄. This algorithm is based on thedeomposition of a graph into strongly onneted omponents and as suh annot bediretly modi�ed and effetively implemented in a distributed setting.We provide a new algorithm for qualitative LTL model heking of Markov dei-sion proesses with the same asymptoti omplexity as given in [12℄. Contrary to thisalgorithm, our algorithm does not require the deomposition into strongly onnetedomponents. Instead of this, the ore operation of our algorithm is a reahability test.15
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