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Abstract

Weak bisimilarity is one of the most studied behavioural equivalences. This equiva-
lence is undecidable for pushdown processes (PDA), process algebras (PA), and multiset
automata (MSA, also known as parallel pushdown processes, PPDA). Its decidability is
an open question for basic process algebras (BPA) and basic parallel processes (BPP). We
move the undecidability border towards these classes by showing that the equiva-
lence remains undecidable for weakly extended versions of BPA and BPP. Further,
we show the results hold for even more restricted classes of normed BPA with �nite
constraint system and normed BPP with �nite constraint system.

1 Introduction

Equivalence checking is one of the main streams in veri�cation of concurrent systems. It

aims at demonstrating some semantic equivalence between two systems, one of which

is usually considered as representing the speci�cation, the other as its implementation

∗This is a full version of INFINITY'05 paper [12].
†Supported by the Grant Agency of the Czech Republic, grant No. 201/03/1161.
‡Supported by the research centre �Institute for Theoretical Computer Science (ITI)�, project

No. 1M0021620808.
§Supported by the Academy of Sciences of the Czech Republic, grant No. 1ET408050503.
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or re�nement. The semantic equivalences are designed to correspond to the system

behaviours at the desired level of abstraction; the most prominent ones being strong

and weak bisimulations.

Current software systems often exhibit an evolving structure and/or operate on un-

bounded data types. Hence automatic veri�cation of such systems usually requires

modelling them as in�nite-state ones. Various speci�cation formalisms have been de-

veloped with their respective advantages and limitations. Petri nets (PN), pushdown

processes (PDA), and process algebras like BPA, BPP, or PA all serve to exemplify this.

Here we employ the classes of in�nite-state systems de�ned by term rewrite systems

and called Process Rewrite Systems (PRS) as introduced by Mayr [13]. PRS subsume a

variety of the formalisms studied in the context of formal veri�cation (e.g. all the mod-

els mentioned above). The relevance of various subclasses of PRS for modelling and

analysing programs is shown, for example, in [5]; for automatic veri�cation we refer to

surveys [2, 23].

The relative expressive power of various process classes has been studied, especially

with respect to strong bisimulation; see [3, 17], also [13] showing the hierarchy of PRS

classes. Adding a �nite-state control unit to the PRS rewriting mechanism results in

so-called state-extended PRS (sePRS) classes, see for example [8]. We have extended the

PRS hierarchy by sePRS classes and re�ned this extended hierarchy by introducing re-

stricted state extensions of two types: PRS equippedwith aweak �nite-state unit (wPRS,

inspired by weak automata [18]) [11, 10] and PRS with �nite constraint unit (fcPRS) [24].

Research on the expressive power of process classes has been accompanied by ex-

ploring algorithmic boundaries of various veri�cation problems. In this paper we focus

on the equivalence checking problem taking weak bisimilarity as the notion of behav-

ioral equivalence.

State of the art: Regarding sequential systems, i.e. those without parallel compo-

sition, the weak bisimilarity problem is undecidable for PDA even for the normed

case [20]. However, it is conjectured [14] that weak bisimilarity is decidable for BPA;

the best known lower bound is EXPTIME-hardness [14].

Considering parallel systems, even strong bisimilarity is undecidable for MSA [17]

using the technique introduced in [6]. However, it is conjectured [7] that the weak

bisimilarity problem is decidable for BPP; the best known lower bound is PSPACE-

hardness [21].
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For the simplest systems combining both parallel and sequential operators, called PA

processes [1], the weak bisimilarity problem is undecidable [22]. It is an open question

for the normed PA; the best known lower bound is EXPTIME-hardness [14].

Our contribution: Wemove the undecidability border of the weak bisimilarity prob-

lem towards the classes of BPA and BPP, where the problem is conjectured to be decid-

able. Section 4 contains relatively simple proofs of undecidability of the considered

problem for the weakly extended versions of BPA (wBPA) and BPP (wBPP). In Sec-

tion 4, we strengthen the result for even more restricted systems such as normed fcBPA

and normed fcBPP systems. In fact, the result is not new for wBPA due to the following

reasons: Mayr [14] has shown that adding a �nite-state unit of the minimal non-trivial

size 2 to the BPA process already makes weak bisimilarity undecidable. Our inspection

of his proof shows that the result is valid for wBPA as well.

2 Preliminaries

We recall the de�nitions of labelled transition system and weak bisimilarity. Then we

de�ne the syntax of process rewrite systems, (weak) �nite-state unit extensions of PRS,

and PRS with �nite constraint systems. Their semantics is given in terms of labelled

transition systems.

De�nition 2.1. Let Act = {a, b, . . .} be a set of actions such that Act contains a distinguished

silent action τ. A labelled transition system is a pair (S, −→), where S is a set of states and

−→⊆ S× Act× S is a transition relation.

We write s1
a

−→ s2 instead of (s1, a, s2) ∈−→. The transition relation is extended to

�nite words over Act in the standard way. Further, we extend the relation to language

L ⊆ Act∗ such that s1
L

−→ s2 if s1
w

−→ s2 for some w ∈ L. Moreover, we write s1 −→∗ s2

instead of s1
Act∗
−→ s2. The weak transition relation =⇒⊆ S× Act× S is de�ned as τ

=⇒=
τ∗

−→
and a

=⇒=
τ∗aτ∗
−→ for all a 6= τ.

De�nition 2.2. A binary relation R on states of a labelled transition system is aweak bisimu-

lation iff whenever (s1, s2) ∈ R then for any a ∈ Act:

• if s1
a

−→ s ′
1 then s2

a
=⇒ s ′

2 for some s ′
2 such that (s ′

1, s
′
2) ∈ R and

• if s2
a

−→ s ′
2 then s1

a
=⇒ s ′

1 for some s ′
1 such that (s ′

1, s
′
2) ∈ R.
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States s1 and s2 are weakly bisimilar, written s1 ≈ s2, iff (s1, s2) ∈ R for some weak bisimu-

lation R.

We use a characterization of weak bisimilarity in terms of a bisimulation game. This is

a two-player game between an attacker and a defender played in rounds on pairs of states

of a considered labelled transition system. In a round starting at a pair of states (s1, s2),

the attacker �rst chooses i ∈ {1, 2}, an action a ∈ Act, and a state s ′
i such that si

a
−→ s ′

i.

The defender then has to choose a state s ′
3−i such that s3−i

a
=⇒ s ′

3−i. The states s ′
1, s

′
2

form a pair of starting states for the next round. A play is a maximal sequence of pairs of

states chosen by players in the given way. The defender is the winner of every in�nite

play. A �nite game is lost by the player who cannot make any choice satisfying the given

conditions. It can be shown that two states s1, s2 of a labelled transition system are not

weakly bisimilar if and only if the attacker has a winning strategy for the bisimulation

game starting in these states.

Let Const = {X, . . .} be a set of process constants. The set of process terms (ranged over

by t, . . .) is de�ned by the abstract syntax

t ::= ε | X | t.t | t‖t

where ε is the empty term, X ∈ Const is a process constant; and '.' and '‖' mean sequential

and parallel composition respectively. We always work with equivalence classes of terms

modulo commutativity and associativity of '‖', associativity of '.', and neutrality of ε,

i.e. ε.t = t = t.ε = t‖ε = t. We distinguish four classes of process terms as:

1 � terms consisting of a single process constant only, in particular ε 6∈ 1,

S � sequential terms - terms without parallel composition, e.g. X.Y.Z,

P � parallel terms - terms without sequential composition, e.g. X‖Y‖Z,

G � general terms - terms with arbitrarily nested sequential and parallel compositions,

e.g. (X.(Y‖Z))‖W.

De�nition 2.3. Let α, β be classes of process terms α, β ∈ {1, S, P, G} such that α ⊆ β. An

(α, β)-PRS (process rewrite system) ∆ is a �nite set of rewrite rules of the form t1
a

↪→ t2,

where t1 ∈ α r {ε}, t2 ∈ β are process terms and a ∈ Act is an action.

Given a PRS ∆, let Const(∆) and Act(∆) be the respective (�nite) sets of all constants and

all actions which occur in the rewrite rules of ∆.
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An (α, β)-PRS ∆ determines a labelled transition system where states are process

terms t ∈ β over Const(∆). The transition relation −→ is the least relation satisfying the

following inference rules (recall that `‖' is commutative):

(t1
a

↪→ t2) ∈ ∆

t1
a

−→ t2

t1
a

−→ t2

t1‖t
a

−→ t2‖t
t1

a
−→ t2

t1.t
a

−→ t2.t

The formalism of process rewrite systems can be extended to include a �nite-state

control unit in the following way.

De�nition 2.4. Let M = {m,n, . . .} be a set of control states. Let α, β be classes of process

terms α, β ∈ {1, S, P, G} such that α ⊆ β. An (α, β)-sePRS (state extended process rewrite

system) ∆ is a �nite set of rewrite rules of the form (m, t1)
a

↪→ (n, t2), where t1 ∈ α r {ε},

t2 ∈ β, m,n ∈ M, and a ∈ Act.

M(∆) denotes the �nite set of control states which occur in ∆.

An (α, β)-sePRS ∆ determines a labelled transition system where states are the pairs

of the form (m, t) such that m ∈ M(∆) and t ∈ β is a process term over Const(∆). The

transition relation −→ is the least relation satisfying the following inference rules:

((m, t1)
a

↪→ (n, t2)) ∈ ∆

(m, t1)
a

−→ (n, t2)

(m, t1)
a

−→ (n, t2)

(m, t1‖t)
a

−→ (n, t2‖t)
(m, t1)

a
−→ (n, t2)

(m, t1.t)
a

−→ (n, t2.t)

To shorten our notation we write mt in lieu of (m, t).

De�nition 2.5. An (α,β)-sePRS ∆ is called a process rewrite system with weak �nite-

state control unit or just aweakly extended process rewrite system, written (α, β)-wPRS,

if there exists a partial order ≤ on M(∆) such that every rule (m, t1)
a

↪→ (n, t2) of ∆ satis�es

m ≤ n.

Finally, we recall the extension of process rewrite systems with �nite constraint systems

introduced in [24]. This extension has been directly motivated by constraint systems

used in concurrent constraint programming (CCP), for example, see [19].

De�nition 2.6. A constraint system is a bounded lattice (C,≥,∧, tt, ff), where C is the set

of constraints, ≥ (called entailment) is an ordering on this set, ∧ is the least upper bound

operation, and tt (true), ff (false) are the least and the greatest elements of C respectively (ff ≥ tt

and tt 6= ff).
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Example 2.7. Example of a constraint system.

ff

~~
~~

~
>>

>>

m
BB

BB
n

}}
}}

tt

De�nition 2.8. Let C = (C,≥,∧, tt, ff) be a �nite constraint system describing the store;

the elements of C represent values of the store. Let α, β be classes of process terms α, β ∈
{1, S, P, G} such that α ⊆ β. An (α, β)-fcPRS (PRS with �nite constraint system) ∆ is a

�nite set of rewrite rules of the form (m, t1)
a

↪→ (n, t2), where t1 ∈ α, t1 6= ε, t2 ∈ β are

process terms, a ∈ Act, and m,n ∈ C are constraints.

C(∆) denotes the �nite set of constraints which occur in ∆.

An (α, β)-fcPRS ∆ determines a labelled transition system where states are the pairs

of the form (m, t) such that m ∈ C(∆) r {ff} and t ∈ β is a process term over Const(∆).

The transition relation −→ is the least relation satisfying the following inference rules:

((m, t1)
a

↪→ (n, t2)) ∈ ∆

(o, t1)
a

−→ (o ∧ n, t2)
if o ≥ m and o ∧ n 6= ff,

(o, t1)
a

−→ (p, t2)

(o, t1‖t)
a

−→ (p, t2‖t)
,

(o, t1)
a

−→ (p, t2)

(o, t1.t)
a

−→ (p, t2.t)
.

To shorten our notation we write mt in lieu of (m, t).

The two side conditions of the �rst inference rule are very close to principles used

in CCP. The �rst one (o ≥ m) ensures the rule (mt1
a

↪→ nt2) ∈ ∆ can be used only if

the current value of the store o entails m (it is similar to ask(m) in CCP). The second

condition (o ∧ n 6= ff) guarantees that the store stays consistent after the application of

the rule (analogous to the consistency requirement when processing tell(n) in CCP).

An important observation is that the value of a store can move in a lattice only up-

wards as o ∧ n always entails o. Intuitively, partial information can only be added to

the store, but never retracted (the store is monotonic).

Please note that an execution of a transition which starts in a state with o on the store

and which is generated by a rule (mt1
a

↪→ nt2) ∈ ∆ implies that for every subsequent

value of the store p the conditions p ≥ m and p ∧ n 6= ff are satis�ed (and thus the use

of the rule cannot be forbidden by a value of the store in the future). The �rst condition

p ≥ m comes from the monotonic behaviour of the store. The second condition comes
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from two following facts: the constraint n of the rule can only change the store in the

�rst application of the rule; and p ∧ n = p holds for any subsequent state p of the store.

De�nition 2.9. An (α, β)-fcPRS ∆ is normed in a state m0t0 of ∆ iff for all states mt satis-

fying m0t0 −→∗ mt it holds that mt −→∗ oε for some o ∈ C(∆).

Some classes of (α, β)-PRS correspond to widely knownmodels as �nite-state systems

(FS), basic process algebras (BPA), basic parallel processes (BPP), process algebras (PA), push-

down processes (PDA, see [4] for justi�cation), and Petri nets (PN). The other (α, β)-PRS

classes were introduced and named as PAD, PAN, and PRS by Mayr [13]. The corre-

spondence between (α, β)-PRS classes and the acronyms is given in Figure 1. Instead

of (α, β)-sePRS, (α, β)-wPRS, and (α, β)-fcPRS we use the pre�xes `se-', `w-', and `fc-' in

connection with the acronym for the corresponding (α, β)-PRS class. For example, we

use wBPA and wBPP rather than (1, S)-wPRS and (1, P)-wPRS, respectively. Finally, we

note that seBPP are also known as multiset automata (MSA) or parallel pushdown processes

(PPDA).

Figure 1 depicts relations between the expressive power of the considered classes.

The expressive power of a class is measured by the set of labelled transition systems that

are de�nable (up to strong bisimulation equivalence) by the class. A solid line between

two classes means that the upper class is strictly more expressive than the lower one. A

dotted line means that the upper class is at least as expressive as the lower class (and

the strictness is just our conjecture). Details can be found in [11, 10].

3 Undecidability of Weak Bisimilarity

In this section, we show that weak bisimilarity is undecidable for the classes wBPA and

wBPP. More precisely, we study the following problems for extended (α, β)-PRS classes.

Problem: Weak bisimilarity problem for an extended (α, β)-PRS class

Instance: An extended (α, β)-PRS system ∆ and two of its states mt,m ′t ′

Question: Are the two states weakly bisimilar?

3.1 wBPA

In [14] Mayr studied the question of how many control states are needed in PDA to

make weak bisimilarity undecidable.
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sePRS

wPRS
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fcPRS

uuuuuuuuuuuuuuuuuuuuuuuuuuu

GGGGGGGGGGGGGGGGGGGGGGGGG

PRS
(G, G)-PRS

uuuuuuuuuuuuuuuuuuuuuuuuuuu

GGGGGGGGGGGGGGGGGGGGGGGGG

sePAD sePAN

wPAD

IIIIIIIIIIIIIIIIIIIIIIIIIII wPAN

xxxxxxxxxxxxxxxxxxxxxxxxxx

fcPAD

IIIIIIIIIIIIIIIIIIIIIIIIIII fcPAN

wwwwwwwwwwwwwwwwwwwwwwwww
PAD

(S, G)-PRS

IIIIIIIIIIIIIIIIIIIIIIIIIII
PAN

(P, G)-PRS

xxxxxxxxxxxxxxxxxxxxxxxxx

sePA

ppppppppppppppppppppppp

MMMMMMMMMMMMMMMMMMMMM

wPA

vvvvvvvvvvvvvvvvvvvvvvvvvvvv

FFFFFFFFFFFFFFFFFFFFFFFFFF

fcPA

vvvvvvvvvvvvvvvvvvvvvvvvvvvv

FFFFFFFFFFFFFFFFFFFFFFFFFF

{se,w,fc}PDA=PDA=seBPA
(S, S)-PRS

PA
(1, G)-PRS

uuuuuuuuuuuuuuuuuuuuuuuuuuu

FFFFFFFFFFFFFFFFFFFFFFFFF
{se,w,fc}PN=PN

(P, P)-PRS

seBPP=MSA

wBPA wBPP
↑undecidable

[[[[[[[[[[[[

______________________
ccccccccccc

fcBPA fcBPP
BPA

(1, S)-PRS

RRRRRRRRRRRRRRRRRRRR
BPP

(1, P)-PRS

nnnnnnnnnnnnnnnnnn

↓decidable `````````` __________________________________

{se,w,fc}FS=FS
(1, 1)-PRS

Figure 1: The hierarchy with (un)decidability boundaries of weak bisimilarity.

Theorem 3.1 ([14], Theorem 29). Weak bisimilarity is undecidable for pushdown automata

with only 2 control states.

The proof is done by a reduction of Post's correspondence problem to the weak

bisimilarity problem for PDA. The constructed PDA has only two control states, p and

q. Quick inspection of the construction shows that the resulting pushdown automata

are in fact wBPA systems as there is no transition rule changing q to p and each rule has

only one process constant on the left hand side. Hence Mayr's theorem can be reformu-

lated as follows.

Theorem 3.2. Weak bisimilarity is undecidable for wBPA systems with only 2 control states.
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3.2 wBPP

We show that the non-halting problem for Minsky 2-counter machines can be reduced

to the weak bisimilarity problem for wBPP. First, let us recall the notions of Minsky

2-counter machine and the non-halting problem.

AMinsky 2-counter machine, or a machine for short, is a �nite sequence

N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt

where n ≥ 1, l1, l2, . . . , ln are labels, and each ij is an instruction for

• increment: ck:= ck+1; goto lr, or

• test-and-decrement: if ck>0 then ck:= ck-1; goto lr else goto ls

where k ∈ {1, 2} and 1 ≤ r, s ≤ n.

The semantics of a machine N is given by a labelled transition system the states of

which are con�gurations of the form (lj, v1, v2) where lj is a label of an instruction to

be executed and v1, v2 are nonnegative integers representing current values of counters

c1 and c2, respectively. The transition relation is the smallest relation satisfying the

following conditions: if ij is an instruction of the form

• c1:= c1+1; goto lr, then (lj, v1, v2)
inc

−→ (lr, v1 + 1, v2) for all v1, v2 ≥ 0;

• if c1>0 then c1:= c1-1; goto lr else goto ls, then (lj, v1 +1, v2)
dec

−→ (lr, v1, v2)

and (lj, 0, v2)
zero
−→ (ls, 0, v2) for all v1, v2 ≥ 0;

and the analogous condition for instructions manipulating c2. We say that the (com-

putation of) machine N halts if there are numbers v1, v2 ≥ 0 such that (l1, 0, 0) −→∗

(ln, v1, v2). Let us note that the system is deterministic, i.e. for every con�guration there

is at most one transition leading from the con�guration.

The non-halting problem is to decide whether a given machine N does not halt. The

problem is undecidable [16].

Let us �x a machine N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt. We construct a

wBPP system ∆ such that its states simL1 and simL ′
1 are weakly bisimilar if and only if N

does not halt. Roughly speaking, we create a set of wBPP rules allowing us to simulate

the computation of N by two separate sets of terms. If the instruction halt is reached in

the computation of N, the corresponding term from one set can perform the action halt,
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while the corresponding term from the other set can perform the action halt ′. Therefore,

the starting terms are weakly bisimilar if and only if the machine does not halt.

The wBPP system ∆ we are going to construct uses �ve control states, namely

sim, check1, check
′
1, check2, check

′
2. We associate each label lj and each counter ck with pro-

cess constants Lj, L
′
j and Xk, Yk respectively. A parallel composition of x copies of Xk and

y copies of Yk, written Xx
k‖Y

y
k , represents the fact that the counter ck has the value x − y.

Hence, terms simLj‖Xx1
1 ‖Y

y1

1 ‖Xx2
2 ‖Y

y2

2 and simL ′
j‖X

x1
1 ‖Y

y1

1 ‖Xx2
2 ‖Y

y2

2 are associated with a

con�guration (lj, x1 − y1, x2 − y2) of the machine N. Some rules contain auxiliary pro-

cess constants. In what follows, β stands for a term of the form β = Xx1
1 ‖Y

y1

1 ‖Xx2
2 ‖Y

y2

2 .

The control states checkk, check
′
k for k ∈ {1, 2} are intended for testing emptiness of the

counter ck. The only rules applicable in these control states are:

check1X1
chk1
↪→ check1ε check2X2

chk2
↪→ check2ε

check ′
1Y1

chk1
↪→ check ′

1ε check ′
2Y2

chk2
↪→ check ′

2ε

One can readily con�rm that checkkβ ≈ check ′
kβ if and only if the value of ck represented

by β equals zero.

In what follows we construct a set of wBPP rules for each instruction of the machine

N. At the same time we argue that the only chance for the attacker to win is to simu-

late the machine without cheating as every cheating can be punished by the defender's

victory. This attacker's strategy is winning if and only if the machine halts.

Halt: ln : halt

Halt instruction is translated into the following two rules:

simLn
halt
↪→ simε simL ′

n

halt ′
↪→ simε

Clearly, the states simLn‖β and simL ′
n‖β are not weakly bisimilar.

Increment: lj : ck:= ck+1; goto lr

For each such an instruction of the machine N we add the following rules to ∆:

simLj
inc
↪→ simLr‖Xk simL ′

j

inc
↪→ simL ′

r‖Xk

Obviously, every round of the bisimulation game starting at states simLj‖β and simL ′
j‖β ends

up in states simLr‖Xk‖β and simL ′
r‖Xk‖β.

Test-and-decrement: lj : if ck>0 then ck:= ck-1; goto lr else goto ls

10



For any such instruction of the machine N we add two sets of rules to ∆, one for the

ck > 0 case and the other for the ck = 0 case. The wBPP formalism has no power to

rewrite a process constant corresponding to a label lj and to check whether ck > 0 at

the same time. Therefore, in the bisimulation game it is the attacker who has to decide

whether ck > 0 holds or not, i.e. whether he will play an action dec or an action zero. We

show that whenever the attacker tries to cheat, the defender can win the game.

At this point our construction of wBPP rules uses a variant of the technique called

defender's choice [9]. In a round starting at the pair of states s1, s2, the attacker is forced to

choose one speci�c transition (indicated by a wavy arrow henceforth). If he chooses a

different transition, say sk
a

−→ s where k ∈ {1, 2}, then there exists a transition s3−k
a

−→ s

that enables the defender to reach the same state and win the play. The name of this

technique refers to the fact that after the attacker chooses the speci�c transition, the

defender can choose an arbitrary transition with the same label. These transitions are

indicated by solid arrows. The dotted arrows stands for auxiliary transitions which

compel the attacker to play the speci�c transition.

First, we discuss the following rules designed for the ck > 0 case:

simLj
dec
↪→ simAk,r simAk,r

dec
↪→ checkkε simBk,r

dec
↪→ simLr‖Yk

simLj
dec
↪→ simBk,r simAk,r

dec
↪→ simL ′

r‖Yk simBk,r
dec
↪→ simL ′

r‖Yk

simL ′
j

dec
↪→ simAk,r simAk,r

dec
↪→ check ′

kε simBk,r
dec
↪→ check ′

kε

simL ′
j

dec
↪→ simBk,r simCk,r

dec
↪→ simL ′

r‖Yk

simL ′
j

dec
↪→ simCk,r simCk,r

dec
↪→ check ′

kε

The situation can be depicted as follows.

simLj‖β
dec

����
��

��
��

��
�

dec

��<
<<

<<
<<

<<
<<

simL ′
j‖β

dec

uu

dec

��

dec

���]
�]

�]
�]

�]
�]

�]

simAk,r‖β
dec

�� �C
�C
�C
�C
�C
�C

dec

))

dec

++

simBk,r‖β
dec

�� �A
�A
�A
�A
�A
�A
�A dec

��

dec

))

simCk,r‖β
dec

����
��

��
��

��
� dec

��6
66

66
66

66
6

checkkβ simLr‖Yk‖β simL ′
r‖Yk‖β check ′

kβ

Let us assume that in a round starting at states simLj‖β, simL ′
j‖β the attacker decides

to perform the action dec. Due to the principle of defender's choice employed here,

the attacker has to play the transition simL ′
j‖β

dec
−→ simCk,r‖β, while the defender

can choose between the transitions leading from simLj‖β either to simAk,r‖β or to
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simBk,r‖β. Thus, the round will �nish either in states simAk,r‖β, simCk,r‖β or in states

simBk,r‖β, simCk,r‖β. Using the defender's choice again, one can easily see that the next

round ends up in checkkβ or simLr‖Yk‖β, and simL ′
r‖Yk‖β or check ′

kβ. The exact combi-

nation is chosen by the defender. The defender will not choose any pair of states where

one control state is sim and the other is not as such states are clearly not weakly bisimilar.

Hence, the two considered rounds of the bisimulation game end up in a pair of states

either simLr‖Yk‖β, simL ′
r‖Yk‖β or checkkβ, check ′

kβ. The latter pair is weakly bisimilar iff

the value of ck represented by β is zero, i.e. iff the attacker cheats when he decides to

play an action dec. This means that if the attacker cheats, the defender wins. If the attacker

plays the action dec correctly, the only chance for either player to force a win is to �nish these

two rounds in states simLr‖Yk‖β, simL ′
r‖Yk‖β corresponding to the correct simulation of an

test-and-decrement instruction with a label lj.

Now, we focus on the following rules designed for the ck = 0 case:

simLj
zero
↪→ simDk,s simDk,s

zero
↪→ checkkε simEk,s

zero
↪→ simLs

simLj
zero
↪→ simEk,s simDk,s

zero
↪→ simL ′

s simEk,s
zero
↪→ simL ′

s

simL ′
j

zero
↪→ simDk,s simDk,s

zero
↪→ simGk simEk,s

zero
↪→ simGk

simL ′
j

zero
↪→ simEk,s simFk,s

zero
↪→ simL ′

s simGk
τ

↪→ simGk‖Yk

simL ′
j

zero
↪→ simFk,s simFk,s

zero
↪→ simGk simGk

τ
↪→ check ′

kYk

The situation can be depicted as follows.

simLj‖β
zero

����
��

��
��

�� zero

��8
88

88
88

88
8

simL ′
j‖β

zero

vv

zero

��

zero

���[
�[

�[
�[

�[
�[

simDk,s‖β
zero

�� �B
�B
�B
�B
�B
�B

zero

((

zero

++

simEk,s‖β
zero

�� �B
�B
�B
�B
�B
�B zero

��

zero

))

simFk,s‖β
zero

����
��

��
��

�� zero

��=
==

==
==

==
==

checkkβ simLs‖β simL ′
s‖β simGk‖β

τm

��
check ′

kY
m
k ‖β

Let us assume that the attacker decides to play the action zero. The defender's choice

technique allows the defender to control the two rounds of the bisimulation game

starting at states simLj‖β and simL ′
j‖β. The two rounds end up in a pair of states

simLs‖β, simL ′
s‖β or in a pair of the form checkkβ, check ′

kY
m
k ‖β where m ≥ 1; all the other

12



choices of the defender lead to his loss. As in the previous case, the latter possibility

is designed to punish any possible attacker's cheating. The attacker is cheating if he

plays the action zero and the value of ck represented by β, say vk, is positive.1 In such a

case, the defender can control the two rounds to end up in states checkkβ, check ′
kY

vk
k ‖β

which are weakly bisimilar. If the attacker plays correctly, i.e. the value of ck repre-

sented by β is zero, then the defender has to control the two discussed rounds to end up

in states simLs‖β, simL ′
s‖β as the states checkkβ, check ′

kY
m
k ‖β are not weakly bisimilar for

any m ≥ 1. To sum up, the attacker's cheating can be punished by defender's victory. If the at-

tacker plays correctly, the only chance for both players to win is to end up after the two rounds in

states simLs‖β, simL ′
s‖β corresponding to the correct simulation of the considered instruction.

It has been argued that if each of the two players wants to win, then both players

will correctly simulate the computation of the machine N. The computation is �nite if

and only if the machine halts. The states simL1 and simL ′
1 are not weakly bisimilar in

this case. If the machine does not halt, the play is in�nite and the defender wins. Hence,

the two states are weakly bisimilar in this case. In other words, the states simL1 and simL ′
1

of the constructed wBPP ∆ are weakly bisimilar if and only if the Minsky 2-counter machine N

does not halt. Hence, we have proved the following theorem.

Theorem 3.3. Weak bisimilarity is undecidable for wBPP systems.

4 Weak Bisimilarity for More Restricted Classes

Here, we strengthen the results of the previous section. We show that weak bisimilar-

ity remains undecidable for both fcBPP and fcBPA systems and moreover this holds

even for their respective normed versions. Hence, weak bisimilarity is undecidable for

normed wBPP and normed wBPA as well.

4.1 Normed fcBPP

In this subsection, we show that weak bisimilarity is undecidable for normed fcBPP

systems.

1We do not have to consider the case when β represents a negative value of ck as such a state is
reachable in the game starting in states simL1, simL ′

1 only by unpunished cheating.
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Let ∆ be the wBPP system constructed in Subsection 3.2. We recall that given any

�xed Minsky machine N, we have constructed a wBPP system ∆ such that its states

simL1 and simL ′
1 are weakly bisimilar if and only if N does not halt.

Based on ∆, we now construct a fcBPP ∆ ′ and two of its states simL1‖D and simL ′
1‖D

such that they satisfy the same condition as given in the previous paragraph and more-

over ∆ ′ is normed in both of the states simL1‖D and simL ′
1‖D.

The constraint system of ∆ ′ is de�ned as follows.

ff

del

iiiiiiiiiiiii

uuu
uu

IIIII

UUUUUUUUUUUUU

check1

UUUUUUUUUUUUU check ′
1

III
II

check2

uuu
uu

check ′
2

iiiiiiiiiiiii

sim

tt

Let Const(∆ ′) = {D} ∪ Const(∆) and Act(∆ ′) = {norm} ∪ Act(∆), where D 6∈ Const(∆)

is a fresh process constant and norm 6∈ Act(∆) is a fresh action.

The set of rewrite rules ∆ ′ is constructed as follows.

(1) pt1
a

↪→ qt2 for all (pt1
a

↪→ qt2) ∈ ∆,

(2) ttD
norm
↪→ delD,

(3) delX
τ

↪→ delε for all X ∈ Const(∆ ′),

(4) delX
a

↪→ delX for all X ∈ Const(∆ ′) and a ∈ Act(∆).

The process constant D enables the norm action changing the value of the store onto

del. Starting in the state simL1‖D or simL ′
1‖D, every reachable state includes the process

constant D or the current value of the store has been already changed onto del. When-

ever the value of the store is set to del, the rules of type (3) can be used to make the state

normed. Hence, ∆ ′ is normed in both of the states simL1‖D and simL ′
1‖D.

The rewrite rules of the type (4) have been introduced as the result of the fact that

one cannot forbid any further applications of the type (1) rules in the considered fcBPP

systems.

Using the norm action in the game, weakly bisimilar states are received. As only the

attacker can decide for the action, this reconstruction of ∆ onto ∆ ′ does not change

the winning strategies discussed in Subsection 3.2. Hence the Theorem 3.3 can be

strengthen as follows.

Theorem 4.1. Weak bisimilarity is undecidable for normed fcBPP systems.
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4.2 Normed fcBPA

In this subsection, we show that the problem remains undecidable for normed fcBPA.

Our proof is a slightly extended translation of the proof for PDA of [14] into fcBPA

framework. We used the notation of [14] to make the proof comparable.

The proof is based on a reduction of Post's correspondence problem, which is known

to be undecidable [15].

Problem: Post's Correspondence problem (PCP)

Instance: A non-unary alphabet Σ and two ordered sets of words A = {u1, . . . , un}

and B = {v1, . . . , vn} where ui, vi ∈ Σ+.

Question: Do there exist �nitely many indices i1, . . . , im ∈ {1, . . . , n} such that

ui1 . . . uim = vi1 . . . vim?

Given any instance of PCP we now construct a normed fcBPA ∆ and two of its states

pTB, pT ′B such that pTB and pT ′B are weakly bisimilar if and only if the instance of PCP

has a solution.

A constraint system of ∆ contains elements tt, p, check1, check2, del, and ff that are

ordered as follows.

ff

del
nnnnnnn

PPPPPPP

check1

PPPPPPPP check2

nnnnnnnn

p

tt

We use process constants T, T ′, T1, T
′
1, T2, T

′
2, Gl, Gr, B and Ui, Vi for each 1 ≤ i ≤ n.

Actions of ∆ are a, b, c, τ,norm, 1, . . . , n and the letters of Σ. In what follows, U stands

for a sequential term of process constants of {Ui | 1 ≤ i ≤ n} and similarly V stands for

a sequential term of process constants of {Vi | 1 ≤ i ≤ n}.

Now, we construct a set of rewrite rules ∆. The �rst rules are exactly the same as

those of Mayr's proof and forms a defender's choice construction. The rewrite rules are
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as follows.
(1) pT

a
↪→ pT1

(2) pT
τ

↪→ pGr

(3) pT ′ τ
↪→ pGr

(4) pGr
τ

↪→ pGrVi for all i ∈ {1, . . . , n}

(5) pGr
a

↪→ pT ′
1

(6) pT1
a

↪→ pGl

(7) pT ′
1

a
↪→ pGlB

(8) pT ′
1

a
↪→ pT ′

2

(9) pGl
τ

↪→ pGlUi for all i ∈ {1, . . . , n}

(10) pGl
τ

↪→ pT2

If there is a solution of the instance of PCP, the defender can use these rules to �nish

the �rst two rounds of the bisimulation game (starting in pTB and pT ′B) in states pT2 UB

and pT ′
2VB, where U and V form a solution of the PCP instance. The discussed �rst two

rounds of the bisimulation game are depicted in Figure 2. We use the same notation for

arrows as in Subsection 3.2.

pTB

a

�� �A
�A
�A
�A
�A

τ

))

pT ′B

τ

��<
<<

<<
<<

<

pT1B

a

��

pGrB

τ∗

��

τ∗
//

...
τ∗

$$IIIIIIIIIIIII

pGlB

τ∗

��

τ∗
oo

...
τ∗

zzuuuuuuuuuuuuu
≈ pGlBVB pGrVB

a

��
pGl UB

τ

��

pT ′
1VB

a

�� �O
�O
�O
�O

a

gg

pT2 UB pT ′
2VB

Figure 2: The �rst two rounds of the bisimulation game.

The following six rules form two subsequent rounds of the bisimulation game and

allow attacker to decide whether to check equality of indices or equality of the letters of

U and V . In the �rst case, the attacker uses action b leading to the constraint check1, while

the second possibility is labelled by c and ends in the constraint check2. The rewrite rules
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are as follows.
(11) pT2

a
↪→ pT3 (12) pT ′

2

a
↪→ pT ′

3

(13) pT3
b

↪→ check1ε (14) pT ′
3

b
↪→ check1ε

(15) pT3
c

↪→ check2ε (16) pT ′
3

c
↪→ check2ε

Now, we list the rules that serve for the checking phases mentioned in the previous

paragraph. In rules (19) and (20), we use a short notation that can be easily expressed

by standard rules. The rewrite rules are as follows.

(17) check1Ui
i

↪→ check1ε for all i ∈ {1, . . . , n}

(18) check1Vi
i

↪→ check1ε for all i ∈ {1, . . . , n}

(19) check2Ui
ui
↪→ check2ε for all i ∈ {1, . . . , n}

(20) check2Vi
vi
↪→ check2ε for all i ∈ {1, . . . , n}

Finally, we add rules that make the system normed. The construction of rules (21)

and (22) is also discussed in Remark 30 of [14]. The rules of type (21) enables the norm

action changing the value of the store onto del. In any state, whenever the value of the

store is set to del, the rules of type (3) can be used to make the state normed. Hence, ∆

is normed in all of its states. The rules of type (23) make all states composed of the del

store and a non-empty term weakly bisimilar.

(21) ttX
norm
↪→ delX for all X ∈ Const(∆)

(22) delX
τ

↪→ delε for all X ∈ Const(∆)

(23) delX
x

↪→ delX for all X ∈ Const(∆) and x ∈ Act(∆)

Hence, we have strengthen the Mayr's result [14], Theorem 29 (also reformulated as

Theorem 3.2 of this paper) as follows.

Theorem 4.2. Weak bisimilarity is undecidable for normed fcBPA systems.

5 Conclusion

First, we have shown that the weak bisimilarity problem remains undecidable for

weakly extended versions of BPP (wBPP) and BPA (wBPA) process classes.

We note that the result for wBPA is just our interpretation (in terms of weakly ex-

tended systems) of Mayr's proof showing that the problem is undecidable for PDA

with two control states ([14], Theorem 29).

In terms of parallel systems, our technique used for wBPP is new. To mimic the

computation of a Minsky 2-counter machine, one has to be able to maintain its state
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information � the label of a current instruction and the values of the counters c1 and c2.

As the �nite-state unit of wBPP is weak, it cannot be used to store even a part of such

often changing information. Hence, contrary to the constructions in more expressive

systems (PN [6] andMSA [17]) we have made the term part to manage it as follows. In a

test-and-decrement instruction the process constant Lj has to be changed and moreover

one of the counters has to be decreased at the same time. As two process constants

cannot be rewritten by one wBPP rewrite rule, we introduce new process constants Y1

and Y2 to represent inverse elements to X1 and X2 respectively and we make a term

Xx
k‖Y

y
k to represent the counter ck the value of which is x − y. We note that the weak

state unit allows for controlling the correct order of the successive stages in the progress

of a bisimulation game.

Moreover, we show that our undecidability results hold even for more restricted

classes fcBPA and fcBPP and remain valid also for the normed versions of fcBPP and

fcBPA. Hence, they hold for normed wBPP and normed wBPA as well.

We recall that the decidability of weak bisimilarity is an open question for BPA and

BPP. We note that these problems are conjectured to be decidable (see [14] and [7] re-

spectively) in which case our results would establish a �ne undecidability border of

weak bisimilarity.
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