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Abstract

This report presents a robust syntactic parser that is able to return a “correct” deriva-
tion tree even if the grammar cannot generate the input sentence. The following
two steps solution is proposed: the finest corresponding most probable optimal
maximum coverage is generated first, then the trees from this coverage are glued
into one resulting tree. We discuss the implementation of this method with the SLP

toolkit and 1ibkp library.

There are many NLP applications (e.g. with speech recognition or dialog systems)
where it is difficult to find a context free grammar (CFG) that generates a sufficient sub-
set of the processed language (under-generation problem). In addition, when the cov-

erage of the grammar is improved, the accuracy usually decreases. Therefore our goal

*The author has been supported by Grant Agency of the Academy of Sciences of CR under the project
1ET400300414.
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Figure 1: Glued trees.

is to to develop a robust syntactic parser that is able to return a “correct” derivation tree
even if the grammar cannot generate the input sentence. The definition of correctness is
strongly dependent on the target application and our framework allows to change the
correctness criteria to fit various application needs. We propose the following two steps

solution:

e for the sentence to analyze, the finest corresponding most probable optimal maxi-

mum coverage (see sections 1 and 2) is generated first,

e then the possibly partial trees from this coverage are glued into one resulting tree

(see section 3).

Figure 1 shows a simple example of a possible result from the robust parsing mecha-

nism. The implementation of the robust parser is discussed in section 4.

1 Coverage

For a given sentence a coverage, with respect to an input grammar G, is a sequence of
non-overlapping, possibly partial, derivation trees, such that the concatenation of the
leaves of these trees corresponds to the whole input sentence.

Notice that the fact of restriction the coverages to derivation trees (i.e. trees verifying
the left most nonterminal rewrtiting convention) excludes coverages such a “coverage”

in figure 2.
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Figure 2: Partial trees, that can not be composed into a coverage.

Ts

Figure 3: Partial derivation trees. Some of them (e.g. T;,T,, T5 and T1',T4,T3:) can be

composed into a coverage.

For an arbitrary derivation tree T, the foliage f(T) is defined as the sequence of the
leaves of T. So for a coverage C = (T;, Ty, ..., Ty) of the input sentence wi, wy, ..., w,, , we

have:
f(T1)>f(T2)> ceey f(Tk) = Wi, W2, ..., Wn.

In other words, if we define fi(T) as i-th leaf of T, fi4st(T) as the last leaf of T then for

coverage C = (Tq, Ty, ...Ty) of the input sentence wy, w;, ..., w,, we have:

f] (T1) =Wy, flast(Tk) =Wn and

if fiast(Ti) =wjforsome 1 <i< kand 1 <j <nthen fi(Tit1) = wji.

Figure 3 shows a coverage C = (T, T, T3) consisting of trees Ty, T, and Ts. If there are
T, and T;, Ty is a subtree of tree T and T; is a subtree of T, then we also have coverage

C' = (T;, T4, T3). Conversely (Ty, T;) and (Ty, Ty, T3) are not coverages.



If there are no unknown words in the input sentence, then at least one trivial cov-
erage is obtained, consisting of the trees that all use only lexical rules (i.e. one rule per

tree).

1.1 Maximum coverage

A maximum coverage (m-coverage) is a coverage that is maximum with respect to the
partial order relation <, defined as reflexive and transitive closure of the hereafter de-
fined subsumed relation <.

The relation < is a relation over coverages such that, for any coverages C and C':

C' < Ciff 3i,j,k, 1 <i<k,1<jand there exists rule T in the grammar G such that
C= (T], ...,Ti, ...,Tk), C/ = (T], ...Ti_1,T1/,T2/, ...,T;,Ti+1, ...,Tk) and Ti =TO T{ o Tzl o Tj/,

i.e. if there exists a sub-sequence of trees in C’ that can be connected by rule r and the
resulting tree is element of C, the other trees in C’ being the same as in C. Notice that
the rule r can be a unary rule.

The relation < is defined as the reflexive and transitive closure of the relation <. The

relation < is also antisymmetric. If C "< Cand C < C’ then:

e If |C| denotes number of trees in the coverage C then IC'| < |C]and |C| < |C'|, sO
IC'|=ICl.

e IfC' < Cthen 3T, T,T e C,T' € C' such that T = r; 0 T’ for some unary rule T4
from grammar G. Ifalso C < C "then T’ = v, o T. But this is not possible, because
T =1, 0 T'. Notice that all the remaining corresponding trees in C and C’ have to
be the same. Thus C' # Cand C 4 C'. And also C = C’, because the relation < is

reflexive closure of the relation <.

As the relation < is reflexive, transitive and antisymmetric, it also corresponds to a
partial order on the set of all coverages of a given input sentence. A maximum coverage
(m-coverage) is a coverage that is maximum with respect to the < relation.

The coverage C; = (T3) in figure 4 is m-coverage. The coverage C, = (T;,T,) is
not maximum, because C, < C;. There is also another m-coverage C; = (T4). Notice
that C; and C; are not comparable by < relation. If there is a successful parse (a single
derivation tree that covers whole input sentence) then there are as many m-coverages

as full parse trees and every m-coverage contains only one tree.



Figure 4: An example to illustrate a maximum coverage.

1.2 Optimal m-coverage

In addition to maximality, we focus on optimal m-coverage, where optimality is defined
with respect to different measures. In contrast to maximality, which is generally defined
for the coevrages, the choice of a optimality measure depends on the target application.

We propose the following two measures:

o the first optimality measure S; relates to the average width (number of leaves) of
the derivation trees in the coverage. For an m-coverage C = (T, Ty, ... Tx) of input

sentence wi, w», ..., w,,, 1 > 1, we define

$1(C) = 5 (

—1).

Notice that 0 < §;(C) < T and 7 is the average width of the derivation trees in the
coverage. With this measure, the value of a trivial coverage (i.e. exclusively made

of lexical rules) is 0 and the value of a successful full parse is 1.

e The second measure favours coverages with the widest trees (trees with the largest

number of leaves). We define

]vmax(c) - r%’_leag |f(T)’

and

SZ(C) = L(]'nlmc((:) - 1)

n—1

for number of input words n > 1. Similarly to S;, 0 < S,(C) < 1, and the value

obtained for a trivial coverage is 0 and the value of a successful full parse is 1.
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Figure 5: An example to illustrate the notion of optimal m-coverage.

Several other optimality measures could be defined. For instance, an optimality
measure might be sensitive to the internal structure of the trees in a coverage, e.g. count
the number of nodes in trees. These additional criteria can be used in a combination
with measures S; and S..

Figure 5 illustrates m-coverages C; = (T;, T, T3) and C, = (T4, T5). The coverage
C; = (T;, Ty, T3) is not m-coverage. The coverage C, is more optimal for the measure
S1(S1(Cq) < §1(Cy)), but it is less optimal for the measure S, (S2(C2) < S2(C;)). Notice

that the coverages C; and C, are not comparable with the < relation.

1.3 Probability of a coverage

The probability of a coverage is defined as the product of the probabilities of the trees it

contains, i.e. for a coverage C we define

p(C) =] ]r(M.

TeC

Notice that, by construction, the probability of any coverage is always less than or
equal to the probability of the corresponding trivial coverage. The probability of a cov-
erage can be viewed as another optimality measure. So the most probable coverages
can be found in the same way as optimal m-coverages. But, usually we find all optimal
m-coverages (OMC) first (optimal with respect to some other measure then probability)
and then the most probable one is chosen. Both OMC and most probable OMC are not

necessarily unique.



2 Finding optimal m-coverage

We use a parsing algorithm that produces all possible incomplete parses (i.e. whenever
there exists a derivation tree that covers the part of the given input sentence, the algo-
rithm produce that tree). This condition is usually satisfied by bottom-up parsers. Then,
the incomplete parses can be combined to find the maximum coverage(s).

The described algorithm finds OMC with respect to the measure S; (the average
width of the derivation trees in the coverage), but it can be easily adapted to different
optimality measures.

All operations are applied to a set of Earley’s items [Ear70]. In particular, no changes
are made during the parsing phase (except some initialization of internal structures for
better efficiency of the algorithm).

The Dijkstra’s algorithm for shortest path problem in graphs is used to find OMCs
with respect to the measure S;. The input graph for the Dijkstra’s algorithm consists of
weighted edges and vertices. The edges are Earley’s items and the weight of each edge
is 1. The vertices are word positions, thus for n input words we have n + 1 vertices.
Whenever the Dijkstra’s algorithm finds paths with equal length (i.e. identical number
of items), we use the probability to select the most probable ones. Notice that, if we
assume that there are no unknown words, there exists at least one path from position 0
to n corresponding to the trivial coverage.

Figure 6 illustrates an example of the input graph for the Dijkstra’s algorithm for
Earley’s items [A, 0, 2], [B, 2,3], [C, 3,4], [D,0,1], [E,0,3], [F,1,4] and [G, 1, 2]. The short-
est paths are [E, 0, 3], [C, 3,4] and [D, 0, 1], [F, 1,4]. The paths correspond to two optimal
m-coverages with two trees in each coverage.

The output of the algorithm is a list of Earley’s items. The Earley’s item can represent
several derivation trees and, to get an OMC, the most probable tree from each item is
selected. The resulting OMC is not unique because there can be several trees with the

same probability.

3 Gluing

The intended result for our robust parser is a derivation tree covering the whole input
sentence. For this reason our goal is to connect (glue) the trees present in the OMC to

construct a single one.



Figure 6: The input graph for the Dijkstra’s algorithm and the corresponding derivation

trees.

3.1 Gluing with new rules

The gluing can be realized by adding new rule(s) to the grammar. We impose the con-
straint that the new rules use new non-terminals and just connect the roots of the trees
together. The probability of such rules is set to 1. Notice that there might be several
other ways of constructing a unique tree and therefore our choice mainly rely on tech-
nical reasons.

Figure 7 shows example with new rules S — XE XE — XEX, Xt — X, X — A, where
S is the root of the grammar, X and X' are new non-terminals and A; is the root of the
i-th tree in the coverage (we have three trees in this example). The dotted lines represent

newly added rules.

3.2 Gluing by means of mapping non-terminals

Another possibility is to create the top nodes of the resulting tree by the top-down pars-
ing algorithm and then to glue these top nodes with the selected coverage. Notice that,

for reasonable grammars, the tree with the following properties can be generated:



Figure 7: Gluing with new rules added to the grammar. Bottom bold trees are in OMC.

e the root is equal to the root of the grammar
e the number of leaves is equal to the number of trees in the coverage.

So, in this case, the gluing would be only a formula how to connect two non-terminals.
This approach is illustrated in figure 8. The dotted lines represent the mapping function.

We did not implemented this method, because there are many remaining unsolved
problems. The main challenge is to find out how to generate the top nodes with respect
to the input sentence. A possible track to explore is to consider approaches deriven from

head-corner parsing algorithm.

4 The implementation and tools

The SLP toolkit [CR98] is used to implement the above mentioned ideas. The SLP toolkit
provides fast and robust bottom-up chart parsing algorithm derived from Earley’s chart
parsing [Ear70] and CYK [Kas65, You67, AU72, GHR80]. We plan to create an interface
between the SLP toolkit and the 1ibkp [KSO03] to allow the sharing of the results from
these tools.

The tools presented in the next sections are already implemented. We also imple-

mented the algorithm which finds all coverages. The other methods suggested here are
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Figure 8: Gluing by means of mapping non-terminals. Bottom hatched trees are in
OMC.

planned for the further development. Our goal is to integrate the robust algorithm in

the SLP toolkit and the 1ibkp library.

4.1 Connection between 1ibkp and SLP toolkit

The main difference between 1ibkp and SLP toolkit is that 1ibkp uses a CFG augmented
by semantic actions (contextual constraints). In the following we describe a method
how, for a given sentence and CFG with actions, generate an equivalent CFG (without

actions), i.e. that both grammars produces the same parse trees.

4.1.1 Evaluating contextual constraints in 1ibkp

In 1ibkp every grammar rule has zero, one or more embedded semantic actions. The ac-
tions are computed bottom-up! (like in bison [CSH02]). These actions serve the purpose

of:
e computing a value used by another action at the higher level;
e throwing out incorrect derivation trees.

For example, the following grammar rule for genitive constructions in Czech has three

semantic actions:

INotice that we share derivation sub-trees and their values.
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npnl -> np np +0.0784671532846715
test_gen ( $$ $2 )
prop_all ( $$ $1 )
depends:1 ( $$ $1 $2 )

The first line contains a grammar rule with the probability obtained from a corpus.
The contextual constraints are listed on the new lines. The number after the colon repre-
sents the internal type of the action. We can turn on or off the evaluation of actions with
specified type. The $$ parameter represents the return value. The $n parameter is a vari-
able where we store a value of n-th nonterminal of the rule. Notice that the presented
notation does not have to be used directly by users. It can be generated automatically

from the meta-grammar format [SHO0].

4.1.2 The representation of the values

It was shown that parsing is in general NP-complete if grammars are allowed to have
agreement features [BBR87].

The pruning constraints in 1ibkp are weaker than general feature structures. It al-
lows us to have an efficient implementation with the following properties. A node in
the derivation tree has only limited number of values (e.g. the cardinality of the set for
noun groups in our system is max. 56 [SH00]).

We use a chart based parsing algorithm and the results of the parsing process is
stored in a packed shared forest of Earley’s items [Ear70]. To compute values we build
a new forest of values instead of pruning the original packed shared forest. The worst-
case time complexity for one node in the forest of values is therefore 56°, where § is
the length of the longest right-hand side grammar rule. Notice that this complexity is
independent of the number of words in the input sentence.

Values in the forest of values are linked with Earley’s items. Each item contains a
single linked list of its values. Each value has a reference to its item. The value holds
a single linked list of its children. The child is a one dimensional array of values. This
array represents one combination of values that leads to the parent value. There can be
more combinations of values that leads to the same value, e.g. 2 —1and 3 — 2 in a rule
for a minus operator in a grammar for arithmetic expressions in figure 9.

The i-th cell of the array contains a reference to a value from i-th symbol on the

RHS of the corresponding grammar rule. Notice that i-th symbol has not to be used to

11



e -> e "+" g

add ( $$ $1 $3 )

e -> e "_" g

sub ( $$ $1 $3 )

e > e "/" g
is_not_zero ( $3 )

div ( $$ $1 $3 )

e -> NUMBER
value_of ( $$ $1 )

Figure 9: Grammar with contextual constraints.

compute the parent value, e.g. the symbol "-" in the example in figure 9. We only use

reference to the item from such unused cell.

4.1.3 Generation of a grammar with values

We use the following procedure for every inactive item [i,j, A — X;X;...Xe] in the

chart:

e for every value v in the item, we generate the rule: A — A_value, where value is

an unique textual representation of the value v.

e for every child of the value v, we generate the rule: A_value — X;X;...X;, where

o/ .
X_1i is:

- Xi_value; if a value value; from i-th nonterminal is used to compute the

value v.

— X; otherwise.

Duplicate rules are removed.

Figure 10 shows the generated grammar for the input2 / 1 - 1 and the grammar
with actions from figure 9. Notice, that the input has two derivations trees in the original
grammar (if the actions are omitted), but the corresponding generated grammar gives

us only one derivation tree, because of the is_not_zero action.

12



e -> e_0

e > e_1
e -> e_2
e 0 ->e_1 "-"e_1

e_1 -> NUMBER

e_l ->e 2 "-"e_1
e_2 -> NUMBER
e_2 -> e 2 "/" e_l
Figure 10: Generated grammar with values for the input2 / 1 - 1.
4.2 Tools

Because our experiments were based on comparing trees by hand, we developed the

following utilities, that simplifies the work with trees from a corpora.

4.2.1 A tree with holes

The tree_with_holes utility helps user to check whether a given tree can be generated
by the grammar. If it can not be, then missing rules are marked, so they can be easily
detected.

The tree_with_holes utility prints, for any given tree, a tree with marked nodes.
The node in the input tree is marked if it is a part of non-grammatical rule. The root of
such non-grammatical rule is marked with (X) and leafs are marked with (X0).

Example:

e Grammar:

-> AB

1
\4

)a)

CD

vV Vv

)C)

’d)

o Q W = wn
|
v
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e Input tree:

S
/\
A B
| —_— —
a C C
c c

e Output tree:

S
A BX)
a C(X0)  C(X0)
c c

e The non-grammatical rule is B — CC.

4.2.2 The number of ties with the most probable parse

The number of trees with the probability equal to the probability of the most probable
parse is computed by the anagram utility (from SLP Toolkit) during the parsing process.
The computation is almost the same as for a number of all trees. The only difference is
when new sub-derivations are found. For the number of all trees, the number of the new
derivations is just added to a current total number of trees. For the number of ties, we
look at the maximum probability of the new derivations. If the maximum probability
is the same as a current maximum probability, then the number of ties from the new
derivations is added to the current number of ties. If the current maximum probability
is lower then the maximum probability of the new derivations, then the current number
of ties is replaced with the number of ties from the new derivations (and we also replace
the current maximum probability). Otherwise we do not change anything.

Numbers with a floating point are used to represent the probabilities. Because we
work with these floating point numbers during computation the number of ties, we
should avoid errors that comes from the fact that floating point numbers represents only
tinite subset of the real numbers (e.g. the multiplication is not associative operation on
the floating point numbers). However, a logarithmic representation of the probabilities
is used. Thus the problematic small numbers are big numbers in our representation. So

usually no special arithmetic is needed to compute the probabilities.

14



4.2.3 Is a given tree the most probable tree?

This tool is a simple shell script. First of all we check, with the utility tree_with_holes,
if the input tree can be generated by the grammar. If yes, the input sentence is extracted
from the input tree. In the next step all trees with probability equal to the most probable
parse are printed for the given input sentence. Notice that the number of these trees can
be exponential with respect of the length of the input. Then we test if our tree appears

in these trees.

5 Conclusion

In this report we presented our approaches to the robust stochastic parsing. We intro-
duced the optimal maximum coverage framework and several measures for the opti-
mality of the parser. Our definition of the maximality is independent of the target ap-
plication. On the other hand, the choice of an optimality measure is strongly application
dependent.

We proposed the algorithm that finds OMC (with respect to the measure average
width of derivation trees) efficiently. The implementation of this algorithm in SLP
toolkit was successfully used by Marita Ailomaa. The results of her experiments are
published in [Ail04]. In the future, the interface between libkp and SLP toolkit will

allow us to integrate contextual constraints into our robust parser.
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