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Abstract

We present an overview of equivalences of finite state structures and discuss meth-

ods for computing reduced structures on-the-fly. We evaluate merits of these reduc-

tions on a large set of model checking case studies. It turns out that the achieved

reduction can be significant, but that it is not so “drastic” as sometimes claimed in

the literature. We also propose some new reduction methods.

1 Introduction

Explicit finite state model checking is a successful technique for verification of concur-

rent systems and particularly communication protocols. It is based on an exhaustive

exploration of the whole state space of a given model. Even sophisticated verifica-

tion techniques like automatic abstraction refinement [13, 3] or compositional verifi-

cation [28] are, at the end, based on the exhaustive exploration of the state space. The

main limitation of the exhaustive exploration is the state explosion problem.

Specifications which are checked over the model are usually expressed in some tem-

poral logic. Temporal logics cannot distinguish between structures which are ’equiv-

alent’; the exact meaning of ’equivalent’ depends on the logic we are interested in.

Instead of checking the specification over the (very big) state space we can check it

over some (smaller) equivalent structure. One possibility is to generate the whole state

space, reduce it by suitable equivalence, and finally check the specification over the re-

duced structure. This approach, however, do not reduce the peak memory requirements

�Supported by GA ČR grant no. 201/03/0509 and the research centre ITI, project no. 1M0021620808
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which are the main practical limitation of model checking. Another possibility is to em-

ploy static analysis and use specific information about the model to compute a reduced

structure on-the-fly.

There are many techniques for such on-the-fly reduction. The most well-known are

symmetry reduction and partial order reduction. However, it is not clear what are the

practical merits of these reductions. Researchers usually demonstrate the effectiveness

of proposed reduction on just one or two (well selected) examples. Often we can find

claims about exponential or at least “drastic” reduction. Are these claims appropriate?

We make the following contributions to the field of on-the-fly state space reductions:

� We present a systematic overview of equivalences, connections to logics, and

methods for the on-the-fly computation of reduced structures.

� We present several new methods for on-the-fly reduction. First, we present re-

ductions preserving bisimulation which are based on identification of equivalent

values, equivalent states, and on linear transformations of variables. Second, we

present reductions preserving reachability which are based on boring states and

dominating values.

� We give a realistic evaluation of merits of discussed reductions. For the evaluation

we use three model checking tools and many case studies previously studied in

the literature. The results show that the effect of reductions can be significant but

it is not so drastic as often claimed in the literature.

2 Models, equivalences, and logics

In this section we discuss the basic theory behind state space reductions. We introduce

Kripke structures as a basic model of state spaces of concurrent systems and networks

of extended finite state machines as a basic modeling language. Then we define equiv-

alences between two Kripke structures.

2.1 Models

Let AP be a finite set of atomic propositions. Kripke structure over AP is a tuple M =

(S; s0;!; L) where S is a finite set of states, s0 2 S is an initial states, !� S � S is a

transition relation, and L : S! 2AP is a labeling function.
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As a modeling language we use networks of extended finite state machines (EFSM).

Let V be a finite set of variables (with a finite domain D � Z; 0 2 D). A guard g over V

is an expression over variables V (set of all guards is denoted guard(V)), effect f over V

is a sequence of assignments v := e, where v 2 V and e is an expression over V (set of

all effects is denoted effect(V)). An EFSM over V is a tuple A = (Q; l0;Act) where Q is a

finite set of location, l0 2 Q is an initial location, and Act � Q� guard(V)� effect(V)�Q

is a set of actions. A network of EFSM over V is a tuple N = (A1; : : : ; An) where each Ai

is an EFSM over V.

A valuation is a function  : V ! D. Let � be set of all valuations. The semantics

of guard ( j= g) and effect ( 0 = f()) is defined in standard way. We suppose that

the set of atomic propositions AP is given as a set of expressions over V. The semantics

of network N with respect to a set of propositions AP is a Kripke structure M(N) =

(S; s0;!; L) where

� S = Q1 � : : :�Qn � �

� s0 = (l10; l
2
0; : : : ; l

n
0 ; 0) where 0(v) = 0 for each v 2 V

� (l1; : : : ; li; : : : ln; ) ! (l1; : : : ; l
0

i; : : : ; ln; 
0) iff (li; g; f; l

0

i) 2 Acti and  j= g,  0 =

f().

� L(s) = fa 2 AP j s j= ag

In the following we use~l to denote a vector (l1; : : : ; ln) and Act =
S

Acti. We use the

standard substitution notation like [x := a] and~l[l 0i=li].

Modeling languages used in practice are extended with additional features, e.g.,

with more complex data domains and data structures, communication, or synchronous

execution. Most reductions can be straightforwardly modified to work with these ex-

tended modeling languages.

2.2 Equivalences

A path � in a Kripke structure is a (possibly infinite) sequence � = s0s1s2 : : : such that

8i � 0 : si ! si+1. Two paths � = s0s1 : : : and � 0 = s 0

0s
0

1 : : : are equivalent iff 8i � 0 :

L(si) = L(s 0

i). Paths �; � 0 are stutter equivalent iff there exists a partition B1; B2; : : : of �

and a partition B 0

1; B
0

2; : : : of � 0 such that 8j � 0 : blocks Bj; B 0

j are nonempty and finite

and 8s 2 Bj; s
0 2 B 0

j : L(s) = L(s 0). A state s is reachable in M iff there exists path from s0
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to s. State s is deadlocked iff 8s 0 2 S : s 6! s 0. An atomic proposition a 2 AP (respectively

deadlock) is reachable in M iff there exists a state s reachable in M such that s j= a

(respectively s is deadlocked).

For the rest of this section let M = (S; s0;!; L) and M 0 = (S 0; s 0

0;!
0; L 0) be two

Kripke structures with the same set of atomic propositions AP. We have several notions

of an equivalence between Kripke structures:

� The structures M;M 0 are reachability equivalent iff for each a 2 AP: a is reachable

in M, a is reachable in M 0.

� The structures M;M 0 are deadlock equivalent iff deadlock is reachable in M, dead-

lock is reachable in M 0.

� The structures M;M 0 are trace equivalent iff for each path � in M there exists an

equivalent path � 0 in M 0 and vice versa.

� The structures M;M 0 are stutter trace equivalent iff for each path � in M there exists

a stutter equivalent path � 0 in M 0 and vice versa.

� A relation R � S � S 0 is a simulation relation iff for all (s; s0) 2 R the following

hold:

– L(s) = L 0(s 0)

– For every s 0
! s 0

1 there exists s! s1 such that R(s1; s 0

1).

A state s simulates s 0 (denoted s � s 0) iff there exists simulation R such that (s; s0) 2

R. The structure M simulates M 0 (M � M 0) iff s0 � s 0

0. The structures M;M 0 are

simulation equivalent iff s0 � s 0

0 and s 0

0 � s0.

� A relation R � S � S 0 is a bisimulation relation iff R is symmetrical and R is a

simulation relation. States s; s0 are bisimilar (denoted s � s 0) iff there exists a bisim-

ulation relation R such that (s; s0) 2 R. The structures M;M 0 are bisimilar iff s0 � s 0

0.

� A relation R � S � S 0 is a stutter simulation relation iff for all (s; s0) 2 R the

following hold:

– L(s) = L 0(s 0)

– For every path � 0 in M 0 that starts in s0 there is a path � in M that starts in s, a

partition B1B2 : : : of �, and a partition B 0

1B
0

2 : : : of � 0 such that 8j 2 N : blocks

Bj and B 0

j are nonempty and finite, and 8t 2 Bj; t
0 2 B 0

j : (t; t
0) 2 R.
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The structures M;M 0 are stutter simulation equivalent iff there exists stutter simula-

tion relations R1; R2 such that (s0; s 0

0) 2 R1, (s 0

0; s0) 2 R2.

� Stutter bisimulation equivalence is defined analogically to bisimulation equivalence.

Figure 1 summarize relations among these equivalences and show which temporal

logic is preserved by which equivalence.

bisimulation
CTL�

vvlllllllllllll

((RRRRRRRRRRRRRR

stutter bisimulation
CTL�

-X

((QQQQQQQQQQQQQ

��

simulation
ACTL�

''OOOOOOOOOOOOO

vvmmmmmmmmmmmmm

stutter simulation
ACTL�

-X

((QQQQQQQQQQQQQ

trace equiv.
LTL

wwoooooooooooo

stutter equiv.
LTL-X

��
deadlock equiv. reachability equiv.

Figure 1: Relations among equivalences and temporal logics. For each equivalence we

give temporal logic which is preserved by the equivalence. Proofs of can be found

in [11, 21, 36].

3 Computing Reductions On-the-fly

The basic algorithm GENERATE(N) which generates the reachable part of the structure

M(N) is given in Fig. 2. The model generated by this algorithm is bisimilar to the full

structure M(N). Our aim is to modify this basic algorithm in such a way that it will

produce structure that is smaller and yet equivalent (up to one of the equivalences dis-

cussed above). In some cases we are able to perform the reduction by static transforma-

tion of the model prior to the exploration of the state space.
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All on-the-fly reductions depend on static analysis to compute some information

that is used for the reduction. We employ both data flow analysis techniques (e.g., live

variable analysis, reaching definitions, constant propagation) and control flow analy-

sis techniques. Most of the information can be computed by standard static analysis

algorithms. In some cases, it is quite challenging, particularly for extended modeling

languages with communication, synchronization, and more complex data types. We

may even employ model checker itself to compute the necessary information on some

abstract version of the model (this correspond to static analysis with abstract interpre-

tations). We can also employ theorem prover [6] or iterate between static analysis and

model checking [10].

1 proc GENERATE(N)

2 W = fs0g

3 while W 6= ; do

4 get s from W

5 add s to S

6 L(s) = fa 2 AP j s j= ag

7 foreach s! s 0 do

8 add (s; s 0) to R

9 if s 0 62 S [W then add s 0 to W fi

10 od

11 od

12 return (S; s0; R; L)

13 end

Figure 2: The basic algorithm

3.1 Reductions Preserving Bisimulation

Reductions preserving bisimulation are based on the notion of canonization function.

Let us add the line

s’ = canonize(s’)

after the line 7 of the basic algorithm. If the canonize function give unique representant

from each class then we obtain the bisimulation collapse (minimal bisimulation equiv-
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alent structure). However, it is not feasible to compute unique representant on-the-fly.

For the correctness of the algorithm it is sufficient that the canonization function re-

turns some bisimilar state, i.e., that 8s 2 S : canonize(s) � s. As long as the canonization

function can be performed efficiently, the modified algorithm involves no significant

overhead over the basic algorithm.

In the following we discuss several ways of computing the canonization function.

Note that different canonization functions can be straightforwardly combined.

3.1.1 Dead variables

A variable x 2 V is dead in a state (~l; ) 2 S iff for all a 2 D : (~l; ) � (~l; [x := a]).

Dead variables can be computed (respectively safely approximated) by standard static

analysis algorithms. We can get better results by incorporating a dependency analysis:

variables which cannot influence neither the control flow nor the value of variables

which occur in atomic propositions are dead — this idea is also called faith variable

analysis or cone of influence reduction. The definition of dead variables lends itself to

the canonization function: C((~l; )) = (~l;  0) where  0(x) = 0 if x is a dead variable and

 0(x) = (x) otherwise.

For extensions of the basic model the idea of dead variables can be extended:

� For models with arrays it is useful to consider that each individual position in

array can be dead. The static analysis is more complicated — it is useful to perform

“constant propagation” (in order to find constant array indexes) and “live range

analysis”.

� For models with message queues it is possible to generalize the notion of deadness

to the content of a queue [18].

� For timed automata it is customary to talk about “active clock reduction” [15].

3.1.2 Equivalent values

Values a; b 2 D are equivalent for a state (~l; ) 2 S and a variable x 2 V iff (~l; [x := a]) �

(~l; [x := b]). This is an extension of the idea of dead variables. Note that the region

constructions for timed automata [1] is in fact based on equivalent values. In the case of

timed automata, special symbolic representation is used for the whole set of equivalent

values.
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Static detection of equivalent values is more complicated than dead variables detec-

tion. It is possible for example in the following cases:

� Variable x is (locally) used only in expression x = k and for several values the same

action is performed, e.g., process is waiting for an reset signal, all other signals are

discarded.

� Monotone increasing variable x is used only in guards x � k, e.g., in (discrete) time

models and scheduling problems. In this case all values larger than the maximal

constant to which x is compared are equivalent.

We can use the following canonization function: C(~l; ) = (~l;  0) where  0(x) =

minfa j values a and (x) are equivalent values for (~l; ) and xg.

3.1.3 Equivalent states

We can also detect equivalent states. A local bisimulation relation on a machine Ai is a

relation R � Qi �Qi such that 8(l; l 0) 2 R:

� for each (l; g; f; l1) 2 Acti there exists (l 0; g; f; l 01) 2 Acti such that (l1; l 01) 2 R

� for each (l 0; g; f; l 01) 2 Acti there exists (l; g; f; l1) 2 Acti such that (l1; l 01) 2 R

It is, clearly, redundant to have two locally bisimilar locations in a model. More

formally, if li; l 0i 2 Qi and there exists a local bisimulation relation R � Qi�Qi; (li; l
0

i) 2 R

then (~l; ) � (~l[l 0i=li]; ). Equivalent states can be merged by static transformation prior

to the exploration of the state space.

3.1.4 Symmetry

Bisimulation relation can also be identified by exploiting symmetries in the model. Sym-

metries are formalized by the notion of an automorphism. An automorphism is a bijection

h : S ! S such that 8s 2 S : L(s) = L(h(s)) and s ! s 0
, h(s) ! h(s 0). If h is an auto-

morphism then 8s 2 S : s � h(s). Automorphisms can be detected by static analysis if

the model exhibit some kind of symmetry. As an elementary example consider network

N = (A1; : : : ; An; An+1; : : : ; Am) such that A1 = : : : = An are identical machines. Let

� be permutation on f1; : : : ; ng. Then h�((~l; )) = (~l[l�(1)=l1; : : : ; l�(n)=ln]; ) is an auto-

morphism. In this case we can use as a canonization function permutation which sorts
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first n locations in a state vector. This basic idea can be extended to a more general class

of models with the use of special data type scalarset [27] (only ’symmetrical operations’

are allowed over scalarset).

We propose another approach for detecting automorphisms which is based on linear

transformations. For the moment, let us suppose that the data domainD = Zn orD = Z.

We say that a set of variables V 0 � V is linearly transformable iff all uses of these variables

are either in guards x ./ y + k or in effects x := y + k (x; y 2 V 0; k 2 N). A typical

example of model with linearly transformable variables is an “alternating bit protocol”

(where D = Z2). Many other protocols use modular arithmetic as well.

Lemma 3.1 Let V 0 � V be a set of linearly transformable variables. Then the function

hk((~l; )) = (~l; [V 0 := V 0 + k]) is an automorphism for each k 2 D.

We can use following canonization function: we select one fixed variable v 2 V 0 and

then use canonize(~l; ) = h-(v)((~l; )), i.e., the canonization function always sets value

of v to zero.

3.2 Reductions Preserving Stutter Equivalences

Action � 2 Act is invisible iff 8s 2 S : L(s) = L(�(s)). On intuitive level, invisible

actions are not important for stutter equivalences. Thus we can do reductions which

change the order and the execution of invisible actions. Here we discuss the main idea

of several reductions based on this observation. First two reductions are ’static’ (based

on transformations of the model), the other three reductions are ’dynamic’ (based on

modification of the algorithm).

3.2.1 Slicing

Slicing identifies parts of the model that are relevant to the verified property [22]. Ac-

tions which cannot influence visible actions are removed by a static transformation of

the model prior to the state space exploration. The resulting model is stutter trace equiv-

alent to the original model.

3.2.2 Transition Merging

If there are two consecutive local invisible actions in the model then we can statically

merge them into one atomic action. This basic idea have been formalized in different
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ways and under different names. Each formalization preserves some stutter equiva-

lence: transition merging, transition compression (stutter trace equivalence) [30, 17, 24],

“next” heuristics (stutter simulation) [2], path reduction (stutter bisimulation) [38].

A special case of transition merging is loop acceleration. Loop acceleration aims at

reducing the ’fragmentation’ of state space caused by repeated execution of some simple

cycle. The cycle is statically substituted by meta-transition, which captures repeated

executions of the cycle. This techniques is usually used with some kind of symbolic

representation [8, 31, 23, 7].

3.2.3 Partial Order Reductions

Partial order reduction traverse only a subset of all enabled actions in a given state. We

use the basic algorithm with the line 7 changed into:

foreach s 0 2 f�(s) j � 2 ample(s)g do

According to the exact requirements on the function ample we obtain structure that

can be deadlock equivalent, reachability equivalent for local properties [20], stutter

trace equivalent [35], stutter simulation equivalent [36], or stutter bisimulation equiv-

alent [19]. The basic requirement is that actions in ample ’commute’ with other actions

(this is formalized by the notion of independence).

3.2.4 Confluence

Similar strategy is based on the identification of �-confluent actions [6, 33] — invisible

actions which satisfy some additional confluence requirements (which are similar to the

independence requirements of partial order reduction). On-the-fly reduction algorithm

work either in the same way as the modified algorithm for partial order reduction, i.e.,

by choosing only subset of enabled actions (�-prioritization [33]) or by using �-confluent

actions to compute canonization function [6]. In both cases the reduced structure is

stutter bisimilar to the original one.

3.2.5 Simultaneous Reachability Analysis

When faced with several possible interleavings of independent and invisible actions,

partial order reduction tries to traverse only one of these interleavings. Simultaneous

reachability analysis rather tries to perform all these actions at once [32, 37], i.e., instead
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of executing individual actions it executes combined actions. To preserve correctness it

is necessary that there is no dependence among combined actions and that there is at

most one visible action in the combined action.

3.3 Reductions Preserving Reachability and Deadlock Equivalences

If we are interested only in the reachability of atomic propositions or deadlock states we

can even stop the search in some appropriate states. Here we discuss several ways how

to detect such appropriate states. In the following let a be an atomic proposition.

3.3.1 Doomed States

We say that a state s is a-doomed (deadlock-doomed) if we can guarantee that some state

satisfying a (deadlock) is reachable from s.

De Alfaro et al. [16] detect doomed states with the use of the notion of uncontrol-

lability. A location of a machine is uncontrollable if no environment can prevent the

machine from reaching a state satisfying a.

For analysis of deadlock-doomed states we can employ an analysis of local cycles. A

covering set [29, 5] is a set of actions such that each cycle in the structure M(N) contains

at least one of these actions. A covering set can be computed by static analysis of local

cycles of individual machines and it is often very small [5]. Let (~l; ) be a state such that

from no li it is possible to reach in a machine Ai an action in a covering set. Then this

state is deadlock-doomed.

3.3.2 Boring States

We say that a state s is a-boring (deadlock-boring) if we can guarantee that no state reach-

able from s satisfies a (is deadlocked).

For the detection of boring states we can employ the notion of progress function

which was proposed for the sweep line method of state space exploration [12]. Function

f is a progress function if q! q0
) f(q) � f(q 0). If we can show that 8q j= a : f(q) � k

then each state q such that f(q) > k is a-boring. The progress function usually needs to

be provided by the user.

Boring states can also be detected by analysis of abstract models. Let a be a sound

abstraction function, i.e., M � a(M). If no state satisfying a is reachable from a(s) in an

abstract structure a(M) then the state s is boring in the structure M.
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3.3.3 Dominating Values and States

If s � s 0 then it is sufficient to visit successors of the state s in the reachability analysis.

Thus we can modify the basic algorithm by changing the line 9 into:

if not(9s 00 : s 00 2 S [W^ s 0 � s 00) then add s 0 to W fi

In this case the number of visited states during the search depends on the order in

which states are visited. We demonstrate in section 4 that in practice there are quite

significant differences between breadth-first and depth-first search order. Nevertheless,

the correctness is ensured for each order of visits.

In order to apply this method we need to be able to safely approximate the sim-

ulation relation s � s 0. This can be done by analysis of dominating values. Let

(~l; ) 2 S and x 2 V. We say that value a 2 D dominates b 2 D for (~l; ) and x if

(~l; [x := a]) � (~l; [x := b]). This is an extension of the notion of equivalent values.

The fact that one value dominates another can be detected by analyzing monotone vari-

ables. If x is a monotone increasing variable which is used only in guards x � k then

smaller values of x dominate larger values. This situation occurs in models with dis-

crete time (for dense time we have described reduction based on similar observation

in [4]), in scheduling problems, in models with restricted number of occurrences of cer-

tain event (e.g., bounded retransmission protocol), or in cryptographic protocols (the

intruder knowledge represented by boolean variables is monotone). Similar reason-

ing works for other combinations of increasing/decreasing variables and lower/upper

bounds.

In a similar way as we can identify equivalent states by local bisimulation relation,

we can define local simulation relation on machines and use it for identification of sim-

ulation between states.

4 Evaluation

For most of the discussed methods it is easy to come up with an (artificial) example on

which the reduction gives exponential or at least very significant improvement. Unfor-

tunately, many authors evaluate their techniques on such examples. Moreover, reduc-

tion techniques are often evaluated on toy models with high values of parameters —

this makes state spaces big and reductions significant. However, in real usage of model

checkers models are complex and parameter values are low; very rarely it happens that
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the model is correct for low values of parameters and erroneous for high values. In [34]

we argue that experiments on such toy models can lead to misleading conclusions. In

this section we provide an evaluation of merits of individual reductions on realistic

models. It turns out that the reduction is more temperate than often claimed.

Most of the models that we use for the evaluation are well-known model checking

case studies: alternating bit protocol, Peterson’s mutual exclusion protocol, bounded

retransmission protocol, I-protocol, firewire link protocol, leader election protocol, real-

time Ethernet protocol, cache coherence protocol, firewire tree identification protocol,

file transfer protocol, X.509 authentication protocol, Needham-Schroeder protocol, pro-

duction cell case study, etc.

The evaluation was done with three explicit model checkers: Spin (version 4.0.6),

Murphi (version 3.1), and DiVinE (a prototype of a model checker developed in our

laboratory1).

We discuss to what kind of models each reduction is suitable, we summarize ex-

perimental results in other papers and report about the effect of the reduction on our

models. We also discuss the run-time overhead of the reduction and the ’complexity’

of its implementation. We give results only on those models on which the reduction

had some effect. We present only the number of states in full and reduced structure.

Reduction with respect to the number of transitions is usually very similar.

4.1 Dead variables

Dead variable reduction can reduce the size of the state space up to 10% of the size of the

full state space (see Table 1). Yorav [38] gives similar results on four software models.

Bozga et al. [18] reports more impressive reduction but only on one parametric model.

This reduction strategy is applicable to a wide class of models and it brings nearly no

run-time overhead. For local variables, which are responsible for most of the reduction,

we can perform the canonization by static transformation. Dead variables are easy to

detect statically; it becomes more challenging only for arrays and more complex data

types.

We have not implemented the equivalent values reduction. The manual inspection

of models suggests that this method improves over dead variable reduction only in few

cases and that the improvement is not very significant. Moreover, the static analysis

needed for this reduction is quite complicated.

1http://anna.fi.muni.cz/divine/
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Table 1: Results for dead variables reduction and POR

Dead variables (DiVinE) POR (Spin)

Model Full Reduced Model Full Reduced

rether 10,462 1,192 11.3% cambridge 146,471 6,298 4.2%

synapse 13,973 1,981 14.1% erathostenes 25,295 2,093 8.2%

peterson 12,498 2,376 19.0% snoopy 61,619 9,707 15.7%

brp 4,792 1,571 32.7% smcs 4,634 1,196 25.8%

production_cell 77,416 32,854 42.4% mobile 30,652 9,971 32.5%

iprotocol_good 29,994 12,770 42.5% pftp 144,813 47,356 32.7%

firewire 55,887 24,323 43.5% i-protocol 2,207,190 919,978 41.7%

abp 11,286 5,652 50.0% relay 876 442 50.4%

bridge 3,186 1,676 52.6% peterson 30,432 16,720 54.9%

tip 86,556 49,082 56.7% brp 290,174 169,208 58.3%

elevator 1,139 723 63.4% X.509 9,028 6,094 67.5%

bakery 109,144 84,517 77.4% sgc 299,270 293,126 97.9%

cambridge 8,592 6,962 81.0% sliding 16,441 14,645 89.0%

resistance 151,587 129,177 85.2% giop 638,525 638,520 99.9%
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4.2 Partial order reduction

Notwithstanding the large body of theoretical work about partial order reduction meth-

ods, the number of studies concerning practical results of partial order reduction is

rather small. Godefroid [20] gives evaluation on four realistic models. The sizes of

reduced structures are between 3% and 55% of the size of original structure. Clarke

at el. [14] reports similar results on three realistic models. Table 1 presents results of

our experiments. The size of reduced structure is between 4% and 99%. Partial order

reduction is applicable mainly to models with loosely coupled processes. For many of

our models, which use either lot of rendezvous communication or shared variables, the

method is not applicable.

The run-time overhead and complexity of static analysis depends on the quality of

the reduction which we want to achieve. In our experiments we use the tool Spin. Spin

uses a rather conservative approach which sacrifices some possible reduction for low

overhead [25].

Confluence and simultaneous reachability analysis, other two techniques based on

similar ideas as partial order reduction, have comparable results [33, 6, 32].

4.3 Symmetry reduction

Symmetry reductions based on permutations can, in theory, achieve reduction up to

n! where n is the number of symmetrical entities. Table 2 presents practical results.

Experiments were done in the tool Murphi on the set of model which was used by

Dill and Ip [27]. We have just parametrized protocols by smaller values. This gives

more realistic evaluation: the size of reduced structure is between 8% and 50%. Simillar

results were reported by Bosnacki et al. [9] in Symmetric Spin and by Iosif [26] for object

oriented programs.

The method is, of course, applicable only to models with symmetrical entities. Typ-

ical applications are cache coherence protocols, protocols over bus with several sym-

metrical parties, models with several symmetrical agents. The run-time overhead is

non-trivial due to the computation of canonization function. Some reduction can be

sacrificed for lower overhead. The detection of symmetries can be done fully automati-

cally only in special cases. For practical purposes it is necessary to extend the modeling

language with special ’symmetric constructs’ (e.g., scalarset [27]).
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Table 2: Results for symmetry reduction and linear transformations

Symmetry reduction (Murphi) Linear transformations (DiVinE)

Model Full Reduced Model Full Reduced

cache 67,418 5,629 8.3% cambridge 827 222 26.8%

list4 8,893 1,489 16.7% abp 11,286 5,958 55.1%

peterson3 882 172 19.5% brp 14,720 8,121 55.2%

eadash 1,694 425 25.0%

sci 18,059 4,525 25.0%

ldash 740 372 50.2%

4.4 Linear transformations

This reduction is usable only for restricted set of models. The effect of the reduction is

proportional to the size of domain of linearly transformable variables. Table 2 presents

results for three protocols. The run-time overhead is neglible, but the static detection

of a set of lineary transformable variables is not easy. It is profitable to introduce to the

modeling language a new data type for domain Zn.

4.5 Static transformations

Our experience suggests that the effect of static transformations (merging of equivalent

states, slicing, transition merging, loop acceleration) is not very dependent on the type

of an application, but rather on the experience and the modeling style of a user and

on possibilities of a modeling language. An experienced user can perform lot of the

static transformations manually (even unconsciously). Most of our models were crafted

by experienced users in rather low-level modeling formalisms and therefore these re-

ductions are not very efficient for them. Table 3. presents results for models on which

the transition merging technique was applicable. Dong and Ramakrishnan [17] report

much better effect of these reduction. We suspect that this is because their modeling

language do not contain atomic constructs (as opposed to Spin and DiVinE). Kurshan

et al. [30], Yorav [38], and Holzmann [24] report results slightly better than we have ob-

tained. Holzmann supports our claims about the dependence on modeling style of the

user as he shows that by manual re-modeling he can achieve very significant reduction.
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Table 3: Results for transition merging

Transition merging (Spin) Transition merging (DiVinE)

Model Full Reduced Model Full Reduced

sgc 607,750 299,270 49.2% iprotocol 29,994 6,445 21.5%

erathostenes 47,669 25,295 53.0% rether 10,462 6,970 66.6%

pftp 207,481 144,813 69.7% resistance 151,587 108,095 71.3%

cambridge 166,510 146,471 87.9% krebs 7,869 6,027 76.6%

snoopy 67,656 61,619 91.0% firewire 55,887 45,155 80.8%

peterson 33,434 30,432 91.0%

smcs 5,066 4,634 91.4%

X.509 9,760 9,028 92.5%

brp 309,676 290,174 93.7%

mobile 32,668 30,652 93.8%

We suppose that static transformations will be very important for models automat-

ically generated from high level description languages and models created by ’naive’

users who are not familiar with the underlying model checking algorithms. This type

of application is becoming more and more important. In order to convincingly evaluate

these techniques, it will be necessary to perform experiments on a large set of models

created by non-expert users. At this moment, it is difficult to obtain such a set.

Static transformations do not bring any run-time overhead nor any changes to the

model checker itself. This makes them very plausible.

4.6 Dominating values

Table 4 presents results of the reduction based on dominating values. This reduction

is applicable only to models which contain some one-way bounded monotone variable

— for our models it was either discrete time variable or counter for number of lost

messages. The automatic detection of suitable monotone variable is not easy. It is better

to let user give us some hints, e.g., by introducing special data type.

The technique involves non-trivial run-time overhead because we need to check

whether the current state is simulated by some previously visited state. This check

can be implemented by the following way. The identification of simulation relation is

usually based only on some small part of the state vector (e.g., one monotone variable).
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Table 4: Results for reduction based on dominating values

Model Full Reduced (BFS) Reduced (DFS)

jobshop 322,330 13,802 4.2% 116,769 36.2%

naive protocol 3,726 648 17.3% 923 24.7%

bridge 3,186 707 22.2% 1579 49.6%

fischer 1,670 704 42.1% 867 51.9%

abp 65,358 27,792 42.6% 30,647 47.0%

logistics 330,636 149,969 45.3% 306,776 92.7%

For computation of a hash function we use only the part of the state vector which do not

influence the identification of simulation relation. In this way all possible ’candidate’

states end up in a same collision list. We search this collision list exhaustively and make

a check for simulation.

As we have already noted in section 3.2, the reduction obtained by this method de-

pends on the order in which states are visited. Table 4 shows that breadth-first order is

better than depth-first order.

5 Summary

In this paper we provide a catalog of on-the-fly state space reduction techniques, in-

cluding some novel ones, and a realistic evaluation of merits of these techniques. Our

results can be summarized as follows:

� Each technique is applicable to some class of models. Nothing works really uni-

versally. More specialized techniques yield better reduction.

� On real models, no single reduction is able to reduce the size of the state space sig-

nificantly under 5%. Claims about drastic reduction, which occur in some papers,

are not really appropriate.

� Since there are many techniques and many of them are orthogonal, most mod-

els can be reduced quite significantly. Certainly, it is useful to implement these

reductions.

� The reduction obtained depends not only on application domain, but also on the

user’s modeling style. Some reductions, particularly those based on static trans-
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formation of the model, do not bring nearly no improvement when applied to

models crafted by expert users but can be very efficient on models created by non-

expert users.

We have also proposed some new reductions. The equivalent states and equivalent

values reductions are not very useful for our current set of models. However, we sup-

pose that these reductions will be useful for models created by non-expert users. The

linear transformation reduction is applicable mainly to protocols with modular arith-

metics. The boring states reduction and dominating values reduction are applicable

mainly to models of scheduling problems.
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