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On the Decidability of Temporal Properties of
Probabilistic Pushdown Automata

Tomáš Brázdil∗ Antonín Kučera† Oldřich Stražovský

Abstract

We consider qualitative and quantitative model-checking problems for probabilis-

tic pushdown automata (pPDA) and various temporal logics. We prove that

the qualitative and quantitative model-checking problem for ω-regular proper-

ties and pPDA is in 2-EXPSPACE and 3-EXPTIME, respectively. We also prove

that model-checking the qualitative fragment of the logic PECTL∗ for pPDA is in

2-EXPSPACE, and model-checking the qualitative fragment of PCTL for pPDA is

in EXPSPACE. Furthermore, model-checking the qualitative fragment of PCTL is

shown to be EXPTIME-hard even for stateless pPDA. Finally, we show that PCTL

model-checking is undecidable for pPDA, and PCTL+ model-checking is undecid-

able even for stateless pPDA.

1 Introduction

In this paper we concentrate on a subclass of discrete probabilistic systems (see, e.g.,

[Kwi03]) that correspond to probabilistic sequential programs with recursive procedure

calls. Such programs can conveniently be modeled by probabilistic pushdown automata

(pPDA), where the stack symbols correspond to procedures and global data is stored in

the finite control. This model is equivalent to probabilistic recursive state machines, or

recursive Markov chains (see, e.g., [AEY01, EY05, EY]). An important subclass of pPDA

are stateless pPDA, denoted pBPA1. In the non-probabilistic setting, BPA are often eas-

ier to analyze than general PDA (i.e., the corresponding algorithms are more efficient),
∗Supported by the Grant Agency of the Czech Republic, grant No. 201/03/1161.
†Supported by the Alexander von Humboldt Foundation and by the research centre “Institute for

Theoretical Computer Science (ITI)”, project No. 1M0021620808.
1This notation is borrowed from process algebra; stateless PDA correspond (in a well-defined sense)

to processes of the so-called Basic Process Algebra.
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but they still retain a reasonable expressive power which is sufficient, e.g., for modelling

some problems of interprocedural dataflow analysis [EK99]. There is a close relation-

ship between pBPA and stochastic context-free grammars. In fact, pBPA are stochas-

tic context-free grammars, but they are seen from a different perspective in the setting

of our paper. We consider the model-checking problem for pPDA/pBPA systems and

properties expressible in probabilistic extensions of various temporal logics.

The State of the Art. Methods for automatic verification of probabilistic systems have

so far been examined mainly for finite-state probabilistic systems. Model-checking al-

gorithms for various (probabilistic) temporal logics like LTL, PCTL, PCTL∗, probabilis-

tic µ-calculus, etc., have been presented in [LS82, HS84, Var85, HJ94, ASB+95, CY95,

HK97, CSS03]. As for infinite-state systems, most works so far considered probabilis-

tic lossy channel systems [IN97] which model asynchronous communication through

unreliable channels [BE99, ABIJ00, AR03, BS03, Rab03]. The problem of deciding prob-

abilistic bisimilarity over various classes of infinite-state probabilistic systems has re-

cently been considered in [BKS04]. Model-checking problems for pPDA and pBPA pro-

cesses have been studied in [EKM04]. In [EKM04], it has been shown that the qualita-

tive/quantitative random walk problem for pPDA is in EXPTIME, that the qualitative

fragment of the logic PCTL is decidable for pPDA (but no upper complexity bound was

given), and that the qualitative/quantitative model-checking problem for pPDA and a

subclass of ω-regular properties definable by deterministic Büchi automata is also de-

cidable. The reachability problem for pPDA and pBPA processes is studied in greater

depth in [EY05], where it is shown that the qualitative reachability problem for pBPA

is solvable in polynomial time, and a fast-converging algorithm for quantitative pPDA

reachability is given.

Our Contribution. In this paper we continue the study initiated in [EKM04]. We

still concentrate mainly on clarifying the decidability/undecidability border for model-

checking problems, but we also pay attention to complexity issues. Basic definitions

together with some useful existing results are recalled in Section 2. As a warm-up,

in Section 3 we show that both qualitative and quantitative model-checking problem

for ω-regular properties and pPDA is decidable. More precisely, if ω-regular proper-

ties are encoded by Büchi automata, then the qualitative variant of the problem is in

2-EXPSPACE, and the quantitative one is in 3-EXPTIME. The proof is obtained by

extending and modifying the construction for deterministic Büchi automata given in

[EKM04] so that it works for Muller automata. Note that the considered problems are

2



known to be PSPACE-hard even for finite-state systems [Var85]. The core of the paper is

Section 4. First we prove that model-checking general PCTL is undecidable for pPDA,

and model-checking PCTL+ is undecidable even for pBPA. Since the structure of formu-

lae which are constructed in our proofs is relatively simple, our undecidability results

hold even for fragments of these logics. From a certain point of view, these results are

tight (see Section 4). Note that in the non-probabilistic case, the model-checking prob-

lems for logics like CTL, CTL∗, or even the modal µ-calculus, are decidable for PDA. Our

undecidability proofs are based on a careful arrangement of transition probabilities in

the constructed pPDA so that various nontrivial properties can be encoded by specify-

ing probabilities of certain events (which are expressible in PCTL or PCTL+). We believe

that these tricks might be applicable to other problems and possibly also to other mod-

els. In the light of these undecidability results, it is sensible to ask if the model-checking

problem is decidable at least for some natural fragments of probabilistic branching-time

logics. We show that model-checking the qualitative fragment of the logic PECTL∗ is de-

cidable for pPDA, and we give the 2-EXPSPACE upper bound. For the qualitative frag-

ment of PCTL we give the EXPSPACE upper bound. We also show that model-checking

the qualitative fragment of PCTL is EXPTIME-hard even for pBPA processes. Our proof

is a simple modification of the one given in [Wal00] which shows EXPTIME-hardness

of the model-checking problem for (non-probabilistic) CTL and PDA.

2 Preliminaries

For every alphabet Σ, the symbols Σ∗ and Σω denote the sets of all finite and infinite

words over the alphabet Σ, respectively. The length of a given w ∈ Σ∗ ∪ Σω is denoted

|w| (if w ∈ Σω then we put |w| = ω). For every w ∈ Σ∗ ∪ Σω and every 0 ≤ i < |w|,

the symbols w(i) and wi denote the i+1-th letter of w and the suffix of w which starts

with w(i), respectively. By writing w(i) or wi we implicitly impose the condition that

the object exists.

Definition 2.1. A Büchi automaton is a tuple B = (Σ,B, ρ, bI,Acc), where Σ is a finite alpha-

bet, B is a finite set of states, ρ ⊆ B×Σ×B is a transition relation (we write b a
−→ b ′ instead

of (b, a, b ′) ∈ ρ), bI is the initial state, and Acc ⊆ B is a set of accepting states.

A wordw ∈ Σω is accepted by B if there is a run of B onwwhich visits some accepting

state infinitely often. The set of all w ∈ Σω which are accepted by B is denoted L(B).
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Definition 2.2. A probabilistic transition system is a triple T = (S,−→,Prob) where S is

a finite or countably infinite set of states, −→ ⊆ S × S is a transition relation, and Prob is a

function which to each transition s −→ t of T assigns its probability Prob(s −→ t) ∈ (0, 1] so that

for every s ∈ S we have that
∑
s−→t Prob(s −→ t) ∈ {0, 1}. (The sum above can be 0 if s does not

have any outgoing transitions.)

In the rest of this paper we write s x
−→ t instead of Prob(s −→ t) = x. A path in T is a

word w ∈ S∗ ∪ Sω such that w(i−1) −→ w(i) for every 1 ≤ i < |w|. A run is a maximal

path, i.e., a path which cannot be prolonged. The sets of all finite paths, all runs, and all

infinite runs of T are denoted FPath, Run, and IRun, respectively2. Similarly, the sets of

all finite paths, runs, and infinite runs that start in a given s ∈ S are denoted FPath(s),

Run(s), and IRun(s), respectively.

Each w ∈ FPath determines a basic cylinder Run(w) which consists of all runs that

start with w. To every s ∈ S we associate the probabilistic space (Run(s),F ,P) where

F is the σ-field generated by all basic cylinders Run(w) where w starts with s, and

P : F → [0, 1] is the unique probability function such that P(Run(w)) = Π
|w|−1
i=1 xi where

w(i−1)
xi−→ w(i) for every 1 ≤ i < |w| (if |w| = 1, we put P(Run(w)) = 1).

The logics PCTL, PCTL+, PCTL∗, PECTL∗, and their qualitative fragments.

Let Ap = {a, b, c, . . . } be a countably infinite set of atomic propositions. The syntax of

PCTL∗ state and path formulae is given by the following abstract syntax equations (for

simplicity, we omit the bounded ‘until’ operator from the syntax of path formulae).

Φ ::= tt | a | ¬Φ | Φ1 ∧Φ2 | P∼ρϕ

ϕ ::= Φ | ¬ϕ | ϕ1 ∧ϕ2 | Xϕ | ϕ1 U ϕ2

Here a ranges over Ap, ρ ∈ [0, 1], and ∼ ∈ {≤, <,≥, >}. The logic PCTL is a fragment of

PCTL∗ where state formulae are defined as for PCTL∗ and path formulae are given by

the equation ϕ ::= XΦ | Φ1 U Φ2. The logic PCTL+ is a fragment of PCTL∗ where the

X and U operators in path formulae can be combined using Boolean connectives, but

they cannot be nested. Finally, the logic PECTL∗ is an extension of PCTL∗ where only

state formulae are introduced and have the following syntax:

Φ ::= tt | a | ¬Φ | Φ1 ∧Φ2 | P∼ρB
2In this paper, T is always clear from the context.
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Here B is a Büchi automaton over an alphabet 2{Φ1,··· ,Φn}, where each Φi is a PECTL∗

formula.

Let T = (S,−→,Prob) be a probabilistic transition system, and let ν : Ap → 2S be a

valuation. The semantics of PCTL∗ is defined below. State formulae are interpreted over

S, and path formulae are interpreted over IRun. (Alternatively, path formulae could also

be interpreted over Run. This would not lead to any problems, and our model-checking

algorithms would still work after some minor modifications. We stick to infinite runs

mainly for the sake of simplicity.)

s |=ν tt

s |=ν a iff s ∈ ν(a)

s |=ν ¬Φ iff s 6|=ν Φ
s |=ν Φ1∧Φ2 iff s |=ν Φ1 and s |=ν Φ2

s |=ν P∼ρϕ iff P({w∈IRun(s) | w|=νϕ})∼ρ

w |=ν Φ iff w(0) |=ν Φ

w |=ν ¬ϕ iff w 6|=ν ϕ
w |=ν ϕ1∧ϕ2 iff w |=ν ϕ1 and w |=ν ϕ2

w |=ν Xϕ iff w1 |=ν ϕ

w |=ν ϕ1 U ϕ2 iff ∃j ≥ 0 : wj |=ν ϕ2 and

wi|=
νϕ1 for all 0≤i<j

For PCTL, the semantics of path formulae is redefined to

w |=ν XΦ iff w(1) |=ν Φ

w |=ν Φ1 U Φ2 iff ∃j ≥ 0 : w(j) |=ν Φ2 and w(i) |=ν Φ1 for all 0 ≤ i < j

The semantics of a PECTL∗ formula P∼ρB, where B is a Büchi automaton over an

alphabet 2{Φ1,··· ,Φn}, is defined as follows. First, we can assume that the semantics

of the PECTL∗ formulae Φ1, · · · ,Φn has already been defined. This means that for

each w ∈ IRun we can define an infinite word wB over the alphabet 2{Φ1,··· ,Φn} by

wB(i) = {Φ ∈ {Φ1, · · · ,Φn} | w(i) |=ν Φ}. For every state s, let Run(s,B) = {w ∈
IRun(s) | wB ∈ L(B)}. We stipulate that s |=ν P∼ρB iff P(Run(s,B)) ∼ ρ.

The qualitative fragments of PCTL, PCTL∗, and PECTL∗, denoted qPCTL, qPCTL∗, and

qPECTL∗, resp., are obtained by restricting the allowed operator/number combinations

in P∼ρϕ and P∼ρB subformulae to ‘≤ 0’ and ‘≥ 1’, which can also be written as ‘= 0’

and ‘= 1’, resp. (Observe that ‘< 1’, ‘> 0’ are definable from ‘≤ 0’, ‘≥ 1’, and negation.)

Probabilistic PDA.

A probabilistic pushdown automaton (pPDA) is a tuple ∆ = (Q, Γ, δ,Prob) where Q is a

finite set of control states, Γ is a finite stack alphabet, δ ⊆ Q× Γ ×Q× Γ ∗ is a finite transition

relation (we write pX −→ qα instead of (p, X, q, α) ∈ δ), and Prob is a function which to
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each transition pX −→ qα assigns its probability Prob(pX −→ qα) ∈ (0, 1] so that for all

p ∈ Q and X ∈ Γ we have that
∑
pX−→qα Prob(pX −→ qα) ∈ {0, 1}.

A pBPA is a pPDA with just one control state. Formally, a pBPA is understood as a

triple ∆ = (Γ, δ,Prob) where δ ⊆ Γ × Γ ∗.
In the rest of this paper we adopt a more intuitive notation, writing pX x

−→ qα instead

of Prob(pX −→ qα) = x. The set Q× Γ ∗ of all configurations of ∆ is denoted by C(∆). We

also assume (w.l.o.g.) that if pX −→ qα ∈ δ, then |α| ≤ 2. Given a configuration pXα of

∆, we call pX the head and α the tail of pXα. To ∆ we associate the probabilistic transi-

tion system T∆ where C(∆) is the set of states and the probabilistic transition relation is

determined by pXβ x
−→ qαβ iff pX x

−→ qα.

The model checking problem for pPDA configurations and any nontrivial class of

properties is clearly undecidable for general valuations. Therefore, we restrict ourselves

to simple valuations where the (in)validity of atomic propositions depends just on the

current control state and the current symbol on top of the stack. Alternatively, we could

consider regular valuations where the set of all configurations that satisfy a given atomic

proposition is encoded by a finite-state automaton. However, regular valuations can be

“encoded” into simple valuations by simulating the finite-state automata in the stack

(see, e.g., [EKS03]), and therefore they do not bring any extra expressive power.

Definition 2.3. A valuation ν is simple if there is a function fν which assigns to every atomic

proposition a subset of Q × Γ such that for every configuration pα and every a ∈ Ap we have

that pα |=ν a iff α = Xα ′ and pX ∈ fν(a).

Random Walks on pPDA Graphs.

Let T = (S,−→,Prob) be a probabilistic transition system. For all s ∈ S, C1, C2 ⊆ S, let

Run(s, C1 U C2) = {w ∈ Run(s) | ∃j ≥ 0 : w(j) ∈ C2 and w(i) ∈ C1 for all 0 ≤ i < j}. An

instance of the random walk problem is a tuple (s, C1, C2, ∼, ρ), where s ∈ S, C1, C2 ⊆ S,

∼ ∈ {≤, <,≥, >,=}, and ρ ∈ [0, 1]. The question is if P(Run(s, C1 U C2)) ∼ ρ. In [EKM04],

it was shown that the random walk problem for pPDA processes and simple sets of con-

figurations is decidable (a simple set is a set of the form
⋃
pX∈H{pXα | α ∈ Γ ∗} where H

is a subset ofQ×Γ ). More precisely, it was shown that for a given tuple (pX, C1, C2, ∼, ρ),
where C1, C2 are simple sets of configurations of a given pPDA system ∆, there is an ef-

ficiently constructible system of recursive quadratic equations such that the probability

P(Run(pX, C1 U C2)) is the first component in the tuple of non-negative real values which
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form the least solution of the system. Thus, the relation P(Run(pX, C1 U C2)) ∼ ρ can ef-

fectively be expressed in (R,+, ∗,≤) by constructing a formula Φ saying that a given

vector ~x is the least solution of the system and ~x(1) ∼ ρ. Since the quantifier alternation

depth in the constructed formula is fixed, it was concluded in [EKM04] that the random

walk problem for pPDA and simple sets of configurations is in EXPTIME by applying

the result of [Gri88]. Later, it was observed in [EY05] that the existential fragment of

(R,+, ∗,≤) is sufficient to decide the quantitative reachability problem for pPDA. This

observation applies also to the random walk problem. Actually, it follows easily from

the results of [EKM04] just by observing that the existential (or universal) fragment of

(R,+, ∗,≤) is sufficient to decide whether P(Run(pX, C1 U C2)) ∼ ρ when ∼ ∈ {<,≤} (or

∼ ∈ {>,≥}, resp.). Since the existential and universal fragments of (R,+, ∗,≤) are decid-

able in polynomial space [Can88], we obtain the following result which is used in our

complexity estimations:

Lemma 2.4. The random walk problem for pPDA processes and simple sets of configurations is

in PSPACE.

3 Model-Checkingω-regular Properties

In this section we show that the qualitative and quantitative model-checking problems

for pPDA andω-regular properties represented by Büchi automata are in 2-EXPSPACE

and 3-EXPTIME, respectively. For both of these problems there is a PSPACE lower

complexity bound due to [Var85]. Our proof is a generalization of the construction for

deterministic Büchi automata presented in [EKM04]. We show that this construction can

be extended to (deterministic) Muller automata, which have the same expressive power

as general Büchi automata.

Definition 3.1. A Muller automaton is a tuple M = (Σ,M, ρ,mI,F), where Σ is a finite

alphabet,M is a finite set of states, ρ : M×Σ → M is a (total) transition function (we write

m
a
−→ m ′ instead of ρ(m,a) = m ′), mI is the initial state, and F ⊆ 2M is a set of accepting

sets.

For every infinite run v of M, let inf(v) be the set of all states which appear in v infinitely

often. A wordw ∈ Σω is accepted byM if inf(v) ∈ F , where v is the (unique) run ofM onw.

For the rest of this section, we fix a pPDA ∆ = (Q, Γ, δ,Prob). We consider specifi-

cations given by Muller automata M having Q×Γ as their alphabet. Each infinite run
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w of ∆ determines a unique word v ∈ (Q×Γ)ω, where v(i) is the head of w(i) for ev-

ery i ∈ N0. A run w of ∆ is accepted by M if its associated word v is accepted by M.

For a given configuration pX, let Run(pX,M) be the set of all runs of IRun(pX) that are

accepted by M. Our aim is to show that the problem if P(Run(pX,M)) ∼ ρ for given

∆, pX, M, ∼ ∈ {≤, <,≥, >}, and ρ ∈ [0, 1], is in 2-EXPTIME. In the qualitative case, we

derive the EXPSPACE upper bound.

Let us note that our results also apply to LTL formulae where atomic propositions

are interpreted by regular valuations (using the results of [EKS03], regular valuations

can effectively be replaced with valuations which take into account just heads of config-

urations).

Let M = (H(∆),M, ρ,mI,F) be a Muller automaton. The product of ∆ and M is

a pPDA ∆M = (Q×M, Γ, δ ′,Prob ′) where 〈p,m〉Y x
−→ 〈p ′,m ′〉α iff pY x

−→ p ′α in ∆ and

m
pY
−→ m ′ in M. For every run w of ∆M, let inf(w) be the set of all m ∈ M for which

there are infinitely many i ∈ N such that w(i) = 〈p,m〉α, where p ∈ Q and α ∈ Γ ∗.

A run w of ∆M is accepting if inf(w) ∈ F . For every 〈p,m〉X, let Run(〈p,m〉X,Acc) be

the set of all w ∈ IRun(〈p,m〉X) which are accepting. Obviously, for each pX we have

that P(Run(pX,M)) = P(Run(〈p,mI〉X,Acc)). Therefore, in the rest of this section we

consider just the problem whether P(Run(〈p,m〉X,Acc)) ∼ ρ.

Definition 3.2. Letw be an infinite run of ∆M, and let Stack(w(i)) be the stack content ofw(i)

for each i ∈ N0. For each i ∈ N we define the ith minimum ofw, denoted mini(w), inductively

as follows:

• min1(w) = w(k), where k ∈ N0 is the least number such that for each k ′ ≥ k we have

that |Stack(w(k ′))| ≥ |Stack(w(k))|.

• mini+1(w) = min1(w`+1), where mini(w) = w(`).

We say that m ∈ M is seen at mini(w) if either i = 1 and min1(w) is of the form 〈q,m〉α,

or i > 1 and w visits a configuration of the form 〈q,m〉α between mini−1(w) and mini(w)

(where mini−1(w) is not included).

For every 〈p,m〉X ∈ H(∆M) and every i ∈ N we define a random variable V (i)
〈p,m〉X

over Run(〈p,m〉X) as follows: The set V of possible values of these variables is

{(〈q, r〉Y, S) | 〈q, r〉Y ∈ H(∆M), S ⊆M} ∪ {⊥}. For a given w ∈ Run(〈p,m〉X), V (i)
〈p,m〉X(w)

is determined as follows:

• if w is finite, then V (i)
〈p,m〉X(w) = ⊥;
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• if w is infinite, the head of mini(w) is 〈q, r〉Y, and the set of all s ∈M that are seen

at mini(w) is S, then V (i)
〈p,m〉X(w) = (〈q, r〉Y, S).

Lemma 3.3 (cf. Lemma 5.6. in [EKM04]). For every 〈p,m〉X ∈ H(∆M), every n ∈ N, and

all v1, · · · , vn ∈ V , the probability P(V
(1)
〈p,m〉X=v1 ∧ · · ·∧ V (n)

〈p,m〉X=vn) exists, i.e., the set of all

w ∈ Run(〈p,m〉X) which satisfy this condition is P-measurable.

Lemma 3.4 (cf. Lemma 5.7. and 5.8. in [EKM04]). Let 〈p,m〉X ∈ H(∆M), n ∈ N, and
v1, · · · , vn ∈ V , where vn−1 = (〈q, r〉Y, S). If P(V

(1)
〈p,m〉X=v1 ∧ · · · ∧ V

(n−1)
〈p,m〉X=vn−1) is non-

zero, then

P(V
(n)
〈p,m〉X=vn | V

(n−1)
〈p,m〉X=vn−1 ∧ · · ·∧ V(1)

〈p,m〉X=v1) =

= P(V
(n)
〈p,m〉X=vn | V

(n−1)
〈p,m〉X=vn−1) = P(V

(2)
〈q,r〉Y=vn | V

(1)
〈q,r〉Y=(〈q, r〉Y, {r}))

Now we can define a finite Markov chain F(∆,M), where the set of states is

{⊥} ∪ H(∆M) ∪ {(〈p,m〉X, S) ∈ V | P(V
(1)
〈p,m〉X=(〈p,m〉X, {m})) > 0}

and transition probabilities are defined as follows:

• Prob(⊥ −→ ⊥) = 1

• Prob(〈p,m〉X −→ (〈q, r〉Y, S)) = P(V
(1)
〈p,m〉X=(〈q, r〉Y, S))

• Prob(〈p,m〉X −→ ⊥) = P(V
(1)
〈p,m〉X=⊥)

• Prob((〈p,m〉X, S) −→ (〈q, r〉Y, T)) = P(V
(2)
〈p,m〉X=(〈q, r〉Y, T) | V

(1)
〈p,m〉X=(〈p,m〉X, {m}))

A trajectory in F(∆,M) is an infinite sequence d0, d1, · · · of states of F(∆,M) such that

Prob(di −→ di+1) > 0 for each i ∈ N0. For each w ∈ Run(〈p,m〉X) we define the footprint

of w, which is the sequence V (1)
〈p,m〉X(w), V

(2)
〈p,m〉X(w), · · · . A run is good if its footprint is a

trajectory in F(∆,M). Observe that there can be runs which are not good. However, by

using similar arguments as in [EKM04], one can easily show that the total probabilistic

measure of all such runs is zero. So, we can safely restrict ourselves to good runs. The

next step is to realize that since F(∆,M) is finite, a trajectory of F(∆,M) hits a state of

some bottom strongly connected component C of F(∆,M) with probability one, and

from that point on each state of C will be visited infinitely often with probability one.

This is a standard observation which holds for an arbitrary finite-state Markov chain.

We use this claim in the following sequence of observations about good runs.

Let BC be the set of all bottom strongly connected components of F(∆,M). Each C ∈
BC is either accepting or rejecting, depending on whether the set

⋃
(〈q,r〉Y,S)∈C S belongs
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to F or not, respectively (remember that F is the set of accepting sets of states in M).

Note that {⊥} is also a bottom strongly connected component which is rejecting. Now

let C ∈ BC. We say that a good run w ∈ Run(〈p,m〉X) hits C if the footprint of w

hits C. Let Run(〈p,m〉X,C) be the set of all runs that are good and hit C. Obviously,

P(Run(〈p,m〉X,C)) is equal to the probability that a trajectory in F(∆,M) initiated in

〈p,m〉X hits C. Hence,
∑
C∈BC P(Run(〈p,m〉X,C)) = 1 due to the above observation

about F(∆,M). Moreover, the conditional probability that a good runw ∈ Run(〈p,m〉X)

is accepting on the hypothesis that w hits C is equal either to 1 or 0, depending on

whether C is accepting or rejecting, respectively. Here we used the second part of the

observation about F(∆,M). To sum up, we obtain the following:

Lemma 3.5. P(Run(〈p,m〉X,Acc)) is equal to the probability that a trajectory in F(∆,M)

initiated in 〈p,m〉X hits an accepting bottom strongly connected component of F(∆,M).

Hence, if the transition probabilities of F(∆,M) were known, we could compute

P(Run(〈p,m〉X,Acc)) just by applying, e.g., the results of [CY95]. However, at the mo-

ment we only know that these probabilities exist. The missing piece of puzzle is pro-

vided in our next lemma.

Lemma 3.6. Let d, e be states of F(∆,M), ∼ ∈ {≤, <,≥, >}, and y be a first-order variable.

Then there effectively exists a formula ϕ∼y(d −→ e) of (R,+, ∗,≤) such that:

• The variable y is the only free variable of ϕ∼y(d −→ e). Moreover, for each ρ ∈ [0, 1] we

have that the formula ϕ∼y(d −→ e)[ρ/y] holds iff Prob(d −→ e) ∼ ρ.

• The formula ϕ∼y(d −→ e) is constructible in time which is polynomial in the size of ∆ and

exponential in the size of M, and the quantifier alternation depth of ϕ∼y(d −→ e) is fixed.

Moreover, the problem if Prob(d −→ e) > 0 is decidable in space which is polynomial in the size

of ∆ and exponential in the size of M (more precisely, the space complexity is exponential only

in the number of states of M).

Proof. We will use the results on random walks which were recalled in Section 2. We

show that there effectively exists an expression E consisting of some probabilities of

the form P(pX, C1 U C2), where C1, C2 are simple sets of configurations of ∆, which

are combined using summation and multiplication, such that Prob(d −→ e) = E.

Since the P(pX, C1 U C2) probabilities which were used in E are themselves definable
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in (R,+, ∗,≤) in the way indicated in Section 2, the formula ϕ∼y(d −→ e) is obtained es-

sentially by writing down the definitions of those probabilities which appear in E, and

stipulating that E ∼ y.

Let start by considering the case when d is of the form 〈p,m〉X and e = ⊥. Then,

by definition of F(∆,M), Prob(d −→ e) is the probability that a run initiated in 〈p,m〉X
is finite. That is, Prob(d −→ e) = P(Run(〈p,m〉X, ttU dead)), where dead is a simple set

of configurations determined by all heads of the form 〈q, n〉ε together with all heads of

the form 〈q, n〉Y such that the configuration 〈q, n〉Y has no outgoing transitions. So, we

are done.

If d = 〈p,m〉X and e = (〈q, r〉Y, S)), then Prob(d −→ e) = P(V
(1)
〈p,m〉X=(〈q, r〉Y, S)). It

follows directly from the definition of V (1)
〈p,m〉X that this probability can be non-zero only

if 〈q, r〉Y = 〈p,m〉X and S = {m}. In all other cases, we define ϕ∼y(d −→ e) to be y=0.

Now it suffices to realize that P(V
(1)
〈p,m〉X=(〈p,m〉X, {m})) is actually the probability that a

run initiated in 〈p,m〉X is infinite. That is, Prob(d −→ e) = 1−P(Run(〈p,m〉X, ttU dead)).

Finally, let us consider the case when d = (〈p,m〉X, S) and e = (〈q, r〉Y, T)). By

definition, Prob(d −→ e) is equal to P(V
(2)
〈p,m〉X=(〈q, r〉Y, T)) | V

(1)
〈p,m〉X=(〈p,m〉X, {m})). This

probability cannot be directly expressed in terms of random walks over configurations

of ∆M. However, it suffices to consider another pPDA ∆ ′ constructed from ∆ and M
as follows: ∆ ′ = (Q×M×2M, Γ, δ ′,Prob ′), where 〈p,m, S〉Y x

−→ 〈p ′,m ′, S ′〉α iff pY x
−→ p ′α

in ∆, m pY
−→ m ′ in M, and S ′ = S ∪ {m ′}. Intuitively, configurations of ∆ ′ “remember”

all states of M that have been visited so far. Now it is straightforward to check that

P(V
(2)
〈p,m〉X=(〈q, r〉Y, T)) | V

(1)
〈p,m〉X=(〈p,m〉X, {m})) is equal to the conditional probability

that the head of the second minimum of a run initiated in the configuration 〈p,m, ∅〉X
of ∆ ′ is 〈q, r, T〉Y on the hypothesis that the head of the first minimum of this run is

〈p,m, ∅〉X. Now we can apply the result of [EKM04] which says that this probability is

effectively expressible from probabilities of the form P(sX, C1 U C2), where s is a control

state of ∆ ′ and C1, C2 are simple sets of configurations of ∆ ′. In this case, the formula

ϕ∼y(d −→ e) is constructible in time which is polynomial in the size of ∆ ′, that is, in time

which is polynomial in the size of ∆ and exponential in the size of M.

Since Prob(d −→ e) is expressible from probabilities of the form P(pX, C1 U C2) using

only multiplication and summation, the problem whether Prob(d −→ e) > 0 can be

decided just by determining whether these basic probabilities are non-zero. Due to

Lemma 2.4 and the previous complexity estimations we can conclude that the whole
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procedure requires space which is polynomial in the size of ∆ and exponential in the

size of M.

Theorem 3.7. The quantitative model-checking problem for pPDA processes and ω-regular

properties represented by Muller automata is in 2-EXPTIME, and the qualitative variant of this

problem is in EXPSPACE.

Proof. In the qualitative case (i.e., when we are to decide whether P(Run(〈p,m〉X,Acc))

is equal to 1 or 0), it suffices to find out whether all of the bottom strongly connected

components of F(∆,M) that are reachable from 〈p,m〉X are accepting or rejecting, re-

spectively. Realize that the size of F(∆,M) is polynomial in the size of ∆ and expo-

nential in the size of M. For each pair of states d, e of F(∆,M) we decide whether

Prob(d −→ e) > 0 by checking the validity of the formula ϕ≤0(d −→ e) of Lemma 3.6

and negating the answer. Since the existential fragment of (R,+, ∗,≤) is decidable in

polynomial space, this is achievable in space which is polynomial in the size of ∆ and

exponential in the size of M. Partitioning F(∆,M) into strongly conected components

and checking the above mentioned reachability question can be done in time which is

polynomial in the size of F(∆,M). To sum up, the qualitative case is solvable in space

which is polynomial in the size of ∆ and exponential in the size of M.

The general question (i.e., whether P(Run(〈p,m〉X,Acc)) ∼ ρ) can be decided by

constructing a closed formula Φ of (R,+, ∗,≤) such that P(Run(〈p,m〉X,Acc)) ∼ ρ iff Φ

holds. This is done in the very same way as in [EKM04], using Lemma 3.6 appropriately.

The formulaΦ is constructible in time which is polynomial in ∆ and exponential in M.

Since the universal and existential quantifiers are alternated in Φ only to a fixed depth,

we can apply the result of [Gri88] and conclude that the validity of Φ is decidable in

time which is exponential in the size of ∆ and doubly exponential in the size of M.

Corollary 3.8. The quantitative model-checking problem for pPDA processes and ω-regular

properties represented by Büchi automata is in 3-EXPTIME, and the qualitative variant of this

problem is in 2-EXPSPACE.

4 Model-Checking PCTL, PCTL∗, and PECTL∗ Properties

We start by proving that model-checking PCTL is undecidable for pPDA processes, and

model-checking PCTL+ is undecidable for pBPA processes.

12



A Minsky machine with two counters is a finite sequence C of labeled instructions

`1:inst1, · · · , `n:instn, where n ≥ 1, instn = halt, and for every 1 ≤ i < n, the instruction

insti is of one of the following two types:

Type I. cr := cr + 1; goto `j

Type II. if cr = 0 then goto `j else cr := cr − 1; goto `k

Here r ∈ {1, 2} is a counter index. A configuration of C is a triple (`i, v1, v2), where

1 ≤ i ≤ n and v1, v2 ∈ N0 are counter values. Each configuration (`i, v1, v2) has a unique

successor which is the configuration obtained by performing insti on (`i, v1, v2). The halt-

ing problem for Minsky machines with two counters initialized to zero, i.e., the ques-

tion whether (`1, 0, 0) eventually reaches a configuration of the form (`n, v1, v2), where

v1, v2 ∈ N0, is undecidable [Min67].

Our aim is to reduce the halting problem for Minsky machines to the PCTL model

checking problem for pPDA.

Let C be a Minsky machine. We construct a pPDA system ∆, a process pα of ∆, and

a PCTL formula ψ such that C halts iff pα |= ψ. The formula ψ looks as follows:

ψ ≡ P>0((check ⇒ (ϕstate ∧ϕzero ∧ϕcount)) U halt)

Here check and halt are atomic propositions,ϕstate andϕzero are qualitative formulae with

just one U operator, and ϕcount is a quantitative formula with just one U operator. So,

ϕcount is the only non-qualitative subformula inψ. The stack content of the initial process

pα corresponds to the initial configuration of C. In general, a configuration (`i, v1, v2) is

represented by the sequence `iAv1Bv2 of stack symbols, and individual configurations

are separated by the # marker.

Starting from pα, ∆ tries to “guess” the successor configuration of C by pushing a se-

quence of stack symbols of the form `jA
v1Bv2#. The transitions of ∆ are arranged so that

only strings of this syntactical form can be pushed. Transition probabilities do not mat-

ter here, the only important thing is that the “right” configuration can be guessed with a

non-zero probability. After guessing the configuration (i.e., after pushing the symbol `j),

∆ inevitably pushes one of the special “checking” symbols of the form (`i, `j, r, d), where

1 ≤ i ≤ n, r ∈ {1, 2} is a counter index, and d ∈ {−1, 0, 1} a counter change (note that the

previously pushed `j is in the second component of the checking symbol). An intuitive

meaning of checking symbols is explained later. Let us just note that checking symbols
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correspond to instructions of C and hence not all tuples of the form (`i, `j, r, d) are nec-

essarily checking symbols. Still, there can be several checking symbols with the same `j
in the second component, and ∆ can freely choose among them. Actually, the checking

symbol is pushed together with `j, and hence the guessing phase ends in a “checking

configuration” where the stack looks as follows: (`i, `j, r, d)`jA
v1Bv2# . . .. The atomic

proposition check is valid in exactly all checking configurations (i.e., configurations with

a checking symbol on top of the stack), and the proposition halt is valid in exactly those

configurations where `n (i.e., the label of halt) is on top of the stack.

From a checking configuration, ∆ can either pop the checking symbol (note that

the symbol `j appears at the top of the stack at this moment) and go on with guessing

another configuration of C, or perform other transitions so that the subformulae ϕstate,

ϕzero, and ϕcount are (possibly) satisfied. Hence, the formula ψ says that there is a finite

sequence of transitions from pα leading to a “halting” configuration along which all

checking configurations satisfy the formulae ϕstate, ϕzero, and ϕcount. As can be expected,

these three subformulae together say that the configuration of C just pushed to the stack

is the successor of the configuration which was pushed previously. Let us discuss this

part in greater detail.

First, let us clarify the meaning of checking symbols. Intuitively, each checking sym-

bol corresponds to some computational step of C. More precisely, the set of all checking

symbols is the least set T such that for every 1 ≤ i ≤ n we have that

• if insti ≡ cr := cr + 1; goto `j, then (`i, `j, r, 1) ∈ T ;

• if insti ≡ if cr = 0 then goto `j else cr := cr − 1; goto `k, then

(`i, `j, r, 0), (`i, `k, r,−1) ∈ T .

Note that the checking symbol (`i, `j, r, d) which is pushed together with `j at the end of

guessing phase is chosen freely. So, this symbol can also be chosen “badly” in the sense

that `i is not the label of the previously pushed configuration, or the wrong branch of a

Type II instruction is selected.

The formula ϕstate intuitively says that we have chosen the “right” `i, and the sub-

formula ϕzero says that if the checking symbol (`i, `j, r, d) claims the use of a Type II

instruction and the counter cr was supposed to be zero (i.e., d = 0), then the previously

pushed configuration of C indeed has zero in the respective counter. In other words,

ϕzero verifies that the right branch of a Type II instruction was selected.
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The most interesting part is the subformulaϕcount, which says that the counter values

in the current and the previous configuration have changed accordingly to (`i, `j, r, d).

For example, if r = 0 and d = −1, then the subformula ϕcount is valid in the considered

checking configuration iff the first counter was changed by −1 and the second counter

remained unchanged.

To get some intuition on how this can be implemented, let us consider a simpli-

fied version of this problem. Let us assume that we have a configuration of the form

pAm#An#. Our aim is to set up the transitions of pAm#An# and to construct a PCTL

formula ϕ so that pAm#An# |= ϕ iff m = n (this indicates how to check if a counter

remains unchanged). Let

pA
1/2
−−→ qA,

pA
1/2
−−→ tA,

qA
1
−→ qε,

q# 1
−→ rε,

rA
1/2
−−→ sA,

rA
1/2
−−→ rε,

tA
1/2
−−→ tε,

tA
1/2
−−→ uA,

t# 1
−→ sA,

sA
1
−→ sA,

uA
1
−→ uA

By inspecting possible runs of pAm#An#, one can easily confirm that the probability that

a run of pAm#An# hits a configuration having sA as its head is exactly

1

2
· (1−

1

2n
) +

1

2
· 1
2m

=
1

2
−

1

2n+1
+

1

2m+1

Let psA be an atomic proposition which is valid in (exactly) all configurations having sA

as their head. Then pAm#An# |= P= 1
2 (ttU psA) iffm = n.

One can argue that formulae where some probability is required to be equal to some

value are seldom used in practice. However, it is easy to modify the proof so that for

every subformula of the form P∼ρϕwhich is employed in the proof we have that ∼ is >

and ρ is a “simple” rational like 1/2 or 1/4.

Theorem 4.1. The model-checking problem for pPDA processes and the logic PCTL is undecid-

able. Moreover, the undecidability result holds even for the fragment of PCTL where the nesting

depth of U is at most two, and for all subformulae of the form P∼ρϕ we have that ∼ is >.

The proof of Theorem 4.1 does not carry over to pBPA processes. The decidability of

PCTL for pBPA processes is one of the challenges which are left open for future work.

Nevertheless, we were able to show that model-checking PCTL+ (and in fact a simple

fragment of this logic) is undecidable even for pBPA. The structure of the construction

is similar as in Theorem 4.1, but the proof contains new tricks invented specifically for

pBPA. In particular, the consistency of counter values in consecutive configurations is

verified somewhat differently. This is the only place where we use the expressive power

of PCTL+.
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Theorem 4.2. The model-checking problem for pBPA processes and the logic PCTL+ is unde-

cidable. More precisely, the undecidability result holds even for a fragment of PCTL+ where the

nesting depth of U is at most two, and for all subformulae of the form P∼ρϕ we have that ∼ is>.

The formal proofs of Theorem 4.1 and Theorem 4.2 are given in Appendix.

Finally, let us note that our undecidability result is tight with respect to the nesting

depth of U . The fragment of PCTL where the U operators are not nested (and the

X operators can be nested to an arbitrary depth) is decidable by applying the results

of [EKM04]. In our undecidability proof we use a PCTL formula where the nesting

depth of U is 2 (PCTL formulae where the U operators are not nested have the nesting

depth 1).

4.1 Model-checking qPECTL∗

Now we prove that the model-checking problem for pPDA and the logic qPECTL∗ is

decidable and belongs to 2-EXPSPACE. For the logic qPCTL, our algorithm only needs

singly exponential space.

Let us fix a pPDA ∆ = (Q, Γ, δ,Prob), qPECTL∗ formula τ, and a simple valuation

ν. The symbol Cl(τ) denotes the set of all subformulae of τ, and Acl(τ) ⊆ Cl(τ) is the

subset of all “automata subformulae” of the form P=xB.

Let ϕ ≡ P=xB ∈ Acl(τ) where B is a Büchi automaton over an alpha-

bet Σϕ = 2{Φ1,...,Φn}. Then there is a (deterministic) Muller automaton Mϕ =

(Σϕ,Mϕ, ρϕ,m
I
ϕ,Fϕ) whose size is at most exponential in the size of B such that

L(Mϕ) = L(B). In our constructions we use Mϕ instead of B.

The intuition behind our proof is that we extend each configuration of ∆ with some

additional information that allows to determine the (in)validity of each subformula of τ

in a given configuration just by inspecting the head of the configuration. Our algorithm

computes a sequence of extensions of ∆ that are obtained from ∆ by augmenting stack

symbols and transition rules with some information about subformulae of τ. These

extensions are formally introduced in our next definition. For notation convenience, we

define St = Πϕ∈Acl(τ)2
Q×Mϕ . For every v ∈ St, the projection of v onto a given ϕ ∈ Acl(τ)

is denoted v(ϕ). Note that v(ϕ) is a set of pairs of the form (q,m), where q ∈ Q and

m ∈Mϕ.
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Definition 4.3. We say that a pPDA ∆ ′ = (Q, Γ ′, δ ′,Prob ′) is an extension of ∆ if and only

if Γ ′ = St × Γ × St (elements of Γ ′ are written as (uXv), where u, v ∈ St and X ∈ Γ ), and the

outgoing transitions of every p(uXv) ∈ Q× Γ ′ satisfy the following:

1. if pX x
−→ qε, then p(uXv) x

−→ qε;

2. if pX x
−→ qY, then there is a unique z ∈ St such that p(uXv) x

−→ q(zYv);

3. if pX x
−→ qYZ, then there are unique z,w ∈ St such that

p(uXv)
x
−→ q(zYw)(wZv);

4. p(uXv) has no other outgoing transitions.

Note that due to 2. and 3., a given ∆ can have many extensions. However, all of

these extensions have the same set of control states and the same stack alphabet. More-

over, the part of T∆ ′ which is reachable from a configuration p(u1X1v1) · · · (unXnvn) is

isomorphic to the part of T∆ reachable from the configuration pX1 · · ·Xn.

Definition 4.4. Let ∆ ′ = (Q, Γ ′, δ ′,Prob ′) be an extension of ∆. For each ϕ ∈ Cl(τ) we define

a set Cϕ ⊆ Q× Γ ′ inductively as follows:

• if ϕ = a where a ∈ Ap, then Cϕ = {p(uXv) | pX ∈ fν(a) and u, v ∈ St}

• if ϕ = ψ∧ ξ, then Cϕ = Cψ ∩ Cξ

• if ϕ = ¬ψ, then Cϕ = (Q× Γ ′) r Cψ

• if ϕ = P=xB, then Cϕ = {p(uXv) | u, v ∈ St and (p,mI
ϕ) ∈ u(ϕ)}

For each ϕ ∈ Acl(τ) we define a Muller automaton M ′
ϕ = (Σ ′ϕ,Mϕ, ρ

′
ϕ,m

I
ϕ,Fϕ), which is a

modification of the automaton Mϕ, as follows: Σ ′ϕ = Q× Γ ′, andm h
−→ m ′ is a transition of ρ ′ϕ

iff there is A ∈ Σϕ such that m A
−→ m ′ is a transition of ρϕ and h ∈ (

⋂
ψ∈A Cψ) r

⋃
ψ 6∈A Cψ.

Note that M ′
ϕ is again deterministic.

Let ∆ ′ be an extension of ∆. The symbol [s, p(uXv)•]ϕ denotes the probability that

a run of Run(p(uXv)) is accepted by M ′
ϕ where the initial state of M ′

ϕ is changed

to s. Furthermore, the symbol [s, p(uXv)q, t]ϕ denotes the probability that a run w of

Run(p(uXv)) hits the configuration qε, i.e., w is of the form w ′ qε, so that M ′
ϕ initiated

in smoves to t after reading the heads of all configurations in w ′.

Intuitively, the sets Cϕ are supposed to encode exactly those configurations where

ϕ holds (the information which is relevant for the (in)validity of ϕ should have been
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accumulated in the symbol at the top of the stack). However, this works only under

some “consistency” assumptions, which are formalized in our next definition (see also

Lemma 4.6 below).

Definition 4.5. Let ϕ ∈ Acl(τ) and let ∆ ′ be an extension of ∆. We say that a symbol (uXv) ∈
Γ ′ is ϕ-consistent in ∆ ′ iff the following conditions are satisfied:

• if ϕ ≡ P=1B, then u(ϕ) = {(p, s) | [s, p(uXv)•]ϕ +
∑

(q,t)∈v(ϕ)[s, p(uXv)q, t]ϕ = 1}

• if ϕ ≡ P=0B, then u(ϕ) = {(p, s) | [s, p(uXv)•]ϕ +
∑

(q,t) 6∈v(ϕ)[s, p(uXv)q, t]ϕ = 0}

We say that a configuration p(u1X1v1) · · · (unXnvn) is ϕ-consistent in ∆ ′ iff (uiXivi) is

ϕ-consistent in ∆ ′ for every 1 ≤ i ≤ n, and vi = ui+1 for every 1 ≤ i < n.

An extension ∆ ′ of ∆ is ϕ-consistent iff for all transitions of the form p(uXv)
x
−→ q(zYv)

and p(uXv) x
−→ q(zYw)(wZv) of ∆ ′ we have that q(zYv) and q(zYw)(wZv) are ϕ-consistent

in ∆ ′, respectively.

It is important to realize that the conditions of Definition 4.5 are effectively verifiable,

because, e.g., the condition [s, p(uXv)•]ϕ+
∑

(q,t)∈v(ϕ)[s, p(uXv)q, t]ϕ = 1 can effectively

be translated into (R,+, ∗,≤) using the construction of Theorem 3.7 and the results on

random walks of [EKM04] which were recalled in Section 2.

A v ∈ St is terminal iff for each ϕ ∈ Acl(τ) we have that if ϕ = P=1B then v(ϕ) = ∅,

and if ϕ = P=0B then v(ϕ) = Q×Mϕ.

Lemma 4.6. Let ϕ ∈ Cl(τ), and let ∆ ′ be an extension of ∆ which is ψ-consistent for all

ψ ∈ Acl(ϕ). Let p(u1X1v1) · · · (unXnvn) (where n ≥ 1) be a configuration of ∆ ′ which is

ψ-consistent in ∆ ′ for each ψ ∈ Acl(ϕ), and where vn is terminal. Then pX1 · · ·Xn |= ϕ iff

p(u1X1v1) ∈ Cϕ.

Proof. First we fix some notation. Let M = (Σ,M, ρ,mI,F) be a Muller automaton.

For every s ∈ M, the symbol Ms denotes the Muller automaton obtained from M by

changing the initial state to s. Moreover, we define for all s, t ∈M a deterministic finite

automaton over finite words Ms→t = (Σ,M, ρ, s, {t}). Given two runs w and w ′ we

denote w w ′ the concatenation of the runs. If a run w is of the form p1α1, p2α2 · · · and

β ∈ Γ ∗, then we denote w � β the run of the form p1α1β, p2α2β, · · · . The notation is

extended to sets of runs in the obvious way.

We prove the following statement by induction on the structure ofϕ. The cases when

ϕ is an atomic proposition or a Boolean combination of simpler formulae are clear and

hence we concentrate only on automata connectives. We proceed in two steps.
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Step 1: Suppose that ϕ = P=xB. The following equation is obtained by applying

induction hypothesis and the definition of M ′
ϕ.

P({w ∈ IRun(pX1 · · ·Xn) | wB ∈ Ł(Ms
ϕ)}) =

P({w ∈ IRun(pX1)� X2 · · ·Xn | wB ∈ Ł(Ms
ϕ)}) +∑

(q,t)∈Q×Mϕ
P({w qX2 · · ·Xn ∈ Run(pX1)� X2 · · ·Xn | wB ∈ Ł(Ms−→t

ϕ )}) ·
P({w ∈ IRun(qX2 · · ·Xn) | wB ∈ Ł(Mt

ϕ)}) =

P({w ∈ IRun(p(u1X1v1)) | w ∈ Ł(M ′s
ϕ)}) +∑

(q,t)∈Q×Mϕ
P({w qε ∈ Run(p(u1X1v1)) | w ∈ Ł(M ′s−→t

ϕ )}) ·
P({w ∈ IRun(qX2 · · ·Xn) | wB ∈ Ł(Mt

ϕ)}) =

[s, p(u1X1v1) • ]ϕ +
∑

(q,t)∈Q×Mϕ
[s, p(u1X1v1)q, t]ϕ ·

P({w ∈ IRun(qX2 · · ·Xn) | wB ∈ Ł(Mt
ϕ)})

Step 2: Let ϕ = P=xB. We prove that P({w ∈ IRun(pX1 · · ·Xn) | wB ∈ Ł(Ms
ϕ)}) = x if

and only if (p, s) ∈ u1(ϕ). By induction on n.

First observe that P({w ∈ IRun(qε) | wB ∈ Ł(Mt
ϕ)}) = 0 for all (q, t) ∈ Q×Mϕ and

thus we may assume that P({w ∈ IRun(qX2 · · ·Xn) | wB ∈ Ł(Mt
ϕ)}) = x if and only if

(q, t) ∈ v1(ϕ). We prove the induction step. There are two cases.

• ϕ = P=1B: Suppose that (p, s) ∈ u1(ϕ). By Definition 4.5 we have that

[s, p(u1X1v1) • ]ϕ +
∑

(q,t)∈v1(ϕ) [s, p(u1X1v1)q, t]ϕ = 1. Moreover, by induction

hypothesis we have that P({w ∈ IRun(qX2 · · ·Xn) | wB ∈ Ł(Mt
ϕ)}) = 1 for all

(q, t) ∈ v1(ϕ) and the rest follows from Step 1.

Suppose that P({w ∈ IRun(pX1 · · ·Xn) | wB ∈ Ł(Ms
ϕ)}) = 1. By Step 1 we have

that [s, p(u1X1v1) • ]ϕ +
∑

(q,t)∈Q×Mϕ
[s, p(u1X1v1)q, t]ϕ = 1. Moreover, it fol-

lows from Step 1 that if [s, p(u1X1v1)q, t]ϕ > 0 then P({w ∈ IRun(qX2 · · ·Xn) |

wB ∈ Ł(Mt
ϕ)}) = 1 which means that (q, t) ∈ v1(ϕ) by induction. But then

[s, p(u1X1v1) • ]ϕ +
∑

(q,t)∈v1(ϕ) [s, p(u1X1v1)q, t]ϕ = 1 and thus (p, s) ∈ u1(ϕ).

• ϕ = P=0B: Suppose that (p, s) ∈ u1(ϕ). By Definition 4.5 we have that

[s, p(u1X1v1) • ]ϕ +
∑

(q,t) 6∈v1(ϕ) [s, p(u1X1v1)q, t]ϕ = 0. Moreover, by induction

hypothesis we have that P({w ∈ IRun(qX2 · · ·Xn) | wB ∈ Ł(Mt
ϕ)}) = 0 for all

(q, t) ∈ v1(ϕ) and the rest follows from Step 1.
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Suppose that P({w ∈ IRun(pX1 · · ·Xn) | wB ∈ Ł(Ms
ϕ)}) = 0. It follows from Step 1

that if [s, p(u1X1v1)q, t]ϕ > 0 then P({w ∈ IRun(qX2 · · ·Xn) | w ∈ Ł(Mt
ϕ)}) = 0

which means that (q, t) ∈ v1(ϕ) by induction hypothesis. But then

[s, p(u1X1v1) • ]ϕ +
∑

(q,t) 6∈v1(ϕ)

[s, p(u1X1v1)q, t]ϕ = 0

and thus (p, s) ∈ u1(ϕ).

Lemma 4.7. Let pX be a configuration of ∆. Then there exists an extension ∆τ of ∆ which

is ϕ-consistent for each ϕ ∈ Acl(τ), and a configuration p(uXv) which is ϕ-consistent in ∆τ

for each ϕ ∈ Acl(τ). Moreover, ∆τ and p(uXv) are effectively constructible is space which is

doubly exponential in the size of τ (if τ is a PCTL formula, then the space complexity is only

singly exponential in the size of τ) and singly exponential in the size of ∆.

Proof. Let ∆ ′ be an extension of ∆, ϕ ∈ Acl(τ), and (uXv) ∈ Γ ′. Using the algorithm of

Theorem 3.7, one can compute u ′ ∈ St such that (u ′Xv) is ϕ-consistent in ∆ ′ and for

each ψ ∈ Acl(τ)\{ϕ} we have that u ′(ψ) = u(ψ). The computation of u ′ takes space

which is polynomial in |∆ ′| + |Σ ′ϕ| + |ρ ′ϕ| + |Fϕ| and exponential in |Mϕ|.

Using this fact and Lemma 4.6, we can easily design an algorithm which computes

∆τ and p(uXv) in the bottom-up fashion. Let us estimate the complexity of this algo-

rithm. First, the size of an arbitrary extension ∆ ′ of ∆ is at most exponential in |∆| and

doubly exponential in |τ|. If ϕ ∈ Acl(τ), then the size of Σ ′ϕ and ρ ′ϕ is at most exponential

in |∆| and doubly exponential in |τ|. The size of Mϕ and Fϕ is at most exponential in |τ|.

The computation of ∆τ and p(uXv) needs at most O(|τ| · |∆τ|) applications of the step

whose space costs have been just evaluated. Hence, the algorithm requires space which

is singly exponential in |∆| and doubly exponential in |τ|.

In the case of PCTL, each of theMϕ automata is either the automaton corresponding

to theX operator or the automaton corresponding to the U operator. Hence, there are in

fact only two Muller automata whose size is fixed and hence constant. This means that

the size of an arbitrary extension and the alphabet Σ ′ϕ is at most exponential in |∆| · |τ|
and using the same considerations as above we obtain that the algorithm requires space

which is singly exponential in |∆| and |τ|.

An immediate corollary to Lemma 4.6 and Lemma 4.7 is the following:
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Theorem 4.8. The model-checking problems for pPDA processes and the logics qPECTL∗ and

qPCTL are in 2-EXPSPACE and EXPSPACE, respectively.

Finally, let us note that the construction presented in [Wal00] which shows EXPTIME-

hardness of the model-checking problem for the logic CTL and PDA processes can be

adapted so that it works for (non-probabilistic) BPA3. This idea carries over to the prob-

abilistic case after some trivial modifications. Thus, we obtain the following (a full proof

can be found in Appendix):

Theorem 4.9. The model-checking problem for pBPA processes and the logic qPCTL is

EXPTIME-hard.
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5 Appendix

5.1 A formal proof of Theorem 4.1.

We construct a pPDA ∆ which simulates the execution of C. The stack alphabet of ∆

is the set Γ = T ∪ {#, A, B,A ′, B ′, `1, · · · , `n}. Transition probabilities are not written

explicitly, because we always assume uniform probability distribution over transitions

with the same left-hand side. For example, by writing pX −→ qY, pX −→ rε, and pX −→
pXY, we implicitly define the probability of each transition to be 1/3. This also means

that our construction could be adjusted so that only transitions with probabilities 1 or

1/2were used.

The transition function of ∆ is defined by the following rules that are split into four

groups.

Group 1:

init # −→ gB #`1#

gB X −→ gB BX | gA X

gA X −→ gA AX | check (`i, `j, r, d)`jX

check (`i, `j, r, d) −→ count α | state ε | zero ε | β

halt X −→ halt X

where X ∈ Γ , (`i, `j, r, d) ∈ T , and

α =



A if r = 1 and d = −1

A ′ if r = 1 and d = 1

B if r = 2 and d = −1

B ′ if r = 2 and d = 1

ε otherwise

β =

gB # if j < n

halt ε if j = n

The rules in Group 1 are responsible for pushing configurations of C onto the stack. Each

configuration is encoded by a sequence of symbols of the form `iA
u1Bu2 , and individual

configurations are separated by #. Whenever a new configuration is pushed onto the

stack, ∆ enters a configuration of the form check (`i, `j, r, d)`jA
u1Bu2#`kAv1Bv2#γ. From

this configuration, it is possible either to go on with guessing the next configuration

(with probability 1
4
), or to proceed to some of the “testing” configurations. The tests

ensure that the topmost configuration `jAu1Bu2 is the correct successor of the previous

configuration `kAv1Bv2 if the instruction (`i, `j, r, d) is performed.
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If∆ proceeds to the control state count, then it is checked whether the counter values

were updated correctly, i.e., whether ur = vr + d, and us = vs for the other counter

s. This is somewhat tricky, because the value of the counter r stored in the topmost

configuration is first adjusted by “undoing” the effect of the performed instruction (for

example, if the counter represented by B’s was incremented, the symbol B ′ is pushed.

As we shall see, pushing an additionalB ′ has the same effect as if we v2 was incremented

by one.) Then, the checking procedure verifies that the counter values stored in the two

configurations are the same.

Group 2:
count X −→ newA X | oldA X | newB X | oldB X

newS S −→ new ′
S ε | newS ε

newS # −→ newS #

newS X −→ newS ε

new ′
S X

′ −→ new ′
S X

′

where X ∈ Γ\{A,B, #}, X ′ ∈ Γ , and S ∈ {A,B}.

oldS S
′ −→ sink ε | oldS ε

oldS # −→ old ′S ε

oldS X −→ oldS ε

old ′S S −→ sink ε | old ′S ε

old ′S # −→ old ′S #

old ′S X
′ −→ old ′S ε

sink X ′′ −→ sink X ′′

where X ∈ Γ\{#, A ′, B ′}, X ′ ∈ Γ\{#, A, B}, X ′′ ∈ Γ , and S ∈ {A,B}. The rules in Group 2

test the equality of counters in successive configurations.

Group 3:
state # −→ state ′ ε

state X −→ state ε

state ′ X ′ −→ state ′ X ′

where X ∈ Γ\{#} and X ′ ∈ Γ . The rules in Group 3 take care of the consistency of labels

in successive configurations.
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Group 4:
zero # −→ zero ′ ε

zero X −→ zero ε

zero ′ A −→ foundA ε | zero ′ ε

zero ′ B −→ foundB ε | zero ′ ε

zero ′ # −→ zero ′ #

zero ′ X ′ −→ zero ′ ε

where X ∈ Γ\{#} and X ′ ∈ Γ\{A,B, #}. The last group of rules is used to test the counters

for zero.

The PCTL formula that is checked against the initial configuration init # of ∆ is

defined as follows:

P>0(τ U halt)

where

τ ≡
∧

T=(`i,`j,r,d)∈T

[check T ⇒ P>0X (count∧ψ)∧P>0X (state∧φi)∧P>0X (zero∧χr,d)]

where

ψ ≡ P= 1
4 (F(new ′

A ∨ old ′A #)) ∧ P= 1
4 (F(new ′

B ∨ old ′B #))

φi ≡ P>0F(state ′ `i)

χr,d ≡


P=0F(foundA) if r = 1 and d = 0

P=0F(foundB) if r = 2 and d = 0

true otherwise

Lemma 5.1. Let σ be a configuration of ∆ of the form

check (`i, `j, r, d)`jA
u1Bu2#`kAv1Bv2#γ

Then σ |= τ if and only if k = i, ur = vr + d, us = vs for s 6= r, and either d 6= 0 or vr = 0.

Proof. By definition of τwe have that σ |= τ if and only if

σ |= P>0X (count∧ψ) ∧ P>0X (state∧ φi) ∧ P>0X (zero∧ χr,d)

By inspecting the rules in Group 3 and Group 4, it can easily be verified that σ |=

P>0X (state ∧ φi) iff k = i, and that σ |= P>0X (zero ∧ χr,d) iff either d 6= 0 or vr = 0.

Now let

σ ′ = count α`jA
u1Bu2#`kAv1Bv2#γ
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We claim that σ |= P>0X (count∧ψ) if and only if σ ′ |= ψ. Let us consider, e.g., the case

when r = 1 and d = 1, which means that α = A ′. Let us first evaluate the probability of

the set of all runs initiated in σ ′ that satisfy the formula F(new ′
A ∨ old ′A #) (we denote

this set of runs by Run(σ ′,F(new ′
A ∨ old ′A #)); the same notation is used also for other

configurations and path formulae). It follows easily from the rules in Group 2 that

P(Run(σ ′,F(new ′
A))) =

1

4
(1−

1

2u1
)

Also observe that

P(Run(σ ′,F(old ′A #))) =
1

4

1

2

1

2v1

and that the two sets of runs are disjoint. Thus,

P(Run(σ ′,F(new ′
A ∨ old ′A #))) =

1

4
(1−

1

2u1
) +

1

4

1

2

1

2v1
=
1

4
(1−

1

2u1
+

1

2v1+1
)

which is equal to 1
4

if and only if u1 = v1+1. The claim that σ ′ |= P= 1
4 (F(new ′

B∨old ′B #))

if and only if u2 = v2 is proven in a similar way.

Lemma 5.2. init # |= P>0(τ U halt) if and only if (`1, 0, 0) −→∗ (`n, u1, u2) for some values

u1, u2.

Proof. “⇒:” If init # |= P>0(τ U halt) then by inspecting the rules in Group 1 we obtain

that there is a run π = init # −→ gB #α0 −→∗ check T1α1 −→∗ check Tkαk −→ halt αk in T∆
such that α0 = `1# and for each 1 ≤ i ≤ k it holds that Ti ∈ T and αi = `jA

u1Bu2#αi−1,

where u1, u2 are some values and 1 ≤ j ≤ n. Moreover, check Tiαi |= τ for each 1 ≤ i ≤
k and Tk = (Lj, Ln, r, d). Thus, by Lemma 5.1 we obtain that the run π corresponds to a

computation of C that reaches the label `n.

“⇐:” Suppose that there is a computation c1, · · · , ck of C such that c1 = (`1, 0, 0)

and ck = (`n, u1, u2), where u1, u2 are some values, and ci+1 is obtained from ci by

performing a transition Ti ∈ T for each 1 ≤ i < k.

Now let us consider a run in T∆ of the form π = init # −→ gB#α0 −→∗ check T1α1 −→∗

check Tkαk −→ halt αk where α0 = `1# and αi = `jA
u1Bu2#αi−1 if ci = (`j, u1, u2) for

1 ≤ i ≤ k. It follows from Lemma 5.1 that check Tiαi |= τ for 1 ≤ i ≤ k and thus

π |= τ U halt since there are no other occurrences of the state check in π. It follows that

init # |= P>0(τ U halt).

Theorem 4.1 is a simple corollary to Lemma 5.2. Observe that the nesting depth of

U in the constructed formula P>0(τ U halt) is indeed two, and that quantitative subfor-

mulae appear only in τ. It remains to explain how to modify the proof of Theorem 5.2
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so that for all subformulae of the form P∼ρϕ we have that ∼ = > and ρ ∈ {0, 1
2
, 1
4
, 1
8
}.

We explain this just in the simplified setting of the example presented in Section 4. We

have shown how to setup a pPDA system such that for all configurations of the form

pAm#An# we have that pAm#An# |= P= 1
2 (ttU sA) iff m = n. Here we modify this

example so that pAm#An# |= ¬P>1
4 (ttU s1A) ∧ ¬P>1

4 (ttU s2A) iffm = n. Let

pA
1/2
−−→ p1A,

pA
1/2
−−→ p2A,

p1A
1/2
−−→ q1A,

p1A
1/2
−−→ t1A,

q1A
1
−→ q1ε,

q1#
1
−→ r1ε,

r1A
1/2
−−→ s1A,

r1A
1/2
−−→ r1ε,

t1A
1/2
−−→ t1ε,

t1A
1/2
−−→ uA,

t1#
1
−→ s1A,

s1A
1
−→ s1A,

uA
1
−→ uA

p2A
1/2
−−→ q2A,

p2A
1/2
−−→ t2A,

q2A
1
−→ q2ε,

q2#
1
−→ r2ε,

t2A
1/2
−−→ s2A,

t2A
1/2
−−→ t2ε,

r2A
1/2
−−→ r2ε,

r2A
1/2
−−→ uA,

r2#
1
−→ s2A,

s2A
1
−→ s2A

By inspecting possible runs of pAm#An#, one can easily confirm that the probability that

a run of pAm#An# hits a configuration having s1A as its head is exactly

1

4
· 1
2m

+
1

2
· (1−

1

2n
) =

1

4
+

1

2m+1
−

1

2n+1

Similarly, the probability that a run of pAm#An# hits a configuration having s2A as its

head is equal to
1

4
· 1
2n

+
1

2
· (1−

1

2m
) =

1

4
+

1

2n+1
−

1

2m+1

Thus, we obtain that pAm#An# |= ¬P>1
4 (ttU s1A)∧¬P>1

4 (ttU s2A) iffm = n. Observe

that the original formula where 1
2

appeared as a quantitative constant was “split” into

two formulae where 1
4

is used as a quantitative constant. This is the reason why we

also need the 1
8

constant in Theorem 4.1; although this constant does not appear in the

formula P>0(τ U halt), it will appear in the modified formula. Also observe that the

modification does not increase the nesting depth of the U operator.

5.2 A formal proof of Theorem 4.2.

Similarly as in the proof of Theorem 4.1, we construct a pBPA system ∆which simulates

the execution of C. Since there are no control states at our disposal, the checking phase

is implemented differently. To see where the difference takes place, the rules are again

structured into groups which have a similar purpose as before.
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Group 1:

S −→ G1,B#1`1#0⊥
Gx,B −→ Gx,BBx | Gx,A

Gx,A −→ Gx,AAx | (`i, `j, r, d)x `j

(`i, `j, r, d)x −→ Count α | State | Zero | β

⊥ −→ ⊥

where α =



Ax if r = 1 and d = −1

A1−x if r = 1 and d = 1

Bx if r = 2 and d = −1

B1−x if r = 2 and d = 1

ε otherwise

β =

G1−x,B#1−x if j < n

Halt if j = n

x ∈ {0, 1}, and (`i, `j, r, d) ∈ T .

The rules in Group 1 generate a string of configurations of C. The configurations

are encoded as `iAu1
x B

u2
x where the x alternates between 1 and 0 in order to distinguish

between the leftmost configuration and its neighbouring configuration. The configura-

tions are separated by #x symbols. Whenever a new configuration is pushed onto the

stack, then the leftmost symbol is (`i, `j, r, d)x. Here it is possible (with probability 3
4
) to

initiate some test. The tests ensure that the leftmost configuration is a correct successor

of its neighbour according to the transition (`i, `j, r, d). The symbol α is again used to

“undo” the effect of the instruction just performed. The symbol ⊥ is added in order to

make all runs infinite.

Group 2:
Count −→ N | O

N −→ ε

O −→ ε

Ax −→ A ′
x | ε

Bx −→ B ′
x | ε

A ′
x −→ ε

B ′
x −→ ε

#x −→ ε

Lj −→ ε

where x ∈ {0, 1} and 1 ≤ j ≤ n.
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Group 3:
State −→ ε

Zero −→ ε

Halt −→ ε

The PCTL+ formula is defined as follows:

P>0((τ0 ∧ τ1) U Halt)

where

τx ≡
∧

T=(`i,`j,r,d)∈T

[Tx ⇒ P>0X (Count∧ψx)∧P>0X (State∧φx,i)∧P>0X (Zero∧χx,r,d)]

ψx ≡ P= 1
2ξAx ∧ P= 1

2ξBx

ξAx ≡ ((¬O∧ ¬#x) U A ′
x) ∨ ((¬N∧ ¬A ′

1−x) U #1−x)

ξBx ≡ ((¬O∧ ¬#x) U B ′
x) ∨ ((¬N∧ ¬B ′

1−x) U #1−x)

φx,i ≡ P>0((¬#x) U (#x ∧ P>0X (Li)))

χx,r,d ≡


P=0((¬#1−x) U A1−x) if r = 1 and d = 0

P=0((¬#1−x) U B1−x) if r = 2 and d = 0

true otherwise

Lemma 5.3. Let σ = (`i, `j, r, d)x `jA
u1
x B

u2
x #x`kAv1

1−xB
v2
1−x#1−xγ. Then σ |= τx if and only if

k = i, ur = vr + d, us = vs for s 6= r, and either d 6= 0 or vr = 0.

Proof. The proof is similar to the proof of Lemma 5.1. We show explicitly only that

σ ′ = Count αLjA
u1
x B

u2
x #xLkAv1

1−xB
v2
1−x#1−xγ |= ψx if and only if ur = vr + d and us = vs

for s 6= r.

Let us consider, e.g., the case when r = 1 and d = 1, which means that α = A1−x. Let

us evaluate the probability of Run(σ ′, (¬O∧ ¬#x) U A ′
x). It is easy to see that

P(Run(σ ′, (¬O∧ ¬#x) U A ′
x)) =

1

2
(1−

1

2u1
)

Now let us consider runs satisfying the formula (¬N ∧ ¬A ′
1−x) U #1−x. Such runs

cannot pass through a configuration that has A ′
1−x as its leftmost symbol (which plays

the role of the state sink in the previous construction for pPDA). It is not hard to see

that

P(Run(σ ′, (¬N∧ ¬A ′
1−x) U #1−x)) =

1

2

1

2

1

2v1
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Moreover, the two sets of runs are disjoint since Count is surely rewritten either toO or

toN. Thus,

P(Run(σ ′, ξAx )) =
1

2
(1−

1

2u1
) +

1

2

1

2

1

2v1
=
1

2
(1−

1

2u1
+

1

2v1+1
)

that equals 1
2

if and only if u1 = v1 + 1. The claim that P(Run(σ ′, ξBx )) = 1
2

if and only if

u2 = v2 is proven similarly.

Lemma 5.4. init # |= P>0((τ0 ∧ τ1) U Halt) if and only if (`1, 0, 0) −→∗ (`n, u1, u2) for some

values u1, u2.

Proof. Similar to the proof of Theorem 5.2.

Again, Theorem 4.2 is a direct corollary to Lemma 5.4.

5.3 A full proof of Theorem 4.9

The proof is a modification of the construction presented in [Wal00]. An alternating

Turing machine T is a tuple (Q, Γ, δ, qI, qA, qR, λ), where λ is a function that partitions the

set of statesQ into existential and universal states, and qI, qA, qR is the initial, accepting,

and rejecting state, respectively. Let T = (Q, Γ, δ, qI, qA, qR, λ) be an alternating Turing

machine using n tape cells on input of size n. We construct a pBPA system ∆, a simple

valuation ν, and a qPCTL formula ϕ such that for every configuration c of T there is

configuration s of ∆ such that s |=ν ϕ iff T has an accepting computation from c. Since

s is constructible in time which is polynomial in the size of c, we are (virtually) done.

We assume (w.l.o.g.) that the nondeterminism of T is limited so that the tran-

sition function of T assigns to each pair (state,letter) an ordered pair of moves

(state,letter,direction) of T .

Let us define a pBPA system ∆ = (Γ∆, δ∆,Prob∆) simulating computations of T on

inputs of size n. The stack alphabet is Γ∆ = Q ∪ Γ ∪ {E, L, R} ∪ {G,M,A, F} where E, L, R

are special letters. E stands for an arbitrary existential move. L and R stand for the left

and the right element of a universal move, respectively. G,M,A, F are special control

letters used for checking whether a computation is correct. The transition function δ∆
contains the following rules (the probability function Prob∆ is not significant, we only
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need that it assigns a non-zero probability to each transition).

G −→ Mc ′L X −→ ε

G −→ Mc ′E q −→ ε

G −→ A E −→ ε

M −→ G R −→ ε

A −→ ε L −→ Mc ′R

M −→ F L −→ F

F −→ ε

where c ′ stand for a configuration of T (a string of length n+ 1), X ∈ Γ , and q ∈ Q. The

simulation works as follows: It begins in the configuration Gc and starts guessing com-

putation tree of T on c. Each of the configurations is guessed in n steps, because we need

∆ to be polynomial in the size of T (hence, the rules G −→ Mc ′L,G −→ Mc ′E, L −→ Mc ′R

are in fact abbreviations for a family of rules that guess a new configuration symbol by

symbol). Each time a new configuration is guessed, the run of ∆ has to pass through a

state withM on the top of the stack and the correctness is checked by the formula Move.

When an accepting configuration is guessed (by putting A on the stack), and checked

(by the formula Accept), all the symbols up to L are erased from the stack, and guessing

of the right branch of the corresponding universal move is started. This continues until

the stack becomes empty. The symbol F is used to detect that a run is going false in

formula Move.

We define two formulas Accept and Move that check the correctness of the simulation

performed by ∆.

Accept ≡ P>0 (¬(E∨ L∨ R)U qA)

The Move formula is slightly more complicated.

Move ≡ P>0X

(
F∧

∨
t∈δ

Transt

)

The Transt formulas are constructed from subformulas like

(P>0X )i+n+2X ⇒ (P>0X )iY

in the standard way, using many next operators to check that the corresponding cells

in the consecutive configurations are consistent with the transition function of T . This
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part of the construction is omitted; the underlying principals are the same as in the

construction presented in [Wal00].

The formula ϕ we are interested in looks as follows:

ϕ ≡ P>0 ((¬F∧ (A ⇒ Accept) ∧ (M ⇒ Move))U ε)

Now it is easy to check that Gc |=ν ϕ iff T has an accepting computation from c.
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