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Antonín Kučera and Jan Strejček

Faculty of Informatics, Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic

{tony,strejcek}@fi.muni.cz

Abstract

We give a new characterization of those languages that are definable in fragments

of LTL where the nesting depths of X and U modalities are bounded by given con-

stants. This brings further results about various LTL fragments. We also propose

a generic method for decomposing LTL formulae into an equivalent disjunction of

“semantically refined” LTL formulae, and indicate how this result can be used to

improve the functionality of existing LTL model-checkers.

1 Introduction

Linear temporal logic (LTL) [10] is a popular formalism for specifying properties of (con-

current) programs. The syntax of LTL is given by the following abstract syntax equation:

ϕ ::= tt | a | ¬ϕ | ϕ1 ∧ϕ2 | Xϕ | Fϕ | ϕ1 Uϕ2

Here a ranges over a countable set Λ = {a, b, c, . . .} of letters. The set of letters which

appear in a given formula ϕ is denoted Λ(ϕ).

The semantics of LTL is defined in terms of languages over infinite words. An alpha-

bet is a finite set Σ ⊆ Λ. An ω-word over Σ is an infinite sequence α = α(0)α(1)α(2) . . .

of letters from Σ. The set of all finite words over Σ is denoted by Σ∗, and the set of all

ω-words by Σω. The length of a given u ∈ Σ∗ is denoted |u|. In the rest of this paper we

use a, b, c, . . . to range over Σ, u, v, . . . to range over Σ∗, and α,β, . . . to range over Σω.

For every i ∈ N0 we denote by αi the ith suffix of α, i.e., the word α(i)α(i+ 1) . . ..

∗This work has been supported by GAČR, grant No. 201/03/1161.
†This is a full version of SOFSEM’05 paper.
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Let Σ be an alphabet and ϕ an LTL formula. The validity of ϕ for α ∈ Σω is defined

as follows:

α |= tt

α |= a iff a = α(0)

α |= ¬ϕ iff α 6|= ϕ

α |= ϕ1 ∧ϕ2 iff α |= ϕ1 ∧ α |= ϕ2

α |= Xϕ iff α1 |= ϕ

α |= Fϕ iff ∃i ∈ N0 : αi |= ϕ

α |= ϕ1 Uϕ2 iff ∃i ∈ N0 : αi |= ϕ2 ∧ ∀ 0 ≤ j < i : αj |= ϕ1

For each alphabet Σ, a formula ϕ defines theω-language LΣϕ = {α ∈ Σω | α |= ϕ}.

Observe that Fϕ is equivalent to ttUϕ. Therefore, Fϕ is sometimes considered

just as an abbreviation for ttUϕ. We included the F modality into the LTL syntax

explicitly because we consider various LTL fragments where the F and U modalities

are distinguished. For every LTL formula ϕ and every modal operator M ∈ {X, U ,F}

we define the nesting depth of M in ϕ, denoted M-depth(ϕ), inductively as follows (Y

ranges over unary operators {¬,F,X} and Z ranges over binary operators {∧,U}).

M-depth(tt) = 0 = M-depth(a)

M-depth(Yϕ) =

{
M-depth(ϕ) + 1 ifM = Y,

M-depth(ϕ) otherwise.

M-depth(ϕ1 Zϕ2) =

{
max{M-depth(ϕ1),M-depth(ϕ2)} + 1 ifM = Z,

max{M-depth(ϕ1),M-depth(ϕ2)} otherwise.

For allm,n, k ∈ N0∪{∞}, the symbol LTL(Um,Xn,Fk) denotes the set of all LTL formulae

ϕ such that U-depth(ϕ) ≤ m, X-depth(ϕ) ≤ n, and F-depth(ϕ) ≤ k. To simplify our

notation, we omit the “∞” superscript, and if m, n, or k equals 0, then we omit the

symbol Um, Xn, or Fk in LTL(Um,Xn,Fk), respectively. Hence, e.g., LTL(U3,X) is a

shorthand for LTL(U3,X∞,F0).
A lot of research effort has been invested into characterizing the expressive power

of LTL and its fragments. Kamp [5] proved that the logic LTL is expressively equiva-

lent to first-order logic interpreted over ω-words. Using the results presented in [12]

and [1], Perrin [9] showed that an ω-language L is definable in first-order logic iff L is

ω-regular and noncounting. See [3, 13] for a more comprehensive overview. Later, var-

ious fragments of LTL have been characterized by identifying relevant structures called
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“forbidden patterns” in the corresponding minimal deterministic finite-state automata

[15]. The semantic relationship between LTL fragments has also been studied. In [4], it is

shown that the LTL(Um,X,F) hierarchy is semantically strict, i.e., the class of languages

definable by LTL(Um+1,X,F) formulae is strictly larger than the class of languages de-

finable by LTL(Um,X,F) formulae (for every m ∈ N0). This proof can be adapted to

show the strictness of LTL(Um,X) hierarchy. A simpler proof for the LTL(Um,X) hier-

archy was given later in [6]. A related result [11] shows the decidability of the problem

whether a givenω-regular language L is definable in LTL(Um,X,F) for a givenm ∈ N0.
In this paper, we give a new characterization of ω-languages that are definable in

LTL(Um,Xn) for givenm,n ∈ N0. Roughly speaking, for each alphabet Σ and allm,n ∈
N0 we design a finite set of (m,n)-patterns1, where each (m,n)-pattern is a finite object

representing anω-language over Σ so that the following conditions are satisfied:

• Each α ∈ Σω is represented by exactly one (m,n)-pattern (consequently, the sets

ofω-words represented by different patterns are disjoint).

• ω-words which are represented by the same (m,n)-pattern cannot be distin-

guished by any formula of LTL(Um,Xn).

• For each (m,n)-pattern pwe can effectively construct a formula ψ ∈ LTL(Um,Xn)

so that for each α ∈ Σω we have that α |= ψ if and only if α is represented by the

pattern p.

Thus, the semantics of each formula ϕ ∈ LTL(Um,Xn) is fully characterized by a finite

subset of (m,n)-patterns, and vice versa. Intuitively, the (m,n)-patterns represent ex-

actly the information about ω-words which determines the (in)validity of LTL(Um,Xn)

formulae. The patterns are defined inductively on m, and the inductive step brings

some insight into what is actually gained (i.e., what new properties can be expressed)

by increasing the nesting depth of U by one.

Characteristic patterns can be used as a tool for proving further results about the

logic LTL and its fragments. In particular, they can be used to construct a short proof

of a (somewhat simplified) form of stutter invariance of LTL(Um,Xn) languages intro-

duced in [6]. This, in turn, allows to construct simpler proofs for some of the results pre-

sented in [6] (like, e.g., the strictness of the LTL(Um,X), LTL(U,Xn), and LTL(Um,Xn)

hierarchies). An interesting question (which is left open) is whether one could use char-

1Let us note that (m,n)-patterns have nothing to do with the forbidden patterns of [15].
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acteristic patterns to demonstrate the decidability of the problem if a given ω-regular

language L is definable in LTL(Um,X) for a givenm.

Another application area for characteristic patterns is LTL model-checking. We be-

lieve that this is actually one of the most interesting parts of our work, and therefore we

explain the idea in greater detail.

An instance of the LTL model-checking problem is a system and an LTL formula

which specifies desired properties of the system. The question is whether all runs of

the system satisfy the formula. This problem can be dually reformulated as follows:

for a given system and a given formula ϕ (representing the negation of the desired

property), decide whether the system has at least one run satisfying ϕ. Characteristic

patterns can be used to decompose a given LTL formulaϕ into an equivalent disjunction

ϕ ≡ ψ1 ∨ · · · ∨ ψn of mutually exclusive formulae (i.e., we have ψi ⇒ ∧
j6=i ¬ψj for

each i). Roughly speaking, each ψi corresponds to one of the patterns which define the

semantics of ϕ. Hence, the ψi formulae are not necessarily smaller or simpler than ϕ

from the syntactical point of view. The simplification is on semantical level, because

each ψi “cuts off” a dedicated subset of runs that satisfy ϕ. Another advantage of this

method is its scalability—the patterns can be constructed also for those n and m that

are larger than the nesting depths of X and U inϕ. Thus, the patterns can be repeatedly

“refined”, which corresponds to decomposing the constructed ψi formulae. Another

way how to refine the patterns is to enlarge the alphabet Σ.

The decomposition technique enables the following model-checking strategy: First

try to model-check ϕ. If this does not work (because of, e.g., memory overflow), then

decompose ϕ into ψ1 ∨ · · · ∨ ψn and try to model-check the ψ1, · · · , ψn formulae. This

can be done sequentially or even in parallel. If at least one subtask produces a positive

answer, we are done (there is a “bad” run). Similarly, if all subtasks produce a negative

answer, we are also done (there is no “bad” run). Otherwise, we go on and decompose

those ψi for which our model-checker did not manage to answer.

Obviously, the introduced strategy can only lead to better results than checking just

ϕ, and it is completely independent of the underlying model-checker. Moreover, some

new and relevant information is obtained even in those cases when this strategy does

not lead to a definite answer—we know that if there is a bad run, it must satisfy some

of the subformulae we did not manage to model-check. The level of practical usabil-

ity of the above discussed approach can only be measured by outcomes of practical
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experiments which are beyond the scope of this (mainly theoretical) paper2. Here we

concentrate on providing basic results and identifying promising directions for applied

research.

Let us note that similar decomposition techniques have been proposed in [8]

and [16]. In [8], a specification formula of the form Gϕ is decomposed into a set of

formulae {G(x=vi ⇒ ϕ) | vi is in the range of the variable x}. This decomposition tech-

nique has been implemented in the SMV system together with methods aimed at re-

ducing the range of x. This approach has then been used for verification of specific

types of infinite-state systems (see [8] for more details). In [16], a given specification

formula ϕ is model-checked as follows: First, a finite set of formulae ψ1, . . . , ψn of

the form ψi = G(x 6=v0 ⇒ x=vi) is constructed such that the verified system satisfies

ψ1 ∨ . . . ∨ ψn. The formulae ψ1, . . . , ψn are either given directly by the user, or con-

structed automatically using methods of static analysis. The verification problem for ϕ

is then decomposed into the problems of verifying the formulae ψi ⇒ ϕ. Using this ap-

proach, the peak memory in model checking has been reduced by 13–25% in the three

case studies included in the paper.

It is worth mentioning that characteristic patterns could potentially be used also in

a different way: we could first extract all patterns that can be exhibited by the system,

and then check whether there is one for which ϕ holds. This makes sense in situations

when we want to check a large number of formulae on the same system. The patterns

fully characterize the system’s behaviour (with respect to properties expressible in a

given LTL(Um,Xn) fragment), and this information could be re-used when checking the

individual formulae. Unfortunately, the set of all patterns exhibited by a given system

seems to be computable only in restricted cases, e.g., when the system has just a single

path (this problem is known as model checking a path [7]).

This paper is organized as follows. Section 2 provides a formal definition of (m,n)-

patterns together with basic theorems. Section 3 is devoted to applications of charac-

teristic patterns in model checking area. More precisely, the section contains detailed

discussion of the indicated decomposition technique and the pattern-based algorithm

for model checking a path. Conclusions and directions for future research are given in

Section 4.
2Practical implementation of the method is under preparation.
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2 Characteristic patterns

To get some intuition about characteristic patterns, let us first consider the set of patterns

constructed for the alphabet Σ = {a, b, c}, m = 1, and n = 0 (as we shall see, the m and

n correspond to the nesting depths of U and X, respectively). Let α ∈ Σω be anω-word.

A letter α(i) is repeated if there is j < i such that α(j) = α(i). The (1, 0)-pattern of α,

denoted pat(1, 0, α), is the finite word obtained from α by deletion of all repeated letters

(for reasons of consistent notation, this word is written in parenthesis). For example,

if α = aabbbaabababcabccacab . . ., then pat(1, 0, α) = (abc). So, the set of all (1, 0)-

patterns over the alphabet {a, b, c}, denoted Pats(1, 0, {a, b, c}), has exactly 15 elements

which are the following:

(abc), (acb), (bac), (bca), (cab), (cba), (ab), (ba), (ac), (ca), (bc), (cb), (a), (b), (c)

Thus, the set {a, b, c}ω is divided into 15 disjoint subsets, where each set consists of

all ω-words that have a given pattern. It remains to explain why these patterns are

interesting. The point is that LTL(U1,X0) formulae can actually express just the order

of non-repeated letters. For example, the formula aUb says that either the first non-

repeated letter is b, or the first non-repeated letter is a and the second one is b. So, this

formula holds for a given α ∈ {a, b, c}ω if and only if pat(1, 0, α) equals to

(b), (ba), (bc), (bac), (bca), (ab), or (abc).

We claim (and later also prove) that ω-words of {a, b, c}ω which have the same (1, 0)-

pattern cannot be distinguished by any LTL(U1,X0) formula. So, a language defined

by a formula ϕ ∈ LTL(U1,X0) over alphabet Σ = {a, b, c} is fully characterized by a

subset of Pats(1, 0, {a, b, c}). Moreover, for each p ∈ Pats(1, 0, {a, b, c}) we can construct

an LTL(U1,X0) formula ϕp such that for every α ∈ {a, b, c}ω we have that α |= ϕp iff

pat(1, 0, α) = p. For example,

ϕ(abc) = a ∧ (aUb) ∧ ((a∨ b) U c).

To indicate how this can be generalized to largerm and n, we show how to extract a

(2, 0)-pattern from a given α ∈ {a, b, c}ω. We start by considering an infinite word over

the alphabet Pats(1, 0, {a, b, c}) constructed as follows:

pat(1, 0, α0) pat(1, 0, α1) pat(1, 0, α2) pat(1, 0, α3) . . .
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For example, for α = aabacaω we get the sequence

(abc)(abc)(bac)(ac)(ca)(a)ω.

The pattern pat(2, 0, α) is obtained from the above sequence by deletion of repeated

letters (realize that now we consider the alphabet Pats(1, 0, {a, b, c})). Hence,

pat(2, 0, α) = ((abc)(bac)(ac)(ca)(a)).

Similarly as above, it holds that those ω-words of {a, b, c}ω which have the same (2, 0)-

pattern cannot be distinguished by any LTL(U2,X0) formula. Moreover, for each p ∈
Pats(2, 0, {a, b, c}) there is an LTL(U2,X0) formula ϕp such that for every α ∈ {a, b, c}ω

we have that α |= ϕp iff pat(2, 0, α) = p.

Formally, we consider every finite sequence of (1, 0)-patterns, where no (1, 0)-

pattern is repeated, to be a (2, 0)-pattern. This makes the inductive definition simpler,

but in this way we also introduce patterns that are not “satisfiable”. For example, there

is obviously no α ∈ {a, b, c}ω such that pat(2, 0, α) = ((a)(ab)).

The last problem we have yet not addressed is how to deal with the X operator. First

note that the X operator can be pushed towards letters using the following equivalences

(see, for example, [3]):

Xtt ⇔ tt X(¬ϕ) ⇔ ¬Xϕ

X(ϕ1 Uϕ2) ⇔ Xϕ1 U Xϕ2 X(ϕ1 ∧ϕ2) ⇔ Xϕ1 ∧ Xϕ2

Note that the nesting depth of X remains unchanged by performing this transformation.

Hence, we can safely assume that the X operator occurs in LTL formulae only within

subformulae of the form XX . . .Xa. This is the reason why we can handle the X operator

in the following way: the set Pats(m,n, Σ) is defined in the same way as Pats(m, 0, Σ).

The only difference is that we start with the alphabet Σn+1 instead of Σ.

Now we present a full formal definition of characteristic patterns.

Definition 1. Let Σ be an alphabet. For all m,n ∈ N0 we define the set Pats(m,n, Σ) induc-

tively as follows:

• Pats(0, n, Σ) = {w ∈ Σ∗ | |w| = n+1}

• Pats(m+1, n, Σ) = {(p1 . . . pk) | k ∈ N, p1, . . . , pk ∈ Pats(m,n, Σ), pi 6= pj for i 6= j}

The size of Pats(m,n, Σ) and the size of its elements are estimated in our next lemma.
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Lemma 2. For every i ∈ N0, let us define the function faci : N0 → N0 inductively as follows:

faci(x) =

{
x if i = 0

(faci−i(x) + 1)! otherwise

The number of elements of Pats(m,n, Σ) is bounded by facm(|Σ|
n+1

), and the size of each p ∈
Pats(m,n, Σ) is bounded by (n+ 1) · Πm−1

i=0 faci(|Σ|
n+1

).

Proof: Directly from definitions. �

The bounds given in Lemma 2 are non-elementary in m. This indicates that all of

our algorithms are computationally unfeasible from the asymptotic analysis point of

view. However, LTL formulae that are used in practice typically have a small nesting

depth of U (usually not larger than 3 or 4), and do not contain any X operators. In this

light, the bounds of Lemma 2 can be actually interpreted as “good news”, because even

a relatively small formula ϕ can be decomposed into a disjunction of many formulae

which refine the meaning of ϕ.

To all m,n ∈ N0 and α ∈ Σω we associate a unique pattern of Pats(m,n, Σ). This

definition is again inductive.

Definition 3. Let α ∈ Σω. For allm,n ∈ N0 we define the characteristic (m,n)-pattern of α,

denoted pat(m,n,α), and (m,n)-pattern word of α, denoted patword(m,n,α), inductively

as follows:

• pat(0, n, α) = α(0) . . . α(n),

• patword(m,n,α) ∈ Pats(m,n, Σ)ω is defined by patword(m,n,α)(i) = pat(m,n,αi),

• pat(m+1, n, α) is the finite word (written in parenthesis) obtained from patword(m,n,α)

by deletion of all repeated letters.

Words α,β ∈ Σω are said to be (m,n)-pattern equivalent, written α ∼m,n β, if

pat(m,n,α) = pat(m,n,β).
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Example 4. Let us consider an ω-word α = abbbacbac(ba)ω. Some examples of character-

istic patterns follow. Underlined sequences correspond to (0, n)-patterns, where n > 0.

pat(0, 0, α) = a

patword(0, 0, α) = abbbacbac(ba)ω = α

pat(1, 0, α) = (abc)

patword(1, 0, α) = (abc)(bac)(bac)(bac)(acb)(cba)(bac)(acb)(cba)((ba)(ab))ω

pat(2, 0, α) = ((abc)(bac)(acb)(cba)(ba)(ab))

pat(0, 1, α) = ab

patword(0, 1, α) = abbbbbbaac cbbaac cb(baab)ω

pat(1, 1, α) = (abbbbaac cb)

pat(0, 2, α) = abb

Theorem 5. Let Σ be an alphabet. For all m,n ∈ N0 and every p ∈ Pats(m,n, Σ) there

effectively exists a formulaϕp ∈ LTL(Um,Xn) such that for every α ∈ Σω we have that α |= ϕp

iff pat(m,n,α) = p.

Proof: We proceed by induction onm.

• m = 0. If p ∈ Pats(0, n, Σ), then p is of the form a0 . . . an, where each ai ∈ Σ.

Hence, we put

ϕp = a0 ∧ X (a1 ∧ X (a2 ∧ . . . ∧ X (an−1 ∧ Xan) . . .)).

Obviously, ϕp ∈ LTL(U0,Xn). Moreover, each α ∈ Σω such that α |= ϕ starts

with a0 . . . an, which means that pat(0, n, α) = a0 . . . an. The other direction is also

trivial.

• Induction step. Let p ∈ Pats(m+1, n, Σ). This means that p is of the form p =

(p1 . . . pk), where each pi ∈ Pats(m,n, Σ) and pi 6= pj for i 6= j. By induction

hypothesis, for each 1 ≤ i ≤ k there effectively exists a formulaϕpi
∈ LTL(Um,Xn)

which satisfies the properties of our lemma. We put

ϕp = G(ϕp1
∨ . . .∨ϕpk

) ∧ ϕp1
∧

∧
1<j≤k

(ϕp1
∨ . . .∨ϕpj−1

) Uϕpj
.

Obviously, ϕp ∈ LTL(Um+1,Xn). Now let α ∈ Σω. By induction hypothesis, for all

i ∈ N0 and 1 ≤ j ≤ k we have that αi |= ϕpj
iff pat(m,n,αi) = pj. First we prove

that if α |= ϕp, then pat(m+1, n, α) = p. So, let α |= ϕp, and let us consider the

word patword(m,n,α). With the help of induction hypothesis, we can conclude

that ϕp actually says that
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– all patterns of Pats(m,n, Σ) which appear in patword(m,n,α) are among

p1, . . . , pn (this is expressed by the subformula G(ϕp1
∨ . . .∨ϕpk

)),

– each pi appears in patword(m,n,α), and for all 1 ≤ i < j ≤ k, the first oc-

currence of pi precedes the first occurrence of pj (this is expressed by the

subformula ϕp1
∧

∧
1<j≤k(ϕp1

∨ . . .∨ϕpj−1
) Uϕpj

)

This means that pat(m+1, n, α) = p as required. The other implication

(i.e. pat(m+1, n, α) = p implies α |= ϕp) follows similarly. �

Example 6. Let α = abbabaaabb(ac)ω. Then the formula ϕp, where p = pat(2, 0, α) =

((abc)(bac)(ac)(ca)), is constructed as follows:

ϕ(abc) = G(a∨ b∨ c) ∧ a∧ (aUb) ∧ ((a∨ b) U c)

ϕ(bac) = G(b∨ a∨ c) ∧ b∧ (bUa) ∧ ((b∨ a) U c)

ϕ(ac) = G(a∨ c) ∧ a∧ (aU c)

ϕ(ca) = G(c∨ a) ∧ c∧ (cUa)

ϕp = G(ϕ(abc) ∨ϕ(bac) ∨ϕ(ac) ∨ϕ(ca)) ∧ ϕ(abc) ∧ (ϕ(abc) Uϕ(bac)) ∧

∧ ((ϕ(abc) ∨ϕ(bac)) Uϕ(ac)) ∧ ((ϕ(abc) ∨ϕ(bac) ∨ϕ(ac)) Uϕ(ca))

Let us note that the size of ϕp for a given p ∈ Pats(m,n, Σ) is exponential in the size

of p. However, ifϕp is represented by a circuit (DAG), then the size of the circuit is only

linear in the size of p.

Theorem 7. Let Σ be an alphabet and let m,n ∈ N0. For all α,β ∈ Σω we have that α and β

cannot be distinguished by any LTL(Um,Xn) formula if and only if α ∼m,n β.

Proof: The “=⇒” direction follows directly from Theorem 5. We prove the other direc-

tion. Let ϕ ∈ LTL(Um,Xn) be a formula. As mentioned above, we can safely assume

that the X operator occurs only in subformulae of the form XX . . .Xa, where a is a letter.

By induction on the structure of ϕ we show that for every α,β such that α ∼m,n β we

have that α |= ϕ ⇐⇒ β |= ϕ.

• ϕ = a. It follows directly from Definition 3 that α(0) . . . α(n) = β(0) . . . β(n). This

means that α |= a ⇐⇒ β |= a as required.

• Induction step. If ϕ = Xψ, then ϕ = XX . . .Xa, where the nesting depth of X in

ϕ is at most n. Hence, we can argue in the same way as in the basic step. The

cases when ϕ = ¬ψ or ϕ = ψ ∧ ρ follow directly from induction hypothesis.
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Now let ϕ = ψU ρ. We show that if α |= ϕ, then also β |= ϕ. So, let α |=

ϕ. This means there is j ∈ N0 such that αj |= ρ, and for every i < j it holds

that αi |= ψ. As pat(m,n,α) = pat(m,n,β), the sequence of first occurrences of

letters in patword(m− 1, n, α) is the same as in patword(m− 1, n, β). Let j ′ be the

index of the first occurrence of a letter pat(m− 1, n, αj) in patword(m− 1, n, β),

i.e. pat(m− 1, n, βj ′) = pat(m− 1, n, αj). As ρ ∈ LTL(Um−1,Xn), by induction

hypothesis we obtain that βj ′ |= ρ. In the same way we can show that βi ′ |=

ψ for every i ′ < j ′, because for each such i ′ we have that pat(m− 1, n, βi ′) =

pat(m− 1, n, αi) for some i < j. This means β |= ψU ρ. �

In other words, Theorem 7 says that the information about α which is relevant with

respect to (in)validity of all LTL(Um,Xn) formulae is exactly represented by pat(m,n,α).

Thus, characteristic patterns provide a new characterization of LTL(Um,Xn) languages

which can be used to prove further results about LTL. In particular, a simplified form

of (m,n)-stutter invariance of LTL(Um,Xn) languages (see [6]) follows easily from the

presented results on characteristic patterns:

Lemma 8. For all m,n ∈ N0, v,w ∈ Σ∗, α ∈ Σω it holds that if w is a prefix of vω and

|w| ≥ |v| ·m−m+ n+ 1 then vwα ∼m,n wα.

Proof: Let n, v,w, α satisfy the conditions of our lemma. We prove that

pat(m,n, vwα) = pat(m,n,wα). By induction onm.

• m = 0. It suffices to realize that (vw)(i) = w(i) for 0 ≤ i ≤ n. Hence,

pat(0, n, vwα) = pat(0, n,wα).

• Induction step (m > 0). First we prove that for every 0 ≤ i < |v| it holds that

pat(m− 1, n, viwα) = pat(m− 1, n,wiα). (1)

The concatenation viw can be seen as a concatenation v ′wi, where |v ′| = |v|. Fur-

ther, wi is a prefix of (v ′)ω and |wi| ≥ |w|v|−1| = |w| − |v| + 1. Hence,

|wi| ≥ |w| − |v| + 1

≥ |v| ·m−m+ n+ 1− |v| + 1

≥ |v| · (m− 1) + |v| −m+ n+ 1− |v| + 1

≥ |v| · (m− 1) − (m− 1) + n+ 1

As |v ′| = |v|, we obtain (1) by applying induction hypothesis.

11



We have proven that the first |v| letters of ω-words patword(m− 1, n, vwα) and

patword(m− 1, n,wα) are the same. Further, these letters are followed by |v|

repeated letters in patword(m− 1, n, vwα). As (vwα)2|v| = (wα)|v|, the suf-

fixes patword(m− 1, n, vwα)2|v| and patword(m− 1, n,wα)|v| are the same. Hence,

pat(m,n, vwα) = pat(m,n,wα). �

The conditions of Lemma 8 match the definition of (m,n)-redundancy of the subword

v in anω-word vwα as given in [6].

Theorem 9. Let m,n ∈ N0, u, v ∈ Σ∗ and α ∈ Σω. If v is (m,n)-redundant in uvα, then

uvα ∼m,n uα.

Proof: The theorem follows from Lemma 8 and the implication β ∼m,n γ =⇒ uβ ∼m,n

uγ that can be easily proven for all m,n ∈ N0, β, γ ∈ Σω, and u ∈ Σ∗ by induction on

m. �

Theorem 9 provides the crucial tool which was used in [6] to prove that, e.g., the

LTL(Um,X), LTL(U,Xn), and LTL(Um,Xn) hierarchies are strict, that the class of ω-

languages which are definable both in LTL(Um+1,Xn) and LTL(Um,Xn+1) is strictly

larger than the class of languages definable in LTL(Um,Xn), and so on. The proof of

Theorem 9 is shorter than the one given in [6].

3 Applications in model checking

In this section, the applicability of results about characteristic patterns to LTL model

checking is discussed in greater detail. First of all, we introduce an algorithm deciding

whether a pattern satisfies an LTL formula or not.

Definition 10. Let p ∈ Pats(m,n, Σ) be a pattern andϕ ∈ LTL(Um,Xn) be a formula. We say

that p satisfiesϕ, written p |= ϕ, if for everyω-word α ∈ Σω we have that if pat(m,n,α) = p,

then α |= ϕ.

Note that Theorem 7 implies the following: if p 6|= ϕ, then for every ω-word α such

that pat(m,n,α) = pwe have α 6|= ϕ.

Theorem 11. Given an (m,n)-pattern p and an LTL(Um,Xn) formulaϕ, the problem whether

p |= ϕ can be decided in time O(|ϕ| · |p|).

12



1 proc check(ϕ, p, n)

2 if U-depth(()ϕ) < mtype(p) then return(check(ϕ, p(0), n))

3 elsif ϕ = tt then return(true)

4 elsif ϕ ∈ Σ then return(ϕ == p(n))

5 elsif ϕ = ¬ϕ1 then return(¬check(ϕ1, p, n))

6 elsif ϕ = ϕ1 ∧ϕ2 then return(check(ϕ1, p, n) ∧ check(ϕ2, p, n))

7 elsif ϕ = Xϕ1 then return(check(ϕ1, p, n+ 1))

8 elsif ϕ = ϕ1 Uϕ2
9 then do

10 i := 0

11 while (i < |p|) ∧ ¬check(ϕ2, p(i), n) do

12 if check(ϕ1, p(i), n) then i := i+ 1

13 else i := |p|

14 fi

15 od

16 return(i < |p|)

17 od

18 fi

Figure 1: An algorithm deciding whether p |= ϕ or not.
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Proof: Consider the algorithm of Figure 1. The procedure call check(ϕ, p, 0) decides

whether p |= ϕ or not. The function mtype(p) returns the m such that p ∈ Pats(m,n, Σ).

The algorithm is designed for all ϕ and p satisfying U-depth(()ϕ) ≤ mtype(p).

The algorithm cannot assume that the X operators in ϕ have been pushed inside be-

cause this transformation can lead to a formula of the size O(|ϕ|2). Thus, the algorithm

pushes the X operators towards letters ‘virtually’: the actual nesting depth of X opera-

tors is kept in the third argument of the check procedure and it affects the evaluation of

the subformulae of the form a (see the line 4). The correctness of the algorithm follows

directly from the semantics of LTL and the idea of characteristic patterns.

The complexity of our algorithm is O(|ϕ| · |p|) as the procedure check is invoked

at most once for every subformula and every subpattern. Let us note that values of

U-depth(()ϕ ′) and mtype(p ′) for all subformulae ϕ ′ of ϕ and all subpatterns p ′ of p can

be pre-calculated with the complexity O(|ϕ| + |p|). �

In the rest of this section we discuss potential applications of characteristic patterns

mentioned in the introduction.

3.1 Decomposition technique

In this subsection we consider the variant of LTL where formulae are built over atomic

propositions (At) rather than over letters. The only change in the syntax is that a ranges

over At. The logic is interpreted over ω-words over an alphabet Σ ⊆ 2At, where α |= a

iff a ∈ α(0). The formula Fϕ is to be understood just as an abbreviation for ttUϕ, and

Gϕ as an abbreviation for ¬F¬ϕ.

Let ϕ ∈ LTL(Um,Xn) be a formula. If our model checker fails to verify whether the

system has a run satisfying ϕ or not (one typical reason is memory overflow), we can

proceed by decomposing the formula ϕ in the following way:

1. First we compute the set P = {p ∈ Pats(m,n, 2At(ϕ)) | p |= ϕ}.

2. Then, each p ∈ P is translated into an equivalent LTL formula (using, for example,

the algorithm of Theorem 5).

A simple way how to implement the first step is to compute the set Pats(m,n, 2At(ϕ)),

and then for each element p decide whether p |= ϕ using the algorithm of Theorem 11.

In practice, this could be optimized by using a more sophisticated algorithm which takes

into account the structure ofϕ and possibly also eliminates unsatisfiable patterns. In the
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second step, the patterns could be alternatively translated directly into the formalism

adopted in the chosen model checker (e.g. Büchi automata or alternating automata).

Example 12. We illustrate the decomposition technique on a formula ϕ = FG¬q which is the

negation of a typical liveness property GFq. The alphabet is Σ = 2{q} = {{q}, ∅}. To simplify our

notation, we useA and B to abbreviate {q} and ∅, respectively. The elements of Pats(2, 0, {A,B})

are listed below (unsatisfiable patterns have been eliminated). All patterns which satisfy ϕ are

listed in the right column.

((A)) ((B))

((BA)(A)) ((AB)(B))

((AB)(BA)) ((BA)(AB)(B))

((BA)(AB)) ((AB)(BA)(B))

((AB)(BA)(A))

((BA)(AB)(A))

The formulae corresponding to the patterns of the right column are listed below.3

((B)) ψ1 = G¬q

((AB)(B)) ψ2 = q∧ qU G¬q

((BA)(AB)(B)) ψ3 = ¬q∧ F(q∧ F¬q) ∧ FG¬q

((AB)(BA)(B)) ψ4 = q∧ F(¬q∧ Fq) ∧ FG¬q

So, the formula ϕ is decomposed into an equivalent disjunction ψ1 ∨ψ2 ∨ψ3 ∨ψ4.

Thus, the original question whether the system has a run satisfyingϕ is decomposed

into k questions of the same type. These can be solved using standard model checkers.

We illustrate potential benefits of this method in the context of automata-based ap-

proach to model checking [14]. Here the formulaϕ is translated into a Büchi automaton

Aϕ accepting the ω-language L(ϕ). Then, the model checking algorithm computes an-

other Büchi automaton called product automaton, which accepts exactly those runs of the

verified system which are accepted by Aϕ as well. The model checking problem is thus

reduced to the problem whether the language accepted by the product automaton is

empty or not. The bottleneck of this approach is the size of the product automaton.

Example 13. Let us suppose that a given model checking algorithm does not manage to check

the formula ϕ of Example 12. The subtasks given by the ψi formulae constructed in Example 12

can be more tractable. Some of the reasons are illustrated below.
3For notation convenience, we simplified the formulae obtained by running the algorithm of Theo-

rem 5 into a more readable (but equivalent) form.
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ϕ : // /.-,()*+
A,B

�� B // /.-,()*+��������
B

��

ψ1 : // /.-,()*+��������
B

��

ψ2 : // /.-,()*+
A

�� B // /.-,()*+��������
B

��

Figure 2: Büchi automata corresponding to formulae ϕ, ψ1, and ψ2 of Example 12.
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Figure 3: An example of a system to be verified (a) and product automata (b) and (c)

corresponding to ϕ and ψ2 of Example 12, respectively.

• The size of the Büchi automaton for ψi can be smaller than the size of Aϕ. In Example 12,

this is illustrated by formula ψ1 (see Figure 2). The corresponding product automaton is

then smaller as well.

• The size of the product automaton constructed for ψi can be smaller than the one for ϕ

even if the size of Aψi
is larger than the size of Aϕ. In Example 12, this is illustrated by

the formula ψ2; the automata for ϕ and ψ2 are almost the same (see Figure 2), but the

product automaton for ψ2 can be much smaller as indicated in Figure 3.

It is of course possible that some of the ψi formulae in the constructed decomposi-

tion remain intractable. Let ψi be such an intractable formula. Then ψi can be further

decomposed by a technique called refinement (since ψi corresponds to a unique pattern

pi ∈ Pats(m,n, 2At(ϕ)), we can equivalently consider pattern refinement). There are two

basic ways how to refine the pattern pi. The idea of the first method is to compute the

set of (m ′, n ′)-patterns, where m ′ ≥ m and n ′ ≥ n, and identify all patterns that satisfy

the formula ψi.
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Example 14. The formula ψ3 of Example 12 corresponding to the (2, 0)-pattern

((BA)(AB)(B)) can be refined into two LTL(U3,X0) formulae given by the (3, 0)-patterns

(((BA)(AB)(B))((AB)(B))((B))),

(((BA)(AB)(B))((AB)(BA)(B))((AB)(B))((B))).

The other refinement method is based on enlarging the alphabet before computing

the patterns. We simply expand the set At(ϕ) with a new atomic proposition. The choice

of the new atomic proposition is of course important. By a “suitable” choice we mean

a choice which leads to a convenient split of system’s runs into more manageable units.

An interesting problem (which is a potential topic for future work) is whether suitable

new propositions can be identified effectively.

Example 15. Let us consider the formula ψ2 of Example 12 corresponding to the (2, 0)-pattern

((AB)(B)). The original set of atomic propositions At(ϕ) = {q} generates the alphabet Σ =

{A,B}, where A = {q}, B = ∅. If we enrich the set of atomic propositions with r, we get a new

alphabet Σ ′ = {C,D, E, F}, where C = {q, r}, D = {q}, E = {r}, F = ∅. Hence, the original

letters A,B correspond to the pairs of letters C,D and E, F, respectively. Thus, the formula ψ2
is refined into LTL(U2,X0) formulae given by the (2, 0)-patterns

((CE)(E))

((CDE)(DE)(E))

((CDE)(DCE)(CE)(E))

((CDE)(DCE)(DE)(E))

((CEF)(EF)(FE))

((CEF)(EF)(FE)(E))

((CEF)(EF)(FE)(F))

((CDEF)(DEF)(EF)(FE))

((CDEF)(DEF)(EF)(FE)(E))

((CDEF)(DEF)(EF)(FE)(F))

((CDEF)(DCEF)(CEF)(EF)(FE))

((CDEF)(DCEF)(CEF)(EF)(FE)(E))

((CDEF)(DCEF)(CEF)(EF)(FE)(F))

((CDEF)(DCEF)(DEF)(EF)(FE))

((CDEF)(DCEF)(DEF)(EF)(FE)(E))

((CDEF)(DCEF)(DEF)(EF)(FE)(F))
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and all those patterns which can be obtained from the above given ones by either exchanging

the letters C,D, or exchanging the letters E, F, or by both exchanges. Hence, the formula ψ2 is

refined into a disjunction of 16 · 4 = 64 formulae.

Some of the subtasks obtained by refining intractable subtasks can be tractable. Oth-

ers can be refined again and again. Observe that even if we solve only some of the sub-

tasks, we still obtain a new piece of relevant knowledge about the system – we know

that if the system has a run satisfyingϕ, then the run satisfies one of the formulae corre-

sponding to the subtasks we did not manage to solve. Hence, we can (at least) classify

and repeatedly refine the set of “suspicious” runs.

We finish this subsection by listing the benefits and drawbacks of the presented

method.

+ The subtasks are formulated as standard model checking problems. Therefore, the

method can be combined with all existing algorithms and heuristics.

+ With the help of the method, we can potentially verify some systems which are

beyond the reach of existing model checkers.

+ Even if it is not possible complete the verification task, we get partial information

about the structure of potential (undiscovered) runs satisfying ϕ. We also know

which runs of the system have been successfully verified.

+ The subtasks can be solved simultaneously in a distributed environment with a

very low communication overhead.

+ When we verify more formulae on the same system, the subtasks occurring in

decompositions of both formulae are solved just once.

– Calculating the decomposition of a given formula can be expensive. On the other

hand, this is not critical for formulae with small number of atomic propositions

and small nesting depths of U and X.

– Runtime costs of the proposed algorithm are high. It can happen that all subtasks

remain intractable even after several refinement rounds and we get no new infor-

mation at all.
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3.2 Model checking a path using patterns

Markey and Schnoebelen [7] have recently introduced the problem of model checking a

single infinite path. More precisely, they consider infinite paths of the form uvω, where

u, v ∈ Σ∗ and v 6= ε, called loops. LTL model checking of a loop can be done in bilin-

ear (i.e. O(|uv| · |ϕ|)) time using the algorithm for CTL model checking of finite-state

systems [2] (the expressive power of CTL and LTL on linear structures coincides). We

present a new algorithm based on characteristic patterns and argue that our algorithm

can be more efficient in some cases.

Let ϕ ∈ LTL(Um,Xn) be a formula and uvω be a loop, where u, v ∈ Σ∗ and v 6= ε.

The algorithm first computes a pattern pat(m,n, uvω) and then it decides whether the

pattern satisfies ϕ. First we focus on the pattern extraction.

1 // 2 // . . . // k // k+1 // k+2 // . . . // k+l
{{

Figure 4: A finite-state system with one infinite path.

Let k = |u| and l = |v|. The loop can be represented by the finite structure given in

Figure 4 and a function L labelling each state of the structure with the corresponding

letter of the loop, i.e.

L(i) =

{
u(i− 1) if 1 ≤ i ≤ k,

v(i− k− 1) if k+ 1 ≤ i ≤ k+ l.

By s(i) we denote a successor of a state i defined by arrow leading from i.

The pattern extraction algorithm given in Figure 5 computes a new labelling

function L ′. The desired pattern pat(m,n, uvω) is stored in L ′(1) after the al-

gorithm terminates. The algorithm is based directly on the definition of char-

acteristic patterns. After the i-th iteration of the second for-loop, the labels

stored in L ′(1) . . . L ′(k+l) describe the ω-word patword(i, n, uvω). More precisely,

patword(i, n, uvω) = L ′(1) . . . L ′(k) (L ′(k+1) . . . L ′(k+l) )ω. The time complexity of this

algorithm is O(|uv| · (n + m · S(m,n, Σ))), where S(m,n, Σ) is the maximal size of a

pattern in Pats(m,n, Σ) (as given in Lemma 2).

Due to Theorem 11, the problem whether pat(m,n, uvω) |= ϕ can be solved in

O(S(m,n, Σ) · |ϕ|) time. Hence, the algorithm needs O(|uv|(n + m · S(m,n, Σ)) +

S(m,n, Σ) · |ϕ|) time in total. In the light of this estimation, our algorithm seems to
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1 for i := 1 to k+ l do

2 L ′(i) := L(i)L(s(i))L(s2(i)) . . . L(sn(i))

3 od

4 for i := 1 tom do

5 L ′(k+l) := the parenthesized word obtained from

L ′(k+l)L ′(k+1)L ′(k+2) . . . L ′(k+l−1)

by deletion of all repeated letters
6 for j := k+ l− 1 downto 1 do

7 L ′(j) := the word L ′(j+1) with the letter L ′(j) added to the beginning

and without any repetition of this letter
8 od

9 od

Figure 5: An algorithm for (m,n)-pattern extraction.

be only worse than the bilinear CTL-like algorithm. However, if we bound the param-

eters m, n, and |Σ| by constants (this is justifiable as these are usually “small”) then

our algorithm needs only O(|uv| + |ϕ|) time, while the CTL-like algorithm still requires

O(|uv| · |ϕ|) time. In other words, our algorithm is better in situations when m,n and

|Σ| are small, and |uv| is large. Then it pays to extract the characteristic pattern from the

loop and check the formulae directly on the pattern rather than on the loop itself.

4 Conclusions and future work

The aim of this paper was to introduce the idea of characteristic patterns, develop basic

results about these patterns, and indicate how they can be used in LTL model-checking.

An obvious question is how the presented algorithms work in practice. This can only be

answered by performing a set of experiments. We plan to implement the presented algo-

rithms and report about their functionality in our future work. Furthermore, we study

other potential applications of characteristic patterns in model checking area, namely in

state space reduction.
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