
} w��������
��Æ������������ !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Accepting Predecessors are Better than
Back Edges in Distributed

LTL Model-Checking

by

Luboš Brim
Ivana Černá

Pavel Moravec
Jiří Šimša

FI MU Report Series FIMU-RS-2004-09

Copyright c 2004, FI MU October 2004

Copyright c 2004, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW: http://www.fi.muni.z/veda/reports/
Further information can obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Accepting Predecessors are Better than Back

Edges in Distributed LTL Model-Checking�
Luboš Brim

brim@fi.muni.cz

Ivana Černá

cerna@fi.muni.cz

Pavel Moravec

xmoravec@fi.muni.cz

Jiří Šimša

xsimsa@fi.muni.cz

October 11, 2004

Abstract

We present a new distributed-memory algorithm for enumerative LTL model-

checking that is designed to be run on a cluster of workstations communicating

via MPI. The detection of accepting cycles is based on computing maximal accept-

ing predecessors and the subsequent decomposition of the graph into independent

predecessor subgraphs induced by maximal accepting predecessors. Several opti-

mizations of the basic algorithm are presented and the influence of the ordering on

the algorithm performance is discussed. Experimental implementation of the algo-

rithm shows promising results.

1 Introduction

Model-checking has become a very practical technique for automated verification of

computer systems due to its push-button character and has been applied fairly success-

fully for verification of quite a few real-life systems. Its applicability to a wider class of

practical systems has been hampered by the state explosion problem (i.e. the enormous

increase in the size of the state space).�This work has been partially supported by the Grant Agency of Czech Republic grant No.

201/03/0509.

1

The use of distributed and/or parallel processing to combat the state explosion prob-

lem gained interest in recent years (see e.g. [4, 5, 10, 11, 12, 15]). For large industrial

models, the state space does not completely fit into the main memory of a single com-

puter and hence model-checking algorithm becomes very slow as soon as the memory

is exhausted and system starts swapping. A typical approach to dealing with these

practical limitations is to increase the computational power (especially random-access

memory) by building a powerful parallel computer as a network (cluster) of worksta-

tions. Individual workstations communicate through message-passing-interface such

as MPI. From outside a cluster appears as a single parallel computer with high comput-

ing power and huge amount of memory.

In this paper we present a novel approach to distributed explicit-state (enumerative)

model-checking for linear temporal logic LTL. LTL is a major logic used in formal ver-

ification known for very efficient sequential solution based on automata [16] and suc-

cessful implementation within several verification tools. The basic idea is to associate a

Büchi automaton with the verified LTL formula so that the automaton accepts exactly

all the computations of the given model satisfying the formula. This makes possible to

reduce the model-checking problem to the emptiness problem for Büchi automaton. A

Büchi automaton accepts a word if and only if there is an accepting state reachable from

the initial state and from itself.

Courcoubetis et al. [9] proposed an elegant way to find accepting states that are

reachable from themselves (to compute accepting cycles) by employing a nested depth first

search. The first search is used to search for reachable accepting states while the second

one (nested) tries to detect accepting cycles. Our aim is to solve the LTL model-checking

problem by distribution, i.e. by utilizing several interconnected workstations. The stan-

dard sequential solution as described above is based on the depth-first search (DFS),

in particular the postorder as computed by DFS is crucial for cycle detection. However,

when exploring the state space in parallel, the DFS postorder is not generally main-

tained any more due to different speeds of involved workstations and communication

overhead.

The extremely high effectiveness of the DFS based model-checking procedure in the

sequential case is due to a simple and easily computable criterion characterizing the

existence of a cycle in a graph: a graph contains a cycle if and only if there is a back-edge.

A distributed solution requires other appropriate criteria to be used as the DFS based

ones do not have the same power in the distributed setting. E.g. in [1] the authors

2

proposed to use back-level edges as computed by breadth first search (BFS) as a necessary

condition for a path to form a cycle. The reason, why such a criterion works well in a

distributed environment is that BFS search can be (unlike DFS) reasonably parallelized.

In [7] the used criterion is that each state on an accepting cycle is reachable from an

accepting state. Every state can be tested for this criterion independently and thus the

algorithm is well distributable. Another example of a necessary condition suitable for

distribution and used in [3] employs the fact that the graph to be checked is a product

of two graphs and it can contain a cycle only if one of the component graphs has a cycle.

The main idea of our new approach to distributed-memory LTL model-checking has

born from a simple observation that all states on a cycle have exactly the same prede-

cessors. Hence, having the same set of predecessors is a necessary condition for two

states to belong to the same cycle and the membership in its own set of predecessors is

a necessary condition for a state to belong to a cycle. In particular, in case of accepting

cycles we can restrict ourselves to accepting predecessors only. Even more, it is not nec-

essary to compute and store the entire set of accepting predecessors for each state, it is

sufficient to choose a suitable representative of the set of all accepting predecessors of

a given state instead. It is crucial that the cycle-check becomes significantly cheaper if

representatives are used. We consider an ordering of states and we choose as a repre-

sentative of a set of accepting predecessors the accepting predecessor which is maximal

with respect to this ordering, called maximal accepting predecessor. A necessary condition

for a graph to contain an accepting cycle is that there is an accepting state with itself

as maximal accepting predecessor. However, this is not a sufficient condition as there

can exist an accepting cycle with “its” maximal accepting predecessor lying outside of

it. For this reason we systematically re-classify those accepting vertices which do not lie

on any cycle as non-accepting and re-compute the maximal accepting predecessors.

The main technical problem is how to compute maximal accepting predecessors in

a distributed environment. Our algorithm repeatedly improves the maximal accepting

predecessor for a state as more states are considered. This requires propagating a new

value to successor states each time the maximum has changed. In this way the pro-

cedure resembles the relaxation procedure as used in the single source shortest path

problem. The main advantage of such an approach is that relaxations can be performed

in an arbitrary order in a BFS manner, hence in parallel. There is even another source

of parallelism in our algorithm. Maximal accepting predecessors define independent

subgraphs induced by vertices with the same maximal accepting predecessor. These

3

subgraphs can be explored simultaneously and again in an arbitrary order. In both

cases a re-distribution of the graph among the workstations involved in the distributed

computing might be necessary to optimize the performance of the algorithm.

Another distinguished feature of the algorithm is that due to the breadth-first ex-

ploration of the state space the counter-examples produced by the algorithm tend to be

short, which is very important for debugging.

There are several known approaches to distribution and/or parallelization of the

explicit-state LTL model-checking problem and we relate our algorithm to other work

in Section 6.

2 Model-Checking and Accepting Cycles

In the automata-based approach to LTL model-checking [16], one constructs a Büchi

automaton A:	 for the negation of the property 	 one wishes to verify and takes its

product with the Büchi automaton modeling the given system S. The system (more

exactly the model) is correct with respect to the given property if and only if the product

automaton recognizes an empty language, i.e. no computation of S violates 	. The size

of the product automaton is linear with respect to the size of the model and exponential

with respect to the size of 	.

The model-checking problem is thus reduced to the emptiness problem for automata.

It can be reduced even further to a graph problem [8]. Let A = (�; S; Æ; s; A) be a

Büchi automaton where � is an input alphabet, S is a finite set of states, Æ : S� � ! 2S
is a transition relation, s is an initial state and A � V is a set of accepting states. The

automaton A can be identified with a directed graph GA = (V; E; s;A), called automa-

ton graph, where V � S is a set of vertices corresponding to all reachable states of the

automaton A, E = f(u; v) j u; v 2 V and v 2 Æ(u; a) for some a 2 �g, s 2 V is a distin-

guished initial vertex corresponding to the initial state of A and A is a distinguished set

of accepting vertices corresponding to reachable accepting states of A.

Definition 2.1. Let G = (V;E; s;A) be an automaton graph. The reachability relation;+�V�V is defined as u;+ v iff there is a directed path < u0; u1; : : : ; uk > where u0 = u, uk = v
and k > 0.

A directed path < u0; u1; : : : ; uk > forms a cycle if u0 = uk and the path contains at least

one edge. A cycle is accepting if at least one vertex on the path < u0; u1; : : : ; uk > belongs to

the set of accepting vertices A.

4

Note that according our definition every cycle in an automaton graph is reachable

from the initial vertex.

Theorem 2.2. [8] Let A be a Büchi automaton and GA its corresponding automaton

graph. Then A recognizes a nonempty language iff GA contains an accepting cycle.

In this way the original LTL model-checking problem is reduced to the accepting

cycle detection problem for automaton graphs and we formulate our model-checking

algorithm as a distributed algorithm for accepting cycle detection problem. The algo-

rithm is based on the notion of predecessors. Intuitively, an automaton graph contains

an accepting cycle iff some accepting vertex is a predecessor of itself.

To avoid computing of all predecessors for each vertex we introduce a concept of

maximal accepting predecessor, denoted by map. We pre-suppose a linear ordering of the

set of vertices given e.g. by their numbering. Other possible orderings are discussed

in Section 4. From now on we therefore assume that for any two vertices u, v we can

decide which one is greater. Furthermore, we extend the ordering to the set V [fnullg
(null =2 V) and put null < v for all v 2 V.

Definition 2.3. Let G = (V;E; s;A) be an automaton graph. A maximal accepting prede-

cessor function of the graph G, mapG : V! (V [fnullg), is defined as

mapG(v) = 8<:maxfu 2 A j u;+ vg if fu 2 A j u;+ vg 6= ;
null otherwise

Corollary 2.4. For any two vertices u; v 2 V, the vertices cannot lie on the same cycle whenever

mapG(u) 6= mapG(v).
The definition of the maximal accepting predecessor function map gives the sufficient

condition characterizing the existence of an accepting cycle in the automaton graph.

Lemma 2.5. Let G = (V;E; s;A) be an automaton graph. If there is a vertex v 2 V such that

mapG(v) = v then the graph G contains an accepting cycle.

The opposite implication is not generally true, for a counterexample see the graph

in Figure 1. The accepting cycle 2 ;+ 2 is not revealed due to the greater accepting

predecessor 4 outside the cycle. However, as the state 4 the does not lie on any cycle,

it can be safely deleted from the set of accepting states and the accepting cycle will still

be discovered in the resulting graph. This idea is formalized in the notion of a deleting

5

transformation. Whenever the deleting transformation is applied to an automaton graphG with mapG(v) 6= v for all v 2 V, it shrinks the set of accepting vertices by deleting

those ones which evidently do not lie on any cycle.

Definition 2.6. Let G = (V;E; s;A) be an automaton graph and mapG its maximal accepting

predecessor function. A deleting transformation, del, is defined as del(G) = (V;E; s;A), where

A = A n fu 2 A j 9v 2 V:mapG(v) = ug).
Directly from the definition we have the following result.

Lemma 2.7. LetG be an automaton graph and v an accepting vertex inG such that map(v) > v.

Then v is an accepting vertex in del(G).
Note that the application of the deleting transformation

4 3

1 2

Figure 1: Undiscovered

cycle

can result in a different map function. For the graph G given

in Figure 1, del(G) has state 2 as its only accepting state, hence

mapdel(G)(2) = 2 (and the existence of the accepting cycle is

certified by the new function).

The next Lemma states formally the invariance property

just exemplified, namely that the application of the deleting

transformation to a graph with an accepting cycle results in a graph having an accepting

cycle as well.

Lemma 2.8. Let G = (V;E; s;A) be an automaton graph containing an accepting cycle and

such that map(v) 6= v for every v 2 A. Then the graph del(G) contains an accepting cycle.

Proof: Let C be an accepting cycle in G and v 2 C be an accepting vertex. For every

successor u of v we have map(u) � map(v) > v. Therefore the vertex v is accepting

in del(G). The transformation does not change the set of vertices and edges and the

conclusion follows. 2
It can happen that even in the transformed graph

4 3 2 1

Figure 2: Deleting transforma-

tion

del(G) there is no vertex such that its map value

would certify the existence of an accepting cycle.

This situation is depicted in Figure 2. However, after

a finite number of applications of the deleting trans-

formation an accepting cycle will be certified.

Definition 2.9. Let G be an automaton graph. For i 2 N a graph Gi is defined inductively asG0 = G and Gi+1 = del(Gi). The set of accepting vertices of Gi is denoted Ai.
6

Lemma 2.10. Let G = (V;E; s;A) be an automaton graph containing an accepting cycle. Then

there is a natural number i 2 N and a vertex v 2 V such that mapGi(v) = v.

Proof: LetC be an accepting cycle in G and u 2 A be the maximal accepting vertex on C.

For any j 2 N let Rj be a set of accepting predecessors of u in Gj, Rj = fv 2 Aj j v;+ ug.
If mapGj(u) > u, then obviously jRjj > jRj+1j. Since R0 is finite, there is an index i for

which jRi+1j = jRij and mapGi(u) = u. In other words, after at most jR0j - 1 applications

of the deleting transformation on G the map value of u changes to u. 2
Putting together Lemma 2.5 and Lemma 2.10 we can state the main theorem justify-

ing the correctness of our algorithm.

Theorem 2.11. Let G = (V;E; s;A) be an automaton graph. The graphG contains an accepting

cycle if and only if there is a natural i 2 N and a vertex v 2 V such that mapGi(v) = v.

Note that for an automaton graph without accepting cycles the repetitive applica-

tion of the deleting transformation results in an automaton graph with an empty set of

accepting states.

This theory leads to the first naive version of the algorithm. Its structure is depicted

in the Figure 3. At first the function map for given automaton graph is computed (line 3),

while the procedure MAP(G) is responsible for detection of accepting cycle. If no ac-

cepting cycle is found, than vertices from shrinkA are removed from the set of accepting

states. Computing the set shrinkA can be performed concurrently with computing map

in the procedure MAP(G).
Described steps are performed, until some accepting cycle is reached or the set A is

empty. Let denote the main while-cycle on lines 2-5 as the iteration of algorithm.

1 proc MAIN(G) ==G = (V;E; s;A)
2 while A 6= ; do

3 MAP(G)
4 A = A n shrinkA

5 od

6 return NO CYCLE

7 end

Figure 3: Basic structure of the algorithm

7

These results can be extended in the following way. Assume the first application of

function map which doesn’t find any accepting cycle. Than due to Corollary 2.4 if there

is some accepting cycle in the graph, all its vertices have the same value map. Hence we

can split the input graph into parts where all vertices with the same value map are in-

cluded in one component called predecessor subgraph. Now each cycle is included in one

component only. Hence we can continue in searching accepting cycles separately and

independently in different predecessor subgraphs. This is formalized in the following

definition.

Definition 2.12. Let G = (V;E; s;A) is automaton graph and shrinkA = fv1; v2; : : : : : : vng,n 2 N . Let define the decomposition of G to predecessor subgraphs G0; G1; G2; : : : ; Gn,

where G0 is subgraph of G induced by vertices fv j map(v) = nullg n shrinkA and for all i : 1 �i � n, Gi is subgraph of G induced by vertices fv j map(v) = vig [fvig
For computing function map recursively to predecessor subgraphs, we can postulate

similar theorems like Lemma 2.5, Lemma 2.10 and Theorem 2.11. Following algorithm

computes function map recursively as is described, hence its proof of correctness is based

on modified Theorem 2.11.

3 Distributed Detection of Accepting Cycles

It is now apparent how to make use of the map function and the deleting transformation

to build an algorithm which detects accepting cycles. We first present a straightforward

approach with the aim to introduce clearly the essence of our distributed algorithm

(Subsection 3.1). The distributed-memory algorithm which employs several additional

optimizations is presented in Subsection 3.2 and finally, the correctness and complexity

of the algorithm is discussed in Subsection 3.3. We do not explicitly describe the actual

distribution of the algorithm as this is quite direct and follows the standard technique

used e.g. in [1, 6].

3.1 The Algorithmic Essence

The code is rather self-explanatory, we add a few additional comments only. The MAP

procedure always starts by initializing the map value of the initial vertex to null, all the

other vertices are assigned the undefined initial map value, denoted by ?. Every time a

vertex receives a new (greater) map value, the vertex is pushed into a waiting queue and

8

the new map value is propagated to all its successors. If an accepting vertex is reached

for the first time (line 15) the vertex is inserted into the set shrinkA of vertices to be

removed from A by the deleting transformation. However, if the accepting vertex is

reached from a greater accepting vertex (lines 16 and 17) this value will be propagated

to all its successors and the vertex is removed from the set shrinkA (Lemma 2.7).

1 proc Main(G) ==G = (V; E; s;A)
2 while A 6= ; do

3 MAP(G)
4 A := A n shrinkA

5 od

6 report (NO ACCEPTING CYCLE exists)

7 end

8 proc MAP(G)
9 foreach u 2 V do map(u) := ? od

10 map(s) := null

11 waiting:push(s)
13 while waiting 6= ; do

14 u := waiting:pop()
15 if u 2 A then if map(u) < u then propagate := u; shrinkA:add(u)
16 else propagate := map(u);
17 shrinkA:remove(u)
18 fi

19 else propagate := map(u)
20 fi

21 foreach (u; v) 2 E do

22 if propagate = v then report (ACCEPTING CYCLE found) fi

23 if propagate > map(v) then map(v) := propagate

24 waiting:push(v) fi

25 od

27 od

28 end

3.2 Distributed Algorithm

To build up an effective distributed algorithm we consider two optimizations of the

above given basic algorithm. The first one comes out from the fact that every time the

set of accepting states has been shrunk and a new map function is going to be computed,

9

the algorithm from 3.1 needs to traverse the whole graph, update the flags for vertices

removed from the set of accepting vertices, and re-initialize the map values to ?.

The second improvement is more important with respect to the distribution and it

is a consequence of Corollary 2.4. An accepting cycle in G can be formed from ver-

tices with the same maximal accepting predecessor only. A graph induced by the set of

vertices having the same maximal accepting predecessor will be called predecessor sub-

graph. It is clear that every strongly connected component (hence every cycle) in the

graph is completely included in one of the predecessor subgraphs. Therefore, after ap-

plying the deleting transformation the new map function can be computed separately

and independently for every predecessor subgraph. This allows for speeding up the

computation (values are not propagated to vertices in different subgraphs) and for an

efficient distribution of the computation.

In the distributed algorithm CycleDetection (see Figure 4) we first compute in par-

allel the map function on the given input graph G (line 2). If no accepting cycle is

detected and the set shrinkA of vertices to be removed from the set of accepting ver-

tices is nonempty, then the vertices from shrinkA define predecessor subgraphs. Every

predecessor subgraph is identified through the accepting vertex (seed) which is the com-

mon maximal accepting predecessor for all vertices in the subgraph. Seeds are stored

in the waitingseed queue and are used as a parameter when calling the DistributedMAP

procedure. After the map function is computed for every predecessor subgraph, the ver-

tices that should be deleted from the set of accepting vertices form a new content of the

waitingseed queue.

Vertices from the same predecessor subgraph are identified with the help of the

oldmap value. For every vertex v, oldmap(v) maintains the value of map(v) from the

previous iteration. When a vertex v with map(v) = seed (line 31) is reached the value of

oldmap(v) is set to seed. Accepting predecessors are propagated only to successors iden-

tified to be in the same predecessor subgraph through the variable oldmap (line 35). Sets

waiting and shrinkA are maintained in the same way as in the basic algorithm presented

in Subsection 3.1.

For the distributed computation we assume a network of collaborating workstations

with no global memory. Communication between workstations is realized by sending

messages only. In the distributed computation the input graph is divided into parts,

one part per each workstation.

10

1 proc CycleDetection(G) ==G = (V; E; s;A)
2 MAP(G)
3 waitingseed := shrinkA

4 shrinkA := ;
5 while waitingseed 6= ; do

6 while waitingseed 6= ; do

7 seed := waitingseed:pop()
8 DistributedMAP(G; seed)
9 od

10 waitingseed := shrinkA

11 shrinkA := ;
12 od

13 report (NO ACCEPTING CYCLE exists)

15 end

16 proc DistributedMAP(G; seed)
17 oldmap(seed) := seed

18 map(seed) := null

19 waiting:push(seed)
20 while waiting 6= ; do

21 u := waiting:pop()
22 if (u 2 A) ^ (u 6= oldmap(u))
23 then if map(u) < u then propagate := u
24 shrinkA:add(u)
25 else propagate := map(u)
26 shrinkA:remove(u) fi

27 else propagate := map(u)
28 fi

29 foreach (u; v) 2 E do

30 if propagate = v then report (ACCEPTING CYCLE found) fi

31 if map(v) = oldmap(u)
32 then oldmap(v) := oldmap(u)
33 map(v) := propagate

34 waiting:push(v)
35 else if (propagate > map(v)) ^ (oldmap(v) = oldmap(u))
36 then map(v) := propagate

37 waiting:push(v)
38 fi

39 fi

40 od

41 od

42 end

Figure 4: Distributed Cycle Detection Algorithm11

In the CycleDetection algorithm every workstation has local data structures

waitingseed, waiting and shrinkA and computes the values of the map function for its

part of the graph. Workstations have to be synchronized every time the computation of

the map function is finished and the set of accepting vertices is to be shrunk.

An important characteristic of the distributed algorithm is that the map values

for different predecessor subgraphs can be computed in parallel, i.e. the procedure

DistributedMAP can be called for different values of seed in parallel.

Another distinguished feature of our distributed algorithm is the possibility to make

use of dynamic re-partitioning, i.e. of a new assignment of vertices to workstations after

each iteration. The map function induces a decomposition of the graph into predecessor

subgraphs. After a new map function is computed the graph can be re-partitioned so

that the new partition function respects predecessor subgraphs as much as possible

which can result in significant reduction in the communication among the workstations

as well as in speed-up of the entire computation.

In the case the given graph contains an accepting cycle an output reporting such a

cycle is required. The proposed algorithm can be simply extended to report an accept-

ing cycle. Let v be a vertex certifying the existence of an accepting cycle (v = propagate).

Then two distributed searches are initiated. The first one finds a path from the initial

vertex s to v and the second one a path from v to itself. In the second search the prede-

cessor subgraph of v is searched-through only.

3.3 Correctness and Complexity

Lemma 3.1. Procedure DistributedMAP computes exactly for given predecessor subgraph the

function map.

Proof: Clear from the pseudocode.

Theorem 3.2. The CycleDetection algorithm terminates and correctly detects an accepting cycle

in an automaton graph.

Proof: It is sufficient to prove “Algorithm reports cycle iff 9u 2 V; i 2 N : mapi(u) = u”.

“)”: Assume the algorithm detects accepting cycle with accepting vertex u during this

iteration. Due to the property of map-values propagation of the algorithm, u has to be

reachable from itself, hence there is some accepting cycle.

“(”: Assume 9u 2 V;n 2 N : mapn(u) = u. Since the algorithm computes function map

12

and divides graph in each iteration correctly, at most the n-th iteration of the algorithm

has to reveal an accepting cycle. 2
Theorem 3.3. The time complexity of the CycleDetection algorithm is O(a2 �m), where m is

the number of edges and a is the number of accepting vertices in the input (automaton) graph.

Proof: The cycle in the CycleDetection procedure is repeated at most a times. Every

vertex is pushed to the waiting queue in the procedures DistributedMAP and MAP at

most a times and all successors of a vertex popped from the waiting queue are tested.

The overall complexity of both MAP and DistributedMAP is O(a �m). 2
Experiments with model-checking graphs (see Section 5) demonstrate that the actual

complexity is typically significantly lower.

4 Ordering of Vertices

One of the key aspects influencing the overall performance of our distributed algorithm

is the underlying ordering of the vertices used by the algorithm. The direct way to order

the vertices is to use the enumeration order as it is computed in the enumerative on-the-

fly model-checking. The first possibility is to order the vertices by the time they have

been reached (sooner visited vertices receive smaller values). In this case the algorithm

tends to return short counterexamples and generally detects the accepting cycles very

quickly. Moreover, since the graph is split into “as many” subgraphs “as possible”,

less iterations are performed. On the other hand, the running time of each iteration

increases, because the vertices with small values will be usually updated several times.

Alternatively, we can employ the reverse ordering (sooner visited vertices receive larger

values). The behavior of the algorithm is now completely different. Both the size of

subgraphs and the number of iterations increase, while the number of the subgraphs

as well as the running time of each iteration decrease. As a third possibility we can

consider a combination of these two orderings, which can result in fast computation

with small number of iterations.

Another set of heuristics can be based on different graph traversal algorithms (e.g.

depth-first search or breadth-first search). Data structure waiting was mentioned as a

queue for the sake of better distribution. For using partial order reduction, where is

necessary to detect cycles, the depth first search will be better.

13

Finally, yet another simple heuristic is to compare the bit-vector representations of

vertices. In the future we plan to implement, compare and systematically evaluate all

the orderings of vertices mentioned above.

In our implementation each vertex is identified by a vector of three numbers – the

workstation identifier, the row number in the hash table, and the column number in the

row. The ordering of vertices is given by the lexicographical ordering of these triples.

Note that there are six possible lexicographical orderings and by reversing these order-

ings one gets another six possibilities. This gives us a range of twelve possible order-

ings. We have implemented and compared six of them. The results we obtained show

that there is no real difference among these six approaches, which in some sense demon-

strate the robustness of an ordering with respect to the random partitioning of the graph

among the workstations.

5 Experiments

We have implemented the distributed algorithm described in Section 3.2. The imple-

mentation has been done in C++ and the experiments have been performed on a net-

work of thirteen Intel Pentium 4 2.6 GHz workstations with 1 GB of RAM each intercon-

nected with a fast 100Mbps Ethernet and using tools provided by our own distributed

verification environment – DiVinE.

The vertices have been partitioned among the workstations using random hash func-

tion and no re-partitioning was implemented. Messages were buffered and sent in pack-

ets containing 100 messages.

We performed three sets of experiments with different examples of model check-

ing problems. First set of experiments evaluates the scalability of the algorithm

CycleDetection. Second set compares this algorithm with token-based distributed-memory

nested depth-first search algorithm (NDFS). The latest set of experiments was concerned to

the influence of ordering of vertices to algorithm performance.

For scalability experiments we choose following models. First was a variant of the

Mutual exclusion protocol problem based on a token ring and parametrized by the num-

ber n of processes (denoted by TR(n)). Verified property was GF(P0:CS), i.e. the processP0 enter its critical section infinitely many times.

Next model was the solution of the Producer-consumer protocol problem parametrized

by the number n of messages which can be lost in a row (denoted by PC(n)).
14

The property being checked over the PC class was GF(Consumer:onsu- me0 _Consumer:onsume1), i.e. the consumer will consume some value infinitely many

times.

Third experiments were performed on the model of “Rether” (Real-time Eth-

ernet protocol, RE(n)) with parameter n as number of communicating nodes.

Here we checked two properties: reservation will be handled next turn: G(No-de0:reserved) (:endU(endU(:end^ ^(Node0:RT_ationR:end))))) (whereend := Token:yle_end) for the group of models RE(n; 1) and propertyGFNode0:NRT_ation (i.e. communicating node Node0 infinitely often performs some

action) for the group of models RE(n; 2).
The latest model was experimental version of elevator denoted as EL(n) with a pa-

rameter n as number of floors. The property being checked over the EL class wasG(Person1:waiting) FPerson1:in_elevator), i.e. whenever some person in the

ground-floor waits for a lift, he/she will be served sometimes.

All properties have been satisfied by the respective models. The characterization of

corresponding automata graphs are depicted in the Table 1.

model vertices edges min. # min (s) max (s)

TR(15) 1474559 17432561 3 130 846

PC(20) 1021822 4516966 3 71 172

RP(8,4) 1662938 2711144 1 52 455

RP(10,1) 5759277 6248113 2 64 327

EL(15) 1125218 2433015 1 307 467

Table 1: The characterization of models

The results of the experiments are presented in Figure 5 and all the results are taken

as an average of 5 executions of the distributed algorithm. Because of the size of state

graphs (up to 6 millions vertices and the amount of memory needed to store a vertex

description), we did not get results when running the algorithm on less than 3 worksta-

tions due to memory restrictions. Therefore, the shown speedups are calculated relative

to 3 workstations instead of one. We found that we gain a linear speedup for reasonably

large graphs.

The second set of tests was designed to evaluate the actual performance of the al-

gorithm. We have implemented an experimental version of the token-based distributed-

memory nested depth-first search algorithm (Nested DFS) and compared the running time of

15

EL(15)
RE(10,1)
RE(8,4)
PC(20)
TR(15)

Relative speedup to three worstations

Number of worstations

Sp
ee

d
u

p

1312108643

7

6

5

4

3

2

1

0

Figure 5: Scalability of the distributed algorithm

both algorithms. The comparison of our algorithm (DACD) and the Nested DFS algo-

rithm (NDFS) is given in Table 2 for various numbers of workstations (NW) involved in

the distributed computation. The results shown are running times in seconds. It can be

seen that our algorithm outperforms the Nested DFS algorithm even when the number

of workstation is small.

NW NDFS DACD Speedup

3 1251 846 1.5

4 1801 402 4.5

5 1610 252 6.4

6 1958 223 8.8

7 1904 208 9.2

8 2132 219 9.7

9 2166 174 12.4

10 2306 137 16.8

11 2376 150 15.8

12 2465 173 14.2

13 2589 130 19.9

Table 2: Nested DFS vs. DACD on PC(20)

16

We have compared the sequential version of our algorithm to the sequential Nested

DFS algorithm as well. As expected, the sequential version of our algorithm performs

slightly worse. However, the experiments have demonstrated comparability of both

approaches. Our algorithm needs, on average, around 30% more time and memory

than Nested DFS algorithm.

We have also considered verification problems on models with an error (e.g. Din-

ing philosophers, various models of an elevator, and some communication protocols).

Since our algorithm is entirely based on the breadth-first search, the counterexamples

were much more shorter than counterexamples provided by the Nested DFS algorithm.

Moreover, in all cases the accepting cycle was detected very early by our algorithm

(within tens of seconds), while the Nested DFS algorithm was incomparably slower.

For the parametrized models where the size of the state space was larger than the size

of the (distributed) memory (e.g. for forty dining philosophers), our algorithm detected

a counterexample, while the Nested DFS algorithm failed due to memory limitations.

These results were almost independent on the ordering of vertices chosen and on the

number of workstations involved.

In the erroneous version of the general Peterson algorithm for 4 processes, where

the error is very “deep” (according to the breadth-first search level). In this case the

Nested DFS algorithm detected the counterexample very early, since the depth-first

search tends to follow the erroneous path, while our algorithm failed. In several other

examples with similar characteristics our algorithm was able to detect the error as well,

but later than the Nested DFS algorithm. However, the “depth of an error” is typically

small, hence our distributed algorithm will outperform the Nested DFS algorithm in

most cases.

The third group of tests was concerned to the influence of ordering of vertices to

algorithm performance. We performed larger number of experiments, the most repre-

sentative are depicted in Figure 6 and Figure 7 for models TR(14) and PC(20) respec-

tively. From that figures we can conclude, that even random orderings result into quite

different behavior of the algorithm.

The last interesting conclusion we would like to point out is that the number of

iterations in all models without an error was up to 20. On the other hand, an error

was already detected during the first iteration in all performed tests. As a consequence

the algorithm is usually able to detect the faulty behavior without exploring the entire

graph (state space).

17

LPHI
LIPH
LHIP

HIP
IPH
HIP

Mutual exclusion problem

Number of workstations

Ti
m

e
(s

ec
on

d
s)

1312111098765

400

350

300

250

200

150

100

50

0

Figure 6: Comparison of orderings on model TR(14)

LPHI
LIPH
LHIP

HIP
IPH
HIP

Producer-concumer protocol

Number of workstations

Ti
m

e
(s

ec
on

d
s)

1312111098765

200

150

100

50

0

Figure 7: Comparison of orderings on model PC(20)

6 Conclusions

In this paper, we have presented a new distributed-memory algorithm for enumerative

LTL model-checking.

18

We plan to implement two improvements of our algorithm. Both use additional

conditions characterizing the existence of an accepting cycle in an automaton graph

augmented with the maximal accepting predecessors information.

Suppose that the graph contains an accepting cycle such that the maximal accepting

predecessor of this cycle is outside of it. Then there must exist a vertex on the cycle

with the in-degree at least two. One of the incoming edges comes from the cycle, a

different one comes from the maximal accepting predecessor. Therefore, we do not

need to explore a predecessors subgraph which does not fulfill this condition.

For the second condition suppose again that the graph contains an accepting cycle

such that the maximal accepting predecessor of this cycle is outside of it. Then the

graph must contain at least one another accepting vertex (besides the maximal accepting

predecessor). It is possible to combine these two methods. An effective way to check

the conditions requires a more sophisticated techniques for computing the set shrinkA

in the distributed environment.

There are several already known approaches to distributed-memory LTL model-

checking. In [14] a distributed implementation of the SPIN model checker, restricted

to perform model-checking of safety properties only is described. In [2], the authors

build on the safety model-checking work of [14] to create a distributed-memory ver-

sion of SPIN that does full LTL model-checking. The disadvantage of this algorithm

is that it performs only one nested search at a time. Recently, in [7] another algorithm

for distributed enumerative LTL model checking has been proposed. The algorithm

implements the enumerative version of the symbolic “One-Way-Catch-Them-Young ”

algorithm [13]. The algorithm shows in many situations a linear behavior, however it

is not on-the-fly, hence the whole state space has to be generated. Our algorithm is in

some sense similar to [7], although their original ideas are different. Both algorithms

work in iterations started from a set of accepting vertices. In general, the time complex-

ity of [7] is better (O(n � m) in comparison to O(a2 �m)), but our algorithm has three

advantages. It is adjustable according to the input problem by setting some special or-

dering of vertices, it can guess the counterexample very quickly before the whole graph

is traversed and it has one instead of two synchronizations during the iteration cycle.

Since the number of iterations is very similar, on the larger and slower nets this can be

a significant factor. Similar arguments are valid if comparing our algorithm to another

recently proposed algorithm [1]. This algorithm uses back-level edges to discover cy-

19

cles, works on-the-fly and is effective in finding bugs. All these three algorithms could

be meant not to replace but to complement each other.

In [6], the problem of LTL model checking is reduced to detecting negative cycles

in a weighted directed graph. Since the basic method (edge relaxation) is the same, the

behavior of both algorithms will be generally similar. The algorithm in [6] suffers by

clumsy cycle detection, our approach needs costly synchronization and many searches

are often redundantly called.

For each of the above mentioned distributed-memory algorithm for the enumerative

LTL model-checking there will most likely exist a set of input problems on which it is

superior to the others. Our future work will be focused on systematic, mainly experi-

mental, comparison of these algorithms.

References

[1] J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL Model-

Checking. In 18th IEEE International Conference on Automated Software Engineering

(ASE’03), pages 106–115. IEEE Computer Society, Oct. 2003.

[2] J. Barnat, L. Brim, and J. Stříbrná. Distributed LTL Model-Checking in SPIN.

In Matthew B. Dwyer, editor, Proceedings of the 8th International SPIN Workshop

on Model Checking of Software (SPIN’01), volume 2057 of LNCS, pages 200–216.

Springer, 2001.

[3] J. Barnat, L. Brim, and I. Černá. Property Driven Distribution of Nested DFS. In

Proceedinfs of the 3rd International Workshop on Verification and Computational Logic

(VCL’02 – held at the PLI 2002 Symposium), pages 1–10. University of Southampton,

UK, Technical Report DSSE-TR-2002-5 in DSSE, 2002.

[4] S. Blom and S. Orzan. Distributed branching bisimulation reduction of state spaces.

In L. Brim and O. Grumberg, editors, Electronic Notes in Theoretical Computer Science,

volume 89.1. Elsevier, 2003.

[5] B. Bollig, M. Leucker, and M. Weber. Local parallel model checking for the

alternation-free mu-calculus. In Proceedings of the 9th International SPIN Workshop on

Model checking of Software (SPIN’02), volume 2318 of LNCS, pages 128–147. Springer,

2002.

20

[6] L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL model checking

based on negative cycle detection. In Ramesh Hariharan, Madhavan Mukund,

and V. Vinay, editors, Proceedings of Foundations of Software Technology and Theoreti-

cal Computer Science (FST–TCS’01), volume 2245 of LNCS, pages 96–107. Springer,

2001.

[7] I. Černá and R. Pelánek. Distributed explicit fair cycle detection. In Thomas Ball

and Sriram K. Rajamani, editors, Model Checking Software, 10th International SPIN

Workshop, volume 2648 of LNCS, pages 49–73. Springer, 2003.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cam-

bridge, Massachusetts, 1999.

[9] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient Algo-

rithms for the Verification of Temporal Properties. Formal Methods in System Design,

1:275–288, 1992.

[10] H. Garavel, R. Mateescu, and I.M Smarandache. Parallel State Space Construction

for Model-Checking. In Matthew B. Dwyer, editor, Proceedings of the 8th Interna-

tional SPIN Workshop on Model Checking of Software (SPIN’01), volume 2057 of LNCS,

pages 200–216. Springer, 2001.

[11] B. R. Haverkort, A. Bell, and H. C. Bohnenkamp. On the efficient sequential and

distributed generation of very large Markov chains from stochastic Petri nets. In

Proceedings of the 8th International Workshop on Petri Nets and Performance Models

(PNPM’99), pages 12–21. IEEE Computer Society Press, 1999.

[12] T. Heyman, O. Grumberg, and A. Schuster. A work-efficient distributed algorithm

for reachability analysis. In Warren A. Hunt Jr. and Fabio Somenzi, editors, 15th In-

ternational Conference (CAV’03), volume 2725 of LNCS, pages 54–66. Springer, 2003.

[13] R. Hojati, H. Touati, R. P. Kurshan, and R. K. Brayton. Efficient omega-regular

language containment. In G. von Bochmann and D. K. Probst, editors, Proc. of the

Fourth International Workshop CAV’92, pages 396–409. Springer, 1993.

[14] F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proceed-

ings of the 6th International SPIN Workshop on Model Checking of Software (SPIN’99),

volume 1680 of LNCS, pages 22–39, Berlin, 1999. Springer.

21

[15] R. Palmer and Ganesh Gopalakrishnan. A distributed partial order reduction al-

gorithm. In D. Peled and M. Y. Vardi, editors, Formal Techniques for Networked and

Distributed Systems - FORTE 2002, 22nd IFIP WG 6.1 International Conference Hous-

ton, Texas, USA, November 11-14, 2002, Proceedings, volume 2529 of LNCS, page 370.

Springer, 2002.

[16] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In Proc. 1st Symp. on Logic in Computer Science (LICS’86), pages 332–344.

Computer Society Press, 1986.

22

