
} w��������
��Æ������������ !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Deeper Connections between LTL and
Alternating Automata

by

Radek Pelánek
Jan Strejček

FI MU Report Series FIMU-RS-2004-08

Copyright c 2004, FI MU September 2004

Copyright c 2004, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/veda/reports/

Further information can obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Deeper Connections between LTL and

Alternating Automata�

Radek Pelánek and Jan Strejček

Faculty of Informatics, Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic

{xpelanek,strejcek}@fi.muni.cz

September 7, 2004

Abstract

It is known that Linear Temporal Logic (LTL) has the same expressive power as al-

ternating 1-weak automata (A1W automata, also called alternating linear automata

or very weak alternating automata). A translation of LTL formulae into a lan-

guage equivalent A1W automata has been introduced in [MSS88]. The inverse

translation has been developed independently in [Roh97] and [LT00]. We improve

the latter translation and present deeper connections between LTL and A1W au-

tomata. Using these translations we identify the classes of A1W automata equiv-

alent to LTL fragments given by bounds on nesting depths of temporal operators

(see, e.g., [Wil99, KS02]) and the fragments of Until-Release hierarchy [ČP03].

1 Introduction

An automata-theoretic approach to the study of temporal logics proved to be very fruit-

ful. The best example is the well known fact that each formula of Linear Temporal

Logic (LTL) [Pnu77] can be transformed into nondeterministic Büchi automaton that

accepts exactly the infinite words satisfying the formula [WVS83, VW94]. This transfor-

mation is one of the cornerstones of the automata-based model checking of LTL prop-

erties [VW86]. It is also known that there are Büchi automata accepting languages that

are not definable by any LTL formula [Wol83].

�Supported by the Grant Agency of Czech Republic, grant No. 201/03/1161.

1

Later on, alternating 1-weak Büchi automata (or A1W automata for short, also

known as alternating linear automata or very weak alternating automata) have been

identified as the type of automata with the same expressive power as LTL. Muller,

Saoudi, and Schupp [MSS88] introduced a translation of LTL formula into equivalent

A1W automata. This translation produces A1W automata with number of states lin-

ear in the lentgh of input formula contrary to the mentioned translation into Büchi au-

tomata where the number of states is exponential. The translation of LTL into A1W

automata has been recently used to built new and more efficient algorithms for trans-

lation of LTL into nondeterministic Büchi automata [GO01, Tau03]1. The translation of

A1W automata into equivalent LTL formula has been presented independently by Ro-

hde [Roh97] and Löding and Thomas [LT00]. Hence, the two formalisms are equivalent.

Soon after introduction of LTL, the study of fragments of the logic started. It is often

connected with searching for more efficient verification algorithm working with a frag-

ment of LTL. In [Lam83] Lamport argue that for reasoning about concurrent system we

should use the fragment of LTL without next operator rather than complete LTL. Many

reduction methods improving the verification algorithms have been designed for the

next-free fragment so far (see, for example, [Val91, God96, HP95, Pel98]). Besides frag-

ments given by restricted set of temporal operators, the fragments given by bounds on

nesting depths of temporal operators or alternation of temporal operators are studied

as well (for more details see the surveys [Wil99, DS98, Sch03] or some recent papers

like [KS02, ČP03, TW04]).

In the light of research on LTL fragments, it is natural to ask for classes of A1W au-

tomata with the same expressive power as the studied LTL fragments. It turns out

that the translation of A1W automata into LTL mentioned above is not appropriate

for study of such automata classes as it wastes temporal operators. For example, the

automaton corresponding to the formula aU (b ^ (bU c)) is translated into formula

aU (b^ X(bU c)). In our paper we present an improved translation of A1W automata

into equivalent LTL formulae. Our translation reduces the nesting depth of next op-

erators and prefers the use of less expressive temporal operators (eventually or globally

instead of until). We prove that for an A1W automaton produced by the standard trans-

lation of an LTL formula ' our translation provides a formula with the same (or even

1In fact, the paper [GO01] employs alternating 1-weak co-Büchi automata. However, Büchi and co-

Büchi acceptance conditions are expressively equivalent for alternating 1-weak automata.

2

less) nesting depths of until, next, and eventually operators comparing to these nesting

depths in '.

With use of this results we identify classes of A1W automata defining the same

classes of languages as LTL fragments given by bounds on nesting depths of tempo-

ral operators. Further, with use of standard translations between LTL and A1W au-

tomata we identify the classes of A1W automata corresponding to the fragments of

Until-Release hierarchy [ČP03].

The paper is structured as follows. In Section 2 we recall the definition of LTL and

some of its fragments, and the definition of alternating 1-weak automata. Section 3

presents the standard translation of A1W automata into LTL formulae [MSS88, Var97]

and translation of LTL formulae into A1W automata [Roh97, LT00]. Section 4 provides

an improved version of the latter translation, proof of its correctness, and basic obser-

vations about relation between nesting depths of temporal operators in a formula and

properties of the corresponding automaton. In Section 5 we define classes of A1W au-

tomata corresponding to the mentioned LTL fragments. Section 6 sums up presented

results and indicates several topics for future work.

2 Preliminaries

The syntax of LTL is given by the abstract syntax equation

' ::= > j a j :' j '1 ^'2 j X' j F' j '1U'2;

where a ranges over countable set � = fa; b; c; : : :g of letters. We also use ? to abbrevi-

ate :>, G' to abbreviate :F:', and 'R to abbreviate :(:'U:). The operators

X;F;U;G;R are called next, eventually, until, globally, and release, respectively. Let us

note that F' can be equivalently defined as an abbreviation for >U'.

We define the semantics of LTL in terms of languages over infinite words. An al-

phabet is a finite set � � �. An !-word over alphabet � is an infinite sequence

w = w(0)w(1)w(2) : : : 2 �! of letters from �. For every i 2 N0 , by wi we denote

the suffix of w beginning with the letter w(i).

The validity of an LTL formula ' for w 2 �! is defined as follows:

w j= >

w j= a iff a = w(0)

3

w j= :' iff w 6j= '

w j= '1 ^'2 iff w j= '1 ^w j= '2

w j= X' iff w1 j= '

w j= F' iff 9i 2 N0 : wi j= '

w j= '1U'2 iff 9i 2 N0 : wi j= '2 ^ 8 0 � j < i : wj j= '1

For every alphabet �, an LTL formula ' defines the language L�(') = fw 2 �! j w j=

'g.

Let us (inductively) define the nesting depths of the X;F and the U modalities in

a given LTL formula '.

X-depth(>) = 0

X-depth(a) = 0

X-depth(:') = X-depth(')

X-depth('1 ^'2) = maxfX-depth('1);X-depth('2)g

X-depth(X') = X-depth(') + 1

X-depth(F') = X-depth(')

X-depth('1U'2) = maxfX-depth('1);X-depth('2)g

F-depth(>) = 0

F-depth(a) = 0

F-depth(:') = F-depth(')

F-depth('1 ^'2) = maxfF-depth('1);F-depth('2)g

F-depth(X') = F-depth(')

F-depth(F') = F-depth(') + 1

F-depth('1 U'2) = maxfF-depth('1);F-depth('2)g

U-depth(>) = 0

U-depth(a) = 0

U-depth(:') = U-depth(')

U-depth('1 ^ '2) = maxfU-depth('1);U-depth('2)g

U-depth(X') = U-depth(')

U-depth(F') = U-depth(')

U-depth('1 U'2) = maxfU-depth('1);U-depth('2)g+ 1

Now we define a notation of LTL fragments given by bounds on nesting depths of

temporal operators. For all m;n; k 2 N0 [f1g, by LTL(Um;Xn;Fk) we denote the set

f' 2 LTL j U-depth(') � m and X-depth(') � n and F-depth(') � kg:

4

We omit upper indices equal to 1 from LTL(Um;Xn;Fk). Moreover, we usually omit

the whole operator if its index is 0. For example, by LTL(Xn;F) we mean the fragment

LTL(U0;Xn;F1).

Alternating automata are generalizations of nondeterministic ones. Transition func-

tion of an alternating automaton combines the nondeterministic and universal mode.

More formally, transition function assigns to each state and letter a positive boolean for-

mula over states. The set of positive boolean formulae over finite set of states Q (denoted

B+(Q)) contains formulae > (true), ? (false), all elements of Q and boolean combina-

tions over Q built with ^ and _. A subset S of Q is a model of ' 2 B+(Q) iff the

valuation assigning true just to states in S satisfies '. A set S is a minimal model of '

(denoted S j= ') iff S is a model of ' and no proper subset of S is a model of '.

An alternating Büchi automaton is a tuple A = (�;Q; q0; Æ; F), where � is a finite input

alphabet, Q is a finite set of states, q0 2 Q is an initial state, Æ : Q � � ! B+(Q) is

a transition function, and F � Q is a set of accepting states. By A(p) we denote the

automaton A with initial state p 2 Q instead of q0.

A run of an alternating automaton is a (potentially infinite) tree. A tree is a set T � N
�

such that if xc 2 T, where x 2 N� and c 2 N , then also x 2 T and xc 0 2 T for all 0 � c 0 < c.

AQ-labeled tree is a pair (T; r)where T is a tree and r : T! Q is a labeling function. A run

of an automaton A = (�;Q; q0; Æ; F) over !-word w 2 �! is a Q-labeled tree (T; r) with

the following properties:

1. r(�) = q0.

2. For each x 2 T the set S = fr(xc) j xc 2 Tg satisfies S j= Æ(r(x); w(jxj)).

A run (T; r) is accepting iff for every infinite path � in T it holds that Inf (�) \ F 6= ;,

where Inf (�) is a set of all labels (i.e. states) appearing infinitely often on �. An au-

tomaton A accepts an !-word w 2 �! iff there exists an accepting run of A over w.

A language of all!-words accepted by an automaton A is denoted by L(A).

Let Succ(p) denotes the set Succ(p) = fq j 9a 2 �; S � Q : S [fqg j= Æ(p; a)g of all

possible successors of p, and Succ0(p) = Succ(p)r fpg. An automaton is called 1-weak if

there exists an ordering < on the set of states Q such that q 2 Succ0(p) implies q < p. In

the following we use A1W automaton or simply automaton meaning "alternating 1-weak

Büchi automaton".

An A1W automatonA = (�;Q; q0; Æ; F) can be drawn as a graph; nodes are the states

of the automaton and every S � Q satisfying S j= Æ(p; a) (where p 2 Q and a 2 �) is

5

p

q1 q2

q3

a

a

a

b

b

b
c

c

c

Figure 1: The automaton accepting the language a�bfa; b; cg�c!

.

depicted as a branching edge labelled with a and leading from node p to the nodes from

S. Edges that are not leading to any node correspond to the cases when S is an empty set.

An initial state is indicated by a special unlabelled edge leading to the corresponding

node. Nodes corresponding to the accepting states are double-circled. For example,

the Figure 1 depicts an automaton accepting the language a�bfa; b; cg�c!. Instead of

S j= Æ(a; p) we write p a! S and say that an automaton has a transition leading from p

to S under a. A state p of an automaton has a loop whenever p 2 Succ(p).

3 Standard translations between LTL and A1W automata

In this section we recall the standard translation of LTL formulae to A1W au-

tomata [MSS88] and (a variant of) a translation of A1W automata to LTL presented

recently in [LT00]. The translation of A1W automata to LTL has been independently

introduced by Rohde in [Roh97]. In this section we treat every (sub)formula of the form

F' as an abbreaviation for >U'.

3.1 LTL!A1W translation

Let ' be an LTL formula and � an alphabet. The formula can be translated into an au-

tomaton A satisfying L(A) = L�('), where A = (�;Q; q'; Æ; F) and

� the states Q = fq ; q: j is a subformula of 'g correspond to the subformulae

of ' and their negations,

6

� the transition function Æ is defined inductively in the following way:

Æ(q>; a) = >

Æ(qa; b) = > if a = b; Æ(qa; b) = ? otherwise

Æ(q: ; a) = Æ(q ; a)

Æ(q ^�; a) = Æ(q ; a)^ Æ(q�; a)

Æ(qX ; a) = q

Æ(q U�; a) = Æ(q�; a)_ (Æ(q ; a)^ q U�)

where � denotes the positive boolean formula dual to � defined by induction on

the structure of � as follows:

> = ? q: = q �^ = �^

? = > q = q: �_ = �_

� the set of accepting states F = fq:(U�) j U� is a subformula of 'g.

We use the notation A�(') for the automaton given by the translation of an LTL

formula ' with respect to an alphabet �. The number of states of the automaton A�(')

is clearly linear in the length of '.

For example, the translation applied on the formula ' = (aUb) ^ FGc and the

alphabet � = fa; b; cg produces the automaton depicted on Figure 1, where p; q1; q2; q3
stand for q'; qaUb; qFGc; qGc, respectively.

3.2 A1W!LTL translation

LetA = (�;Q; q0; Æ; F) be an A1W automaton. For each p 2 Qwe define an LTL formula

'p such that L�('p) = L(A(p)) (in particular L�('q0) = L(A)). The definition proceeds

by induction respecting the ordering of states; the formula 'p employs formulae of the

form 'q where q 2 Succ 0(p). This is the point where the 1-weakness of the automaton

is used. To illustrate the inductive step of the translation, let us consider the situation

depicted on Figure 2. The formula corresponding to state p is 'p = (a ^ X'q)U (b ^

X'r).

Before we give a formal definition of 'p, we introduce some auxiliary formulae. Let

a 2 � be a letter and S � Q be a set of states. The formula

�(a; S) = a^
^

q2S

X'q

7

p

q r

a b

.

Figure 2: Part of an automaton translated into the formula 'p = (a^X'q)U (b^X'r).

intuitively corresponds to a situation when automaton makes transition under a into

the set of states S. Formulae �p and �p defined as

�p =
_

p
a
! S

p 2 S

�(a; Sr fpg) �p =
_

p
a
! S

p 62 S

�(a; S)

intuitively correspond to all transitions leading from state p; �p covers transitions with

a loop (i.e., the transitions leading to a set of states containing p) while �p cover the

others. The definition of 'p then depends on whether p is an accepting state or not.

'p =

8<
:
�p U�p if p 62 F

(�p U�p) _ G�p if p 2 F

The proof of the correctness of this translation can be found in [LT00]. Given an A1W

automaton A with an initial state q0, by '(A) we denote the formula '(A) = 'q0 .

4 Improved translation

The A1W!LTL translation presented in the previous section wastes temporal opera-

tors. The main problem of the translation is that for each successor q 2 Succ0(p) of

a state p the formula'p contains a subformula X'q even if the X operator is not needed.

This can be illustrated by an automaton A on Figure 3.

The automaton is an automaton for a formula aU (b ^ (bU c)). The A1W!LTL trans-

lation provides an equivalent formula '(A) = aU (b^ X(bU c)) in spite of it.

Let p a! S be a transition and X � S. We now formulate conditions that are sufficient

to omit the X operator in front of'q (for every q 2 X) in a subformula of'p correspond-

ing to the transition p a! S. A set X satisfying these conditions is called X-free.

8

p

q

a

b

b

c

Figure 3: An automaton for the formula aU (b^ (bU c)).

Definition 4.1. Let p a! S be a transition of an automaton A. A set X � S r fpg is said to be

X-free for p a! S if following conditions hold.

1. For each q 2 X there is S 0q � S such that q a! S 0q.

2. Let Y � X and for each q 2 Y let S 0q � Q be a set satisfying q a! S 0q and q 62 S 0q. Then

there exists a set S 00 � (Sr Y)[
S
q2Y S

0
q satisfying p a! S 00.

Figure 4 illustrates the conditions for X-freeness. Please note that it can be the case

that p 2 S. Further, in the first condition it can be the case that q 2 S0q.

It is easy to see that empty set is X-free for every transition. Further, every subset

of a X-free set for a transition is a X-free set for the transition as well. On the other

hand, Figure 5 demonstrates that the union of two X-free sets need not be X-free; in the

automaton indicated on the figure, the sets fq1g; fq2g are X-free for p a! fq1; q2g while the

set fq1; q2g is not.

Let Xfree be an arbitrary but fixed function assigning to each transition p
a! S

a set that is X-free for p a! S. We now introduce an improved A1W!LTL translation.

Roughly speaking, the translation omits the X operators in front of subformulae which

correspond to the states in X-free sets given by the function Xfree. Thereafter we prove

that this translation remains correct.

The improved A1W!LTL translation exhibits similar structure as the original one.

Instead of formulae of the form �(a; S) representing a transition under a leading from

an arbitrary state p to S, we define a specialized formula � 0p(a; S) for each transition

p
a! S.

� 0p(a; S) = a ^
^

q 2 Sr Xfree(p a
! S)

q 6= p

X' 0
q ^

^

q2Xfree(p a!S)

' 0
q

9

1.

2. p p

pp

qq

q1 q1q2 q2qn qn

a

a

a aa

a a

aa

SS

S S

S 0q

S 00

S 0q1 S 0q1S 0q2 S 0q2S 0qn S 0qn

Y Y

X

=)

=)

. . .

.

Figure 4: The conditions for X-freeness.

p

q1 q2

q3 q4

a

a

a

a

a

.

Figure 5: The sets fq1g; fq2g are X-free for p a! fq1; q2g while the set fq1; q2g is not.

10

� 0
p =

_

p
a
! S

p 2 S

� 0p(a; S) � 0
p =

_

p
a
! S

p 62 S

� 0p(a; S)

In the following definition of a formula '0
p we identify some cases when U can be re-

placed by “weaker” operators F or G. To this end we define two special types of states.

A state p is of the F-type if there is a transition p a! fpg for every a 2 �. A state p is of

the G-type if every transition of the form p
a! S satisfies p 2 S.

' 0
p =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

� 0
p if p 62 Succ(p)

? if p 2 Succ(p); p 62 F; p is of G-type

F� 0
p if p 2 Succ(p); p 62 F; p is of F-type and not of G-type

� 0
p U� 0

p if p 2 Succ(p); p 62 F; p is neither of F-type nor of G-type

> if p 2 Succ(p); p 2 F; p is of F-type

G� 0
p if p 2 Succ(p); p 2 F; p is of G-type and not of F-type

(� 0
p U� 0

p)_ G� 0
p if p 2 Succ(p); p 2 F; p is neither of F-type nor of G-type

The new cases in the definition of ' 0
p make only a cosmetic change comparing to the

original A1W!LTL translation. First, we add a case for states without any loop. This

change does not influence the correctness of the translation as the condition p 62 Succ(p)

says that � 0
p = ? and therefore ' 0

p = �p is equivalent to � 0
pU� 0

p as well as to (� 0
p U� 0

p)_

G� 0
p. Further, it is easy to check that if a state p is of F-type then �0p () > and if p is

of G-type then � 0
p = ?. Hence, all cases for p 2 Succ(p) and p 62 F are equivalent to

� 0
p U� 0

p and all cases for p 2 Succ(p) and p 2 F are equivalent to (� 0
pU� 0

p) _ G� 0
p.

Before we show that the improved translation is equivalent to the original one (and

thus also correct), we prove two auxiliary lemmata.

Lemma 4.2. Let p a! S be a transition of an A1W automaton A. If 'q () ' 0
q for each

q 2 Succ 0(p) then the implication �(a; Sr fpg) =) � 0p(a; S) holds.

Proof. Due to the definitions of �(a; S r fpg) and � 0p(a; S) and the assumption of the

lemma, it is sufficient to show for each !-word w 2 �! that

if q 2 Xfree(p a! S) and w j= �(a; Sr fpg) then w j= 'q.

The first condition for X-freeness gives us that there is S0q � S such that q a! S 0q. From

the 1-weakness of the automaton we have that p 62 S0q. Thus, S 0q � S r fpg and w j=

�(a; Sr fpg) impliesw j= �(a; S 0qr fqg). Asw j= �(a; S 0qr fqg) and q a! S 0q we have that

11

either q 2 S 0q and thenw j= �q, or q 62 S 0q and thenw j= �q. Anyway,w j= �q_�q holds.

At the same time w j= �(a; Sr fpg) implies w j= X'q. We are done as w j= �q _ �q and

w j= X'q imply w j= 'q.

Lemma 4.3. Let p a! S be a transition of an A1W automatonA such that for each q 2 Succ 0(p)

the equivalence 'q () ' 0
q holds. Then � 0p(a; S) =) �p _ �p. Moreover, if p 62 S then

� 0p(a; S) =) �p.

Proof. Let us suppose that w 2 �! is an !-word such that w j= � 0p(a; S). Due to the

assumption of the lemma the formula � 0p(a; S) is equivalent to

a ^
^

q 2 Sr Xfree(p a
! S)

q 6= p

X'q ^
^

q2Xfree(p a!S)

'q:

Obviously 'q =) �q _ X'q. Let Y = fq 2 Xfree(p a! S) j w j= �qg. For each q 2 Y,

the definition of the formula �q and the assumption w j= a (due to w j= � 0p(a; S)) imply

that there exists a set S0q such that q a! S 0q, q 62 S 0q, and w j= �(a; S 0q). The second

condition for X-freeness gives us that there exists a set S00 � (SrY)[
S
q2Y S

0
q satisfying

p
a! S 00. As w j= X'q for every q 2 S r Y and w j= �(a; S 0q) for each q 2 Y, we get

that w j= �(a; S 00 r fpg) as well. To sum up, we have a set S 00 such that p a! S 00 and

w j= �(a; S 00 r fpg). If p 2 S 00 then w j= �p. Moreover, 1-weakness of the automaton

implies that p 62 S 0q and therefore p 2 S. Finally, if p 62 S 00 then w j= �p.

We are now ready to prove the correctness of the improved translation.

Theorem 4.4. Let A = (�;Q; q0; Æ; F) be an A1W automaton. For every state p 2 Q the

equation L(A(p)) = L�(' 0
p) holds.

Proof. It is sufficient to show that 'p () ' 0
p holds for every p 2 Q. The proof proceeds

by induction with respect to the ordering on Q. If Succ0(p) = ; then an empty set is the

only X-free set for any transition leading from p. Hence 'p and ' 0
p are equivalent.

Let us now assume that the equivalence holds for every q 2 Succ0(p). The Lemma 4.2

implies 'p =) ' 0
p. Lemma 4.3 gives us that � 0

p implies �p, and � 0
p implies �p _ �p. As

an immediate consequence we get ' 0
p =) 'p.

Let A be an A1W automaton and q0 its initial state. By 'Xfree(A) we denote the

formula ' 0
q0

given by the improved translation using the function Xfree.

12

After it has been proven that the improved translation remains correct, it is only

natural to examine the “quality” of formulae it produces. The improved translation has

been motivated by the observation that the standard one wastes X operators. Therefore,

we show that the improved translation allows to translate an automaton A�(') derived

from a formula ' 2 LTL(Um;Xn) back into a formula from LTL(Um;Xn).2 In order to

do so, we define two metrics for A1W automata, namely loop-height and X-height, and

show that an automaton A with loop-height m and X-height n can be translated into

a formula form LTL(Um;Xn). Then we prove that an automaton A�(') given by the

standard LTL!A1W translation of a formula ' 2 LTL(Um;Xn) has loop-hieght and

X-height at most m and n, respectively.

Definition 4.5. Let A = (�;Q; q0; Æ; F) be an A1W automaton. For each state p 2 Q we

inductively define its loop-height and X-height (denoted by lh(p) and Xh(p) respectively) as

lh(p) =

8<
:

maxflh(q) j q 2 Succ 0(p)g+ 1 if p 2 Succ(p);

maxflh(q) j q 2 Succ 0(p)g otherwise;

Xh(p) = max
p
a
!S

f min
X is X-free for p a!S

fneedX(p a! S; X)g g;

where maximum over empty set is 0 and

needX(p a! S; X) = max(fXh(q) j q 2 Xg [fXh(q) + 1 j q 2 Sr X; q 6= pg):

We also define loop-height and X-height of the automaton A as the loop-height and X-height

of its initial state, i.e., lh(A) = lh(q0) and Xh(A) = Xh(q0).

Intuitively, loop-height of an automaton A holds the maximal height of states of A

with a loop. The X-height counts the minimal nesting depth of X operators achievable

by the improved translation; the definition consider the minimum over all choices of

X-free sets.

Theorem 4.6. Let A be an A1W automaton. There exists a function Xfree such that

'Xfree(A) 2 LTL(Ulh(A);XXh(A)).

Proof. Please note that U-depth('Xfree(A)) does not depend on the choice of the function

Xfree. Contrary to the U-depth, the X-depth of the resulting formula depends on the

function Xfree. The function Xfree satisfying X-depth('Xfree(A)) = Xh(A) can be derived

2In the rest of this section, F is seen as an abbreviation for >U .

13

directly from the definition of X-height; for every transition p a! S we set Xfree(p a!
S) = X, where X is a X-free set for p a! S such that the value of needX(p a! S; X)

is minimal. It is a straightforward observation that this function satisfies 'Xfree(A) 2

LTL(Ulh(A);XXh(A)).

We should note that the bound on U-depth('Xfree(A)) given by lh(A) is not tight. The

structure of a formula '0
p shows that there can be states with a loop that are translated

into > or ? and thus they do not bring any new temporal operators. However, if we

remove these states and all transitions of the form p
a! S such that S contains a state

translated into ?, we get an automaton A0 that is language equivalent to the original

one and U-depth('Xfree(A 0)) = lh(A 0).

Theorem 4.7. Let ' 2 LTL(Um;Xn) be a formula. Then lh(A�(')) � m and Xh(A�(')) �

n for each alphabet �.

Proof. Before we prove the inequalities, we examine the automaton A�('). Let q' 0 be

a state of A�('). States in Succ(q' 0) are of the form

1. q U� or q:(U�), where U� is such a subformula of ' 0 that is not in a scope of

any X operator, or

2. q or q: , where X is such a subformula of ' 0 that is not in a scope of any other

X operator.

Let us note that some of the states can match both cases, e.g., a state q U� 2

Succ(q(U�)_X(U�)). Moreover, the definition of a transition function Æ implies that only

the states of the form q U� or q:(U�) can have a loop.

From the above observations and the definition of loop-height it directly follows that

lh(A�(')) � U-depth(') � m.

Let q' 0 be a state of the automaton and Y � Succ 0(q' 0) be a set of its successors of

the first form (excluding these of both forms). In order to prove the second inequality of

the theorem, we show that for every transition q' 0

a! S the set XS = S\ Y is X-free. The

construction of an automaton A�(') implies that if a positive boolean formula Æ(q' 0; a)

contains a state q U� 2 Y then the state always occurs in the formula

Æ(q U�; a) = Æ(q�; a)_ (Æ(q ; a)^ q U�):

Similarly, if Æ(q' 0 ; a) contains a state q:(U�) 2 Y then the state always occurs in the

formula

Æ(q U�; a) = Æ(q�; a)^ (Æ(q ; a)_ q:(U�)):

14

We show that the each set XS defined above satisfies the conditions for X-freeness for all

transitions q' 0

a! S.

1. Let q U� 2 XS. The property of Æ(q' 0 ; a) mentioned above gives us that there is

a set S 0 � S such that S 0 j= Æ(q�; a) or S 0 j= Æ(q ; a)^ q U�. Anyway, q U�
a! S 0.

The argumentation for the case q:(U�) 2 XS is similar.

2. Let Y � XS be such a set that for every q 2 Y there is a transition q a! S 0q such

that q 62 S 0q. Thus if q is of the form q U�, then S 0q j= Æ(q�; a). Otherwise, q is

of the form q:(U�) and S 0q j= Æ(q�; a)^ Æ(q ; a). Again, the property of Æ(q' 0; a)

mentioned above (together with the fact that Æ(q' 0; a) is in positive normal form)

implies that there is a set S 00 � (Sr Y)[
S
q2Y S

0
q satisfying S 00 j= Æ(q' 0; a).

Proving the X-freeness of the considered sets we have demonstrated that the im-

proved translation allows to omit the X operators in front of the subformulae corre-

sponding to the successors of q' 0 of the first form (and not of both forms). Let us recall

that these successors correspond to the subformulae of the form U� of the original

formula ' 0 that are never in a scope of any X operator in '0. Hence, the improved

translation with use of the Xfree function assigning the X-free sets defined above pro-

duces the formula 'Xfree(A�(')) with at most the same X-depth as the original formula

'. We are done as Xh(A�(')) keeps the lowest X-depth achievable by the improved

translation and thus Xh(A�(')) � X-depth(') � n.

Combining Theorem 4.6 and Theorem 4.7 we get the following two corollaries.

Corollary 4.8. For each A1W automaton A = (�;Q; q0; Æ; F) there exists a function Xfree

such that lh(A) � lh(A�('Xfree(A))) and Xh(A) � Xh(A�('Xfree(A))).

Corollary 4.9. For each formula ' 2 LTL(Um;Xn) and each alphabet � there exists a function

Xfree such that 'Xfree(A�(')) 2 LTL(Um;Xn).

5 Defining LTL fragments via A1W automata

In this section we define classes of A1W automata matching fregments of the form

LTL(Um;Xn;Fk), where m;n; k 2 N0 [f1g, and LTL fragments from so-called Until-

Release hierarchy [ČP03]. All these fragments are given by syntactical constraints on LTL

formulae. Basically, the classes of A1W automata can be defined by constraints on tran-

sition function and by constraints on the set of accepting states.

15

In order to improve the presentation of the following results, we overload the nota-

tion of LTL fragments; we identify an LTL fragment F with a set

fL�(') j ' 2 F and � is an alphabetg;

i.e., with a set of languages defined by formulae from the fragment. The interpretation

of F is always clearly determined by the context.

5.1 Fragments given by bounds on nesting depths of modalities

In order to identify classes of A1W automata matching all LTL fragments of the form

LTL(Um;Xn;Fk), we need to replace the bound on U-depth('Xfree(A)) given by the loop-

height of A by bounds on U-depth and F-depth of the formula. Therefore we define

another metrics called U-height. The definition of U-height reflects the structure of '0
p.

Definition 5.1. Let A = (�;Q; q0; Æ; F) be an A1W automaton. For each state p 2 Q we

inductively define its U-height, written Uh(p), as

Uh(p) =

8>>><
>>>:

maxfUh(q) j q 2 Succ 0(p)g+ 1 if p 2 Succ(p) and

p is neither of F-type nor of G-type;

maxfUh(q) j q 2 Succ 0(p)g otherwise;

where maximum over empty set is 0. The U-height of the automaton A is then defined as the

U-height of its initial state, i.e. Uh(A) = Uh(q0).

We are now ready to define the classes of A1W automata matching LTL fragments

of the form LTL(Um;Xn;Fk). To shorten our notation, a class is formally defined as a set

of languages accepted by A1W automata rather than a set of A1W automata.

Definition 5.2. Let m;n; k 2 N0 [f1g. We define A1W(m;n; k) to be the set fL(A) j

A is an A1W automaton and Uh(A) � m; Xh(A) � n; lh(A) � m+kg.

Lemma 5.3. For allm;n; k 2 N 0 [f1g it holds LTL(Um;Xn;Fk) = A1W(m;n; k).

Proof. Let ' 2 LTL(Um;Xn;Fk) and � be an alphabet. Theorem 4.7 implies that

Xh(A�(')) � n and lh(A�(')) � m + k. Further, every state of the automaton A�(')

corresponding to a subformula F has the form q>U or q:(>U). One can readily check

that each state q>U is of F-type and each state q:(>U) is of G-type. Hence, these

states do not increase the U-height of the automaton. We get Uh(A�(')) � m and

thus L�(') 2 A1W(m;n; k).

16

Let A be an A1W automaton such that Uh(A) � m, Xh(A) � n, and lh(A) �

m + k. Theorem 4.6 says that the automaton can be translated into formula from

LTL(Um+k;Xn). As the definition of U-height reflects the structure of formulae '0
p given

by the improved translation it is easy to check that 'Xfree(A) 2 LTL(UUh(A); Xn;Flh(A)).

Moreover, arbitrary occurrence of F operator can be replaced by U operator. Hence,

the automaton can be translated into a formula from LTL(Um; Xn;Flh(A)-m). Hence,

L(A) 2 LTL(Um; Xn;Fk).

Let us emphasize that Lemma 5.3 covers some previously studied LTL fragments.

For example, languages defined by LTL(Uk;X;F) fragment (fragments of this form con-

stitute so-called Until hierarchy [TW96, EW00]) can be defined by A1W automata with

U-height at most k and vice versa. In particular, a language can be expressed by a for-

mula from the LTL(X;F) fragment (also called Restricted LTL [PP04]) if and only if it

is recognized by an A1W automaton such that every state with a loop is of F-type or

G-type.

5.2 Until-Release hierarchy

Until-Release heirarchy of LTL formulae has been introduced in [ČP03]. It is based on al-

ternation depth of U and R operators. Therefore it is also called alternating hierarchy. The

hierarchy has a strong connection to the hierarchy of temporal properties introduced by

Manna and Pnueli [MP90, CMP92]. Moreover, the classes of alternating hierarchy re-

flects the complexity of their verification problem (for more information see [ČP03]).

Definition 5.4. The classes �LTL
i ; �LTL

i of the Until-Release hierarchy are defined inductively.

� The classes �LTL
0 and �LTL

0 are both identical to LTL(X).

� The class �LTL
i+1 is the least set containing �LTL

i and closed under the application of operators

^;_;X; and U.

� The class�LTL
i+1 is the least set containing �LTL

i and closed under the application of operators

^;_;X; and R.

Let us note that the hierarchy collapses on third level with respect to its expressive

power. More precisely, each language is definable by LTL if and only if it is definable by

a positive boolean combination of �LTL
2 and�LTL

2 formulae. These formulae are contained

17

in �LTL
3 as well as in �LTL

3 . Again, we identify a fragment from the alternating hierarchy

with the set of languages defined by formulae of the fragment.

The hierarchy does not care about X operators as well as the different expressiveness

of F and U operators. Therefore we employ the standard translations given in Section 3.

Intuitively, we show that alternation of U and R operators in a formula corresponds

to the alternation of nonaccepting and accepting states in the structure of an A1W au-

tomaton.

Definition 5.5. LetA = (�;Q; q0; Æ; F) be an A1W automaton. For each i 2 N0 we inductively

define sets of states �i and �i as follows.

� �0 = �0 = fp j lh(p) = 0g.

� �i+1 is the smallest set of states satisfying

– �i [�i � �i+1 and

– if p 62 F and Succ 0(p) � �i+1 then p 2 �i+1,

� �i+1 is the smallest set of states satisfying

– �i [�i � �i+1 and

– if p 2 F and Succ 0(p) � �i+1 then p 2 �i+1.

We also define functions �A; �A : Q �! N0 as

�A(p) = minfi j p 2 �ig and �A(p) = minfi j p 2 �ig:

Definition 5.6. For each i 2 N0 we define sets �A1Wi and �A1Wi as

�A1Wi = fL(A) j A = (�;Q; q0; Æ; F) is an A1W automaton and �A(q0) � ig;

�A1Wi = fL(A) j A = (�;Q; q0; Æ; F) is an A1W automaton and �A(q0) � ig:

Theorem 5.7. For each i 2 N0 it holds that �LTL
i = �A1Wi and �LTL

i = �A1Wi .

Before we give a proof of this statement, we present some auxiliary results.

Definition 5.8. LetA = (�;Q; q0; Æ; F) be an A1W automaton. For each i 2 N0 we inductively

define sets of states � 0
i and � 0

i as follows.

� � 0
0 = �

0
0 = fp j lh(p) = 0g.

� � 0
i+1 is the smallest set of states satisfying

18

– � 0
i [�

0
i � � 0

i+1 and

– if p has no loop or p 62 F, and Succ 0(p) � � 0
i+1 then p 2 � 0

i+1.

� �i+1 is the smallest set of states satisfying

– � 0
i [�

0
i � � 0

i+1 and

– if p has no loop or p 2 F, and Succ 0(p) � � 0
i+1 then p 2 � 0

i+1.

We also define functions � 0
A; �

0
A : Q �! N0 as

� 0
A(p) = minfi j p 2 �

0
ig and � 0

A(p) = minfi j p 2 �
0
ig:

Lemma 5.9. For every A1W automaton A with an initial state q0 there exists an A1W automa-

ton B with an initial state q 00 such that L(A) = L(B) and � 0A(q0) = �B(q
0
0).

Proof. On intuitive level, �i counts the maximal alternation of nonaccepting and accept-

ing states of the automaton, while �0i counts just the alternation of nonaccepting and

accepting states with a loop. Hence, we need to modify an automaton A is such a way

that the states without any loop do not increase the number of alternations of nonaccept-

ing and accepting states. To do this, we make an accepting and a nonaccepting copy of

each state without any loop and we modify transition function such that every state

without any loop in every transition is be replaced by one of its two copies. As accep-

tance or nonacceptance of states without any loop has no influence on language given

by the automaton, the modified automaton accepts the same language as the original

one.

Let A = (�;Q; q0; Æ; F) be an A1W automaton. Let W denote the set of its states

without any loop. We set B = (�;Q 0; q 0
0; Æ

0; F 0), where

� Q 0 = (QrW)[fqa; qn j q 2Wg,

� q 0
0 = q0 if q0 has a loop; q 00 = q

n
0 otherwise, and

� F 0 = (FrW)[fqa j q 2Wg.

For every p 2 Q 0, by o(p) we denote a state of the original system corresponding to the

state p:

o(p) =

8<
:
q if p = qa or p = qn

p otherwise

19

For every p 2 Q 0 and a 2 �, the positive boolean formula Æ 0(p; a) arises from Æ 0(o(p); a)

by replacement of every state q 2W with qa if p 2 F 0 and with qn otherwise.

It remains to show that �0A(q0) = �B(q
0
0). From the construction of the automaton B

it follows that �0B(p) = �
0
A(o(p)) for every p 2 Q 0. As o(q 0

0) = q0, it is sufficient to show

that � 0B(q
0
0) = �B(q

0
0). If lh(q 0

0) = 0, then we are done as � 0
B(q

0
0) = 0 = �B(q

0
0). In the rest

of the proof we show that the equation holds for lh(q00) > 0 as well.

For each state p 2 Q 0 we define Succ+(p) to be a transitive closure of Succ0 relation,

i.e., Succ+(p) is the smallest set satisfying

� Succ 0(p) � Succ+(p) and

� if q 2 Succ+(p) then Succ 0(q) � Succ+(p).

Further, by LSucc+(p) we denote the set of all states with a loop that are in Succ+(p).

From the construction of the automaton B it follows that for every state p 2 Q0 such

that lh(p) > 0 the following equations hold. Again, maximum over empty set is 0.

�B(p) =

8<
:

maxf�B(q) j q 2 LSucc+(p) \ F 0g+ 1 if p 62 F 0

�B(p) + 1 if p 2 F 0

�B(p) =

8<
:
�B(p) + 1 if p 62 F 0

maxf�B(q) j q 2 LSucc+(p)r F 0g+ 1 if p 2 F 0

If we replace in the above equations the function �B with � 0B and the function �B with � 0
B,

the resulting equations hold for each state p with a loop. Hence, we get that for every

state p 2 Q 0 with a loop it holds that �0B(p) = �B(p) and � 0
B(p) = �B(p). In particular, if

q 0
0 has a loop then � 0B(q

0
0) = �B(q

0
0).

Let us note that if q 00 has no loop then it is a nonaccepting state. Further, one can

prove that if lh(q 00) > 0, q 0
0 has no loop, and LSucc+(q 0

0)\F
0 = ; then � 0

B(q
0
0) = 1 = �B(q

0
0).

Finally, let us assume that lh(q 00) > 0, q 0
0 has no loop, and LSucc+(q 0

0) \ F
0 6= ;. As

q 0
0 62 F

0, then

� 0
B(q

0
0) = maxf� 0B(q) j q 2 LSucc+(q 0

0)g (1)

= maxf�B(q) j q 2 LSucc+(q 0
0)g (2)

� maxf�B(q) j q 2 LSucc+(q 0
0) \ F

0g (3)

= maxf�B(q) + 1 j q 2 LSucc+(q 0
0) \ F

0g (4)

= maxf�B(q) j q 2 LSucc+(q 0
0) \ F

0g+ 1 (5)

= �B(q
0
0); (6)

20

where (1) follows from the definition of �0B, (2) is due to the fact that for states with

a loop the functions � 0B and �B coincide, and the equation �B(q) = �B(q) + 1 valid for

all q 2 F 0 gives us (4). To sum up, � 0B(q
0
0) � �B(q

0
0). We are done as it is easy to see that

� 0
B(p) � �B(p) holds for each state p of an arbitrary A1W automaton B.

By analogy, for an A1W automatonAwith initial state q0 one can construct an equiv-

alent A1W automaton B with an initial state q 00 such that � 0A(q0) = �B(q
0
0).

Now we are ready to prove Theorem 5.7.

of Theorem 5.7. We focus on the former equation as proof of the latter one is analogous.

In order to prove the inclusion �LTL
i � �A1Wi , we show that for every alphabet � and

a formula ' 2 �LTL
i the automatonA = A�(') given by standard LTL!A1W translation

satisfies � 0A(q') � i, where q' is an initial state of the automaton. This is sufficient due

to Lemma 5.9.

Please note that operators U and R are not in scope of any negation in '. Hence,

the states of the automaton A�(') can be divided into three kinds according to the

corresponding subformula of '.

1. A subformula of the form X(U�) or U� is translated into a state q U� satisfying

q U� 62 F.

2. A formula R� is seen as an abbreviation for :(: U:�). Hence, a subformula

of the form X(R �) or R� is translated into a state q:(: U:�) 2 F.

3. A subformula of the form X that is not covered by the previous cases is translated

into a state q such that q 62 F and q has no loop.

To sum up, states corresponding to U operator are not accepting while the states corre-

sponding to R operator are accepting. Moreover, these states are the only states that can

have a loop. Using this observation it is easy to see that each subformula of' satisfies

 2 �LTL
j =) � 0

A(q) � j and 2 �LTL
j =) � 0

A(q) � j:

In particular, � 0A(q') � i.

To prove the inclusion �LTL
i � �A1Wi we assume that A is an A1W automaton with an

initial state q0 satisfying �A(q0) � i. We show that the formula '(A) given by the stan-

dard A1W!LTL translation can be equivalently expressed by a formula from �LTL
�A(q0)

.

21

Here we employ the fact that the formulae (�U�) ^ G� and ((X�)R�) _ � are

equivalent for all subformulae �; �. Therefore, for each state p of the automaton A the

formula 'p can be equivalently given as follows.

'p =

8<
:
�p U�p if p 62 F

((X�p)R�p) _ �p if p 2 F

This modified construction produces a formula that is equivalent to '(A). Moreover, U

operators correspond to nonaccepting states while R operators correspond to accepting

ones. Hence, the alternation of nonaccepting and accepting states in the automaton

correspond to the alternation of U and R operators in the resulting formula. In other

words, the formula is in �LTL
�A(q0)

.

6 Summary and future work

We have improved a translation of A1W automata into LTL formulae that are language

equivalent. The improvement allows us to define classes of A1W automata correspond-

ing to some LTL fragments given by bounds on nesting depths of temporal operators.

Further, we provide an automata-based definition of classes in Until-Release hierar-

chy [ČP03]. It is worth mentioning that using given automata-based definitions of the

classes LTL(Um;Xn) and LTL(U;Xn) one can prove some pumping lemmata similar to

general stuttering and n-stuttering principles [KS02].

Beside the presented results our research brought several topics for future work. The

most interesting topics follows.

The conditions of X-freeness. The original A1W!LTL translation has the property

that a formula 'p corresponding to the state p contains a subformula X'q for every

successor q of p. Definition 4.1 presents conditions for X-freeness of a set of successors.

Roughly speaking, if a set of successors satisfies the conditions then we can omit X

operators in front 'q for every q from the set and the translation remains correct.

The question is whether there are some more general and/or simpler conditions

with the same effect. For example, we have no counterexample showing that the im-

proved translation produces incorrect results when we set Xfree(p a! S) to be a set of

all states q 2 Sr fpg satisfying

1. there is S 0 � S such taht q a! S 0, and

22

2. if q a! S 0 and q 62 S 0 then there exists S 00 � (Sr fqg) [S 0 satisfying p a! S 00.

Unfortunately, we have no proof of correctness of the translation for this Xfree function.

Succintness of A1W automata. Let us consider a formula'with a more than one copy

of a subformula , e.g. ' = (a_ X)U (b^ XX). All copies of the subformula corre-

spond to one state q of the automaton produced by LTL!A1W translation. Therefore

we suppose (but we have no proof yet) that an A1W automaton can be exponentially

more succint than arbitrary corresponding LTL formula in some cases.

Expressiveness of AkW and connection to LTL extensions. In Section 2 we have de-

fined alternating automata and alternating 1-weak atomata. An alternating automaton

is called weak if the set of states Q can be partitioned into disjoint sets Q1; Q2; : : : ; Qn
such that

� if q 2 Succ(p), q 2 Qi, and p 2 Qj then i � j, and

� Qi \ F = ; or Qi � F for every 0 < i � n,

where F is a set of accepting states. The automaton is called k-weak if jQij � k for every

0 < i � n.

General alternating weak automata recognize all !-regular languages, whereas al-

ternating 1-weak automata recognize all LTL definable languages (star-free !-regular

languages). The definition of alternating k-weak automata (or AkW automata for short)

brings several interesting questions:

� What is the expressive power of AkW automata?

� Is the hierarchy of classes of AkW automata expressively strict?

� For each k, is there any natural extension LTLk of LTL such that AkW automata

define the same languages as LTLk?

References

[CMP92] Edward Chang, Zohar Manna, and Amir Pnueli. Characterization of temporal

property classes. In Werner Kuich, editor, Automata, Languages and Program-

ming, 19th International Colloquium (ICALP ’92), volume 623 of Lecture Notes in

Computer Science, pages 474–486. Springer-Verlag, 1992.

23

[ČP03] Ivana Černá and Radek Pelánek. Relating hierarchy of temporal properties

to model checking. In Mathematical Foundations of Computer Science (MFCS),

volume 2747 of Lecture Notes in Computer Science. Springer, 2003.

[DS98] Stéphane Demri and Philippe Schnoebelen. The complexity of propositional

linear temporal logics in simple cases (extended abstract). In Proc. 15th Ann.

Symp. Theoretical Aspects of Computer Science (STACS’98), volume 1373, pages

61–72. Springer, 1998.

[EW00] Kousha Etessami and Thomas Wilke. An until hierarchy and other appli-

cations of an Ehrenfeucht-Fraïssé game for temporal logic. Information and

Computation, 160:88–108, 2000.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In

G. Berry, H. Comon, and A. Finkel, editors, Proceedings of the 13th Conference on

Computer Aided Verification (CAV’01), volume 2102 of Lecture Notes in Computer

Science, pages 53–65. Springer, 2001.

[God96] Patrice Godefroid. Partial-order methods for the verification of concurrent systems:

an approach to the state-explosion problem, volume 1032 of Lecture Notes in Com-

puter Science. Springer-Verlag Inc., 1996.

[HP95] Gerard Holzmann and Doron Peled. Partial order reduction of the state space.

In First SPIN Workshop, Montrèal, Quebec, 1995. A position paper.

[KS02] Antonín Kučera and Jan Strejček. The stuttering principle revisited: On the ex-

pressiveness of nested X and U operators in the logic LTL. In Julian Bradfield,

editor, CSL ’02: 11th Annual Conference of the European Association for Computer

Science Logic, volume 2471 of Lecture Notes in Computer Science, pages 276–291.

Springer-Verlag, 2002.

[Lam83] Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor,

Proceedings of the IFIP Congress on Information Processing, pages 657–667, Ams-

terdam, 1983. North-Holland.

[LT00] Christof Löding and Wolfgang Thomas. Alternating automata and logics over

infinite words (extended abstract). In J. van Leeuwen et al., editors, Theoretical

computer science: exploring new frontiers of theoretical informatics: International

24

Conference IFIP TCS 2000, volume 1872 of Lecture Notes in Computer Science,

pages 521–535. Springer-Verlag, 2000.

[MP90] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In Proc.

ACM Symposium on Principles of Distributed Computing, pages 377–410. ACM

Press, 1990.

[MSS88] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Weak alternating au-

tomata give a simple explanation of why most temporal and dynamic logics

are decidable in exponential time. In Proceedings of the 3rd IEEE Symposium on

Logic in Computer Science (LICS 1988), pages 422–427. IEEE Computer Society

Press, 1988.

[Pel98] Doron Peled. Ten years of partial order reduction. In Alan J. Hu and Moshe Y.

Vardi, editors, Proceedings of the 10th International Conference on Computer Aided

Verification, volume 1427 of Lecture Notes in Computer Science, pages 17–28.

Springer, 1998.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE

Symposium on the Foundations of Computer Science, pages 46–57. IEEE Com-

puter Society Press, 1977.

[PP04] Dominique Perrin and Jean-Eric Pin. Infinite words, volume 141 of Pure and

Applied Mathematics. Elsevier, 2004.

[Roh97] Scott Rohde. Alternating automata and the temporal logic of ordinals. PhD thesis,

University of Illinois at Urbana-Champaign, 1997.

[Sch03] Philippe Schnoebelen. The complexity of temporal logic model checking. In

Advances in Modal Logic, vol. 4, selected papers from 4th Conf. Advances in Modal

Logic (AiML’2002), pages 437–459. King’s College Publication, 2003.

[Tau03] Heikki Tauriainen. On translating linear temporal logic into alternating and

nondeterministic automata. Research Report A83, Helsinki University of

Technology, Laboratory for Theoretical Computer Science, 2003.

[TW96] Denis Thérien and Thomas Wilke. Temporal logic and semidirect products:

An effective characterization of the until hierarchy. In 37th Annual Symposium

on Foundations of Computer Science (FOCS ’96), pages 256–263. IEEE, 1996.

25

[TW04] Denis Thérien and Thomas Wilke. Nesting Until and Since in linear temporal

logic. Theory of Computing Systems, 37(1):111–131, 2004.

[Val91] Antti Valmari. A stubborn attack on state explosion. In Edmund M. Clarke

and Robert P. Kurshan, editors, Proceedings of Computer-Aided Verification (CAV

’90), volume 531 of Lecture Notes in Computer Science, pages 156–165. Springer,

1991.

[Var97] Moshe Y. Vardi. Alternating automata: Unifying truth and validity checking

for temporal logics. In William McCune, editor, Proceedings of the 14th Interna-

tional Conference on Automated Deduction, volume 1249 of LNAI, pages 191–206.

Springer, 1997.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to auto-

matic program verification. In Proceedings of the First Symposium on Logic in

Computer Science, pages 322–331, Cambridge, June 1986.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations.

Information and Computation, 115(1):1–37, 1994.

[Wil99] Thomas Wilke. Classifying discrete temporal properties. In Chr. Meinel and

S. Tison, editors, STACS ’99: Annual Symposium on Theoretical Aspects of Com-

puter Science, volume 1563 of Lecture Notes in Computer Science, pages 32–46.

Springer-Verlag, 1999.

[Wol83] Pierre Wolper. Temporal logic can be more expressive. Information and Control,

56:72–99, 1983.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite

computation paths (extended abstract). In 24th Annual Symposium on Founda-

tions of Computer Science, pages 185–194. IEEE, 1983.

26

