
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

A General Approach to Comparing Infinite-State
Systems with Their Finite-State Specifications

by

Antonín Kučera
Philippe Schnoebelen

FI MU Report Series FIMU-RS-2004-05

Copyright c© 2004, FI MU June 2004

A General Approach to Comparing
Infinite-State Systems with Their

Finite-State Specifications

Antonı́n Kučera∗

Faculty of Informatics,
Masaryk University,

Botanická 68a, CZ-60200 Brno,
Czech Republic,
tony@fi.muni.cz.

Philippe Schnoebelen
LSV, ENS de Cachan & CNRS UMR 8643,

61, av. Pdt. Wilson,
94235 Cachan Cedex, France.
phs@lsv.ens-cachan.fr

Abstract

We introduce a generic family of behavioral relations for which the
problem of comparing an arbitrary transition system to some finite-
state specification can be reduced to a model checking problem
against simple modal formulae. As an application, we derive decid-
ability of several regular equivalence problems for well-known fami-
lies of infinite-state systems.

1 Introduction

Verification of infinite-state models of systems is a very active field of re-
search, see [EN94, BCMS01, Bou01, KJ02, Srb02] for surveys of some sub-
fields. In this area, researchers consider a large variety of models suited to
∗On leave at LSV, ENS de Cachan, France. Supported by the Grant Agency of the Czech

Republic, grant No. 201/03/1161.

1

different kinds of applications, and three main kinds of verification prob-
lems: (1) specific properties like reachability or termination, (2) model
checking of temporal formulae, and (3) semantic equivalences or preorders
between two systems. With most models, termination and reachability
are investigated first. Positive results lead to investigations of more gen-
eral temporal model checking problems. Regarding equivalence problems,
positive decidability results exist mainly for strong bisimilarity (some mile-
stones in the study include [BBK93, HJM96b, HJM96a, Jan95, HJ99, Sén01]).
For other behavioral equivalences, results are usually negative.

Regular equivalence problem. Recently, the problem of comparing some
infinite-state process g with a finite-state specification f has been identi-
fied as an important subcase1 of the general equivalence checking prob-
lem [KJ02]. Indeed, in equivalence-based verification, one usually com-
pares a “real-life” system with an abstract behavioral specification. Faith-
ful models of real-life systems often require features like counters, subpro-
cess creation, or unbounded buffers, that make the model infinite-state. On
the other hand, the behavioral specification is usually abstract, hence nat-
urally finite-state. Moreover, infinite-state systems are often abstracted to
finite-state systems even before applying further analytical methods. This
approach naturally subsumes the question if the constructed abstraction is
correct (i.e., equivalent to the original system). It quickly appeared that reg-
ular equivalence problems are computationally easier than comparing two
infinite-state processes, and a wealth of positive results exist [KJ02].

The literature offers two generic techniques for deciding regular equiv-
alences. First, Abdulla et al. show how to check regular simulation on well-
structured processes [AČJT00]. Their algorithm is generic because a large
collection of infinite-state models are well-structured [FS01].

The second approach is even more general: one expresses equivalence
with f via a formula ϕf of some modal logic L. ϕf is called a characteristic
formula for f wrt. the given equivalence. This reduces regular equivalence
problems to more familiar model checking problems. It entails decidability
of regular equivalences for all systems where model checking with the logic
L is decidable. It is easy to give characteristic formulae wrt. bisimulation-

1We refer to this subcase as “the regular equivalence problem” in the rest of this paper.
For example, if we say that “regular weak bisimilarity is decidable for PA processes”, we
mean that weak bisimilarity is decidable between PA processes and finite-state ones.

2

like equivalences if one uses the modal µ-calculus [SI94, MO98]. Browne
et al. constructed characteristic formulae wrt. bisimilarity and branching-
bisimilarity in the logic CTL [BCG88]. Unfortunately, CTL (or µ-calculus)
model checking is undecidable on many process classes like PA, Petri nets,
lossy channel systems, etc. Later, it has been shown that characteristic for-
mulae wrt. strong and weak bisimilarity can be constructed even in the
L(EXα,EF,EFτ) fragment of CTL [JKM01]. This logic is sufficiently simple
and its associated model-checking problem is decidable in many classes of
infinite-state systems (including PA, lossy channel systems, and pushdown
automata) [May01].

Our contribution. We introduce full regular equivalences, a variant of reg-
ular equivalences, and develop a generic approach to the reduction of full
regular equivalences to model checking (essentially) the EF fragment of
modal logic2. Compared to regular equivalences, full regular equivalence
has the additional requirement that the state-space of the infinite system
must be included in the state-space of the finite system up to the given
equivalence. We argue that full regular equivalence is as natural as regu-
lar equivalence in most practical situations (additionally the two variants
turn out to coincide in many cases). Moreover, an important outcome of
our results is that full regular equivalence is “more decidable” than regular
equivalence for trace-like and simulation-like equivalences. For example,
regular trace equivalence is undecidable for BPA (and hence also for push-
down and PA processes), while full regular trace equivalence is decidable
for these models. Similar examples can be given for simulation-like equiv-
alences. See Section 2 and Section 6 for further comments.

We offer two main reductions. One applies to a large parameterized
family of equivalences defined via a transfer property (we call them MTB

equivalences). The other applies to a large parameterized family of equiv-
alences based on sets of enriched traces (we call them PQ equivalences).
Together they cover virtually all process equivalences used in verifica-
tion [vG93]. For all of these, full regular equivalence with some f is re-
duced to EF model-checking, hence shown decidable for a large family of
infinite-state models. More precisely, the constructions output a character-
istic formula for f wrt. a given equivalence, which expresses the property

2In fact we provide reductions to L(EXα,EF,EFτ) and to L(EUα,EF), two different frag-
ments of modal logic that have incomparable expressive power.

3

of “being fully equivalent to f”. In particular, this works for bisimulation-
like equivalences (weak, delay, early, branching), and thus we also obtain
a refinement of the result presented in [BCG88] which says that a char-
acteristic formula wrt. branching bisimilarity is constructible in CTL. The
main “message” of this part is that full regular equivalence is decidable for
many more semantic equivalences and classes of infinite-state models than
regular equivalence. In this paper we do not aim to develop specific meth-
ods for particular models and equivalences. (Such methods can be more
efficient than our generic (model-independent) algorithm—for example, it
has recently been shown in [KM04] that full regular equivalence with PDA
processes can be decided by a PDA-specific algorithm which needs only
polynomial time for some MTB equivalences and some subclasses of PDA
processes.)

Another contribution of this paper is a model-checking algorithm for
the logic L(EXα,EF,EFτ,EUα) and lossy channel systems. This allows one
to apply the previous abstract results also to processes of lossy channel
systems (for other models like, e.g., pushdown automata, PA processes, or
PAD processes, the decidability of model-checking problem with the logic
EF is already known).

Plan of the paper. We introduce and discuss full regular equivalence in
Section 2. In Section 3 we introduce MTB equivalences, show how to ap-
proximate them, and how to use these approximations to reformulate the
condition of full regular equivalence into simpler but equivalent conditions
(Theorem 3.6). In Section 3.1 we show how to encode the simplified con-
ditions of Theorem 3.6 into modal logic. We also consider associated com-
plexity questions. We introduce PQ equivalences in Section 4 and show
a similar simplified way of checking the conditions of full regular equiva-
lence. This is encoded into modal logic in Section 4.1. The model-checking
algorithm for L(EXα,EF,EFτ,EUα) and lossy channel systems is presented
in Section 5. This study brings a number of corollaries that are summarized
at the end of Section 6.

2 (Full) Regular Equivalence

We start by recalling basic definitions. Let Act = {a, b, c, . . . } be a countably
infinite set of actions, and let τ 6∈ Act be a distinguished silent action. For

4

A ⊆ Act, Aτ denotes the set A ∪ {τ}. We use α,β, . . . to range over Actτ. A
transition system is a triple T = (S,−→,A) where S is a set of states, A ⊂ Actτ
is a finite alphabet, and−→ ⊆ S×A× S is a transition relation. We write s α−→ t

instead of (s, α, t) ∈ −→, and we extend this notation to elements ofA∗ in the
standard way. We say that a state t is reachable from a state s, written s −→∗ t,
if there is w ∈ A∗ such that s w

−→ t. Further, for every α ∈ Actτ we define
the relation α⇒ ⊆ S× S as follows: s τ⇒ t iff there is a sequence of the form
s = p0

τ
−→ · · · τ−→ pk = t where k ≥ 0; s a⇒ t where a 6= τ iff there are p, q

such that s τ⇒ p
a
−→ q

τ⇒ t. From now on, a process is formally understood
as a state of (some) transition system. Intuitively, transitions from a given
process s model possible computational steps, and the silent action τ is
used to mark those steps which are internal (i.e., not externally observable).
Since we sometimes consider processes without explicitly defining their
associated transition systems, we also use A(s) to denote the alphabet of
(the underlying transition system of) the process s. A process s is τ-free if
τ 6∈ A(s).

Let ∼ be an arbitrary process equivalence, g a (general) process, F a
finite-state system, and f a process of F .

Definition 2.1 (Full Regular Equivalence). We say g is fully equivalent to f
(in F) iff:

• g ∼ f (g is equivalent to f), and

• for all g −→∗ g ′, there is some f′ in F s.t. g′ ∼ f ′ (every process reachable
from g has an equivalent in F).

Observe that the equivalent f′ does not have to be reachable from f.
In verification settings, requiring that some process g is fully equiva-

lent to a finite-state specification F puts some additional constraints on g:
its whole state-space must be accounted for in a finite way. To get some
intuition why this is meaningful, consider, e.g., the finite-state system with
three states f, f′, f ′′ and transitions f a−→ f, f ′ a−→ f ′′. Suppose that all transi-
tions of a given infinite-state system g are labeled by a. Then regular trace
equivalence to f means that g can do infinitely many a’s (assuming that g
is finitely branching), while full regular trace equivalence to f means that
g can do infinitely many a’s and whenever it decides to terminate, it can
reach a terminated state in at most one transition. This property cannot be

5

encoded as regular bisimulation equivalence or regular simulation equiva-
lence by any finite-state system. Let us also note that when ∼ is an equiva-
lence of the bisimulation family, then regular equivalence is automatically
“full”.

3 MTB Preorder and Equivalence

In this paper, we aim to prove general results about equivalence-checking
between infinite-state and finite-state processes. To achieve that, we con-
sider an abstract notion of process preorder and process equivalence which
will be introduced next.

A transfer is one of the three operators on binary relations defined as
follows: sim(R) = R, bisim(R) = R ∩ R−1, contrasim(R) = R−1. A mode is
a subset of {η, d} (the η and d are just two different symbols). A basis is
an equivalence over processes satisfying the following property: whenever
(s, u) ∈ B and s τ⇒ t

τ⇒ u, then also (s, t) ∈ B.

Definition 3.1. Let S be a binary relation over processes andM a mode. A move
s
α⇒ t is tightly S-consistent with M if either α = τ and s = t, or there is a

sequence s = s0
τ
−→ · · · τ−→ sk

α
−→ t0

τ
−→ · · · τ−→ t` = t, where k, ` ≥ 0, such that the

following holds: (1) if η ∈M, then (si, sj) ∈ S for all 0 ≤ i, j ≤ k; (2) if d ∈M,
then (ti, tj) ∈ S for all 0 ≤ i, j ≤ `.

The loose S-consistency of s α⇒ t withM is defined in the same way, but the
conditions (1), (2) are weakened—we only require that (s0, sk), (sk, s0) ∈ S , and
(t0, t`), (t`, t0) ∈ S.

Definition 3.2. Let T be a transfer, M a mode, and B a basis. A binary relation
R over processes is a tight (or loose)MTB-relation if it satisfies the following:

• R ⊆ B

• whenever (p, q) ∈ R, then for every tightly (or loosely, resp.) R-consistent
move p α⇒ p ′ there is a tightly (or loosely, resp.) R-consistent move q α⇒ q ′

such that (p′, q ′) ∈ T(R).

We write s v t (or s 4 t, resp.), if there is a tight (or loose, resp.) MTB-relation
R such that (s, t) ∈ R. We say that s, t are tightly (or loosely, resp.) MTB-
equivalent, written s ∼ t (or s ≈ t, resp.), if s v t and t v s (or s 4 t and t 4 s,
resp.).

6

It is standard that such a definition entails that v and 4 are preorders,
and ∼ and ≈ are equivalences over the class of all processes. The relation-
ship between v and4 relations is clarified in the next lemma (this is where
we need the defining property of a base).

Lemma 3.3. We have that v = 4 (and hence also ∼ = ≈).

Proof. (v ⊆ 4). We show that v is a looseMTB-relation. So, let s v t and
let s α⇒ s ′ be a loosely v-consistent move. If this move is also tightly v-
consistent, there must be (due to s v t) a tightly (and hence also loosely)v-
consistent move t α⇒ t ′ where (s′, t ′) ∈ T(v) and we are done immediately.
If the move s α⇒ s ′ is only loosely v-consistent, it is of the form s = p0

τ⇒
pk

α
−→ q0

τ⇒ q` = s
′, where k, ` ≥ 0, and

• if η ∈M, then s ∼ pk;

• if d ∈M, then s′ ∼ q0;

Now consider the subsequence x α⇒ y of the sequence s = p0
τ⇒ pk

α
−→

q0
τ⇒ q` = s

′ where

• if η ∈M, then x = pk, otherwise x = p0 = s

• if d ∈M, then y = q0, otherwise y = q` = s ′

Observe that x ∼ s, y ∼ s′, and the move x α⇒ y is tightlyv-consistent. Since
x ∼ s and s v t, there is a tightly (and hence also loosely) v-consistent
move t α⇒ t ′ such that (y, t′) ∈ T(v). Since s′ ∼ y, we have (s′, t ′) ∈ T(v)
as needed.
(4 ⊆ v). We show that 4 is a tight MTB-relation. Let s 4 t and let

s
α⇒ s ′ be a tightly 4-consistent move. Since s 4 t, there is a loosely 4-

consistent move t α⇒ t ′ such that s ′ 4 t ′. We prove that t α⇒ t ′ is in fact
tightly4-consistent. To do that, consider the relationR defined as follows:
(p, q) ∈ R iff there are processes p1, p2, q1, q2 such that p1 ≈ p2 ≈ q1 ≈

q2, p1
τ⇒ p

τ⇒ p2, and q1
τ⇒ q

τ⇒ q2. Observe that R is reflexive and
symmetric. Further, 4 ⊆ R which means that if we manage to prove that
R is a loose MTB-relation, we can conclude that 4 = R. This suffices for
our purposes, because then we can readily justify the tight 4-consistency
of the move t α⇒ t ′ — all of the intermediate states we wish to be related
by 4 are clearly related byR. First, let us realize thatR ⊆ B (here we need
the defining property of B). Now let (p, q) ∈ R and let p1, p2, q1, q2 be

7

the four processes which witness the membership of (p, q) to R. Further,
let p α⇒ p ′ be a loosely R-consistent move. We need to show that there is
an R-consistent move q α⇒ q ′ such that (p′, q ′) ∈ T(R). Observe that the
move p1

τ⇒ p
α⇒ p ′ is also loosely R-consistent, because p1

τ⇒ p passes
through states which are all mutually related by R. As p1 ≈ q2, there is a
loosely4-consistent (and hence alsoR-consistent) move q2

α⇒ q ′ such that
(p ′, q ′) ∈ T(4) (hence also (p′, q ′) ∈ T(R)). Since q τ⇒ q2 passes through
states which are mutually related by R, the move q τ⇒ q2

α⇒ q ′ is also
looselyR-consistent and we are done.

Before presenting further technical results, let us briefly discuss and jus-
tify the notion of MTB equivalence. The class of all MTB equivalences can
be partitioned into the subclasses of simulation-like, bisimulation-like, and
contrasimulation-like equivalences according to the chosen transfer. Ad-
ditional conditions which must be satisfied by equivalent processes can be
specified by an appropriately defined base. For example, we can put B to
be true, ready, or terminate where

• (s, t) ∈ true for all s and t;

• (s, t) ∈ ready iff {a ∈ Actτ | ∃s ′ : s
a⇒ s ′} = {a ∈ Actτ | ∃t ′ : t

a⇒ t ′};

• (s, t) ∈ terminate iff s and t are either both terminating, or both non-
terminating (a process p is terminating iff p α⇒ p ′ implies α = τ and
p cannot perform an infinite sequence of τ-transitions).

The mode specifies the level of ‘control’ over the states that are passed
through by α⇒ transitions. In particular, by putting T = bisim, B = true,
and choosing M to be ∅, {η}, {d}, or {η, d}, one obtains weak bisimilarity
[Mil89], η-bisimilarity [BvG87], delay-bisimilarity, and branching bisimi-
larity [vGW96], respectively.3 “Reasonable” refinements of these bisimu-
lation equivalences can be obtained by redefining B to something like ter-
minate—sometimes there is a need to distinguish between, e.g., terminated
processes and processes which enter an infinite internal loop. If we put
T = sim, B = true, and M = ∅, we obtain weak simulation equivalence;

3Our definition ofMTB equivalence does not directly match the definitions of η-, delay-,
and branching bisimilarity that one finds in the literature. However, it is easy to show that
one indeed yields exactly these equivalences.

8

and by redefining B to ready we yield a variant of ready simulation equiva-
lence. The equivalence where T = contrasim, B = true, andM = ∅ is known
as contrasimulation (see, e.g., [VM01]).4

The definition of MTB equivalence allows to combine all of the three
parameters arbitrarily, and our results are valid for all such combinations
(later we adopt some natural effectiveness assumptions about B, but this
will be the only restriction).

Definition 3.4. For every k ∈ N0, the binary relations vk, ∼k, 4k, and ≈k are
defined as follows: s v0 t iff (s, t) ∈ B; s vk+1 t iff (s, t) ∈ B and for every tightly
vk-consistent move s α⇒ s ′ there is some tightly vk-consistent move t α⇒ t ′ such
that (s ′, t ′) ∈ T(vk).

The 4k relations are defined in the same way, but we require only loose 4k-
consistency of moves in the inductive step. Finally, we put s ∼k t iff s vk t and
t vk s, and similarly s ≈k t iff s 4k t and t 4k s.

A trivial observation is that 4k ⊇ 4k+1 ⊇ 4, vk ⊇ vk+1 ⊇ v,
∼k ⊇ ∼k+1 ⊇ ∼, and ≈k ⊇ ≈k+1 ⊇ ≈ for each k ∈ N0. In general, vk 6= 4k;
however, if we restrict ourselves to processes of some fixed finite-state sys-
tem, we can prove the following:

Lemma 3.5. Let F = (F,−→,A) be a finite-state system with n states. Then
vn2−1 = vn2 = v = 4 = 4n2−1 = 4n2 , where all of the relations are
considered as being restricted to F × F.

Proof. Since vk+1 refines vk, we immediately obtain vn2−1 = vn2 . This
means that vn2 is a tight MTB-relation and hence vn2 = v. For the same
reason, 4n2−1 = 4n2 = 4. Note that v = 4 by Lemma 3.3.

Theorem 3.6. Let F = (F,−→,A) be a finite-state system with n states, f a pro-
cess of F, and g some (arbitrary) process. Then the following three conditions are
equivalent.

(a) g ∼ f and for every g −→∗ g ′ there is some f′ ∈ F such that g′ ∼ f ′.

4Contrasimulation can also be seen as a generalization of coupled simulation [PS92,
PS94], which was defined only for the subclass of divergence-free processes (where it coin-
cides with contrasimulation). It is worth to note that contrasimulation coincides with strong
bisimilarity on the subclass of τ-free processes (to see this, realize that one has to consider
the moves s τ⇒ s even if s is τ-free). This is (intuitively) the reason why contrasimulation
has some nice properties also in the presence of silent moves.

9

(b) g ∼n2 f and for every g −→∗ g ′ there is some f′ ∈ F such that g′ ∼n2 f
′.

(c) g ≈n2 f and for every g −→∗ g ′ there is some f′ ∈ F such that g′ ≈n2 f
′.

Proof. Clearly (a)⇒ (b) and (a)⇒ (c) (for the second implication we need
Lemma 3.3). We prove that (b)⇒ (a) and (c)⇒ (a).
(b) ⇒ (a): Let G = {g′ | g −→∗ g ′}. We show that the relation vn2

restricted to (G× F)∪ (F×G) is a tightMTB-relation. So, let ḡ ∈ G, f̄ ∈ F be
processes such that

(i) ḡ vn2 f̄. Let ḡ α⇒ ḡ ′ be a tightly vn2-consistent move. By defini-
tion of vn2 , there is a tightly vn2−1-consistent move f̄ α⇒ f̄ ′ such that
(ḡ ′, f̄ ′) ∈ T(vn2−1). First, realize that the move f̄ α⇒ f̄ ′ is also tightly
vn2-consistent, because vn2−1 = vn2 over F × F (see Lemma 3.5).
Now we prove that (ḡ ′, f̄ ′) ∈ T(vn2). Since ḡ′ is reachable from g,
there is some f′ ∈ F such that ḡ′ ∼n2 f ′. As (ḡ ′, f̄ ′) ∈ T(vn2−1) and
ḡ ′ ∼n2 f

′, we have that (f′, f̄ ′) ∈ T(vn2−1). However, this means that
(f ′, f̄ ′) ∈ T(vn2) by Lemma 3.5. As (f′, f̄ ′) ∈ T(vn2) and ḡ ′ ∼n2 f ′, we
obtain (ḡ ′, f̄ ′) ∈ T(vn2) as needed.

(ii) f̄ vn2 ḡ. Let f̄ α⇒ f̄ ′ be a tightly vn2 -consistent move. Then there is
(by definition of vn2) a tightly vn2−1-consistent move ḡ α⇒ ḡ ′ such
that (f̄ ′, ḡ ′) ∈ T(vn2−1). Now it suffices to show that

(1) the move ḡ α⇒ ḡ ′ is in fact tightlyvn2-consistent. This is justified
by observing that for any two states g1, g2 which appear along
the move ḡ α⇒ ḡ ′ we have that g1 ∼n2−1 g2 implies g1 ∼n2 g2. To
see this, realize that g1, g2 are reachable from g and hence there
are some f1, f2 ∈ F such that g1 ∼n2 f1 and g2 ∼n2 f2. Since
f1 ∼n2 g1 ∼n2−1 g2 ∼n2 f2, we obtain f1 ∼n2−1 f2 and hence also
f1 ∼n2 f2 by Lemma 3.5. Now g1 ∼n2 f1 ∼n2 f2 ∼n2 g2, thus
g1 ∼n2 g2.

(2) (f̄ ′, ḡ ′) ∈ T(vn2). This follows from (f̄ ′, ḡ ′) ∈ T(vn2−1) by using
the same argument as in (i).

(c)⇒ (a): Using the same technique as above, one can prove that4n2
restricted to (G×F)∪(F×G) is a looseMTB-relation. The claim then follows
by applying Lemma 3.3.

10

3.1 Encoding MTB Equivalence into Modal Logic

In this section we show that the conditions (b) and (c) of Theorem 3.6 can be
expressed in modal logic. Let us consider a class of modal formulae defined
by the following abstract syntax equation (where α ranges over Actτ):

ϕ ::= tt | ϕ1 ∧ϕ2 | ¬ϕ | EXαϕ | EFϕ | EFτϕ | ϕ1 EUαϕ2

The semantics (over processes) is defined inductively as follows:

• s |= tt for every process s.

• s |= ϕ1 ∧ϕ2 iff s |= ϕ1 and s |= ϕ2.

• s |= ¬ϕ iff s 6|= ϕ.

• s |= EXαϕ iff there is s α−→ s ′ such that s ′ |= ϕ.

• s |= EFϕ iff there is s −→∗ s ′ such that s ′ |= ϕ.

• s |= EFτϕ iff there is s τ⇒ s ′ such that s ′ |= ϕ.

• s |= ϕ1 EUαϕ2 iff either α = τ and s |= ϕ2, or there is a sequence
s = s0

τ
−→ · · · τ−→ sm

α
−→ s ′, where m ≥ 0, such that si |= ϕ1 for all

0 ≤ i ≤ m and s ′ |= ϕ2.

The dual operator to EF is AG, defined by AGϕ ≡ ¬EF¬ϕ.
Let M1, . . . ,Mk range over {EXα,EF,EFτ,EUα}. The (syntax of the)

logic L(M1, . . . ,Mk) consists of all modal formulae built over the modali-
tiesM1, . . . ,Mk. For example,

• L(EXα) is the well-known Hennessy-Milner logic [Mil89];

• L(EUα) is the logic proposed by de Nicola and Vaandrager in
[dNV95] which modally characterizes branching bisimilarity;

• L(EXα,EF,EFτ) is the logic used in [JKM01] to construct characteris-
tic formulae wrt. full and weak bisimilarity for finite-state systems.
As opposed to other modal logics, the model-checking problem with
L(EXα,EF,EFτ) is decidable for many classes of infinite-state systems
(e.g., BPA, BPP, and PA process algebras, pushdown automata, lossy
channel systems, etc.)

11

Let ∼ be an MTB equivalence. Our aim is to show that for every finite
f there are formulae ϕf of L(EF,EUα) and ψf of L(EXα,EF,EFτ) such that
for every process gwhereA(g) ⊆ Awe have that g |= ϕf (or g |= ψf) iff the
processes g and f satisfy the condition (b) (or (c), resp.) of Theorem 3.6.
Clearly such formulae cannot always exist without some additional as-
sumptions about the base B. Actually, all we need is to assume that the
equivalence Bwith processes of a given finite-state system F = (F,−→,A) is
definable in the aforementioned logics. More precisely, for each f ∈ F there
should be formulae Ξtf and Ξ`f of the logicsL(EF,EUα) and L(EXα,EF,EFτ),
respectively, such that for every process g where A(g) ⊆ A we have that
(g, f) ∈ B iff g |= Ξtf iff g |= Ξ`f. Since we are also interested in complexity
issues, we further assume that the formulae Ξtf and Ξ`f are efficiently com-
putable from F . An immediate consequence of this assumption is that B
over F × F is efficiently computable. This is because the model-checking
problem with L(EF,EUα) and L(EXα,EF,EFτ) is decidable in polynomial
time over finite-state systems. To simplify the presentation of our complex-
ity results, we adopt the following definition:

Definition 3.7. We say that a base B is well-defined if there is a polynomial P
(in two variables) such that for every finite-state system F = (F,−→,A) the set
{Ξtf, Ξ

`
f | f ∈ F} can be computed, and the relation B ∩ (F × F) can be decided, in

time O(P(|F|, |A|)).

Remark 3.8. Note that a well-defined B is not necessarily decidable over process
classes which contain infinite-state processes—for example, the ready base intro-
duced in the previous section is well-defined but it is not decidable for, e.g., CCS
processes. In fact, the Ξtf formulae are only required for the construction of ϕf,
and the Ξ`f formulae are required only for the construction of ψf. (This is why
we provide two different formulae for each f.) Note that there are bases for which
we can construct only one of the Ξtf and Ξ`f families, which means that for some
MTB equivalences we can construct only one of the ϕf and ψf formulae. A con-
crete example is the terminate base of the previous section, which is definable in
L(EXα,EF,EFτ) but not in L(EF,EUα).

For the rest of this section, we fix some MTB-equivalence ∼ where B is
well-defined, and a finite-state system F = (F,−→,A) with n states.

Let 〈α,ϕη, ϕd〉t and 〈α,ϕη, ϕd〉` be unary modal operators whose se-
mantics is defined as follows:

12

• s |= 〈α,ϕη, ϕd〉tϕ iff either α = τ and s |= ϕ, or there is a sequence of
the form s = p0

τ
−→ · · · pk

α
−→ q0

τ
−→ · · · τ−→ qm, where k,m ≥ 0, such

that pi |= ϕη for all 0 ≤ i ≤ k, qj |= ϕd for all 0 ≤ j ≤ m, and qm |= ϕ.

• s |= 〈α,ϕη, ϕd〉`ϕ iff either α = τ and s |= ϕ, or there is a sequence of
the form s = p0

τ
−→ · · · pk

α
−→ q0

τ
−→ · · · τ−→ qm, where k,m ≥ 0, such

that p0 |= ϕη, pk |= ϕη, q0 |= ϕd, qm |= ϕd, and qm |= ϕ.

We also define [α,ϕη, ϕd]tϕ as an abbreviation for ¬〈α,ϕη, ϕd〉t¬ϕ, and
similarly [α,ϕη, ϕd]`ϕ is used to abbreviate ¬〈α,ϕη, ϕd〉`¬ϕ.

Lemma 3.9. The 〈α,ϕη, ϕd〉t and 〈α,ϕη, ϕd〉` modalities are expressible in
L(EUα) and L(EXα,EFτ), respectively:

Proof. It suffices to realize that

〈α,ϕη, ϕd〉
tϕ ≡

{
ϕη ∧ (ϕη EUα(ϕd EUτ(ϕd ∧ϕ))) if α 6= τ

(ϕη ∧ (ϕη EUα(ϕd EUτ(ϕd ∧ϕ))))∨ϕ if α = τ

〈α,ϕη, ϕd〉
`ϕ ≡

{
ϕη ∧ EFτ(ϕη ∧ EXα(ϕd ∧ EFτ(ϕd ∧ϕ))) if α 6= τ

(ϕη ∧ EFτ(ϕη ∧ EXα(ϕd ∧ EFτ(ϕd ∧ϕ))))∨ ϕ if α = τ

Since the conditions (b) and (c) of Theorem 3.6 are encoded into
L(EF,EUα) and L(EXα,EF,EFτ) along the same scheme, we present both
constructions at once by adopting the following notation: 〈α,ϕη, ϕd〉
stands either for 〈α,ϕη, ϕd〉t or 〈α,ϕη, ϕd〉`, Ξf denotes either Ξtf or Ξ`f,
$k denotes either ∼k or ≈k, and 6k denotes either vk or 4k, respectively.

Moreover, we write s α,k
−→ t to denote that there is either a tightly vk-

consistent move s α⇒ t, or a loosely4k-consistent move s α⇒ t, respectively.

Definition 3.10. For all f ∈ F and k ∈ N0 we define the formulae Φf,k, Ψf,k, and
Θf,k inductively as follows:

• Φf,0 = Ψf,0 = Ξf

• Θf,k = Φf,k ∧ Ψf,k

• Φf,k+1 = Ξf ∧ (AG
∨
f ′∈FΘf ′,k) ∧ (

∧
f
α,k−→f ′(∨f1,f2∈F〈α,ϕf1,k, ψf2,k〉ξf ′,k))

• Ψf,k+1 = Ξf ∧ (AG
∨
f ′∈FΘf ′,k) ∧

∧
α∈Aτ,f1,f2∈F

([α,ϕf1,k, ψf2,k](
∨
f
α,k−→f ′ ρf ′,k))

13

where

• if η ∈M, then ϕf1,k = Θf1,k, otherwise ϕf1,k = tt;

• if d ∈M, then ψf2,k = Θf2,k, otherwise ψf2,k = tt;

• if T = sim, then ξf ′,k = Φf ′,k and ρf ′,k = Ψf ′,k;

• if T = bisim, then ξf ′,k = ρf ′,k = Θf ′,k;

• if T = contrasim, then ξf ′,k = Ψf ′,k and ρf ′,k = Φf ′,k.

The empty conjunction is equivalent to tt, and the empty disjunction to ff.

The meaning of the constructed formulae is explained in the next the-
orem. Intuitively, what we would like to have is that for every process g
where A(g) ⊆ A it holds that g |= Φf,k iff f 6k g, and g |= Ψf,k iff g 6k f.
However, this is (provably) not achievable—the 6k preorder with a given
finite-state process is not directly expressible in the logics L(EF,EUα) and
L(EXα,EF,EFτ). The main trick (and subtlety) of the presented inductive
construction is that the formulaeΦf,k andΨf,k actually express stronger con-
ditions.

Theorem 3.11. Let g be an (arbitrary) process such that A(g) ⊆ A. Then for all
f ∈ F and k ∈ N0 we have the following:

(a) g |= Φf,0 iff f 60 g; further, g |= Φf,k+1 iff f 6k+1 g and for each g −→∗ g ′
there is f′ ∈ F such that g′ $k f ′.

(b) g |= Ψf,0 iff g 60 f; further, g |= Ψf,k+1 iff g 6k+1 f and for each g −→∗ g ′
there is f′ ∈ F such that g′ $k f ′.

(c) g |= Θf,0 iff g $0 f; further, g |= Θf,k+1 iff f $k+1 g and for each g −→∗ g ′
there is f′ ∈ F such that g′ $k f ′.

Proof. We prove (a) and (b) by induction on k (the (c) follows immediately
then). The base case when k = 0 is trivial. It remains to show the inductive
step of (a) and (b).

(a) We start with the ‘⇐’ direction. Since f 6k+1 g and for each g −→∗ g ′
there is f ′ ∈ F such that g′ $k f ′, we can apply induction hypotheses

14

to conclude that g |= Ξf∧ (AG
∨
f ′∈FΘf ′,k). It remains to prove that g

satisfies also the formula∧
f
α,k−→f ′

(
∨

f1,f2∈F

〈α,ϕf1,k, ψf2,k〉ξf ′,k).

To see this, realize that for each f
α,k
−→ f ′ there is some g

α,k
−→

g ′ such that (f′, g ′) ∈ T(6k). Since g, g′ are reachable from g,
there are some f1, f2 ∈ F such that g $k f1 and g ′ $k f2. As
g

α,k
−→ g ′, we can apply induction hypothesis and conclude that

g |= 〈α,ϕf1,k, ψf2,k〉ξf ′,k. This works for arbitrary f α,k−→ f ′, hence
g |=

∧
f
α,k−→f ′
(
∨
f1,f2∈F

〈α,ϕf1,k, ψf2,k〉ξf ′,k) as needed.

For the ‘⇒’ direction, let us suppose that g |= Ξf ∧ (AG
∨
f ′∈FΘf ′,k).

Since g |= AG
∨
f ′∈FΘf ′,k, we can apply induction hypothesis to con-

clude that for every g −→∗ g ′ there is some f′ ∈ F such that g′ $k f ′.
It remains to show that f 6k+1 g. Clearly (f, g) ∈ B because g |= Ξf.

Let f α,k−→ f ′. As g |=
∨
f1,f2∈F

〈α,ϕf1,k, ψf2,k〉ξf ′,k, there are f1, f2 ∈ F
such that g |= 〈α,ϕf1,k, ψf2,k〉ξf ′,k. By applying induction hypothesis

we obtain that there is g α,k
−→ g ′ such that g ′ |= ξf ′,k, which means

(f ′, g ′) ∈ T(6k).

(b) ‘⇐’: Let us assume that g 6k+1 f and for each g −→∗ g ′ there is
f ′ ∈ F such that g′ $k f ′. Then g |= Ξf ∧ (AG

∨
f ′∈FΘf ′,k) by in-

duction hypothesis. Now let α ∈ Aτ and f1, f2 ∈ F. We show
that g |= [α,ϕf1,k, ψf2,k](

∨
f
α,k−→f ′

ρf ′,k). Suppose the converse, i.e.,
g |= 〈α,ϕf1,k, ψf2,k〉(

∧
f
α,k−→f ′

¬ρf ′,k). By applying induction hypoth-

esis we obtain that there is g α,k
−→ g ′ such that for every f α,k−→ f ′ we

have g ′ 6|= ρf ′,k, i.e., (g′, f ′) 6∈ T(6k). Hence, g 66k+1 f which is a
contradiction.

‘⇒’: As g |= AG
∨
f ′∈FΘf ′,k, for every g −→∗ g ′ there is some f′ ∈ F

such that g ′ $k f ′ (by induction hypothesis). We show that g 6k+1 f.
Let g α,k−→ g ′. Since g, g′ are reachable from g, there are f1, f2 ∈ F such
that g $k f1 and g ′ $k f2. Since g |= [α,ϕf1,k, ψf2,k](

∨
f
α,k−→f ′

ρf ′,k), we
have that g ′ |=

∨
f
α,k−→f ′

ρf ′,k by using induction hypothesis. Hence,

there is f α,k−→ f ′ such that g ′ |= ρf ′,k, which means (g′, f ′) ∈ T(6k)
(again by induction hypothesis).

15

In general, the 6k-consistency of moves g α⇒ g ′ can be expressed in a
given logic only if one can express the $k equivalence with g and g′. Since
g and g ′ can be infinite-state processes, this is generally impossible. This
difficulty was overcome in Theorem 3.11 by using the assumption that g
and g ′ are $k equivalent to some f1 and f2 of F. Thus, we only needed to
encode the $k equivalence with f1 and f2 which is (in a way) achieved by
the Θf1,k and Θf2,k formulae. An immediate consequence of Theorem 3.6
and Theorem 3.11 is the following:

Corollary 3.12. Let g be an (arbitrary) process such thatA(g) ⊆ A, and let f ∈ F.
Then the following two conditions are equivalent:

(a) g ∼ f and for every g −→∗ g ′ there is some f′ ∈ F such that g′ ∼ f ′.

(b) g |= Θf,n2 ∧AG(
∨
f ′∈FΘf ′,n2).

Since the formula Θf,n2 ∧AG(
∨
f ′∈FΘf ′,n2) is effectively constructible, the

problem (a) of the previous corollary is effectively reducible to the problem
(b).

Remark 3.13. An important consequence of Corollary 3.12 is that the problem of
full regular equivalence is generally ‘more decidable and tractable’ than the prob-
lem of regular equivalence. For example, regular weak simulation equivalence
for PA, PAN, and lossy channel systems is undecidable[KM02b], while model-
checking with the logic L(EXα,EF,EFτ) (and thus also the problem of full regular
MTB equivalence) is still decidable for these models [May01, LS02]. Another ex-
ample are pushdown processes. Model-checking L(EXα,EF,EFτ) for PDA is in
PSPACE [Wal00]. As we shall see, this means that the full regular MTB equiva-
lence problem for PDA is also in PSPACE. However, the regular weak simulation
equivalence problem for PDA is EXPTIME-complete [KM02a]. Further examples
are given below. Hence, the ‘extra’ reachability condition given in the definition of
full regular equivalence problem is a crucial ingredient of our result, and not just
a handy technical assumption which could be possibly avoided.

A natural question is what is the complexity of the reduction from (a)
to (b). At first glance, it seems to be exponential because the size ofΘf ′,n2 is
exponential in the size of F . However, the number of distinct subformulae
in Θf ′,n2 is only polynomial. This means that if we represent the formula
Θf,n2 ∧ AG(

∨
f ′∈FΘf ′,n2) by a circuit5, then the size of this circuit is only

5A circuit (or a DAG) representing a formula ϕ is basically the syntax tree for ϕ where
the nodes representing the same subformula are identified.

16

polynomial in the size of F . This is important because the complexity of
many model-checking algorithms actually depends on the size of the cir-
cuit representing a given formula rather than on the size of the formula
itself. The size of the circuit for Θf,n2 ∧ AG(

∨
f ′∈FΘf ′,n2) is estimated in

Lemma 3.15. We start by proving an auxiliary technical lemma:

Lemma 3.14. For every k ∈ N0, the relation α,k+1
−−−→ over F × F can be computed

in O(n4 · |A|) time, assuming that the relation 6k over F × F has already been
computed.

Proof. We assume that binary relations are stored as bit matrices, which
means that testing the membership to 6k for a given pair of processes
f1, f2 ∈ F can be done in constant time.

First we show how to compute α,k−→ from 6k in O(n4 · |A|) time. This
is easy—for every α ∈ A we examine O(n2) pairs f1, f2 ∈ F and decide if

f1
α,k
−→ f2. Since testing the membership to 6k is for free, this is not harder

than reachability which can be done in O(n2) time. Hence, we need O(n4 ·
|A|) time in total.

Now we show that6k+1 can be computed from α,k
−→ and6k inO(n4 · |A|)

time. By definition of 6k+1, we need to examine O(n2) pairs f1, f2 ∈ F and

for each of O(n · |A|) moves f1
α,k
−→ f ′1 we check O(n) possible responses

f2
α,k
−→ f ′2 and look if (f1, f2) ∈ T(6k) (the membership to T(6k) is also for

free if 6k is stored as a bit matrix). Hence, O(n4 · |A|) time suffices.

Now α,k+1
−−−→ is computed from6k+1 as above (i.e., inO(n4 · |A|) time) and

we are done.

Lemma 3.15. The formula Θf,n2 ∧ AG(
∨
f ′∈FΘf ′,n2) can be represented by a

circuit constructible in O(n6 · |A| + P(n, |A|)) time.

Proof. We show that for every k ∈ N0, one only needs O(n4 · |A| · k +
P(n, |A|)) time to compute

• the relation 6k over F × F, and

• a circuit such that allΦf,k, Ψf,k, andΘf,k, where f ∈ F, are represented
by some nodes of the circuit.

We proceed by induction on k. The case when k = 0 follows immediately—
we just compute60 over F×F and the circuits for all Ξf. This takesP(n, |A|)

17

time. In the inductive step we first computeα,k+1−−−→ and6k+1 over F×F. This
can be done inO(n4 · |A|) time, because the relation6k has been computed
in the previous step and hence we can apply Lemma 3.14. Now observe
that if we already have a circuit representing all Φf,k, Ψf,k and Θf,k, then
we need to add only O(n3 · |A|) new nodes to obtain a circuit representing
Φf̄,k+1 for a given f̄ ∈ F, and this procedure does not take more than O(n3 ·
|A|) time. This follows immediately from the definition of Φf̄,k+1 and the

fact that the problem if f1
α,k+1
−−−→ f2 for given f1, f2 ∈ F can now be decided

in constant time (because we have computed α,k+1
−−−→ over F × F). The same

actually holds for the formula Ψf̄,k+1. Hence, we only add O(n4 · |A|) new
nodes in O(n4 · |A|) time to obtain a circuit representing all Φf,k+1, Ψf,k+1,
andΘf,k+1. By applying induction hypothesis, we obtain thatO(n4 ·|A|·(k+
1) + P(n, |A|)) time suffices to compute 6k+1 and the circuit representing
allΦf,k+1, Ψf,k+1, and Θf,k+1.

Corollary 3.12 and Lemma 3.15 can also be applied to finite-state pro-
cesses (i.e., to processes of some finite-state system F).

Corollary 3.16. Let ∼ be an MTB equivalence where B is well-defined. The prob-
lem of checking ∼ between finite-state processes is efficiently reducible to the model
checking problems with the logics L(EXα,EF,EFτ) and L(EF,EUα) over finite-
state processes.

The previous corollary is actually interesting only for thoseMTB equiv-
alences where M = ∅, because otherwise we must compute the 6n2 = 6
relation over F × F just to construct the formula given in Corollary 3.12 (b).

IfM = ∅, there is no need to construct the6k relations, because α,k−→ = α⇒ for
every k ∈ N0. Hence, the construction of the formula of Corollary 3.12 (b) is
rather simple in this case. Thus, one might re-use existing model-checking
tools for finite-state processes to experiment with MTB equivalences over
finite-state processes.

4 PQ Preorder and Equivalence

Let M,N be sets of processes. We write M α⇒ N iff for every t ∈ N there
is some s ∈ M such that s α⇒ t. In the next definition we introduce an-
other parametrized equivalence which is an abstract template for trace-like
equivalences.

18

Definition 4.1. Let P be a preorder over the class of all processes and let Q ∈
{∀, ∃}. For every i ∈ N0 we inductively define the relation vi as follows:

• s v0 M for every process s and every set of processes M such that

– if Q = ∀, then (s, t) ∈ P for every t ∈M;

– if Q = ∃, then (s, t) ∈ P for some t ∈M;

• s vi+1M if s vi M and for every s α⇒ t there isM α⇒ N such that t vi N.

Slightly abusing notation, we write s vi t instead of s vi {t}. Further, we define
the PQ preorder, denoted “v”, by s vM iff s vi M for every i ∈ N0. Processes
s, t are PQ equivalent, written s ∼ t, iff s v t and t v s.

For every process s, let I(s) = {a ∈ Act | s a⇒ t for some t} (note that
τ 6∈ I(s)). Now consider the preorders T,D, F, R, S defined as follows:

• (s, t) ∈ T for all s, t (true).

• (s, t) ∈ D iff both I(s) and I(t) are either empty or non-empty (dead-
lock equivalence).

• (s, t) ∈ F iff I(s) ⊇ I(t) (failure preorder).

• (s, t) ∈ R iff I(s) = I(t) (ready equivalence).

• (s, t) ∈ S iff s and t are trace equivalent (that is, iff {w ∈ Act∗ | ∃s w⇒
s ′} = {w ∈ Act∗ | ∃t w⇒ t ′}.

Now one can readily check that TQ, D∃, F∃, F∀, R∃, R∀, and S∃ equivalence
is in fact trace, completed trace, failure, failure trace, readiness, ready trace,
and possible futures equivalence, respectively. Other trace-like equiva-
lences can be defined similarly.

Lemma 4.2. Let F = (F,−→,A) be a finite-state system with n states. Then
vn2n−1 = vn2n = v, where all of the relations are considered as being restricted
to F × 2F.

Lemma 4.3. For all i ∈ N0, processes s, t, and sets of processes M,N we have
that

(a) if s vi t and t vi M, then also s vi M;

19

(b) if s vi M and for every u ∈M there is some v ∈ N such that u vi v, then
also s vi N.

Theorem 4.4. Let F = (F,−→,A) be a finite-state system with n states, f a pro-
cess of F, and g some (arbitrary) process. Then the following two conditions are
equivalent.

(a) g ∼ f and for every g −→∗ g ′ there is some f′ ∈ F such that g′ ∼ f ′.

(b) g ∼n2n f and for every g −→∗ g ′ there is some f′ ∈ F such that g′ ∼n2n f ′.

Proof. The (a) =⇒ (b) is immediate. For the other direction, suppose that
(b) holds and (a) does not hold. Since (a) does not hold, there is g −→∗ g ′
such that g ′ 6∼ f ′ for every f ′ ∈ F; and as (b) holds, there is some f̄ ∈ F such
that g ′ ∼n2n f̄. To sum up, we have that g′ 6∼m f̄ for some m > n2n. Now
we distinguish two possibilities:

g ′ 6vm f̄. By definition of vi (and the fact that m > n2n), there must be
some g ′ −→∗ g ′′ and M ⊆ F such that g′′ vn2n−1 M and g ′′ 6vn2n
M. We show that this is impossible. To see this, realize that g −→∗
g ′′ and due to (b) there is some f′ ∈ F such that g′′ ∼n2n f ′. So,
f ′ vn2n g

′′ vn2n−1 M, which means f′ vn2n−1 M by Lemma 4.3 (a).
Hence, f′ vn2n M by Lemma 4.2. Now g′′ vn2n f ′ v2n M and
thus we obtain g ′′ vn2n M by applying Lemma 4.3 (a), which is a
contradiction.

f̄ 6vm g ′. Then there must be some f̄ −→∗ f ′ and a set of processesM such
that every g ′′ ∈ M is reachable from g′, f ′ vn2n−1 M, and f ′ 6vn2n
M. Again, this will be led to a contradiction. Since every process of
M is reachable from g, due to (b) there is a set N ⊆ F such that for
every g ′′ ∈ M there is f′′ ∈ N such that g ′′ ∼n2n f ′′, and vice versa.
Hence, f′ vn2n−1 N by Lemma 4.3 (b), which means that f′ vn2n
N by Lemma 4.2. Thus, we obtain f′ vn2n M again by applying
Lemma 4.3 (b) (the roles of M,N are interchanged now), which is a
contradiction.

Now we show how to encode the condition (b) of Theorem 4.4 into modal
logic. To simplify our notation, we introduce the 〈〈α〉〉 operator defined
as follows: 〈〈α〉〉ϕ stands either for EFτϕ (if α = τ), or EFτ EXα EFτϕ (if
α 6= τ). Moreover, [[α]]ϕ ≡ ¬〈〈α〉〉¬ϕ. Similarly as in the case of MTB

20

equivalence, we need some effectiveness assumptions about the preorder
P, which are given in our next definition.

Definition 4.5. We say that P is well-defined if for every finite-state system
F = (F,−→,A) and every f ∈ F the following conditions are satisfied:

• There are effectively definable formulae Ξf, Γf of the logic L(〈〈α〉〉,EF) such
that for every process g whereA(g) ⊆ A we have that g |= Ξf iff (f, g) ∈ P,
and g |= Γf iff (g, f) ∈ P.

• There is a polynomial P (in two variables) such that for every finite-state
system F = (F,−→,A) the set {Ξf, Γf | f ∈ F} can be computed, and the
relation P ∩ (F × F) can be decided, in time O(2P(|F|,|A|)).

Note that the T , D, F, and R preorders are clearly well-defined. However,
the S preorder is (provably) not well-defined. Nevertheless, our results do
apply to possible-futures equivalence, as we shall see in Remark 4.10.

Lemma 4.6. If P is well-defined, then the relation vi over F×2F can be computed
in time which is exponential in n and polynomial in i.

4.1 Encoding PQ Preorder into Modal Logic

Definition 4.7. For all i ∈ N0, f ∈ F, andM ⊆ F we define the sets

• F(f,vi) = {M ⊆ F | f vi M}

• F(vi,M) = {f ∈ F | f vi M}.

For all f ∈ F and k ∈ N0 we define the formulae Φf,k, Ψf,k, and Θf,k inductively
as follows:

• Φf,0 = Ξf, Ψf,0 = Γf

• Θf,k = Φf,k ∧ Ψf,k

• Φf,k+1 = Ξf ∧ (AG
∨
f ′∈FΘf ′,k) ∧ (

∧
f
α⇒f ′(∨M∈F(f ′,vk)(∧f ′′∈M〈〈α〉〉Θf ′′,k)))

• Ψf,k+1 = Γf ∧ (AG
∨
f ′∈FΘf ′,k) ∧

∧
α∈Aτ

[[α]](
∨
f
α⇒M∨f ′∈F(vk,M)Θf ′,k)

The empty conjunction is equivalent to tt, and the empty disjunction to ff.

The F(. . .) sets are effectively constructible in time exponential in n and
polynomial in i (Lemma 4.6), hence the Φf,k, . . . , formulae are effectively
constructible too.

21

Theorem 4.8. Let g be an (arbitrary) process such that A(g) ⊆ A. Then for all
f ∈ F and k ∈ N0 we have the following:

(a) g |= Φf,0 iff f v0 g; further, g |= Φf,k+1 iff f vk+1 g and for each g −→∗ g ′
there is f′ ∈ F such that g′ ∼k f ′.

(b) g |= Ψf,0 iff g v0 f; further, g |= Ψf,k+1 iff g vk+1 f and for each g −→∗ g ′
there is f′ ∈ F such that g′ ∼k f ′.

(c) g |= Θf,0 iff g $0 f; further, g |= Θf,k+1 iff f ∼k+1 g and for each g −→∗ g ′
there is f′ ∈ F such that g′ ∼k f ′.

Proof. The (a), (b), and (c) are proved simultaneously by induction on k.
We give explicit arguments just for (a) and (b); the (c) follows immediately
then.

• k = 0. Immediate.

• Induction step.
“(a), =⇒” Let g |= Φf,k+1. Then g |= AG

∨
f ′∈FΘf ′,k and hence

for every g −→∗ g ′ there is some f′ ∈ F such that g′ ∼k f ′

by applying induction hypothesis. We show that f vk+1 g. As
g |= Ξf, we have that (f, g) ∈ P. Let f α⇒ f ′. Since g |=∧
f
α⇒f ′(∨M∈F(f′,vk)(∧f ′′∈M〈〈α〉〉Θf ′′,k)), there isM ⊆ F such that f′ vk

M (this follows from the definition ofF(f′,vk)). LetM = {f1, . . . , fm}.
As g |=

∧
f ′′∈M〈〈α〉〉Θf ′′,k, we can use induction hypothesis to con-

clude that there is a set N = {g1, · · · , gm} where for every 0 ≤ i ≤ m
we have that g a⇒ gi and gi ∼k fi. Note that g α⇒ N. We claim that
f ′ vk N. However, this follows immediately from Lemma 4.3 (b).

“(a),⇐=” Let us assume that f vk+1 g and for every g −→∗ g ′ there
is f ′ ∈ F such that g′ ∼k f ′. Then g |= Ξf ∧ AG

∨
f ′∈FΘf ′,k by apply-

ing the definition of vk+1 and induction hypothesis. Since f vk+1 g,
for every f α⇒ f ′ there is some g α⇒ N such that f ′ vk N. Now let
M = {f ′′ ∈ F | f ′′ ∼k g

′′ for some g ′′ ∈ N}. Since every state of N is
reachable from g, for every g′′ ∈ N there is at least one f′′ ∈ M such
that g ′′ ∼k f ′′. As f ′ vk N, we also have that f ′ vk M by applying
Lemma 4.3 (b). Hence, M ∈ F(f′,vk). To sum up, we obtain that
g |=

∧
f
α⇒f ′(∨M∈F(f′,vk)(∧f ′′∈M〈〈α〉〉Θf ′′,k)) and we are done.

“(b), =⇒” Let g |= Ψf,k+1. Then g |= AG
∨
f ′∈FΘf ′,k and hence for

22

every g −→∗ g ′ there is some f′ ∈ F such that g′ ∼k f ′ by applying in-
duction hypothesis. We show that g vk+1 f. As g |= Γf, we have that
(g, f) ∈ P. Let g α⇒ g ′. Since g |=

∧
α∈Aτ

[[α]](
∨
f
α⇒M∨f ′∈F(vk,M)Θf ′,k),

there are f α⇒ M and f ′ ∈ F such that f′ vk M and g ′ ∼k f ′ (here we
apply the definition of F(vk,M) and induction hypothesis). Since
g ′ vk f

′ vk M, we obtain g ′ vk M by Lemma 4.3 (a).

“(b), ⇐=” Let us assume that g vk+1 f and for every g −→∗ g ′
there is f ′ ∈ F such that g′ ∼k f ′. Then g |= Γf ∧ AG

∨
f ′∈FΘf ′,k

by applying the definition of vk+1 and induction hypothesis. Since
g vk+1 f, for every g

α⇒ g ′ there is some f α⇒ M such that
g ′ vk M. Further, as g′ is reachable from g, there is some f′ ∈ F
such that g ′ ∼k f ′. Since f′ vk g ′ vk M, we obtain f ′ vk M by
Lemma 4.3 (a). This means that f′ ∈ F(vk,M). To sum up, we
have that g |=

∧
α∈Aτ [[α]](

∨
f
α⇒M∨f ′∈F(vk,M)Θf ′,k) and the proof is

finished.

Corollary 4.9. Let g be an (arbitrary) process such thatA(g) ⊆ A, and let f ∈ F.
Then the following two conditions are equivalent:

(a) g ∼ f and for every g −→∗ g ′ there is some f′ ∈ F such that g′ ∼ f ′.

(b) g |= Θf,n2n ∧AG(
∨
f ′∈FΘf ′,n2n).

Note that the size of the circuit representing the formula Θf,n2n ∧

AG(
∨
f ′∈FΘf ′,n2n) is exponential in n and can be constructed in exponen-

tial time.

Remark 4.10. As we already mentioned, the S preorder is not well-defined, be-
cause trace equivalence with a given finite-state process f is not expressible in
modal logic (even monadic second order logic is (provably) not sufficiently power-
ful to express that a process can perform every trace over a given finite alphabet).
Nevertheless, in our context it suffices to express the condition of full trace equiv-
alence with f, which is achievable. So, full possible-futures equivalence with f is
expressed by the formula Θf,n2n ∧AG(

∨
f ′∈FΘf ′,n2n) where for every f′ ∈ F we

define Ξf ′ and Γf ′ to be the formula which expresses full trace equivalence with f′.
This “trick” can be used also for other trace-like equivalences where the associated
P is not well-defined.

23

5 Model checking lossy channel systems

In this section we show that the model checking of L(EXα,EF,EFτ,EUα)
formulae is decidable for lossy channel systems (LCS’s). This result was
inspired by [BM99] and can be seen as a natural extension of known results.

We refer to [AJ96, Sch02] for motivations and definitions on LCS’s. Here
we only need to know that a configuration σ of a LCS C is a pair 〈q,w〉 of a
control state q from some finite set Q and a finite word w ∈ Σ∗ describing
the current contents of the channel (for simplicity we assume a single chan-
nel). Here Σ = {a, b, . . .} is a finite alphabet of messages. The behavior of
C is given by a transition system TC where steps σ −→ σ′ describe how the
configuration can evolve. In the rest of this section, we assume a fixed LCS
C.

Saying that the system is lossy means that messages can be lost while
they are in the channel. This is formally captured by introducing an order-
ing between configurations: we write 〈q1, w1〉 ≤ 〈q2, w2〉 when q1 = q2

and w1 is a subword of w2 (i.e. one can obtain w1 by erasing some letters
in w2, possibly all letters, possibly none). Higman’s lemma states that ≤ is
a well-quasi-ordering (a wqo), i.e. it is well-founded and any set of incom-
parable configurations is finite.

Losing messages in a configuration σ yields some σ′ with σ ′ ≤ σ. The
crucial fact we shall use is that steps of LCS’s are closed under losses:

Lemma 5.1 (see [AJ96, Sch02]). If σ −→ σ′ is a step of TC, then for all configu-
rations θ ≥ σ and θ′ ≤ σ ′, θ −→ θ ′ is a step of TC too.

We are interested in sets of configurations denoted by some simple ex-
pressions. For a configuration σ we let ↑σ denote the upward-closure of σ,
i.e. the set {θ | σ ≤ θ}. A restricted set is denoted by an expression ρ of the
form ↑σ−↑θ1− · · ·−↑θn (for some configurations θ1, . . . , θn). This denotes
an upward-closure minus some restrictions (the ↑θi’s).

An expression ρ is trivial if it denotes the empty set. Clearly ↑σ − ↑θ1 −
· · · − ↑θn is trivial iff θi ≤ σ for some i. A constrained set is a finite union
of restricted sets, denoted by an expression γ of the form ρ1 ∨ · · · ∨ ρm.
Such an expression is reduced if no ρi is trivial. For a set S of configurations,
Pre(S) = {σ | ∃θ ∈ S, σ −→ θ} is the set of (immediate) predecessors of
configurations in S.

We now show that constrained sets are closed under Boolean opera-
tions, and that there exist effective algorithms reducing expressions like

24

γ1 ∧ γ2 or ¬γ to an equivalent reduced expression. Additionally, con-
strained sets are effectively closed under Pre. This makes them a suitable
representation for symbolic model checking.

Lemma 5.2. Constrained sets are closed under intersection. Furthermore, from
reduced expressions γ1 and γ2, one can compute a reduced expression for γ1∧γ2.

Proof. The intersection ↑〈q1, w1〉 ∧ ↑〈q2, w2〉 of two upward-closures is
empty when q1 6= q2. Otherwise it is computed by a simple enumeration.
For example

↑〈q, aba〉 ∧ ↑〈q, cab〉 = ↑〈q, caba〉 ∨ ↑〈q, abcab〉 ∨ ↑〈q, abcba〉.
The intersection of restricted sets follows easily. Assuming ↑σ ∧ ↑σ′ =↑σ1 ∨ . . .∨ ↑σl, one derives

(↑σ−↑θ1−. . .−↑θn)∧(↑σ ′−↑θn+1−. . .−↑θm) = l∨
i=1

↑σi−↑θ1−. . .−↑θm. (1)

This allows intersecting constrained sets: (
∨
i ρi) ∧ (

∨
j ρj) =

∨
i

∨
j(ρi ∧

ρj).

Lemma 5.3. Constrained sets are closed under complementation. Furthermore,
from a reduced expression γ, one can compute a reduced expression for ¬γ.

Proof. Complementation is easy for upward-closures:

¬↑〈q,w〉 = (↑〈q, ε〉 − ↑〈q,w〉) ∨ ∨
q ′ 6=q

↑〈q ′, ε〉.
This allows complementing restricted sets:

¬(↑σ− ↑θ1 − . . . − ↑θn) = ↑θ1 ∨ . . .∨ ↑θn ∨¬↑σ.
We use intersection (Lemma 5.2) for complementing constrained sets:

¬(ρ1 ∨ · · · ∨ ρm) = (¬ρ1)∧ · · · ∧ (¬ρm).

Lemma 5.4. Constrained sets are closed under immediate predecessors. Further-
more, from a reduced expression γ, one can compute a reduced expression for
Pre(γ).

25

Sketch. Since Pre(
∨
i ρi) =

∨
i Pre(ρi), it is enough to compute Pre(ρ) for

ρ a restricted set. Now, if ρ has the reduced form ↑σ − ↑θ1 − . . . − ↑θn,
then Pre(ρ) = Pre(↑σ) (by Fact 5.1). With the methods of [AJ96], one easily
produces a union of upward-closures for this set.

We can now compute the set of configurations that satisfy an EU for-
mula:

Lemma 5.5. Let S1 and S2 be two constrained sets. Then the set S of configura-
tions that satisfy S1 EU S2 is constrained too. Furthermore, from reduced expres-
sions for S1 and S2, one can compute a reduced expression for S.

Proof. We inductively define a sequence (Ui)i∈N0 of sets of configurations
with U0 = S2 and Ui+1 = Ui ∪ (S1 ∩ Pre(Ui)). Then S =

⋃
iUi.

By the previous Lemmas, everyUi is a constrained set and one can com-
pute, for each S1∩Pre(Ui), a reduced expression

∨
j ρi,j with ρi,j having the

form ↑σi,j − ↑θi,j,1 − . . . − ↑θi,j,k. The crucial point in our proof is that all
restrictions θi,j,k already occur in the expression for S1. Indeed, the algorithm
for Pre (Lemma 5.4) does not use restrictions, and the algorithm for inter-
section (see, Eq. (1) in Lemma5.2) only uses restrictions that were already
present.

Assume now that the sequence of Ui’s is strictly increasing. Then for
every i there is some ji s.t. ρi,ji is not included in Ui. Extract from the
sequence (ρi,ji)i an infinite subsequence where the restrictions are always
the same: this can be done since the restrictions come from a finite set. Now
the wqo property of ≤ entails that some ρi,ji in this sequence is included in
a previous ρi ′,ji ′ , contradicting the assumption that ρi,ji is not included in
Ui, a superset of Ui ′+1.

Hence the sequence of Ui’s eventually stabilize. Since it is possible to
compare Ui+1 with Ui when we compute it, stabilization can be detected.
At stabilization, we have computed a reduced expression for S.

By combining Lemmas 5.3, 5.4 and 5.5, we obtain the result we were aiming
at:

Corollary 5.6. Let ϕ be a modal formula in L(EX, EU). The set of configurations
that satisfy ϕ is a constrained set, and one can compute a reduced expression for
this set.

26

Theorem 5.7. The model checking problem for L(EXα,EF,EFτ,EUα) formulae
is decidable for lossy channel systems.

Proof. When C has labeled rules, it is easy to deal with modalities from
{EXα,EF,EFτ,EUα}. One simply disregards rules carrying a wrong label
for reducing EXα to EX, or EFτ to EF. For EUa we reduce ϕ1 EUaϕ2 to
ϕ1 EU(ϕ1 ∧ EXaϕ2).

6 Applications

A Note on Semantic Quotients. Let T = (S,−→,A) be a transition system,
g ∈ S, and ∼ a process equivalence. Let Reach(g) = {s ∈ S | g −→∗ s}. The
∼-quotient of g is the process [g] of the transition system (Reach(g)/∼,−→,A)
where [s] α−→ [t] iff there are s′, t ′ ∈ Reach(g) such that s ∼ s′, t ∼ t ′, and
s ′

α
−→ t ′.
For most (if not all) of the existing process equivalences we have that

s ∼ [s] for every process s (see [Kuč99, KE03]). In general, the class of
temporal properties preserved under ∼-quotients is larger than the class
of ∼-invariant properties [KE03]. Hence, ∼-quotients are rather robust de-
scriptions of the original systems. Some questions related to formal verifi-
cation can be answered by examining the properties of ∼-quotients, which
is particularly advantageous if the ∼-quotient is finite (so far, mainly the
bisimilarity-quotients have been used for this purpose). This raises two
natural problems:

(a) Given a process g and an equivalence ∼, is the ∼-quotient of g finite?

(b) Given a process g, an equivalence ∼, and a finite-state process f, is f
the ∼-quotient of g?

The question (a) is known as the strong regularity problem (see, e.g., [JKM00]
where it is shown that strong regularity wrt. simulation equivalence is de-
cidable for one-counter nets). For bisimulation-like equivalences, the ques-
tion (a) coincides with the standard regularity problem.

Using the results of previous sections, the problem (b) is reducible to
the model-checking problem with the logic L(EXα,EF,EFτ). Let F = (F,−→
,A) be a finite state system and ∼ an MTB or PQ equivalence. Further,
let us assume that the states of F are pairwise non-equivalent (this can be

27

effectively checked). Consider the formula

ρf ≡ ξf ∧
∧
f ′∈F

EF ξf ′ ∧
∧

f ′
α−→f ′′

(in F)

EF (ξf ′ ∧ EXα ξf ′′)∧
∧

f ′ 6
α−→f ′′

(in F)

AG (ξf ′ ⇒ AXα ¬ξf ′′)

where ξf is the formula expressing full ∼-equivalence with f. It is easy to
see that for every process g s.t. A(g) ⊆ A(f) we have that g |= ρf iff f is the
∼-quotient of g.

Observe that if the problem (b) above is decidable for a given class of
processes, then the problem (a) is semidecidable for this class. So, for all
those models where model-checking with the logic L(EXα,EF,EFτ) is de-
cidable we have that the positive subcase of the strong regularity problem is
semidecidable due to rather generic reasons, while establishing the semide-
cidability of the negative subcase is a model-specific part of the problem.

Results for concrete process classes. All of the so far presented results
are applicable to those process classes where model-checking the rele-
vant fragment of modal logic is decidable. In particular, model-checking
L(EXα,EF,EFτ) is decidable for

• pushdown processes. In fact, this problem is PSPACE-complete
[Wal00]. Moreover, the complexity of the model-checking algorithm
depends on the size of the circuit which represents a given formula
(rather than on the size of the formula itself) [Wal03];

• PA (and in fact also PAD) processes [May01, LS02]. The best known
complexity upper bound for this problem in non-elementary.

• lossy channel systems (see Section 5). Here the model-checking prob-
lem is of nonprimitive recursive complexity.

From this we immediately obtain that the problem of full MTB-
equivalence, where B is well-defined, is

• decidable in polynomial space for pushdown processes. For many
concrete MTB-equivalences, this bound is optimal (for example, all
bisimulation-like equivalences between pushdown processes and
finite-state processes are PSPACE-hard [May00]);

• decidable for PA and PAD processes;

28

• decidable for lossy channel systems. For most concrete MTB-
equivalences, the problem is of nonprimitive recursive complexity
(this can be easily derived using the results of [Sch02]).

Similar results hold for PQ-equivalences where P is well-defined (for push-
down processes we obtain EXPSPACE upper complexity bound). Finally,
the remarks about the problems (a),(b) of the previous paragraph also ap-
ply to the mentioned process classes.

References

[AČJT00] P.A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuen Tsay. Algo-
rithmic analysis of programs with well quasi-ordered domains.
Information and Computation, 160(1–2):109–127, 2000.

[AJ96] P. A. Abdulla and B. Jonsson. Verifying programs with unreli-
able channels. Information and Computation, 127(2):91–101, 1996.

[BBK93] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of
bisimulation equivalence for processes generating context-free
languages. Journal of the Association for Computing Machinery,
40(3):653–682, 1993.

[BCG88] M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing
finite Kripke structures in propositional temporal logic. Theoret-
ical Computer Science, 59(1–2):115–131, 1988.

[BCMS01] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on
infinite structures. In J.A. Bergstra, A. Ponse, and S.A. Smolka,
editors, Handbook of Process Algebra, pages 545–623. Elsevier,
2001.

[BM99] A. Bouajjani and R. Mayr. Model-checking lossy vector addi-
tion systems. In Proceedings of STACS’99, volume 1563 of Lecture
Notes in Computer Science, pages 323–333. Springer, 1999.

[Bou01] A. Bouajjani. Languages, rewriting systems, and verification
of infinite-state systems. In Proceedings of ICALP’2001, volume
2076 of Lecture Notes in Computer Science, pages 24–39. Springer,
2001.

29

[BvG87] J.C.M. Baeten and R.J. van Glabbeek. Another look at abstrac-
tion in process algebra. In Proceedings of ICALP’87, volume 267
of Lecture Notes in Computer Science, pages 84–94. Springer, 1987.

[dNV95] R. de Nicola and F. Vaandrager. Three logics for branching
bisimulation. Journal of the Association for Computing Machinery,
42(2):458–487, 1995.

[EN94] J. Esparza and M. Nielsen. Decidability issues for Petri nets
— a survey. Journal of Information Processing and Cybernetics,
30(3):143–160, 1994.

[FS01] A. Finkel and Ph. Schnoebelen. Well structured transition sys-
tems everywhere! Theoretical Computer Science, 256(1–2):63–92,
2001.

[HJ99] Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is de-
cidable for normed process algebra. In Proceedings of ICALP’99,
volume 1644 of Lecture Notes in Computer Science, pages 412–421.
Springer, 1999.

[HJM96a] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm
for deciding bisimilarity of normed context-free processes. The-
oretical Computer Science, 158(1–2):143–159, 1996.

[HJM96b] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm
for deciding bisimulation equivalence of normed basic parallel
processes. Mathematical Structures in Computer Science, 6(3):251–
259, 1996.

[Jan95] P. Jančar. Undecidability of bisimilarity for Petri nets and some
related problems. Theoretical Computer Science, 148(2):281–301,
1995.

[JKM00] P. Jančar, A. Kučera, and F. Moller. Simulation and bisimulation
over one-counter processes. In Proceedings of STACS’2000, vol-
ume 1770 of Lecture Notes in Computer Science, pages 334–345.
Springer, 2000.

[JKM01] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like
equivalences with finite-state processes. Theoretical Computer
Science, 258(1–2):409–433, 2001.

30

[KE03] A. Kučera and J. Esparza. A logical viewpoint on process-
algebraic quotients. Journal of Logic and Computation, 13(6):863–
880, 2003.

[KJ02] A. Kučera and P. Jančar. Equivalence-checking with infinite-
state systems: Techniques and results. In Proceedings of SOF-
SEM’2002, volume 2540 of Lecture Notes in Computer Science,
pages 41–73. Springer, 2002.

[KM02a] A. Kučera and R. Mayr. On the complexity of semantic equiva-
lences for pushdown automata and BPA. In Proceedings of MFCS
2002, volume 2420 of Lecture Notes in Computer Science, pages
433–445. Springer, 2002.

[KM02b] A. Kučera and R. Mayr. Simulation preorder over simple pro-
cess algebras. Information and Computation, 173(2):184–198, 2002.

[KM04] A. Kučera and R. Mayr. A generic framework for checking se-
mantic equivalences between pushdown automata and finite-
state automata. In Proceedings of IFIP TCS’2004. Kluwer, 2004.
To appear.

[Kuč99] A. Kučera. On finite representations of infinite-state behaviours.
Information Processing Letters, 70(1):23–30, 1999.

[LS02] D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-
processes. Theoretical Computer Science, 274(1–2):89–115, 2002.

[May00] R. Mayr. On the complexity of bisimulation problems for push-
down automata. In Proceedings of IFIP TCS’2000, volume 1872 of
Lecture Notes in Computer Science, pages 474–488. Springer, 2000.

[May01] R. Mayr. Decidability of model checking with the temporal logic
EF. Theoretical Computer Science, 256(1–2):31–62, 2001.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MO98] M. Müller-Olm. Derivation of characteristic formulae. Electronic
Notes in Theoretical Computer Science, 18, 1998.

[PS92] J. Parrow and P. Sjödin. Multiway synchronization verified with
coupled simulation. In Proceedings of CONCUR’92, volume 630

31

of Lecture Notes in Computer Science, pages 518–533. Springer,
1992.

[PS94] J. Parrow and P. Sjödin. The complete axiomatization of cs-
congruence. In Proceedings of STACS’94, volume 775 of Lecture
Notes in Computer Science, pages 557–568. Springer, 1994.

[Sch02] Ph. Schnoebelen. Verifying lossy channel systems has non-
primitive recursive complexity. Information Processing Letters,
83(5):251–261, 2002.

[Sén01] G. Sénizergues. L(A)=L(B)? Decidability results from complete
formal systems. Theoretical Computer Science, 251(1–2):1–166,
2001.

[SI94] B. Steffen and A. Ingólfsdóttir. Characteristic formulae for pro-
cesses with divergence. Information and Computation, 110(1):149–
163, 1994.

[Srb02] J. Srba. Roadmap of infinite results. EATCS Bulletin, 78:163–175,
2002.

[vG93] R.J. van Glabbeek. The linear time—branching time spectrum II:
The semantics of sequential systems with silent moves. In Pro-
ceedings of CONCUR’93, volume 715 of Lecture Notes in Computer
Science, pages 66–81. Springer, 1993.

[vGW96] R.J. van Glabbeek and W.P. Weijland. Branching time and ab-
straction in bisimulation semantics. Journal of the Association for
Computing Machinery, 43(3):555–600, 1996.

[VM01] M. Voorhoeve and S. Mauw. Impossible futures and determin-
ism. Information Processing Letters, 80(1):51–58, 2001.

[Wal00] I. Walukiewicz. Model checking CTL properties of pushdown
systems. In Proceedings of FST&TCS’2000, volume 1974 of Lec-
ture Notes in Computer Science, pages 127–138. Springer, 2000.

[Wal03] I. Walukiewicz. Private communication, September 2003.

32

Copyright c© 2004, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

