
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Object with Roles and VREcko system

by

Lubomír Markovič

FI MU Report Series FIMU-RS-2003-06

Copyright c© 2003, FI MU September 2003

Object with Roles and VREcko system

Lubomı́r Markovič

Abstract

A model based on objects with roles concept is presented. It provides both
theoretical and practical framework for construction of objects. In this model
the objects with roles can dynamically change the interfaces they support.
Some advantages of creating applications using this concept are discussed
on an example of a system of virtual reality.
Keywords: object model, role, dynamic applications, virtual reality

1 Motivation

Object oriented technology brings many advantages when used to design
systems with static structures. Requirement analysis methods are tailored
to capture the traditional ”is-a” and ”part-of” structures in class hierarchy
models and to derive the necessary associations for inter-object communi-
cation. The serious drawback of traditional techniques is the impossibility
to model the situations where an application has to reflect the dynamical
changes in object responsibilities and behavior.

The need to support dynamically changing objects can be found in many
application domains. Frequently mentioned example is an object represent-
ing a person, playing the different roles over the time (child, student, parent,
employee, . . .). Many others objects, e.g. documents, products passing pro-
duction processes, may also serve as the examples. We will discuss another
interesting domain here – virtual reality systems.

In [14] and [15] the flexible object model based on roles was proposed.
A slightly modified model extending expressiveness of mutual exclusiveness
between roles is presented in this report.

2 Existing Techniques

The advocacy of objects with roles is done in many papers ([8][18][16][2]
[14][21][12]. . .) Models dealing with evolving objects were published e.g. in
[6][4][7][11][17]. The main techniques (ideas) that stay behind these models
are shown in Figure 1.

1

Application

Application

Application

Application

Application

Application

Application

Application

Object A

Object B

Object B

Object A

Object A

Object B

Object A

Object A

Object B

Object Object

Method/

Attribute

Object

Object

Role B

Role A

Role A

Role B

Replacement

Wrapping

Prototypes

Objects with Roles

Figure 1: Existing Techniques

Replacement – The change of the behavior of an object in an application
is accomplished by replacement of the original object with another
one.

Wrapping – This technique is very similar to previous one. The main
difference is that the original object remains in the application to be
internally used by a new object (using delegation or consultation [11]).
The wrapping object needs to implement only the changes to wrapped
object.

In the case of replacement or wrapping the object’s interfaces are static,
they cannot be extended or modified later. The advantage of both techniques
is that if the type (interface) of a new object is the same as or a subtype of, a
type of a previous object, the object modifications can be done type-safely.
The disadvantage is that a new object, representing the same real entity, is
introduced in an application.

Prototypes – Objects formed with prototyped based OOP techniques [3]
[20] [22] are not restricted by any static interface. Every object can
have its own interface that can be changed dynamically. New methods
or attributes can be added to any prototyped object directly. The
disadvantage of these techniques is their problematic type control, as
the objects can change their interfaces unpredictably.

2

Objects with Roles – Objects consist of ”smaller objects” called role in-
stances (or just roles). Object interface is changed dynamically by
adding new, or removing existing roles.

The definition of the role appropriate for our model is taken from [13]:

A role of an object is a set of properties which are important
for an object to be able to behave in a certain way expected
by a set of other objects.

3 Previous Work – Objects with Roles

In this section we will give an overview of previous work dealing with objects
with roles. In some works the roles are called differently (aspects, views,
subjects . . .) but semantically they describe the same idea and try to solve
the same problems.

Aspects

This article [18] from Richardson and Schwarz propose a strongly-typed
model based on interfaces (types) and implementations. The Melampus
Data Model enabling dynamic acquisition of new interfaces is presented.
Objects may have multiple aspects (in the sense of roles) which has still the
same OID of the whole object. There is no restriction on aspect acquisition.
An object can be manipulated only through one of its aspects. There is strict
separation between interfaces and implementations. No inheritance relation
between interfaces is supported, the structural subtyping (conformity) is
used instead thus an aspect extending an object must explicitly duplicate
the object’s interface in its definition. An object can’t support one aspect
more than once in this approach.

Fibonacci

Albano et al. have defined [2] a strongly typed object-oriented database
programming language called Fibonaci. An object has only an identity and
contains an acyclic graph of roles. An object is not manipulated directly,
but always through one of its roles (messages are sent to roles). Objects can
change their set of roles without affecting their identity. There is strict sep-
aration between interfaces (role types) and implementations (roles). There
exist two orthogonal type hierarchies, an object type hierarchy and a role
type hierarchy. A role type can extend an object type. A role type hierar-
chy may be dynamically extended by defining a new role type as subtype
of one or several existing role types. Multiple roles are not supported. The
importance of mutually exclusive roles is advocated on the example of a
person that can’t be employed and unemployed at the same time.

3

Objects with Roles

Pernici described an formal model of objects with roles [16]. The advocacy
and semantics of base role, suspension of roles and the need for some con-
strains of objects extensions by roles is provided. Multiple roles (as defined
in previous sections) are not supported.

Extending Object-Oriented Systems with Roles

In [8] a model of objects with roles based on classical class-based system
(SmallTalk here) is described. Two orthogonal hierarchies are considered –
classes and roles. Both can be organized in inheritance relation and objects
(instances of classes) can be dynamically extended by instances of roles
(that can be extended by another instances of roles as well). Extension is
limited by “roleOf” relation. Objects are manipulated through one of its
role instance or object itself (it’s a base roles in fact). Advocacy of multiple
roles (called ,,qualified roles” here) is provided.

Delegation

Very detailed description of delegation technique is done in [11]. In [10]
is provided a comparison of delegation and some techniques of objects with
roles. Support for multiple roles is depicted as useless because it can be sim-
ulated by association between more objects. But the purpose of technique
of objects with roles is mainly to eliminate associations between objects de-
scribing the same entity. Delegation in general has a serious problems with
support of type control.

4

4 Formal Model of Objects with Roles

In the following sections we introduce the new model of objects with roles.
It’s features: the support of replacement and wrapping techniques on the
level of role instances, support of dependency and of role exclusion, are
described.

4.1 Basic Terms

We need to establish a basic terminology more precisely at first.
Role is a type determining interface. In many papers it’s called role type.
Role Class is a concrete class that implements some role, it’s obvious

that there can be many different role classes implementing the same role. A
role class can implement only one role, but this role can inherit from many
other roles.

Role Instance is an instance of some role class.
Let R be a set of all roles meaningful in application context.
Let C be a set of all role classes defined in application context.
Let CR be a set of all role classes implementing R ∈ R as the most

specific role.

C =
⋃
R∈R

CR

Similarly RI denotes the set of all role instances.
The instance RI ∈ RI supporting R ∈ R as the most specific role is

denoted as RI :!R.
The instance RI :!R of the role class C ∈ CR is denoted as RI !C.
Objects are distinguishable by their unique global identifier OID (in

some implementations their memory address can be used for this purpose).
The role instances are distinguishable by their unique global identifier

GID (in some implementations their memory address can be used for this
purpose).

The role instances are distinguishable in an object (page 8) by their
object–unique role instance’s identifier RID. Role instance that is included
in some object has set their RID property and also has set its property called
OID which refers back to the object. If a role instance is not included in
any object than its RID has a value NoRID and a value of OID is null.

Role instance RI ∈ RI is said to be bounded, if it is included in an
object.

The set of all bounded role instances is RIBound (RIBound ⊆ RI).
With respect to role types [14] the set of all roles R splits in two disjoint

subsets RS and RM. Roles from the set RS are s-roles (single roles), roles
from the set RM are m-roles (multiple roles).

RS ∪RM = R

5

RS ∩RM = ∅

Every object includes at most one instance of some s-role (exception to
this rule is described in 4.6.1) and zero-to-many instances of any m-role.

4.2 Inheritance Relation

(Multiple) Inheritance Relation ≤ is defined as relation ≤ ⊆ R ×R that is
reflexive, antisymmetric, transitive and meets condition
(I1) (R1 ≤ R2) ∧ (R2 ∈ RS) =⇒ (R1 ∈ RS)
R1 ≤ R2 means that role R1 is a descendant of role R2, and vice versa R2

is the ancestor of R1.
The condition (C1) states that a child of s-role must be also an s-role.

The next condition can restrict the model to single inheritance only. But
we will consider multiple inheritance in the following. If single inheritance
would be consider, nothing needs to change but some expressions could be
more simple.

Single Inheritance Relation ≤ is defined as inheritance relation which
meets the condition
(I2) (R1 ≤ R2) =⇒ @R3 : (R1 ≤ R3) ∧ (R2 6≤ R3) ∧ (R3 6≤ R2)

This rule expresses that any role can have at most one parent.
The inheritance relation defines an oriented acyclic graph usually orga-

nized as a tree.

Let’s define some abbreviations that helps to simplify next expressions.
? (RI :: R) abbreviates ∃(R1 ∈ R) : (RI :!R1) ∧ (R1 ≤ R)
? R1 < R2 abbreviates (R1 ≤ R2) ∧ (R1 6= R2)
? R1 <! R2 abbreviates (R1 < R2) ∧ @R3(R3 < R2) ∧ (R1 < R3)
? Function SubRoles(R ∈ R) : 2R returns all R1 : (R ≤ R1) (all sub-roles

of role R).

4.3 Dependency Relation of Roles

Relation ↪→⊆ R × R, that meets (D1-D5) is dependency relation of roles.
R1 ↪→ R2 means that role R1 depends on role R2 (or RI1 is a role of RI2
e.g.[8]).

↪→∗ is a transitive closure.

(D1) (R1 ≤ R2) =⇒ (R1 ↪→ R2)
Roles depend on self and their ancestors. The rule is called wrapping rule .
(D2) (R1 ≤ R2) ∧ (R2 ↪→ R3) =⇒ (R1 ↪→ R3)
If an ancestor of a role R1 depends on another role, then R1 depends on it
too. Dependency is hereditary.
(D3) (R1 ↪→ R2) =⇒ (R2 6< R1)
Roles cannot depend on their children.
(D4) (R1 ↪→∗ R2) ∧ (R3 ≤ R2) ∧ (R1 6≤ R2) ∧ (R3 6≤ R1) =⇒ (R3 6↪→∗ R1)

6

Role cannot depend on roles that depend on it’s ancestors (cyclic dependency
is not allowed).

Relation ↪→ defines an oriented acyclic graph on the set of roles R which
is in some sense orthogonal to inheritance relation.

4.4 Relation of Mutually Exclusiveness

Semantics of some roles forces them to be mutually exclusive. It means
there can’t be role instances of both of them in one object. Let’s consider
role hierarchy of roles of “Man” and “Woman”. There is an s-role Person
and its two children: Man and Woman. From a semantics of an s-role it
follows that Man and Woman are mutually exclusive since both are Persons
which is an s-role. This mutually exclusiveness is implied by their common
s-role’s ancestor.

Not every mutually exclusiveness can be expressed in the way of semantic
of s-roles. Example of such a situation can be described on the example of the
roles “Businessman” and “Politician”. No politician can be a businessman
usually. One person can be a politician or businessman more than once
(this roles are multiple) so there is not any their common single ancestor
(we don’t need to define any their common ancestor in fact). But we need
to express their mutually exclusiveness somehow, so we will define relation
of mutually exclusiveness

	 ⊆ R×R

	 relation must meet next conditions:

(M1) R1 	 R2 =⇒ R2 	 R1

Relation is symmetric.
(M2) (R1 < R2) ∧ (R3 < R2) ∧ (R2 ∈ RS) ∧ (R1 6≤ R3) ∧ (R3 6≤ R1) =⇒
R1 	R3

Mutual exclusiveness implied by semantics of s-roles is implicitly in-
cluded.
(M3) R1 ≤ R2 =⇒ R1 6	R2

No role can be mutually exclusive with its ancestor.
(M4) (R1 	R2) ∧ (R3 ≤ R1) =⇒ R3 	R2

Mutually exclusiveness is hereditary.
(M5)

(R1 ↪→∗ R2) ∧ (R3 ↪→∗ R4) ∧ (R2 	 R4) =⇒ R1 	R3

Roles depending on mutually exclusive roles are mutually exlusive as
well. No role may depend on mutually exclusive roles at the same time.
Some examples of situations where this rule is violated are shown in the
figure 2. In all examples it’s not possible to add role R1 into the existing
hierarchy.

7

Figure 2: Examples of wrong roles’ hierarchy

4.5 Object with roles

An object encapsulates the nonempty list of role instances it includes, con-
taining its base role instance at least. Object has proper interface and func-
tionality to maintain the dependency relations between its role instances.

The role R is a base role (b-role) iff @(R1 ∈ R) : (R ↪→ R1) ∧ (R 6≤ R1).
The base role is every role that does not depend on any other role but

on its children.
RB ⊆ R is the set of all b-roles.
Object with roles o is defined as a tuple

o = (OID,RIB, G)

where
– OID is a global unique object identifier
– G = (V,E) is oriented acyclic graph of dependencies between role instances
in object
– V ⊆ RI is a set of graph nodes, each node for one role instance included
in an object
– E ⊆ RI ×RI is a set of oriented edges storing the dependency relations.
Dependency relation of role instances is described on page 10. – RIB ∈ o.V
is the base role instance of an object

O is a set of all objects with roles.
o!R means that an object o ∈ O supports a role R.

o!R⇐⇒ ∃RI ∈ o.V : (RI :: R)

In the following text the next set elements are used:
RI,RI? ∈ RI ; R,R? ∈ R; o ∈ O

8

4.6 Wrapping Rule and Replacement

4.6.1 Wrapping Rule

The most significant change against the model described in [14] is the rule
(D1) named as wrapping rule. This rule says that roles always depends on
self and all its ancestors.

Wrapping rule allows to substitute role instance supporting role R1 by
another one supporting role R2 ≤ R1, in such a way that original role
instance remains in object to be internally used by wrapping role instance
in performing its tasks.

The intended semantics of a wrapping rule is that a role instance that
wraps another one takes over a task of a wrapped role. Especially wrap-
ping role instance takes over the RID of the wrapped role instance (it has
assigned another one consecutively).

As it makes no sense to wrap any role instance more than once, this
possibility is forbidden by rules ((DI2),(DI3) on page 10). However, the
wrapping role instance can be wrapped again, so we may get linear graph
of wrapping role instances.

Every role instance has an attribute called acceptedWrappedRole. When
role instance is not intended to wrap any role, this attribute has a value
null, but if a role instance is intended to wrap some role, than this attribute
determines this role. For example, if for some role instance
RI.acceptedWrappedRole = R then RI can wrap any role instance (RI1 ::
R) : Role(RI) ≤ Role(RI1).

Let’s define a set of all role instances that are intended to wrap another
role instance:

RIW = {RI ∈ RI : RI.acceptedWrappedRole 6= null}

RIW ⊂ RI

4.6.2 Replacement

Wrapping is useful when implementation of wrapping role instance does not
differ from wrapped role instance very much. If we want to change the
behavior of a role more radically it is better to replace the original role
instance by another one. Replacement technique allows to take some role
instances out of the object and put another role instance to their place. The
new role instance has the same RID as replaced one. Wrapped role instance
cannot be replaced. The replacing role instance must be of the same role or
a sub-role of the role of the replaced role instance.

We can simulate this replacement RI1 with RI2 by removing RI1 from
an object an putting RI2. But with removing RI1 all role instances that

9

(recursively) depends on RI1 must be removed too so we must put them
again into the object after RI2 was added. The operation of replacement
simplify this process and assures that all dependencies to an from RI1 will
be correctly remapped to RI2.

A simplified schema of an object is shown in figure 3. A base role instance
is shaded. Wrapped role instances are not accessible from outside of the
object, they are hidden inside their wrapping roles. Dependencies between
role instances are marked by dashed arrows.

0

0

5

5

4

4

1

2

3

3

0

2

1

OID

RID

GID

Person

Student

Postgraduate

Location

Access to Refectory

Access to Hall

of Residence

Figure 3: Simplified schema of an object

4.7 Dependency Relation of Role Instances of an Object

Relation ↪→⊆ RI × RI , that meets conditions (RI1-RI7) is dependency
relation of role instances. RI1 ↪→ R2 means that role instance RI1 depends
on role instance RI2. The relation is defined only between role instances
that are in the same object and this relation is reflected by the objects’
graph o.G.

(RI1, RI2) ∈ o.E ⇐⇒ (RI1 ↪→ RI2).
↪→∗ is a transitive closure of this relation.
The dependency relation of roles determines many properties of the rela-

tion between instances of roles. The dependency relation of role instances is
defined in a such way, that it emulates the relation of roles (rules (D1),(D5)),
but restricts dependency between role instances using the wrapping rule and
adds some other restricting rules.

We use the same symbol for dependency between role instances as for
dependency between roles. Since both relations are defined on different sets,
it will not cause a misunderstanding.

Some ancillary functions and abbreviations1 are defined in the following
list (all role instances are considered to be included in an object o):

1some abbreviations have changed against [15], especially
C
↪→ and

!
↪→ changed their

meaning. The reason for this solution is better readability of the text.

10

? Expression RI1 6↪→ RI2 abbreviates (RI1, RI2) 6∈ o.E.
? Function Role(RI) : R returns role R : (RI :!R).

? Expression R1
C
↪→ R2 abbreviates (R1 ↪→ R2) ∧ (R1 6≤ R2), we say that

R1 cleanly depends on R2 or R1 depends on R2 not using wrapping rule.

? Expression RI1
C
↪→ RI2 abbreviates (RI1 ↪→ RI2) ∧ (Role(RI1)

C
↪→

Role(RI2)), we say that RI1 cleanly depends on RI2 or RI1 depends
on RI2 not using wrapping rule.

? Condition RI1
!
↪→ RI2 abbreviates ∃(R ∈ SubRoles(Role(RI2))) :

(Role(RI1) ↪→ R), with semantics RI1 can depend on RI2.

? Expression RI1
W
↪→ RI2 abbreviates (RI1 ↪→ RI2) ∧ (Role(RI1) ≤

Role(RI2)), we say that RI1 wraps RI2 or that RI1 depends on RI2

using wrapping rule.

RI1
W
↪→
∗

RI2 is a transitive closure.

? Expression RI1
!W
↪→ RI2 abbreviates (Role(RI1) ≤ Role(RI2)) ∧

(Role(RI2) ≤ RI1.acceptedWrappedRole), we say that RI1 can wrap
RI2.

? Set o.Wrapped = {RI ∈ o.V : ∃RI2 ∈ o.V : RI2
W
↪→ RI} is a set of all

role instances in o that are wrapped.

? Set o.NonWrapped = {RI ∈ o.V : @RI2 ∈ o.V : RI2
W
↪→ RI} is a set

of all role instances in o that are not wrapped. — o.NonWrapped ∪
o.Wrapped = o.V

? Condition RI1
!C
↪→ RI2 abbreviates (RI1

!
↪→ RI2) ∧ (RI1 6≤ RI2), with

semantics RI1 can cleanly depend on RI2 (not using wrapping rule).

? Function GenerateUID() : GUID returns global unique identificator.
This function is used for generating new unique OID for objects and
GID for role instances.

? Function o.GenerateRID() : RID as a method of an object o that
returns unique role instance identificator. This function is used for gen-
erating new unique RID for role instances. No two roles has the same
RID during the o’s lifetime.

Dependencies between role instances in one object must meet next con-
ditions:

(DI1) (RI1 ↪→ RI2) =⇒ (RI1
!
↪→ RI2)

When a role instance RI1 depends on another role instance RI2, than the
role of RI1 must depend on some sub-role of RI2.

This rule determines that all dependencies between role instances in an
object are prescribed by a dependency relation between their roles.

(DI2) (RI1
W
↪→ RI2) =⇒ @RI3 : (RI1 6= RI3) ∧ (RI3 ↪→ RI2)

Every role instance can be wrapped by only one another role instance, and
if it is wrapped nothing can depend on it.

11

(DI3) (RI1
W
↪→ RI2) =⇒ @RI3 : (RI2 6= RI3) ∧ (RI1

W
↪→ RI3)

Every role instance can wrap at most one another role instance. This rule
together with (C10) says, that dependencies between role instances based
on wrapping rules can create only linear graphs.

(DI4) (R1
C
↪→ R2) ∧ ∃(RI1 :!R1) =⇒ ∃(RI2 :: R2) : (RI1 ↪→ RI2)

From dependency between roles R1
C
↪→ R2 it follows that every instance

RI1 :!R1 depends on at least one instance RI2 :: R2 in the same object.
(DI5) RI1, RI2 ∈ o.V =⇒ Role(RI1) 6	Role(RI2)

There can’t be mutually exclusive roles in an object.

(DI6) (R ∈ RS) ∧ ∃(RI1 :!R) =⇒ ∀(RI2 :: R) : (RI1 = RI2) ∨ (RI1
W
↪→
∗

RI2) ∨ (RI2
W
↪→
∗

RI1)
There can be only one instance of one single role in an object (except in-
stances of the same single role that wrap themselves).

(DI7) (RI1 ↪→∗ RI2) =⇒ (RI2 6↪→∗ RI1)
No dependency cycles are allowed.

4.8 Consistent object

Object o ∈ O is said consistent if it matches next conditions:

• | o.V |≥ 1
an object has at least one role instance — base role instance (RIB)
• (RI ∈ o.V) =⇒ @(o2 ∈ O) : (o 6= o2) ∧ (RI ∈ o2.V)
role instance can be included at most in one object (this is assured also by the
next rules)

• @(RI ∈ o.V) : (o.RIB
C
↪→ RI)

base role instance can’t depend on any other role instances (it’s an instance
of a base role)

auxiliary information (that helps to improve implementation of some algo-
rithms ??ref??)must be in consistent state:
• ∀RI ∈ RI : (RI.RID 6= NoRID)⇐⇒ (RI.OID 6= null)
• ∀RI ∈ RI : RI ∈ RIBound⇐⇒ RI.RID 6= NoRID

• ∀RI ∈ o.V : (RI.acceptedWrappedRole = null) ∨ ∃RI1 ∈ o.V : (RI
W
↪→

RI1) ∧ (Role(RI1) ≤ RI.acceptedWrappedRole)
• for all role instances of an object and dependencies between them are

valid rules (DI1) – (DI7)

12

5 VREcko System

V REcko is a system of virtual environment being developed in HCI (Human–
Computer Interaction) Laboratory at Faculty of Informatics at Masaryk
University. The purpose of this system is to verify applicability of the model
of objects with roles on one side and to provide robust environment for re-
search in the area of human–computer interactions on the second side. We
will focus on dynamic features that are provided by using an implementation
of objects with roles model in this report.

The whole VREcko is written in C++ language. The first implemen-
tation of objects with roles model was written in the Java language that
has better environment for writing things like that, especially thanks to the
reflection API. But because many libraries used in VREcko are written in
C++ or C language and because Java has serious performance problems in
the area of VRE systems, the whole implementation of objects with role
model was rewritten into C++.

5.1 Dynamic Aspects of VREcko

A screenshot in figure 4 gives a basic overview of VREcko’s user interface.
It’s a 3D scene that contains objects that can interact each other and can be
also manipulated using external input devices as a pinch gloves, Phantom,
keyboard, . . .

Figure 4: Screenshot

Each “environment object” (in a sense of “visual”) in the scene is im-
plemented by one object with roles. The whole scene – it’s a container of
all environment objects – is realized also as an object with roles. It enables

13

to dynamically change behavior and state structure of both environment
objects and the whole scene.

Typical scenarios of dynamic behaviour follows:

• role instance connecting an environment object with some input device
(keyboard, pinch gloves, . . .) can be added to an object. As a result
some attributes (typically the position) can be modified by this device.
The role instance can be removed again of course.

• role instance extending capabilities of scene can be added to the scene
object. For example role instance generating clock ticks, role instance
implementing physical behaviour of the scene, . . .

• role instances connecting to the new role instances of the scene object
can be added to the particular environment objects. For example role
instances reacting to the clock ticks, role instances defining physical
properties of the environment object (weight,. . .), . . .

• role instances reacting on interaction between environment objects.
For example a role instance playing some sound when something “tou-
ches” its environment object.

• non-properly working role instance can be replaced/wrapped to repair
the broken behavior without the need to stop the application and
without the need to build the internal structure of role instances in
the object from the beginning.

Object with roles approach has some significant advantages over tradi-
tional ones. All properties (roles) of environment objects an the scene are
handled in one place describing different features/roles/points of view/aspects
of the whole entity they describe. In traditional approaches some more com-
plicated framework should be established to provide the same functionality.
All dynamic features of individual environment objects as well as of the
whole scene should be collected somewhere to work with them but all the
associations between them are on the object level and most likely without
any control of type consistency. This more free organization should also com-
plicate implementation of features like replacing and wrapping as described
in objects with roles model.

6 Conclusion and Future Work

An objects with roles model was presented and an example of an application
where it’s suitable to use such a model was described. The VREcko system
is already partially implemented at present. Since the implementation of
objects with roles model in C++ wasn’t already prepared in the time of
starting the VREcko project, there are two versions of VREcko now. The

14

first uses ideas of object with roles model but it doesn’t use it already this
version is being developed by Jan Flasar at HCI Laboratory. The second
one uses it but has less features mainly in the sense of supporting external
input devices for now.

The future plans are directed to merge this two projects into one and to
support more input devices and features. One of the most required features
to be implemented is support for distributed environment where some input
devices installed in one computer in the net could be adopted by a VREcko
system running on different computer in the net. All input devices have to
be installed in the same computer as a VREcko system is for now.

7 Acknowledgements

I acknowledge the help that Jan Flasar gives me in introducing problems of
VRE systems in general and particularly in discovering features of concrete
graphical libraries included in VREcko system.

15

References

[1] Abadi, M., Cardeli L.: A Theory of Objects. Springer-Verlag, New York 1996.

[2] Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An Object Data Model
with Roles. In Proceedings of the International Conference on Very Large
Data Bases, pp. 39–51, 1993

[3] Blashek, G.: Object Oriented Programming with Prototypes. Springer-Verlag,
1994

[4] Bardou, D., Dony, Ch.: Split Objects: a Discipline Use of Delegation within
Objects, OOPSLA’96, in ACM– SIGPLAN Notices Vol. 31, pp. 122-137, 1996

[5] Booch, G.: Object Oriented Analysis and Design with Applications. 2nd Ed.,
Benjamin Cummings, Redwood City, CA, 1994

[6] Büchi, M., Weck, W.: Generic Wrappers, ECOOP 2000, LNCS 1850, pp.
201–225

[7] Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: MultiJava: Modular
Open Classes and Symmetric Multiple Dispatch for Java, OOPSLA 2000,
Minneapolis

[8] Gottlob, G., Schrefl, M., Röck B.: Extending Object-Oriented Systems with
Roles. ACM Transactions on Information Systems, Vol. 14, No. 3, pp. 268–296,
1996

[9] Hjálmtýsson, G., Gray, R.: Dynamic C++ Classes A Lightweight mechanism
to update code in a running program, USENIX, Annual Technical Conference,
1998

[10] Kniesel, G.: Object do not migrate! Perspectives on Objects with Roles.
Report IAI–TR–96–11. Universität Bonn, Institut für Informatik III, April
1996

[11] Kniesel, G.: Dynamic Object–Based Inheritance with Subtyping. Dissertation
work. Universität Bonn, Institut für Informatik III, 2000

[12] Kristensen, B.,B.: Object–Oriented Modeling with Roles. Proceedings of
the 2nd International Conference on Object–Oriented Information Systems
(OOIS’95), Dublin, Ireland, 1995

[13] Kristensen, B.,B., Österbye, K.: Roles: Conceptual Abstraction Theory &
Practical Language Issues. Special Issue of Theory and Practise of Object
Systems (TAPOS) on Subjectivity in Object–Oriented Systems, 1996

[14] Markovic̆, L., Sochor, J.: Objects with Changeable Roles. International Sym-
posium on Distributed Objects and Applications — Short Papers, Rome, 2001

[15] Markovic̆, L., Sochor, J.: Object Model Unifying Wrapping, Replacement and
Roled-Objects Techniques. In: Workshop #09 - Unanticipated Software Evo-
lution (USE), 16th European Conference on Object-Oriented Programming
(ECOOP 2002) University of Málaga, Spain, June 2002

16

[16] Pernici, B.: Objects with Roles. ACM. pp. 205–215, 1990

[17] Plás̆il, F., Bálek, D., Janec̆ek, R.: SOFA/DCUP: Architecture for Component
Trading and Dynamic Updating, Proceedings of ICCDS’98, Annapolis, 1998

[18] Richardson, J., Schwarz P.: Aspects: Extending Objects to Support Multiple,
Independent Roles. ACM. pp. 298–307, 1991

[19] Siegel, J. et al.: CORBA Fundamentals and Programming. John Willey &
Sons, 1996

[20] Ungar, D., Smith, R.: Self: The Power of Simplicity. Proc. of OOPSLA’87,
ACM Sigplan Notices, 1987

[21] Wieringa, R., de Jonge, W., Spruit, P.: Roles and dynamic subclasses: a modal
logic approach. In ECOOP 94 Proceedings, Springer–Verlag, LNCS 821, 1994

[22] http://research.sun.com/research/self

[23] http://www.omg.org

[24] http://www.fi.muni.cz/∼markovic/USE02.html

17

Copyright c© 2003, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

