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Abstract: We consider the problem of constructing binary space parti-
tions for the set P of d-dimensional objects in d-dimensional space. There are
several classes of objects defined for such settings, which support design of
effective algorithms. We extend the existing the de Berg hierarchy of classes
[8] by the definition of new classes derived from that one and we show desir-
ability of such an extension. Moreover we propose a new algorithm, which
works on generalized λ-low density scenes [20] (defined in this paper) and
provides BSP tree of linear size. The tree can be constructed in O(n log2 n)
time and space, where n is the number of objects. Moreover, we can trade-off
between size and balance of the BSP tree fairly simply.

keywords: BSP, tree, partitioning, object, class, hierarchy

1 Introduction

In the past, much attention has been dedicated to the development of
algorithms, whose goal is to construct the smallest possible BSP trees. Ini-
tially, several heuristic methods were developed (for example [2, 9, 15, 16]),
which however could create a tree of excessive size under unfavourable cir-
cumstances (Ω(n2) on the plane and Ω(n3) in R3 space). The first provable
bounds were obtained by Paterson and Yao [13, 12]. They showed [13] that
the optimal size of BSP in the worst case is Θ(n2) in R3 space and O(n logn)
on a plane. The next result from these authors [12] was optimal sized BSP

1Support was provided by the grants GACR 201/98/K041, Grant Agency of Czech
Republic and MSM 143300004, Ministry of Education, Czech Republic.
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algorithm for the set of orthogonal objects with Θ(n3/2) in R3 space in the
worst case and Θ(n) on a plane in the worst case.

It was observed that many practical scenes behave reasonably and enable
effective processing. Several attempts to specify object sets of such scenes
have been made to this time. Recently, de Berg et al. [7] have investigated
the common properties of the realistic scenes where effective algorithms can
be used. A hierarchy of the known object classes (see Figure 1) has been
composed and matched by them with realistic input models. This could
simplify the design of algorithms, which are provably efficient.

SCC

Low-density

Fat Dispersion

Clutteredness

Guarding scenes

Figure 1: de Berg Hierarchy of object models.

Although the de Berg hierarchy includes a large number of scenes, there
still remains a large spectrum of simple and potentially practical scenes,
which do not match it. We will outline a few particular examples of such
scenes and then we will try to emphasize their significant common features.

A picket fence includes many long and thin pickets standing in a line.
This scene does not fit within the de Berg hierarchy because the pickets
are located tightly one after another. Similar results can be obtained if we
consider a shoal of long and thin fishes, radiator ribs, suits in a wardrobe,
books in a library, a cluster of fluorescent lamps, or a thick forest.

It seems that the real world scenes frequently contain groups of similar
objects, which usually appear in (isolated) clusters and these objects usually
differ only in their position (and possibly in scale ratio). Moreover, it is very
probable that the described similarity holds for many objects, which lie near
to each other. The correctness of this presupposition has been shown by
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results of practical implementation. We are going to describe the practical
results exactly in the forthcoming paper.

Although the picket fence does not form a set of fat objects, we can trans-
form it to the set of fat objects by simple linear scale transformation. Figure
2 shows an example of such transformation. The picket fence is substituted
by a set A of long and thin rectangles. The linear scale transformation along
y-axis transforms the set A to the set B of squares (i.e. fat objects).

A B

Set of fat objects
after transformation

T
ransform

ation

Figure 2: The set A of long thin rectangles is transformed by linear scale
transformation onto the set B of squares.

In the following considerations, we come out from the proposed idea of
linear transformation. We extend some object classes of the existing de Berg
hierarchy by the inclusion of linear transformation.

This paper is organized as follows: In Section 2, we give some necessary
definitions needed in the rest of the paper. Section 3 presents the BSP con-
struction method and description of the algorithm. The proofs of algorithm
effectivity follows. Section 4 includes concluding remarks.

We have to note that we are going to propose a new paper which will
be devoted to practical comparison of the method proposed here and the de
Berg algorithm [7].
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2 Preliminary

In the following sections, we will use some definitions and denotations
introduced here. We start with description of neighborhoods, then we explore
the de Berg hierarchy of object classes and we conclude with a useful tool –
the Cutting Lemma.

Denotation 2.1: Let p be an object in Rd. The volume of p is denoted
vol(p). The bounding box of p (further bb(p)) is the smallest axis-aligned box
that completely contains p. The bounding hypersphere of p (further meb(p))
denotes the minimal enclosing ball of p and %meb(p) denotes the radius of
the minimal enclosing ball. The bounding hypercube of p (further mec(p))
denotes the minimal enclosing hypercube of p and %mec(p) denotes the side
length of the minimal enclosing hypercube.

Now, we define the neighborhood of axis aligned hyperrectangles in d-
dimensional space. We define the neighborhood of any d-dimensional hyper-
rectangle as a union of 2d neighborhood parts. Each such part is represented
by a d-dimensional blunted pyramid. Moreover, we use an array of d func-
tions f = 〈f1, ..., fd〉 to parameterize height of blunted pyramids for any
direction. δ is the parameter used in the functions fi ∈ f .

Definition (Rectangle neighborhood) 2.2: Let r be a hyperrectangle
in Rd with edge vectors ~e1, ..., ~ed. W.l.o.g. we can suppose that ~ei ‖ i-axis,
otherwise we can select an appropriate relative coordinate system. A two
dimensional example is depicted in Figure 3. A point C is the center of the
hyperrectangle r. Then (δ, f, e

{1,−1}
i , r)-neighborhood of hyperrectangle r, we

will mark it Ω(δ, f, e
{1,−1}
i , r), it is a union of set of points defined as follows:

• Ω(δ, f, e1
i , r) =

⋃
ci,cj

(C +
∑d;j 6=i

j=1 (±cj~ej) + ci~ei)

• Ω(δ, f, e−1
i , r) =

⋃
ci,cj

(C +
∑d;j 6=i

j=1 (±cj~ej)− ci~ei)

where ci ∈ 〈12 , ...,
1
2

+ fi〉, cj ∈ 〈0, ..., fj〉. fk = fk(δ, r) is non-negative
above unlimited function increasing with δ and f = 〈f1, ..., fd〉. The (δ, f, r)-
neighborhood of hyperrectangle r (we will mark it Ω(δ, f, r)) is a union

Ω(δ, f, r)) =
d⋃
i=1

Ω(δ, f, e
{1,−1}
i , r)
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.

r
C

of the rectangle r of the rectangle r

of the rectangle r of the rectangle r

~e2

~e1

(δ, f, e−1
1 , r) - directional neighborhood (δ, f, e1

2, r) - directional neighborhood

(δ, f, e−1
2 , r) - directional neighborhood (δ, f, e1

1, r) - directional neighborhood

Figure 3: The neighborhood of the rectangle r formed by four blunted cones.

The proposed definition is general and a little bit complicated. Hence, we
select two special cases, which are necessary for the remaining chapters – the
simple neighborhood and the extended neighborhood. You can see an example
in Figure 4.

Definition (Simple/Extended neighborhood) 2.3:

1. If fi = δ; i ∈ 〈1, ..., d〉, then we call the neighborhood Ω(δ, f, r) simple
neighborhood and sign it Ωs(δ, r).

2. Let i be the coordinate with maximal edge length |~ei|. If fi =
|~ej |
|~ei|

(1+2δ)

i ∈ 〈1, ..., d〉, then we call the neighborhood Ω(δ, f, r) as an extended
neighborhood and sign it Ωe(δ, r).

We have already mentioned the de Berg hierarchy of object classes. Our
new results are based on this hierarchy and hence we give a bit more detailed
description of some its basic classes here.
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δ = 1/2

r

~e1

~e2

b

r
a

~e1

~e2

a = b = |~e1|(1 + 2δ) = 2|~e1|

Figure 4: Simple and Extended hyperrectangle neighborhood.

The discrepancy between high worst-case running time of many algo-
rithms and their good practical performance led to study scenes with special
properties. The definition of fatness was one of the first attempts to deter-
mine sets of objects for which we can design effective algorithms. Informally,
an object is fat if it does not have any skinny and long parts.

The fatness has been used in many areas of computational geometry
(range searching [11] robot motion planing [19], or computing depth order
[1]). Recently, de Berg et al. have introduced a hierarchy of object classes [8]
where the fatness (defined below) represents the most special class. Other
models of this hierarchy are the low density, the clutteredness, and the simple-
cover complexity.

Definition (Fatness) 2.4: Let p ⊆ Rd be an object and let β be a
constant such that 0 ≤ β ≤ 1. Define U(p) as the set of all balls centered
inside p which boundary intersects p. We say that the object p is β-fat if for
all balls B ∈ U(p), vol(p ∩ B) ≥ βvol(B). The fatness of p is defined as the
maximal β for which p is β-fat. (Figure 5a)

The low-density model has been introduced by van der Stappen [20]. The
low-density forbids any hypercube C to be intersected by many objects which
side length of minimal-enclosing-hypercube is at least as large as side length
of C.
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Definition (Low-density) 2.5: Let P = {p1, ..., pn} be a set of objects
in Rd and let λ ≥ 1 be a parameter. We call P a λ-low density scene if for
any hypercube C, the number of objects pi ∈ P with %mec(pi)≥ radius(C)
that intersect C is at most λ. The density of P is defined to be the smallest
λ for which P is a λ-low-density scene (Figure 5b).

The model of clutteredness has been introduced by de Berg [7]. Intu-
itively, the scene is uncluttered if any long and thin object is either alone or
surrounded by reasonable number of other smaller objects.

Definition (Clutterredness) 2.6: Let P be a set of objects in Rd and
let κ ≥ 1 be a parameter. We call P a κ-cluttered scene, if any hypercube
which interior does not contain a vertex of one of the bounding boxes of the
objects in P is intersected by at most κ objects in P . The clutter factor of
a scene is the smallest κ for which it is κ-cluttered (Figure 5c).

The last model of de Berg hierarchy is simple-cover complexity introduced
by Mitchell et al. [10]. Given a scene P , we call a ball δ-simple if it intersects
at most δ objects in P .

Definition (Simple-cover complexity) 2.7: Let P be a set of objects in
Rd, and let δ > 0 be a parameter. The δ-simple-cover for P is a collection of
δ-simple balls whose union covers the bounding box of P . We say that P has
(s, δ)-simple-cover complexity if there is a δ-simple-cover for P of cardinality
sn (Figure 5d).

Recently, de Berg et al. has proposed the model of Guarding scenes [4, 5].
It is direct extension of Clutteredness. Moreover, the model of Dispersion
[14, 21] can be also included into the hierarchy. We omit detailed description
of these models because they concern our work only marginally. The whole
hierarchy is depicted in Figure 1.

Here, we are ready to introduce the extension of the de Berg class hier-
archy. It is based on the idea of scaling mentioned above.

Definition 2.8: Let C be a class of objects, R be an arbitrary convex
region. We call the class C local iff it holds for any set of objects P |P ∈ C
that (P ∩R) ∈ C.
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The object P
is (1/2π)-fat.
The object Q
is not β-fat.

1-low-density scene

1-cluttered scene
which is not
2-low-density scene.

d)

c)

a)

b)

(2,1)-simple-
cover-complexity scene
which is not
3-cluttered scene.

P
Q

which is not (1/10)-fat.

Figure 5: Object classes.

The locality markedly simplifies the work with particular scenes. For
example, the classes Low density and Uncluttered scenes are local conversely
to the classes SCC and Guarding scenes. This can be the reason of troubles
with analysis of the last two mentioned classes.

Definition 2.9: Let C be a local class of objects. We define the extension
of C called locally-balanceable-C (LB-C) as follows:

Let P = {p1, ..., pn} be a scene (i.e. set of objects). We say that P ∈LB-C
iff ∀(pi ∈ P) : the intersection Ωe(δ, bb(pi))∩P can be reduced by linear scale
transformations along some coordinate axes to C scene.
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The proposed BSP algorithm exploits properties of the λ-low-density
scenes and of the new class LB-λ-low-density, which is an extension of that
one.

We shortly describe dependences inside the extended class hierarchy.
First, it is clear that ∀(C) : C ⊆ LB-C because of the fact that each LB-
C is generated by the C. The inequality is sharp in the case of local classes of
de Berg hierarchy (Figure 2 illustrates an example of LB-Low density scene
that lies outside the de Berg hierarchy). Second, ∀(C, C

′
) : LB-C ⊂ LB-C

′
iff

C ⊂ C
′
.

Finally, we give the cornerstone of the algorithm - the Cutting Lemma. It
was introduced by Tobola and Nechvile in [18] and it is essential for designing
the algorithm and for proving size of resulting BSP trees. The Cutting lemma
concerns two sets of segments on a plane. The simplified idea of the Cutting
lemma looks as follows.

Let us have two identical sets of segments S and B on the plane. Then
we shift the whole set B in arbitrary direction. It seems probable that for
any direction we can select a line l cutting at least as many segments from
the set B as segments from the set S. The Cutting lemma generalizes and
proves this idea.

Proposition (Cutting lemma) 2.10: Let S, B be non-empty sets of
segments on the plane which fulfil the following conditions:

1. n = |S| ≤ |B| = n+ k; k ≥ 0 is an integer.

2. There is such injective mapping σ : I → J ; I = {1, ..., n}, J = {1, ..., n+
k} and real constant α, that the following is true for all i ∈ I: (|si| ≤
α|bσ(i)|)∧ (si ‖ bσ(i)), where |si| means the length of segment si ∈ S and
|bσ(i)| means the length of segment bσ(i) ∈ B.

Furthermore, let v be an arbitrary non-zero vector such that ∃(si) : si ∦ v
and p be a line parallel with v. Then: ∃(p) : |p ∩ S| ≤ α|p ∩B| ≥ 1.

3 The BSP method

Now, we are going to describe the algorithm for creating a linear BSP
tree. The algorithm exploits a set of hyperrectangles to form a BSP tree.
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The set of the hyperrectangles R = {r1, ..., rn} is a set of bounding boxes of
the original objects P = {p1, ..., pn} with constant complexity in Rd space.
At first, we build up d pairs of auxiliary sets of segments Bi, Si|i ∈ {1, ..., d}
as follows:

Let us project the set {r|r ∈ R} of original hyperrectangles onto the i-th
coordinate axis (further i-axis). The set of segments Si contains the projected
rectangles: Si = {s|s = Proji(r), r ∈ R}. For the sake of simplicity, we will
suppose that the endpoints are in general position (i.e. no two endpoints
have the same x-coordinate).

The degenerate cases can be simply solved by lexicographical ordering
of the points of the original hyperrectangles. Each endpoint of s ∈ Si can
be considered as a projection of the unique point pmax (pmin) ∈ r maximal
(minimal) in the standard lexicographical ordering.

The Ωs(δ, r) neighborhood belonging to r is a part of hyperrectangle en-
closing r. Let us project the set {Ωs(δ, r)|r ∈ R} onto the i-axis. We get the
set of segments. Let us split each segment Proji(Ωs(δ, r)) onto two parts by
subtraction of the Proji(r) from that one. We get two resulting segments:
b1 with lower coordinates and b2 with higher coordinates associated with the
segment s, as you can see in Figure 6. It follows from the definition of Ωs(δ, r)
that |b1| = |b2| = δ|s|. Moreover, the segments b1, b2 form Ωs(δ, s) neighbor-
hood of the segment s. The set Bi is an unification of all segments b1 and b2

generated by the set {Ωs(δ, r)|r ∈ R}. The degenerate cases are treated by
lexicographical ordering as well.

The total number of s ∈ S = ∪i∈{1,...,d}Si segments is dn and the to-
tal number of b ∈ B = B ∪{1,...,d} Bi segments is 2dn, where d means the
dimension of space.

Denotation 3.1: We call the segment s ∈ S
′

i bounded iff both segments
b1, b2 associated with s have been eliminated from the set B

′

i. We call the
hyperrectangle r bounded iff all segments s associated with r are bounded. We
call the hyperrectangle bounded along i-axis iff the segment s ∈ S

′

i associated
with r is bounded.

Algorithm

if The set
⋃d
j=1 Sj is not empty then

begin
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neighbourhoods

S1

R
y

x

B1

b1 ⊆ Ωs(δ, s)

s
b2 ⊆ Ωs(δ, s)

Figure 6: The sets S1 and B1.

(1) Eliminate all segments {s ∈ Sj | j ∈ {1, ..., d}∧ s belongs
to a bounded hyperrectangle} from the set Sj ;

(2) if We cannot select an i such that a line l fulfilling
the Cutting lemma conditions for the sets Si, Bi

can be found then
// ∀(l) : |l∩B||l∩S| ≤ δ

Select a line l with maximal value of |l∩B||l∩S| ;
(3) else Select an appropriate line l according to the Cutting lemma;
(4) Select a hyperplane p that contains the line l.

The hyperplane p should be perpendicular to the i axis;
(5) Eliminate all segments b ∈ Bj|b ∩ p 6= ∅ from the sets Bj |j ∈ {1, ..., d};
(6) Use p as the splitting hyperplane for the set R

onto subregion Rp− and Rp+
;

(7) Split the sets Sj ∪Bj |j ∈ {1, ..., d} using p so that the resulting sets
Sp
−

j and Sp
+

j correspond to Rp− and Rp+
(see fig. 7);

(8) recurse on the sets Sp
−

j , Bp−

j |j ∈ {1, ..., d} and R
p−;

(9) recurse on the sets Sp
+

j , Bp+

j |j ∈ {1, ..., d} and R
p+
;

end
else
(10)Apply autopartition on the resulting set;
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First subregion Second subregion

s2 R

s1

s2

s1

R

R
′

s
′

2

s
′

1

Figure 7: The rectangle R and sets S and B are split into two parts.

Lemma 3.2: Let P ⊂ Rd be the λ-low density scene, d be the constant.
The proposed algorithm provides linear BSP tree for the scene P.

Proof: In the following text, we assume that δ is an appropriate constant2.

Lemma 3.3: Let R = {r1, ..., rn} be the set of bounding hyperrectangles of
the objects {p1, ..., pn} ∈ P in Rd space. Then each Ωs(δ, ri) can be intersected
by at most λd1 + 2δed objects pj such that %mec(pj) > %mec(pi).

Proof: Each bounding hyperrectangle ri is covered by one hypercube
%mec(pi). Furthermore, any Ωs(δ, ri) can be covered by at most d1 + 2δed

hyperrectangles ri and hence by at most d1 + 2δed hypercubes %mec(pi). It
follows from the definition of λ-low density that each Ωs(δ, ri) can be inter-
sected by at most λd1 + 2δed objects pj with %mec(pj) > %mec(pi). 2

Observation 3.4: Let p be a hyperplane perpendicular to i-axis and r
be a hyperrectangle. Then the following cases can occur (see Figure 8):

2We have tested different constants δ in practical implementation. The results come in
the forthcoming paper
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1. The hyperplane p misses both the hyperrectangle r and its neighbor-
hood Ωs(δ, r).

2. The plane p intersects the hyperrectangle r and the neighborhoods
Ωs(δ, e

{1,−1}
j , r)|(j ∈ {1, ..., d} ∧ j 6= i).

3. The plane p intersects the neighborhoods Ωs(δ, e
{1,−1}
j , r)|(j ∈ {1, ..., d}∧

j 6= i) and Ωs(δ, e
1
i , r)

4. The plane p intersects the neighborhoods Ωs(δ, e
{1,−1}
j , r)|(j ∈ {1, ..., d}∧

j 6= i) and Ωs(δ, e
−1
i , r)

r

2) 3) 1)

with %mec(Pj) ≥ %mec(Pi)
Constant number of rectangles

4)

i-axis

Figure 8: Intersections of r by hyperplanes perpendicular to the i-axis.

When cut (3) or cut (4) is used, then the boundaries between adjacent
neighborhoods are intersected (Figure 8). The shaded part of Ωs(δ, e

1
i , r) (or

Ωs(δ, e
−1
i , r)) bounded by the plane p and the hyperrectangle r forms a blunt

pyramid. The hyperrectangle r is clearly separated from the surrounding
space when each of Ωs(δ, e

{1,−1}
k , r) is crossed by a perpendicular hyperplane.

It follows from the above considerations that the part of space belonging to
the Ωs(δ, r) can be intersected by at most λd1+2δed objects with %mec(Pj) ≥
%mec(Pi).
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Cuts (3) and (4) perpendicular to i-axis correspond to crossing a segment
b{1,2} ∈ Bi by a line l = Projj(p)|j 6= i, p is the hyperplane perpendicular to
i-axis. Similarly, each cut (2) perpendicular to i-axis corresponds to crossing
a segment s ∈ Si. We call cuts (3) and (4) effective cuts.

It follows from the definition of sets Bi and Si that ∀b{1,2} ∈ Bi : |s| ≤
1/δ|b{1,2}|. Moreover, n = |Si| ≤ |Bi| = 2n and s ‖ b{1,2}. The assumptions
of the Cutting lemma are satisfied for the initial sets Si and Bi and thus we
can find such a line l = Projj(p)|j 6= i that |l ∩ Si| ≤ 1/δ|l ∩Bi|.

In the first part of the algorithm (steps (1) - (9)) we use only splitting
hyperplanes perpendicular to some i-axis. At least one segment b1,2 ∈ Bi

is treated in each pass of the algorithm and no quite new segment b1,2 ∈ B
can arise in any new subregion. Hence, the algorithm finishes after a finite
number of steps.

Now, let us suppose that the assumptions of the Cutting lemma are sat-
isfied during each step (2) of the algorithm. We show that the algorithm
provides linear BSP in this case. The opposite case will be discussed after-
ward.

It is clear that each segment b ∈ Bi has been crossed by a line l (and there-
fore discarded) during the run of our algorithm. Each such line l corresponds
to the splitting hyperplane p, which goes through a Ωs(δ, r). Therefore, each
segment s ∈ Si is bounded and each hyperrectangle r (or fragment of the
hyperrectangle) finds itself in a subset of the original space separated by
splitting hyperplanes from the rest of the original space. Each such subset of
the original space can consist of the number of the simple hyperrectangular
cells corresponding to BSP nodes.

LetM be the maximal set of objects pj such that each pj lies in different
simple cell and pj has minimal diameter of %mec(pj) of all objects in the same
cell. It follows from Lemma 3.3 that each Ωs(δ, rj) can be crossed by at most
λd1 + 2δed of other objects pk with %mec(pj) ≤ %mec(pk). Moreover, each pj
has been separated from the neighborhood by hyperplanes going through the
Ωs(δ, rj). Because δ and d are constants, the number of pk objects (or object
fragments) contained in this cell is at most constant. If we use autopartition
for this set of objects, we obtain a BSP of constant complexity. We will show
that the total number of simple hyperrectangular cells is linear.

Let us select an arbitrary fixed i ∈ {1, ..., d}. If the objects are split
only by the cuts perpendicular to i-axis and no object is split by a cut
perpendicular to another axis, then at mostO(2n 1

δ
) objects (hyperrectangles)

are split by this cut in total (we have to cross 2n segments b ∈ Bi and we

14



use only effective cuts according the Cutting lemma. The O(2n 1
δ
) boundary

follows from that Lemma). Hence, we have at most O(n+2n 1
δ
) = O((1+ 2

δ
)n)

objects. Now, we extend our consideration to the remaining dimensions.
It is easy to show by induction that the total number of cells is at most
O((1 + 2

δ
)dn).

Together, the overall size of the resulting BSP tree is bounded by

O(λ(1 + 2δ)d(1 + 2
δ
)dn) =

= O(λ(5 + 2
δ

+ 2δ)dn = O(n)

It still remains to explore the case when the conditions of the Cutting
lemma fail. This can happen only if every set Si contains a bounded segment
s (in opposite case, there is at least one segment b{1,2} associated with s and
the Cutting lemma conditions are fulfilled).

Let us suppose that this event occurs in R
′
⊂ Rd. Then R

′
forms a hyper-

rectangle, which contains a set of objects P
′
. Each of R

′
sides is contained

in a splitting hyperplane. Let ui be the longest edge of R
′
, Sbi be the set

of bounded segments parallel with ui and let P
′b
i be the set of objects from

which the segments Sbi are generated. It follows from Lemma 3.3 that the
number of objects in P

′b
i is bounded by λd1 + 2δed. If we remove the objects

P
′b
i from the set P

′
then the conditions of the Cutting lemma are fulfilled

and we can find a splitting hyperplane p. Any such splitting hyperplane can
cut at most λd1 + 2δed extra objects. Because at least one segment b ∈ B is
crossed by the line l, the ratio between crossed segments s ∈ Si and b ∈ Bi

is at most 1
δ

+ λd1 + 2δed i.e. constant. If we use the last expression in the
previous part instead of 1

δ
then we obtain the following bound of BSP size.

O(λ(1 + 2δ)d(1 +
2

δ
+ 2λ(1 + 2δ)d)dn) = O(n)

2

The constant in the previous lemma looks nasty but this result is overrated.
Violation of the conditions of the Cutting lemma occurs very rarely in prac-
tical scenes and the real constant is very low.

Lemma 3.5: If the above algorithm works for a local class C, then it
also works for the class LB-C.
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Proof: As long as a cut according to the Cutting lemma can be found,
the algorithm works well. Problems can appear only in the case when the
conditions of Cutting lemma fail. It was shown in Lemma 3.2 that every set
Si contains at least one bounded segment s in this case.

Let R be a BSP region corresponding to the subtree node for which the
lemma conditions fail, Sb be the set of all bounded segments associated with
R. The region R is formed by a hyperrectangle because it is bounded by
two axis-perpendicular hyperplanes for any i-axis.

Let M be set of all original hyperrectangles from which the bounded
segments si ∈ Sb can be derived and A ∈ M be the hyperrectangle with
maximal length of the longest side among all hyperrectangles from the set
M (we mark this length L). Without lost of generality (w.l.o.g.), we can
suppose that the mentioned longest side is parallel to the x-axis (see the
Figure 9). We show that the hyperrectangle R is completely covered by the
neighborhood Ωe(δ, A). This statement is clearly true iff all cuts which form
the boundary of R go through the Ωe(δ, A).

L

L

C1

C2

C3

C4A

L

i

x

δL

Figure 9: The two dimensional example.

It results from the definition of extended neighborhood that the thickness
of Ωe(δ, A) is at least 2δL + L in arbitrary direction. In addition to this
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fact, A is separated from the rest of the scene by two cuts perpendicular to
a coordinate axis (w.l.o.g. we can suppose that it is the x axis) and the cuts
go through the neighborhood Ωs(δ, A) ⊆ Ωe(δ, A). It is clear that the region
R is covered by the Ωe(δ, A) iff there are two similar cuts for any remaining
coordinate axes which go through Ωe(δ, A).

Let i-axis (i 6= x) be an arbitrary coordinate axis and C ∈ M be a
hyperrectangle, which is bounded by two cuts perpendicular to the i-axis.
We can distinguish the next cases:

1. A = C. Then the cuts which form the boundary ofR go clearly through
Ωe(δ, A).

2. A 6= C. Then:

(a) There are points u ∈ A and v ∈ C such that |u, v|i ≤ δL, where
|u, v|i denotes the distance of points u,v on the i-axis (see Fig. 9,
rectanglesC1 (orC2), A). We use the fact thatC is bounded by two
cuts perpendicular to i coordinate axis and this cuts go through
the simple neighborhood of C. Let w be a point inside of C with its
simple neighborhood. Then |u,w|i ≤ |u, v|i+L1 + δL1 ≤ 2δL+L.
From the previous considerations, both the cuts go through the
extended neighborhood of A.

(b) The points u ∈ A and v ∈ C such that |u, v|i ≤ δ do not exist
(see Fig. 9, rectangles C3, A). Then ∀(u ∈ A, v ∈ C)|u, v|i > δ.
Nevertheless, there is a cut perpendicular to i-axis and it goes
through the simple neighborhood of C. Such a cut must separate
the rectangle A and the rectangle C. Hence, A and C cannot
belong to the setM at the same time – it is a contradiction.

We have already shown that regionR is covered by the Ωe(δ, A). It follows
directly from definition 2.9 and the conditions of this lemma that the region
R can be reduced by linear scale transformations along some coordinate axes
to a C scene.

It remains to show that the algorithm works identically for a scene P and
for it’s counterpart P

′
created by linear scale transformations of P . However,

this fact follows in a straightforward fashion from the observation that the
order of endpoints of the set of segments {S

′

i ∈ P
′
} ∪ {B

′

i ∈ P
′
} is identical

to that one of the set {Si ∈ P} ∪ {Bi ∈ P}. Hence, the splitting line l
′
of

the set P
′
has identical behavior as the splitting line l of the set P . 2
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Corollary 3.6: The above algorithm works for the class LB-low-density.

The method presented above provides us with a pseudo algorithm for cre-
ating a linear BSP tree. If we opt for brute force approach in implementation
of the algorithm it could behave very inefficiently and it could violate space
and time bounds proclaimed above.

The main difficulty is to find the splitting line according to the Cutting
lemma. We suggest two ways how to achieve the O(n log2 n) time bound.

The first way is to use the tandem search [6] technique. To avoid spending
too much time in case of an unbalanced split, we start walking simultaneously
from both ends, one step at a time. This way we find the smaller subsets
from (Rp+

, Sp
+

j , Bp+

j ) and (Rp−, Sp
−

j , Bp−

j ) (lines (6) and (7) of the algo-
rithm) in time proportional to the size of this subset. This technique leads
to the O(n log2 n) time and besides it works in O(n) space. Unfortunately,
this method tends to create as unbalanced BSP tree as possible. Because
the balance criterion is very important in many practical tasks, we suggest
another method for solving this problem.

The second way is to use the segment trees discovered by Bentley [3]. We
will maintain the set of segments Bi and Si in a segment tree along with
some extra data. Using these trees, we will be able to select the splitting
plane effectively according to the Cutting lemma. This technique is described
in detail in [17]. The advantage of this technique lies in the possibility of
controlling the search of the cutting line l. Hence, we can trade-off simply
the balance and size of the resulting BSP tree. The slight drawback of this
method is the O(n log2 n) space requirement.

At the end it should be noted that the algorithm works well even if the
non-overlapping condition is not satisfied. The resulting BSP tree is always
correct.

Theorem 3.7: Let P be a set of objects in Rd, P ∈ LB-λ-low-density.
Then the linear size BSP tree can be constructed in O(n log2 n) time and
O(n log2 n) space. Moreover, we can trade-off between balance and size of the
resulting tree.

18



LB-Low-density

SCC

Low-density

Fat Dispersion

Clutteredness

Guarding scenesLB-Clutteredness

Figure 10: The full hierarchy of recent object classes. The red oval denotes
domain of our algorithm and the blue oval denotes domain of de Berg’s
algorithm.

4 Conclusion

In this paper, we have proposed the extension of the existing de Berg
hierarchy of object classes by a set of so called locally balanceable (LB) classes.
The full class hierarchy is depicted in Figure 10.

Moreover, we have presented a new BSP construction algorithm, which
works provably well for sets of objects with LB-λ-low density. In this case
it provides linear BSP trees and it runs in O(n log2 n) time and space. This
method is very simple.

The de Berg’s algorithm works for the uncluttered scenes which are more
general then λ-low density scenes. However, our algorithm covers some
scenes, which fall outside the definition of uncluttered scenes. Moreover,
the Cutting lemma provides our algorithm with certain input sensitivity.

The following step is to compare the real performance of the discussed
algorithms by practical implementation. Moreover, it would be interesting to
explore the definition of LB-C scenes and try to refine it to be more powerful.
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