
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Modelling Dialogue Systems by Finite Automata

by

Ivan Kopeček
Libor Škarvada

FI MU Report Series FIMU-RS-2003-01

Copyright c© 2003, FI MU March 2003

Modelling Dialogue Systems by Finite Automata

Ivan Kopěcek and Libor Škarvada
Faculty of Informatics
Masaryk University

Brno, Czech Republic
email: {kopecek|libor}@fi.muni.cz

Abstract

Based on finite state formalization, this paper deals with the problem of
modelling and automatic programming of dialogue systems. The approach
presented here is based on finding an operator (a construction) that assigns
a corresponding dialogue system to a dialogue corpus. It will be shown that
this construction is universal, in the sense that each dialogue system can be
obtained in this way, and some related issues (uniqueness, algorithmization
and algorithmical complexity) will be briefly discussed. The theory is illus-
trated on a simple example. Some related problems are formulated.

1 Introduction

Research in dialogue systems involves a wide range of approaches. The applica-
tions demand solutions to many problems of heterogeneous types, often having
interdisciplinary features. In this situation, there is a natural need to have general
models that can be applied to a variety of related problems, both theoretical and
practical.

Finite automata (transducers, Mealy automata) are simple algebraic structures
relating internal states to input and output sequences, offering a general model of
the participant of a dialogue (agent).

Choosing specific attributes of the model, finite automata allow modelling dif-
ferent instances of the dialogue communication. For example, dialogue automata
(a slight modification of Mealy automata) may relate emotions (as described by
attributes of the internal states) with prosody (described by the attributes of the
dialogue utterances) and other parameters that are entering the model [7]. The
approach offers systemization and generalization, standardization of terms and no-
tions, and the applicability of general algebraic methods.

1

A typical way of developing a dialogue system is based on simulating the sys-
tem by Wizard of Oz simulation (see eg [3, 4]), developing the dialogue strategy
based on the simulation and then programming it and testing it. A natural question
arises in this connection: would it be possible to use the dialogue corpus that is cre-
ated in the phase of system simulation for automatization of the dialogue system
programming?

Based on the finite state formalization, we will, in what follows, analyse this
question: Is it possible to construct a dialogue system from a dialogue corpus? Can
we find effective algorithms to do this?

To explain the approach and the ideas behind it, we first briefly outline the finite
state formulation of the dialogue system and present a simple example, on which
the theory is demonstrated.

2 Preliminaries and notation

In what follows, we use the standard terms and notation used in the algebraic theory
of formal languages and automata (see [8]). IfM is a set, thenM∗ will denote the
free monoid over the setM , ie the set of all strings consisting of the elements of
the setM (including the empty string, denotedε). An alphabet is a finite nonempty
set. A language over an alphabetΣ is a subset ofΣ∗; by corpus we usually mean
a finite language. IfU andV are sets,U × V denotes the Cartesian product ofU

andV .
For languagesU , V we writeU ·V = {uv | u ∈ U, v ∈ V }. If A is a finite

set,|A| means the number of elements inA; if u is a word (string of symbols),|u|
means its length; ifA is an automaton,|A| means the number of its states.

Deterministic finite automaton is a device which, starting in an initial state,
reads an input word symbol by symbol and, based on its transition function, switches
its internal state. Formally, it is a quintupleA = (Q,Σ, δ, s0, F) of finite setQ of
states, finite alphabetΣ, transition functionδ : Q × Σ → Q, initial states0, and
setF ⊆ Q of final states. We speak of partial deterministic finite automaton if
its transition function is partial. In the paper deal with partial deterministic finite
automata for which the sets of states and final states coincide, ieF = Q.

If A is an automaton, thenL(A) denotes the language generated (recognized)
by A. If θ is an equivalence relation on the set of states ofA then we construct a
new automaton whose states are equivalence classes ofθ, and which preserves the
transition function and initiality/finality of states, lifted to equivalence-class level.
The resulting finite automaton is calledquotient automatonof A with respect toθ.

2

3 Finite state approach to dialogues

Let us recall that Mealy-type automaton, or finite transducer, (see eg [2]) is an or-
dered sextupleA = (Q,X, Y, δ, λ, s0) whereQ, X , Y are finite non-empty sets,
δ : Q × X → Q andλ : Q × X → Y are functions called transition function
and output function, respectively, ands0 ∈ Q is a distinguished state, calledinitial
state. SetsQ, X andY are the sets of states, input symbols and output symbols,
respectively. Being in states ∈ Q, the automaton detects the actual input sym-
bol, changes its state according to the transition functionδ and outputs a symbol
according to the output functionλ. Hence, the Mealy-type automaton converts an
input string (consisting of input symbols) into an output string (consisting of output
symbols).

In order to analyse dialogue communication using formal models, we have to
use formal definitions of some basic related notions. This means, of course, that
our formal model is essentialy simplified in comparison to reality.

LetU be an alphabet consisting of possible utterances of the dialogue class we
analyse. Then any string consisting of the elements ofU may be considered as
dialogue (over the alphabetU). In this description, the set of all possible dialogues
over the alphabetU is identical to the free monoid over the alphabetU . In what
follows, we will assume that each dialogue has an even number of elements (ie
even length) or it is the empty string. This means, simply put, that to any utterance
in a dialogue there is a reply. This slight modification does not affect the gener-
ality, because we can always add to our alphabet a symbol that means “no reply”,
covering the above-mentioned “no reply” situation. Letu = (u1, u2, . . . , un) be a
dialogue. Then the odd indexed elements ofu correspond to the utterances of the
first participant of the dialogue and the even indexed elements correspond to the
utterances of the second participant of the dialogue. The case whenu is an empty
string is interpreted as the empty dialogue. As mentioned above, it is assumed that
n is an even number. The pairs(u1, u2), (u3, u4), . . . will be called steps of the
dialogue.

The participants of the dialogue can be modelled by Mealy automata in a very
natural way; the transition and output functions define how the corresponding par-
ticipant of the dialogue responds to the previous utterance of the other participant
(the participant will change its internal state according to the transition function)
and how the dialogue will continue (this is given by the output function). Hence, in
this model, the alphabet of the dialogue is the union of the alphabets of the partic-
ipants of the dialogue. This model assumes that the first utterance of the dialogue
is given. However, if we model computer dialogue systems in human-computer
interaction, we can suppose that the initial utterance is given by human.

Indeed, in our paper we will use our abstract model for modelling computer

3

dialogue systems. The finite state approach is supported by the fact that currently
the most widely used dialogue programming standard VoiceXML can be seen as
an abstract finite-state automaton (see eg [1, 9]). The second argument is that we
can utilize the finite-state automata theory to solve the related problems.

Our assumption that the length of the dialogues is always even (or null) gives
us the opportunity to consider dialogue as a strings of its steps. This view leads us
to the simplification, which is described in Section 5. Instead of Mealy automata,
we can take as a model for a computer dialogue system a similar, but somewhat
simpler structure, prefix automaton.

In order the resulting Mealy automaton be deterministic its convenient to as-
sume that the languages under consideration contain only “uniquely evolving” di-
alogs, ie those in which the second participant’s replies are detrmined by the dialog
history:

Definition 1 A dialogue languageL ⊆ (Σ1 ∪ Σ2)∗ is deterministicif for every
odd-length wordw ∈ (Σ1 ∪Σ2)∗ there is at most one symbolb ∈ Σ2 such thatwb
is a prefix of some dialog inL.

In the following sections we will deal only with deterministic dialogue languages.

4 Example

In what follows we present a simple example of our approach. The example illus-
trates the basic notions presented above, and is used also in the following sections.

Example 1 Let us consider a very simplified situation that can appear when de-
veloping a dialogue library system. Suppose that the user specifies the author and
the name of a book and the system returns the information about the presence of
the book in the library. The user is not restricted in the form in which he or she
will input the specification. It might be a speech utterance in a natural language,
a freely formulated text sentence, author and name in any order, etc. (Of course,
for such a simple system we could prompt the user sequentially for the data, but
the effect of free conversation with computer appears in more complex situations,
which can not be presented in such a brief example.) The free input format as well
as user’s errors may cause the system not to understand some part(s) of the input
information.

We will see the input information from the “point of view” of the system, ie if
the system does not understand a part of the input information, it will be consid-
ered as not understandable and denoted byX (regardless of whether it was really
understandable or not).

4

For the sake of simplicity, denoteA the author of the requested book andT the
title of the book. Then, the input alphabet of our model can be expressed as the
following setΣ1:

Σ1 = {AT ,AX ,XT ,A, T ,X}

(The symbolAT represents inputting both the author and the title by the user,
symbolsAX , XT represent the same situation but only one part is understandable.)

We choose the output alphabet of our model as the following setΣ2:

Σ2 = {I,RA,RT ,R-all}

With the following meaning:
I = tell the user the requested information;
RA = ask the user to repeat the name of the author;
RT = ask the user to repeat the title of the book;
R-all = ask the user to repeat both the name of the author and the title of the book.

Now, our dialogue corpusC may look as follows:C = {d1, d2, . . . , d9}

d1 = (AT , I)

d2 = (AX ,RT , T , I)

d3 = (AX ,RT ,X ,RT)

d4 = (XT ,RA,A, I)

d5 = (XT ,RA,X ,RA)

d6 = (X ,R-all,AT , I)

d7 = (X ,R-all,AX ,AR)

d8 = (X ,R-all,XT ,RA)

d9 = (X ,R-all,X ,R-all)

For this simple situation, it can be shown that a minimal Mealy automaton that
covers the corpusC is the following automatonA:

A = (Q,Σ1,Σ2, f, g, s0)

5

whereQ = {s0, s1, s2} and the transition functionf and output functiong are
defined as follows:

f(s0,AT) = s0, g(s0,AT) = I,
f(s0,AX) = s1, g(s0,AX) = RT ,
f(s0,XT) = s2, g(s0,XT) = RA,
f(s0,X) = s0, g(s0,X) = R-all,
f(s1,X) = s1, g(s1,X) = RT ,
f(s1, T) = s0, g(s1, T) = I,
f(s2,X) = s2, g(s2,X) = RA,
f(s2,A) = s0, g(s2,A) = I

5 Prefix automata and formulation of the problem

Let Σ1 andΣ2 be alphabets of dialogue utterances of the first and the second par-
ticipant respectively. Let us have a languageL overΣ1 ∪ Σ2 of dialogues and its
finite sublanguage—corpusC. It is often the case that the dialogues not covered
byC are represented inC by their prefixes, in other words, the dialogues inL−C
are extensions of those inC. Or the languageL may contain prefixes of dialogues
in C.

We aim to constructing a Mealy automaton whose behaviour covers the corpus.
By “covering” we mean that the automaton generates a language which isprefix
similar to the corpus in the sense of Definition 6.

Definition 2 LetL be a language over alphabetΣ. The languageL·Σ∗ = {uv |
u ∈ L, v ∈ Σ∗} is calledpostfix-closureofL.

Definition 3 LetL, L′ be languages over the alphabetΣ. L′ will be calledpostfix
extensionofL, if L′ containsL andL′ is a subset of the postfix-closure ofL.

Definition 4 LetL be a language over the alphabetΣ. The language{w ∈ Σ∗ |
∃u∈Σ∗. wu ∈ L} is calledprefix-closureofL and is denoted̄L.
A languageL for whichL = L̄ is calledprefix-closed.

Definition 5 LetL be a language over the alphabetΣ. If there are no two words
u, v ∈ L such thatu is a prefix ofv then the languageL is calledprefixless.

Definition 6 A languageL such thatC̄ ⊆ L ⊆ C̄ ∪ C·Σ∗ is calledprefix-similar
toC.

6

Thus our desired automaton should generate all dialogues from the corpus, all
their prefixes, and some of their extensions.

We can make a simplification of the problem. Notice that all the considered
dialogues are of even length and the utterances fromΣ1 alternate with those from
Σ2 (cf Section 3). LetΣ = Σ1 × Σ2 be a new alphabet—alphabet of dialogue
steps. LetC be a corpus, same as the original one, but with adjacent utterances of
the dialogues paired into dialogue steps. For example the dialogue(AX ,RT , T , I)
from Example 1 becomes((AX ,RT), (T ,I)) etc.

Now we can switch from Mealy automata to a more convenient notion of de-
terministic finite automata. Finite automata differ from Mealy automata in that
they do not produce any output. They just consume an input string, switching their
internal state according to their transition function. Some of their states are distin-
guished asfinal. When the automaton stops, after consuming the whole input, in a
final state, the input word is calledaccepted. Otherwise it isrejected. The set of
accepted words is called the languagegeneratedor recognizedby the automaton.
For details see [8].

Among variants of finite automata we deal with partial deterministic finite au-
tomata with all states final. Only the last condition, viz finality of all states, restricts
the class of generated languages—namely to prefix-closed regular languages. (Nei-
ther the partiality nor the determinism does.) The reason why we do not need non-
final states is that it is sufficient to deal with prefix-closed languages. If a language
L is prefix-similar to corpusC, then its prefix closurēL is prefix-similar toC as
well. Additionally, the finite automata without nonfinal states cohere better with
Mealy automata in the sense that we can more easily switch from them back to
Mealy automata.

Definition 7 By prefix automatonwe understand a partial deterministic finite au-
tomaton whose set of states and set of final states are equal. Instead of quintuple
(Q,Σ, δ, s0, Q) we use only quadruple(Q,Σ, δ, s0) for its description.

The problem we aim to solve in this paper is:

Problem 1 Given a corpusC, as a finite subset of some deterministic dialogue
language, find a minimal prefix automaton generating a language which is prefix-
similar toC.

In Section 7 we show how to construct a prefix automaton from a given corpus
and how to transform this prefix automaton to Mealy automaton.

7

6 Automata assigned to the corpus and solvability of the
problem

Notation We introduce the following notation:
F (C) = {A | A generates a language prefix-similar toC};
f(C) = {A ∈ F (C) | if A′ ∈ F (C) then|A| ≤ |A′|}.

It is well known that that there may be many equivalent finite automata gen-
erating the same languageL. But among them the one with minimum number of
states is determined uniquely (up to renaming of states). If the condition that the
automaton should generate the given language is relaxed to that it should generate
a languge prefix-similar toL, then there is essentially more ambiguity.

Example 2 Let Σ = {a, b}, C = {a, ab, abb}, L1 = {aibj | i > 0, j ≥ 0},
L2 = {aw | w ∈ Σ∗}. BothL1, L2 are prefix-similar toC, and the corresponding
prefix automataA1, A2 have both two states. None ofL1, L2 can be generated by
a one-state automaton. Furthermore,A1 andA2 differ becauseL1 6= L2. Hence
A1 ∈ f(C), A2 ∈ f(C), and thus|f(C)| ≥ 2.

Moreover, Example 2 shows that even if we restrict the set of prefix automata to
prefix automata with a minimum number of states, the nonuniqueness is still there.

On the oher hand, the following results in this section show that if we have a
corpusC with |f(C)| > 1, we can always modify corpusC toC′ so that|f(C′)| =
1.

Lemma 1 LetC be a corpus andC′ a postfix extension ofC. If L′ is prefix-similar
toC ′, thenL′ is prefix-similar toC as well.

Proof: Letw ∈ L′. According to the definition of prefix-similarity, the following
cases may occur:
(1) w ∈ C ′; then there areu ∈ C andv such thatw = uv, iew is an extension of
a word belonging toC. Hence,w ∈ C·Σ∗.
(2) w ∈ C ′·Σ∗; then there areu ∈ C andv, s such thatw = uvs, ie even in this
casew is an extension of a word belonging toC. Hence,w ∈ C·Σ∗.
(3) w ∈ C̄ ′; thenw is a prefix ofuv whereu ∈ C. If w is a prefix ofu, then
w ∈ C̄. If w is not a prefix ofu, then it is a postfix extension ofu, iew ∈ C·Σ∗.
In all cases eitherw ∈ C·Σ∗, orw ∈ C̄. Further,L′ containsC′, andC ′ contains
C. Hence, according to the definition of prefix-similarity,L′ is prefix-similar toC.

Lemma 2 LetC be a prefix closed corpus andC′ a postfix extension ofC. Then
f(C′) ⊆ f(C).

8

Proof: The assertion easily follows from Lemma 1.

Lemma 3 For any corpusC it holdsf(C) = f(C̄).

Proof: It can be easily seen that a language is prefix similar toC if and only if it is
prefix similar toC̄. Hence,F (C) = F (C̄), which implies the assertion.

Proposition 1 For any corpusC there is a corpusC′ such thatC ′ is a postfix
extension ofC and|f(C′)| = 1.

Proof: LetA be a prefix automaton fromf(C). According to Lemma 3f(C) =
f(C̄), henceA ∈ f(C̄). Let us denoteL(A, n) = {u ∈ L(A) | |u| ≤ n}. As
L(A, n) is a postfix extension of̄C for everyn ≥ max{|u| | u ∈ A}, we have
(according to Lemma 2)f(L(A, n)) ⊆ f(C̄) = f(C). Letm be an integer such
that all the setsL(X,m), whereX ∈ f(C), differ. Since the setf(C) is finite,
such a number exists (otherwise at least two prefix automata belonging tof(C)
would produce the same language, which would contradict our assumptions about
f(C)). Now, the corpusL(A,m) has the following properties:
(1) L(A,m) is a postfix extension ofC;
(2) f(L(A,m)) ⊆ f(C);
(3) if X ∈ f(C) andX 6= A, thenX /∈ f(L(A,m)).
These properties ofL(A,m) imply that there is only one minimal prefix automa-
ton that generates a corpus prefix-similar toL(A,m). As L(A,m) is a postfix
extension ofC̄, we obtain the assertion.

Proposition 2 For any minimal prefix automatonA there is a corpusC such that
A ∈ f(C).

Proof: LetA be a minimal prefix automaton and let us denoteL(A, n) = {u ∈
L(A) | |u| ≤ n}. Further, letS be the set of all languages that are generated
by prefix automata that have less or equal number of states as the automatonA.
Of course, the setS is finite. Letm be a number such that all the setsL(X,m),
whereX ∈ S ∪ L(A), differ. Because the setS ∪ L(A) is finite, such a number
exists. ThenA ∈ F (L(A,m)), A is minimal, and any other prefix automaton from
F (L(A,m) has greater or equal number of states. Hence, if we takeC = L(A,m)
we getA ∈ f(C).

Corollary 1 For any minimal prefix automatonA there is a corpusC such that
there is exactly one prefix automaton satisfyingA ∈ f(C).

Proof: follows directly from Propositions 1 and 2.

9

Proposition 2 ensures that by means of generating dialogue systems from cor-
pora we can get any dialogue system. >From Corollary 1 then follows that it can
be done uniquely.

An interesting problem (not solved here) is

Problem 2 Characterize the corpora for which there is exactly one minimal prefix
automaton.

7 Construction

We aim to construct a prefix automaton which generates a language prefix-similar
to corpusC, and has minimum number of states among such automata.

The construction of a prefix automaton generating a language prefix-similar to
corpusC will be as follows:

First, we construct a deterministic finite automatonT generating exactlyC. For
this we may choose any automaton of the class of equivalent finite automata, but
the most straightforward construction leads to thetrie automaton, see Definition 8.

Second, we define relationρ on set of states ofT with the following property:
Any equivalence relationθ ⊆ ρ determines the corresponding quotient automaton
T/θ whose languageL(T/θ) is a postfix extension ofC.

Third, modifying the quotient automaton by making all its states final we get a
prefix automaton that generates a language prefix-similar toC.

By trie automatonT (C) we understand a partial deterministic finite automaton
generating exactly the corpusC, whose diagram is a tree.

Definition 8 LetC be a corpus over alphabetΣ. DefineT (C) = (C̄,Σ, δ, ε, C)
where, for everyw ∈ C̄ and everya ∈ Σ, if wa ∈ C̄ thenδ(w, a) = wa else
δ(w, a) is undefined.

For the definition and applications of tries see [5].

Example 3 Recall the corpus from Example 1. The diagram of its trie automaton
is depicted on Fig 1.

If the corpusC is prefixless (recall Definition 5), the final states ofT (C) are
exactly the leaves of its diagram. For the rest of this section we assume thatC is
prefixless.

The relationρ, on which the construction is based, is defined similarly to bisim-
ulation equivalence [8], but is larger.

10

AT/I

AX/RT

T/I

X/RT

XT/RA

A/I

X/RA

X/Rall

AT/I

AX/RT XT/RA
X/Rall

Figure 1: Trie automaton from Example 3

Definition 9 Let T = T (C) be our trie automaton, denoteT = (Q,Σ, q0, δ, F).
Define relationρ ⊆ Q ×Q as the greatest relation satisfying the following condi-
tion: For every two states,p, q ∈ Q, (p, q) ∈ ρ if and only if
(i) p ∈ F , or
(ii) q ∈ F , or
(iii) for every a ∈ Σ, if δ(p, a) = p′ then there exists a stateq′ ∈ Q such that
(p′, q′) ∈ ρ, and for everya ∈ Σ, if δ(q, a) = q′ then there exists a statep′ ∈ Q
such that(p′, q′) ∈ ρ.

Notice thatρ is not an equivalence relation because it is not transitive.

Proposition 3 LetC is a prefixless corpus,T = T (C), and letθ be any equiva-
lence relation under the relationρ (from Definition 9),θ ⊆ ρ. Then
(1) every wordw ∈ C is accepted byT/θ, and
(2) for every wordw accepted byT/θ, eitherw ∈ C̄ or w ∈ C·Σ∗ holds.

Proof: The proof of part (1) is straightforward and follows immediately from the
construction ofT/θ.

Let w = a1 . . . an ∈ L(T/θ) be a nonempty word (for the empty word the
proposition is trivial). We show thatw is either a prefix or an extension of some
word inC. Let q0 be an initial state ofT , q1, . . . , qn some states ofT representing
states ofT/θ, and let[q0]a1[q1]a2 . . . an[qn] be the accepting run ofT/θ for w.
There exist some statesr0, r1 in T , r0 ∈ [q0], r1 ∈ [q1] such thatδ(r0, a1) = r1

and(r0, q0) ∈ θ, (r1, q1) ∈ θ. Hence(r0, q0) ∈ ρ, (r1, q1) ∈ ρ. By Definition 9,
eitherr0 ∈ F , or q0 ∈ F , or there is ana1-transition fromq0 to some statep1,
(p1, r1) ∈ ρ. Caser0 ∈ F is impossible since there are no transitions from final
states inT . If q0 ∈ F thenε ∈ C andw is an extension ofε. Let p1 = δ(q0, a1),
(p1, r1) ∈ ρ. Again, by Definition 9, eitherp1 ∈ F , of r1 ∈ F , or there is an
a2-transition fromp1 to some statep2, (p2, δ(r1, a2)) ∈ ρ. If p1 ∈ F thena1 ∈ C,
andw is equal toa1 or is its extension. Ifr1 ∈ F thenw = a1 and we are done.
If the third case holds then[p1]a2[q2]a3[q3]a4 . . . an[qn] is a run of automatonT/θ
starting in state[p1] and accepting worda2 . . . an. Following the same steps (by

11

induction on the length ofw) we show that there is a runq0a1p1a2p2a3 . . . anpn
of automatonT accepting the wordw or its extension. As the wordw may end
sooner thanT reaches its final state,w can also be a prefix of a word ofL(T) = C.

As an immediate consequence of Proposition 3 we get

Corollary 2 For any equivalence relationθ ⊆ ρ the languageL(T (C)/θ) is
prefix-similar toC.

Given an equivalenceθ ⊆ ρ we take the automatonT/θ, make all its states
final, getting automatonB, which generates a language prefix-similar toC. Then
the automatonB accepts all words in̄C plus some extensions of words inC.

Finally we may return from the prefix automaton back to Mealy automaton.
Let A = (Q,Σ, δ, s0) be a prefix automaton over alphabetΣ = Σ1 × Σ2. Then
the corresponding Mealy automatonA′ = (Q′,Σ1,Σ2, f, g, s

′
0) can be constructed

in the following way:Q′ = Q, s′0 = s0, and for eachs ∈ Q′, a ∈ Σ1, both
f(s, a) = t, g(s, a) = b, whenever there is someb ∈ Σ2 such thatδ(s, (a, b)) = t.
A necessary condition for uniqueness of this step is that there is as most one such
symbolb. But this is guaranteed by the determinism of our dialogue language.

8 Conclusions and future work

We have shown that abstract models can effectively simulate behaviour of the di-
alogue systems in human-computer interaction and that using this model we can
get interesting simple formulated problems in which the technique of finite-state
automata theory can be exploited. In the paper, we have presented basic results
related to the concept of automatically building computer dialogue systems from
dialogue corpora.

Some problems, however, remain open. They are related to the question of
effective algorithmization of the proposed method.

We think that for a given corpussomeprefix automaton can be found effectively
in polynomial time. However, we conjecture that finding aminimalautomaton is
NP hard.

The next important issue is implementation of the method for real dialogue
systems. Besides, the approach provokes some interesting theoretical problems
that are related to automata theory, program verification, bisimulation etc.

References

[1] Cenek, P.: Dialogue Interfaces for Library Systems,FI MU Report Series,
FIMU-RS-2001-04, June 2000.

12

[2] Gecseg, F., Peak, I.:Algebraic Theory of Automata, Akademiai Kiado, Bu-
dapest, 1972

[3] Fraser, N.M., Gilbert, G.N.: Simulating Speech Systems.Computer Speech
and Language, 5, 1991, pp. 81–89

[4] Good, M.D., Whiteside. J.A., Wixon, R.R., Jones, S.J.: Building a User-
derived Interface,Communications of the ACM, 27(10), 1984, 1032–1043

[5] Knuth, D.E.: The art of computer programming, Sorting and searching,
Addison-Wesley, 1998

[6] Kopeček, I.: Modeling of the Information Retrieval Dialogue Systems. InPro-
ceedings of the Workshop on Text, Speech and Dialogue – TSD’99, Lectures
Notes in Artificial Intelligence 1692, Springer-Verlag, 1999, pp. 302–307

[7] Kopeček, I.: Emotions and Prosody in Dialogues: An Algebraic Approach
Based on User Modelling. InProceedings of the ISCA Workshop on Speech
and Emotions, Belfast, 2000, pp. 184–189

[8] Kozen, Dexter C.:Automata and Computability, New York, Springer, 1997

[9] VoiceXML Forum—Voice extensible Markup Language VoiceXML, available at
http://www.voicexml.org/specs/VoiceXML-100.pdf

13

Copyright c© 2003, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

