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Radek Pelánek

FI MU Report Series FIMU-RS-2002-09

Copyright c© 2002, FI MU December 2002



Distributed Explicit Fair Cycle Detection
(Set Based Approach)
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Abstract. The fair cycle detection problem is at the heart of both LTL and fair
CTL model checking. This paper presents a new distributed scalable algorithm
for explicit fair cycle detection. Our method combines the simplicity of the dis-
tribution of explicitly presented data structure and the features of symbolic algo-
rithm allowing for an efficient parallelisation. If a fair cycle (i.e. counterexample)
is detected, then the algorithm produces a cycle, which is in general shorter than
that produced by depth-first search based algorithms. Experimental results con-
firm that our approach outperforms that based on a direct implementation of the
best sequential algorithm.

1 Introduction

The fair cycle detection problem is at the heart of many problems, namely in deciding
emptiness of ω-automata like generalised Büchi and Streett automata, and in model
checking of specifications written in linear and branching temporal logics like LTL
and fair CTL.

A generalised Büchi automaton [10] is provided together with several sets of ac-
cepting states. A run of such an automaton is accepting if it contains at least one state
from every accepting set infinitely often. Accordingly, the language of the automaton
is nonempty if and only if the graph corresponding to the automaton contains a reach-
able fair cycle, that is a cycle containing at least one state from every accepting set, or
equivalently a reachable fair strongly connected component, that is a nontrivial strongly
connected component (SCC) that intersects each accepting set. The acceptance condi-
tion for Streett automata [34] is more involved and consists of pairs of state sets. The
language of the automaton is nonempty if and only if the automaton graph contains
a cycle such that for every pair of sets whenever the cycle intersects the first set of the
pair then it intersects also the second set. The nonemptiness check for Streett automata
can thus be also based on identification of the fair SCCs of the automaton graph. Other
types of automata for which the nonemptiness check is based on identification of fair
cycles are listed in [15].

The LTL model checking problem and the LTL model checking with strong fairness
(compassion) reduce to language emptiness checking of generalised Büchi automata
and Streett automata respectively [36, 26]. Fair cycle detection is used to check the
CTL formula EGf under the full (generalised) fairness constraints [15]. Hence, the
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core procedure in many model checking algorithms is the fair cycle detection. These
algorithms are in common use in explicit and symbolic LTL model checkers such as
SPIN [22] and SMV [29] respectively, in fair-CTL model checkers such as SMV, VIS [7],
and COSPAN [19].

Despite the developments in recent years, the main drawbacks of model checking
tools are their high space requirements that still limit their applicability. Distributed
model checking tackles with the space explosion problem by exploiting the amount
of resources provided by parallel environment. Powerful parallel computers can be
build of Networks Of Workstations (NOW). Thanks to various message passing inter-
faces (e.g., PVM, MPI) a NOW appears from the outside as a single parallel computer
with a huge amount of memory.

Reports by several independent groups ([33, 28, 17, 4, 3]) have confirmed the use-
fulness of distributed algorithms for the state-space generation and reachability anal-
ysis. Methods for distributing LTL and CTL model checking have been presented in
[1, 2, 8] and [6] respectively. However, until today not much effort has been taken to
consider distributed algorithms for fair cycle detection. In our search for an effective
distributed algorithm let us first discuss diverse sequential algorithms for fair cycle
detection.

In explicit algorithms the states of a graph are represented individually. The de-
composition of the graph into SCC can be solved in linear time by the Tarjan algo-
rithm [35]. With the use of this decomposition it is easy to determine fair components
and hence our problem has linear time complexity. Moreover, the nested depth-first
search algorithm [23] (NESTEDDFS ) optimises the memory requirements and is able
to detect cycles on-the-fly. This makes NESTEDDFS the optimal sequential algorithm.

The explicit representation allows for a direct distribution of the state space. States
of the graph are distributed over particular computers in NOW and are processed in
parallel. When necessary, messages about individual states are passed to the neigh-
bour computers. However, the depth-first search crucially depends on the order in
which vertices are visited and the problem of depth-first search order is P-complete [31].
Therefore it is considered to be inherently sequential and we cannot hope for its good
parallelisation (unless NC equals P).

Symbolic algorithms represent sets of states via their characteristic function, typi-
cally with binary decision diagrams (BDDs) [9, 13], and operate on entire sets rather
than on individual states. This makes the depth-first approach inapplicable and sym-
bolic algorithms typically rely on the breadth-first search (for surveys see [16, 30]). Un-
fortunately, the time complexity of symbolic algorithms is not linear; the algorithms
contain a doubly-nested fixpoint operator, hence require time quadratic in the size of
the graph in the worst case. The main advantage of symbolic algorithms over their ex-
plicit counterpart is the fact that BDDs provide a more compact representation of the
state space capturing some of the regularity in the space and allow to verify systems
with extremely large number of states, many orders of magnitude larger than could
be handled by the explicit algorithms [11]. Nevertheless, there are applications where
explicit model checkers outperform the others, for examples see [33, 24, 25, 14]

Thank to the fact that symbolic algorithms search the graph in a manner where
the order in which vertices are visited is not crucial, these algorithms are directly par-
allelizable. On the other hand, the distribution of the BDD data structure is rather
complicated. A parallel reachability BDD-based algorithm in [20] partitions the set of
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states into slices owned by particular processes. However, the state space has to be
dynamically repartitioned to achieve the memory balance and the method requires
passing large BDDs between processes, both for sending non-owned states to their
owners and for balancing. This causes a significant overhead.

Bearing all the reported arguments in mind we have tried to set down a parallel
algorithm for fair cycle detection combining advantages of both explicit and symbolic
approach. Our algorithm is in its nature explicit as the states are represented indi-
vidually. The state space is well distributable and the parallel computation needs to
communicate only information about individual states. The way how the algorithm
computes resembles that of symbolic algorithms and thus allows for a good paralleli-
sation of the computation alone.

Since our algorithm is based on symbolic ones, its worst-case complexity isO(n �h)
where h is the height of the SCC quotient graph. Previous experiments ([16]) clearly
show that this height is in practice very small and thus the algorithm is nearly linear.
This observation has been confirmed also by our experiments.

The proposed algorithm is not on-the-fly and the whole state space has to be
generated. For this reason the algorithm is meant not to replace but to complement
the depth-first search based algorithms used in LTL model checking. The depth-first
search based algorithms are of help before spacing out the available memory. On the
other hand, our algorithm performs better in cases when the whole state space has
to be searched. This distinction has been confirmed also by our initial performance
evaluation using several protocols. Our algorithm outperforms that based on a direct
implementation of the best sequential algorithm in a distributed environment espe-
cially in cases, when a fair cycle is not detected.

In model checking applications, the existence of a fair cycle indicates a failure of
the property. In such a case, it is essential that the user is given a fair cycle as a coun-
terexample, typically presented in the form of a finite stem followed by a cycle. The
counterexample should be as short as possible, to facilitate debugging. Finding the
shortest counterexample, however, is NP-complete [21]. The great advantage of our
approach is that thanks to the breadth-first search character of the computation the
computed fair cycle (counterexample) is very short in comparison with those com-
puted by a depth-first search based algorithm.

Last but not least, we would like to emphasis that the algorithm is compatible
with other state-space saving techniques used in LTL model checking. Namely, the
algorithm can be applied together with static partial order reduction [27].

Plan of the work Section 2 reviews basic notions and explains the basics of sym-
bolic fair cycle detection algorithms. In Section 3 a new sequential explicit fair cycle
detection algorithm is presented together with the proof of its correctness and the
analysis of its complexity. The distributed version of the algorithm is described in
Section 4. Modifications of the algorithm allowing for a fair cycle detection for gen-
eralised Büchi and Streett automata and a simplification for weak ω-automata are
presented in Section 5. Section 6 presents experimental results on real examples and
compares the performance of our algorithm to a distributed implementation of the
best sequential algorithm. Section 7 concludes.
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2 Fair Cycle Detection Problem

A directed graph is a pair G = (V,E), where V is a finite set of states and E � V � V
is a set of edges. A path from s1 2 V to sk 2 V is a sequence (s1, . . . , sk) 2 V + such
that (si, si+1) 2 E for 1 � i < k. A cycle is a path from a state s to itself. We say that a
state r (a cycle c) is reachable from a state s if there exists a path from s to r (to a state
r on the cycle c). Moreover, every state is reachable from itself. Given a state set U , the
graph G(U) = (U,E \ (U � U)) is the graph induced by U .

A strongly connected component (SCC) of G is a maximal set of states C � V such
that for each u, v 2 C, the state v is reachable from u and vice versa. The quotient graph
of G is a graph (W,H), such that W is the set of the SCCs of G and (C1, C2) 2 H if
and only if C1 6= C2 and there exist r 2 C1, s 2 C2 such that (r, s) 2 E. The height of
the graph G is the length of the longest path in the quotient graph of G (note that the
quotient graph is acyclic).

A strongly connected component C is a trivial component if G(C) has no edges
and initial if it is the source of the quotient graph. Let F � V be a set of fair states. An
SCC C is a fair component if it is nontrivial and C \ F 6= ;. A cycle is fair if it contains
a fair state.

The fair cycle detection problem is to decide, for a given graphGwith a distinguished
initial state init state and a set of fair states F , whetherG contains a fair cycle reachable
from the initial state. In the positive case a fair cycle should be provided.

Our goal is to bring in an algorithm for the fair cycle detection problem that is not
based on a depth-first search and thus enables effective distribution. Here we take an
inspiration in symbolic algorithms for cycle detection, namely in SCC hull algorithms.
These algorithms compute the set of states that contains all fair components. Algo-
rithms maintain the approximation of the set and successively remove unfair compo-
nents until they reach a fixpoint. Different strategies of removal of unfair components
lead to different algorithms. An overview, taxonomy, and comparison of symbolic al-
gorithms can be found in independent reports by Fisler at al. [16] and Ravi at al. [30].
As the base for our algorithm we have chosen the One Way Catch Them Young algo-
rithm [16]. The reasons for this choice are discussed at the beginning of Section 4.1.

Symbolic algorithms are conveniently described with the help of µ-caluculus for-
mulae. Our algorithm makes use of the following two functions:

Reachability(S) = µZ.(S [ image(Z))

Elimination(S) = νZ.(S \ image(Z))

The set image(Z) contains all successors of states from Z in the graph G. The func-
tion Reachability(S) computes the set of all states that are reachable from the set S.
The function Elimination(S) computes the set of all states q for which either q lies on
a cycle in S or q is reachable from a cycle in S along a path that lies in S. The computa-
tion of Elimination(S) is performed by successive removal of states that do not have
predecessors in S. With the help of these functions the algorithm One Way Catch Them
Young can be formulated as follows:
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proc OWCTY(G,F, init state)
S := Reachability(init state);
old := ;;
while (S 6= old) do

old := S;
S := Reachability(S \ F );
S := Elimination(S);

od
return (S 6= ;);

end

The assignment S := Reachability(S \F ) removes from the set S all initial compo-
nents of G(S), which do not contain any fair state (in fact only SCCs reachable from a
fair component are left in S). The assignment S := Elimination(S) removes from the
set S all initial trivial components (besides others). Thus each iteration of the while
cycle (so called external iteration) removes initial unfair components of G(S) until the
fixpoint is reached.

The worst-case complexity of the algorithm is O(n2) steps1 or more precisely O(h �
n)), where n is the number of states of the graph and h is the height of G. However,
numerous experiments show that the number of external iterations tends to be very
low and hence the number of steps is practically linear [16].

3 Sequential algorithm

In this section we present a new sequential explicit algorithm that computes a hull,
that is, a set of states that contains all fair components in a way which resembles
the set based algorithm One Way Catch Them Young. In the second part an algorithm
enumerating a fair cycle is introduced. The correctness of both algorithms is proved,
and their complexity is analysed. The distributed version of the algorithm is given in
the next section.

3.1 Detection of a Fair Cycle

The explicit algorithm DETECT-CYCLE emulates the behaviour of the OWCTY algo-
rithm. The set S is represented explicitly. For each state q the information whether q
is in the set S is stored in boolean array inS. The emulation of the intersection oper-
ation and the Reachability(S) function is straightforward (see the procedures RESET
and REACHABILITY respectively). The emulation of Elimination(S) is more involved:
concurrently with the emulation of Reachability(S) we count for each state q the num-
ber of its predecessors belonging to the set S (array p). On top of that we keep the list
L of vertices, which have no predecessors in S, that is, those for which p[q] = 0. These
vertices are eliminated from S in the procedure ELIMINATION. Data structures used
by the algorithm and their initial settings are:

1 The complexity of symbolic algorithms is usually measured in number of steps (image com-
putations), since the real complexity depends on the conciseness of the BDD representation.
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Sequential algorithm for fair cycle detection

1 proc DETECT-CYCLE(G,F, init state)
2 put init state into queue ;
3 inS [init state] := true;
4 REACHABILITY;
5 while (Ssize 6= oldSsize ^ Ssize > 0) do
6 RESET;
7 REACHABILITY;
8 ELIMINATION;
9 od

10 return(Ssize > 0);
11 end

1 proc RESET

2 oldSsize := Ssize;
3 Ssize := 0;
4 foreach q 2 V do
5 inS [q] := inS [q] ^ q 2 F ;
6 p[q] := 0;
7 if inS [q] then Ssize := Ssize + 1;
8 put q in queue;
9 put q in L; fi

10 od
11 end

1 proc REACHABILITY

2 while queue 6= ; do
3 remove q from queue ;
4 foreach (q, r) 2 E do
5 if (:inS [r]) then inS [q] := true;
6 Ssize := Ssize + 1;
7 put r in queue; fi
8 if p[r] = 0 then remove r from L; fi
9 p[r] := p[r] + 1;

10 od
11 od
12 end

1 proc ELIMINATION

2 while L 6= ; do
3 remove q from L;
4 inS [q] := false;
5 Ssize := Ssize � 1;
6 foreach (q, r) 2 E do
7 p[r] := p[r]� 1;
8 if p[r] = 0 then put r to L fi
9 od

10 od
11 end
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– inS is a boolean array and is set to false for each state.
– p is an integer array and is set to 0 for each state.
– L is a list of states, initially empty.L is implemented as doubly linked list, hence all

necessary operations (insertion, deletion, and removal of a state) can be performed
in constant time.

– Ssize and oldSsize are number variables initially set to 1 and 0 respectively.
– queue is an initially empty queue.

Correctness

In what follows we denote S the set of states q such that inS [q] = true and particularly
Sil the set of states q such that inS [q] = true just before the i-th execution of the line l
in DETECT-CYCLE (l = 6, 7, 8). Arguments are presented in the manner, which allows
their transfer to the distributed algorithm.

Lemma 1. At the end of REACHABILITY the set S is the set of states that are reachable from
states which were in the queue at the beginning of the procedure.

Proof: Whenever the procedure REACHABILITY is called, the queue contains exactly all
the states for which inS [q] = true . REACHABILITY performs the standard breadth-first
search and empties the queue.

Lemma 2. The invariant q 2 L) (q 2 S ^ p[q] = 0) holds true during the whole computa-
tion of DETECT-CYCLE .

Proof: Only states r with p[r] = 0 are put in L in ELIMINATION and RESET. To show
L � S we notice that queue = S = L at the end of RESET and S is the set of states
reachable from L at the end of REACHABILITY (Lemma 1). Only states reachable from
L are put to L in ELIMINATION but those states are already in S.

Lemma 3. Immediately after executing RESET, REACHABILITY and ELIMINATION respec-
tively, the value of Ssize is the size of the set S.

Proof: Whenever a new state q is added to S in REACHABILITY the variable Ssize
is changed accordingly. In RESET only those states which are kept in S are counted.
Correctness for ELIMINATION follows from the inclusion L � S (Lemma 2).

Lemma 4. Immediately after executing REACHABILITY and ELIMINATION respectively,
the value of p[q] is the number of those direct predecessors of the state q, which belong to
S.

Proof: Whenever a state r is attained in REACHABILITY the value p[r] is updated.
Whenever a state is deleted from S in ELIMINATION all its direct successors are visited
and their respective values are updated.

On the other side, the value of p[r] is changed only when some of its direct prede-
cessors is added to/removed from queue (Lemma 2).

Lemma 5. During one execution of the procedure REACHABILITY each state is inserted to
and deleted from the queue at most once. During one execution of the procedure ELIMINATION
each state is removed from L at most once.
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Proof: No state is removed from S in REACHABILITY. Moreover, q 2 queue ) q 2 S
and the state q is added to queue only if q 62 S.

The assertion for ELIMINATION follows from Lemma 2 and the fact that states are
removed simultaneously both from L and S.

Lemma 6.
– Si7 = Si6 \ F .
– Si8 is the set of states reachable from the set Si7.
– Si+1

6 is the set of all states q for which either q lies on a cycle in G(Si8) or q is reachable in
G(Si8) from a cycle in G(Si8).

Proof: The first equality follows directly from the code of the procedure RESET.
The second fact is a direct consequence of Lemma 1, because the content of queue

at the beginning of REACHABILITY is Si7.
By Lemma 4, value p[q] is the number of direct predecessors of q in G(Si8) and

only states with none predecessors are removed from S in ELIMINATION. Therefore
all states with the required property are in Si+1

6 . On the other hand, all predecessors
of the state q not satisfying the condition will eventually be removed (this can be
formalised by induction on the length of the longest chain of predecessor of a given
state), hence eventually p[q] is set to 0, the state q is put in L and removed from the set
S afterwards.

Lemma 7. Si+1
6 � Si6

Proof:
The assertion can be proved by induction on i. For the base case i = 1 we argue

that S1
6 is the set of all states reachable from init state and all the states put in S in

REACHABILITY (line 7) are reachable from init state and thus S2
6 � S1

6 .
For the general case we suppose Si+1

6 � Si6. Then we can reason with the use of
Lemma 6 as follows: (Si+1

6 � Si6) ) (Si+1
6 \ F � Si6 \ F ) ) (Si+1

7 � Si7) ) each state
reachable from Si+1

7 is reachable from Si7 as well ) (Si+1
8 � Si8) ) each state that lies

on (or is reachable from) a cycle in Si+1
8 lies on (or is reachable from) a cycle in Si8 as

well ) (Si+2
6 � Si+1

6 ).

Theorem 1 (Termination). The DETECT-CYCLE algorithm terminates.

Proof: The termination of REACHABILITY and ELIMINATION follows from Lemma 5.
The termination of RESET is straightforward.

By Lemma 7, Si+1
6 � Si6 which together with Lemma 3 ensures that the condition

on line 5 eventually becomes false and DETECT-CYCLE terminates as well.

Theorem 2 (Completeness). If G contains a fair cycle reachable from the init state then
DETECT-CYCLE returns true .

Proof: Let C be a fair cycle in G and q a fair state that lies on the cycle C. We prove by
induction on i that q 2 Si6. For the base case i = 1 we argue that S1

6 is the set of states
reachable from init state and thus q 2 S1

6 .
Now let q 2 Si6. By Lemma 6, q 2 Si7. The state q as well as all the states reachable

from q belong to Si8. Namely, the whole cycle C belongs to Si8 and by Lemma 6 cycle
C belongs also to the set Si+1

6 .
Hence after executing the while loop the state q belongs to S, therefore Ssize > 0

(Lemma 3) and DETECT-CYCLE returns true.
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Theorem 3 (Soundness). If DETECT-CYCLE returns true , then G contains a fair cycle
reachable from the init state.

Proof: Let us suppose that DETECT-CYCLE terminates after k iterations of the while
cycle. Since the algorithm returns true , Ssize > 0, Sk6 = Sk�1

6 and Sk6 is nonempty
(Lemma 3 and 7).

Let us consider the decomposition of Sk6 into SCCs. Let C be the initial component.
We demonstrate that C is fair (that is, C contains a fair state and is nontrivial). This
implies the assertion of the theorem.

Let us suppose that C \ F = ;. The set Sk�1
8 contains only states reachable from

Sk�1
6 \ F = Sk6 \ F and because C is initial no state from C is in Sk�1

8 . Consequently
C is not contained in Sk6 (Lemma 6), a contradiction.

If the component C were trivial, it would be removed from the set Sk6 = Sk�1
6 by

the procedure ELIMINATION due to Lemma 6.

Theorem 4 (Complexity). The worst-case complexity of the algorithm DETECT-CYCLE is
O(h � (n+m)), where n is the number of states in G, m is the number of edges in G, and h is
the height of G.

Proof: The complexity of the procedure RESET is O(n). Both REACHABILITY and ELI-
MINATION procedures have complexity O(m) (Lemma 5). Thus it remains to show
that the while loop in DETECT-CYCLE can iterate at most h times.

For a graph H , let us denote by hu the length of the longest path in the quotient
graph of H starting in an initial unfair component (the unfair height of H). By induc-
tion on i we prove that the unfair height of G(S6

i ) is at most h � i + 1. The assertion
clearly holds for i = 1 as hu � h. For the induction step we note that by Lemma 6 in the
i-th iteration of the while cycle all initial unfair components of S6

i are removed from
S6
i . This claim together with the observations that all SCCs of S6

i+1 are also SCCs in
S6
i and the quotient graph of S6

i+1 is a subgraph of the quotient graph of S6
i guarantee

that the while loop in DETECT-CYCLE iterates at most h times.

3.2 Extraction of a Fair Cycle

In model checking applications a fair cycle corresponds to a counterexample (a trace
of a verified system which does not satisfy a given specification). The knowledge of a
counterexample helps developers to tune the system. Accordingly, the shortest coun-
terexamples are searched for.

In this section we present an algorithm, which complements DETECT-CYCLE and
for graphs with fair cycles returns a particular fair cycle. The algorithm for extrac-
tion of a fair cycle makes use of values stored in the boolean array inS computed by
DETECT-CYCLE. The set S (represented via inS ) initially contains all fair cycles.

The procedure EXTRACT-CYCLE searches the graph G from the initial state for
a fair state s from the set S. A nested search is initialised from s and an existence
of a cycle from s to s is checked. In the nested search only the graph G(S) induced
by S is searched. Moreover, every state, which has been completely searched by a
nested search without discovering a cycle can be safely removed from S. This ensures
that each state is visited in nested searches only once and the algorithm has linear
complexity.
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In both searches the graph is traversed in a breadth-first manner. Nevertheless,
the order in which states are visited is not important and this allows for an effective
distribution of the computation. The discovered cycle is output with the help of parent
values.

The great advantage of our approach is that due to the fact that the graph is
searched in a breadth-first fashion the counterexamples tend to be much shorter than
those generated by depth-first based algorithms (see Section 6).

Sequential algorithm for the extraction of a fair cycle

proc EXTRACT-CYCLE(G,F, init state, inS)
put init state into queue;
while cycle not found do

remove s from queue ;
if inS [s] ^ s 2 F then NESTEDBFS(s); fi
foreach (s, r) 2 E do

if parent [r] = nil then parent [r] := s;
put r in queue ; fi

od
od
while s 6= init state do output s; s := parent [s]; od

end

proc NESTEDBFS(s)
put s into queue2 ;
while cycle not found and queue2 not empty do

remove q from queue2 ;
foreach (q, r) 2 E do

if inS [r] ^ parent2 [r] = nil then parent2 [r] = q;
put r in queue2 fi

if r = s then cycle found;
r := parent2 [r];
while r 6= s do output r; r := parent2 [r]; od

fi
od
inS [q] := false;

od
end

Lemma 8 (Soundness). The sequence of states output by EXTRACT-CYCLE forms (in the
reverse order) a cycle containing a fair state followed by a path from the fair state to the initial
state.

Proof: Each state s visited in the while cycle of EXTRACT-CYCLE is reachable from the
init state and similarly each state r visited in NESTEDBFS(s) is reachable from s. Since
NESTEDBFS is initialised only from fair states, the lemma follows.

Lemma 9 (Completeness). The algorithm EXTRACT-CYCLE finds a fair cycle.

Proof: Let C be an initial component of the quotient graph of G(S), where S is the
set computed by DETECT-CYCLE(G,F, init state). In NESTEDBFS only the induced
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graph G(S) is searched and thus no state from C can be reached (and removed from
S) by NESTEDBFS initialised in a state outside C. By the proof of Theorem 3, the
component C is also fair. For that reason it must be the case that either a fair cycle
is found somewhere outside C or EXTRACT-CYCLE reaches a fair state s in C and
consequently NESTEDBFS(s) discovers a cycle from s to s.

Lemma 10 (Complexity). The complexity of EXTRACT-CYCLE is O(n+m).

Proof: The EXTRACT-CYCLE procedure visits each state only once. NESTEDBFS visits
only states in S and once a state is completely searched by NESTEDBFS it is removed
from S. Hence, NESTEDBFS visits each state at most once too.

4 Distributed Algorithm

Similar to other works devoted to the distributed model checking [6, 3, 8, 33, 4] we as-
sume the MIMD architecture of a network of workstations, which communicate via
message passing (no global information is directly accessible). All workstations exe-
cute the same program. One workstation is distinguished as a Manager and is respon-
sible for the initialisation of the computation, detection of the termination, and output
of results.

The set of states of the graph to be searched for fair cycles is partitioned into dis-
joint subsets. The partition is determined by the function Owner, which assigns every
state q to a workstation i. Each workstation is responsible for the graph induced by
the owned subset of states. The way how states are partitioned among workstations
is very important as it has a direct impact on the communication complexity and thus
on the runtime of the algorithm. We do not discuss it here because it is itself quite a
difficult problem, which moreover depends on a particular application.

4.1 Detection of a Fair Cycle

The procedures RESET, REACHABILITY, and ELIMINATION can be easily transformed
into distributed ones. Each workstation performs the computation on its part of the
graph. Whenever a state s belonging to a different workstation is reached, the work-
station sends an appropriate message to the Owner(s). All workstations periodically
read incoming messages and perform required commands (Serve messages).

Computations on particular workstations can be performed in parallel. However,
some synchronisation is unavoidable. All workstations perform the same procedure
(RESET, REACHABILITY, ELIMINATION, or COUNT-SIZE). As soon as a workstation
completes the procedure it sends a message to the Manager and becomes idle. When
all workstations are idle and there are no pending messages the Manager synchronises
all workstations and the computation continues.

The need of synchronisation after each procedure is the reason why we have cho-
sen the One Way Catch Them Young algorithm as a base for our explicit algorithm. The
analysis and experiments by Fisler at al. [16] indicates that this algorithm performs
less external iterations then for example the well-known Emerson-Lei algorithm2. The
number of external iteration determines the number of necessary synchronisations.

2 We note that some other algorithms studied by [16] perform even less external iterations.
These algorithms make use of the preimage computation (i.e. computation of predecessors),
which is usually not available in the explicit model checking.
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Distributed algorithm for fair cycle detection

proc DETECT-CYCLE(G,F, init state)
if init state is local then put init state into queue;

inS[init state] := true; fi
REACHABILITY;
while continue do

RESET;
REACHABILITY;
ELIMINATION;
COUNT-SIZE; od

if Manager then return (global Ssize > 0); fi
end

proc RESET

local Ssize := 0;
foreach q 2 V, q is local do
inS[q] := inS[q] ^ q 2 F ;
p[q] := 0;
if inS[q] then local Ssize := local Ssize+ 1;

put q in queue;
put q in L; fi

od
SYNCHRONIZATION;

end

proc REACHABILITY

while not finshed do
Serve messages;
if queue 6= ;

then remove q from queue;
foreach (q, r) 2 E do

if r is local then VISIT-STATE(r);
else send(Owner(r),”VISIT-STATE(r)”); fi

od
else SYNCHRONIZATION; fi

od
end

proc ELIMINATION

while not FINISHED do
Serve messages;
if L 6= ;

then remove q from L;
inS[q] := false; local Ssize := local Ssize� 1;
foreach (q, r) 2 E do

if r is local then ELIMINATE-STATE(r);
else send(Owner(r),”ELIMINATE-STATE(r)”); fi

od
else SYNCHRONIZATION; fi

od
end
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proc COUNT-SIZE

if Manager
then sum up local Ssize from all workstations;

if global Ssize = old global Ssize then send(all, stop);
else send(all, continue); fi

else send(Manager, local Ssize);
Wait for message;

fi
end

proc SYNCHRONIZATION

if Manager
then if all processes are idle and there are no pending messages

then send(all,finished)
else Wait for message;

fi
else send(Manager, I am idle)

Wait for message;
if message 6= finished then send(Manager, I am not idle) fi

fi
end

proc VISIT-STATE(r)
if :inS[r] then inS[r] := true;

local Ssize := local Ssize+ 1;
put r in queue; fi

if p[r] = 0 then remove r from L; fi
p[r] := p[r] + 1;

end

proc ELIMINATE-STATE(r)
p[r] := p[r]� 1;
if p[r] = 0 then put r to L; fi

end

The correctness proof is an analog to that for the sequential algorithm. In fact,
under a proper modification all lemmas and theorems from Section 3 hold for the
distributed algorithm as well.

The number of iterations of the while cycle in DETECT-CYCLE is bounded above
by the height of the quotient of G. The complexity of all procedures is linear with
respect to the size of the owned part of the graph.

4.2 Extraction of a Fair Cycle

The distributed counterpart of the procedure EXTRACT-CYCLE comes by in a similar
way as for DETECT-CYCLE. The basic traversal is executed in parallel. Whenever a
workstation finds a suitable candidate s for the nested traversal (that is, s 2 S \ F )
it sends it to the Manager. The Manager puts the incoming candidates into a queue
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and successively starts NESTEDBFS from them. The important point is that only one
NESTEDBFS can be performed at a time.

The termination detection of the NESTEDBFS in a case that it failed to find a cy-
cle is done in the same way as the detection of the end of procedures in distributed
DETECT-CYCLE.

Distributed algorithm for the extraction of a fair cycle

proc EXTRACT-CYCLE

if init state is local then put init state into queue; fi
while not (finished or cycle found do

Serve messages;
if queue 6= ;

then remove s from queue;
if inS[s] ^ s 2 F then send(Manager,NESTEDBFS candidate= s); fi
foreach (s, r) 2 E do

if r is local then VISIT1(r, s);
else send(Owner(r),VISIT1(r, s)); fi

od
fi

od
end

proc NESTEDBFS(s)
put s into queue;
while not (finshed or cycle found) do

Serve messages;
if queue 6= ;

then remove q from queue;
foreach (q, r) 2 E do

if r is local then VISIT2(r, q, s);
else send(Owner(r),VISIT2(r, q, s)); fi

od
inS[q] := false;

else SYNCHRONIZATION;
fi

od
end

proc VISIT1(r, s)
if parent[r] = nil then parent[r] := s;

put r in queue; fi
end

proc VISIT2(r, q, s)
if inS[r] ^ parent2[r] = nil then parent2[r] = q;

put r in queue2 fi
if r = s then send(all, cycle found);

PRINT-CYCLE(r, s) fi
end
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proc PRINT-CYCLE(at, start)
flag := cycle;
while not finished do

if at is local
then output at;

if at = start then send(all, (flag := way)); fi
if at = init state then send(all,finished); fi
if flag = cycle then at := parent2[at]; else at := parent[at]; fi
if at is not local then send(Owner(at), continue from at) fi

else Wait for message;
fi

od
end

The correctness of the distributed EXTRACT-CYCLE algorithm again follows from
that for the sequential one.

5 Modifications

In LTL model checking one often encounters not only Büchi automata for which the
non-emptiness problem directly corresponds to a detection of fair cycles, but also their
variants called weak and generalised Büchi automata and Streett automata. For these
automata the non-emptiness problem corresponds to a slightly different version of
the fair cycle detection problem. The advantage of the DETECT-CYCLE algorithm is
that it can be easily modified in order to solve these problems.

In this section we provide pseudocodes of set based algorithms for the modified
problems. The necessary modifications in both sequential and distributed explicit al-
gorithms straightforwardly reflect changes of the set based algorithm and we do not
state them.

5.1 Weak Graphs

We say that a graph G with a set F of fair states is weak if and only if each component
C in SCC decomposition of G is either fully contained in F (C � F ) or is disjoint with
F (C \ F = ;).

Our study of hierarchy of temporal properties [12] suggests that in many cases
the resulting graph is weak. Thus it is useful to develop specialised algorithms for
these graphs. Actually, Bloem, Ravi, and Somenzi [5] have already performed experi-
ments with specialised symbolic algorithms and state-of-the-art algorithms for gener-
ation of automaton for an LTL formula [32] include heuristics generating automaton
as “weak” as possible.

From the definition of weak graphs it follows that the set F is a union of some
SCCs. Thus a fair component exists if and only if some nontrivial component is con-
tained in F . These observations lead to the following algorithm:

proc WEAK-DETECT-CYCLE(G,F, init state)
S := Reachability(init state);
S := Elimination(S \ F );
return (S 6= ;);

end
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The algorithm WEAK-DETECT-CYCLEhas several advantages. At first, its complex-
ity of isO(n+m) which is asymptotically better than the complexity of DETECT-CYCLE
and is the same as the complexity of the NESTEDDFS algorithm. At second, in the
distributed environment, the specialised algorithm needs to synchronise only two
times. And finally, this algorithm is easier to implement and provide better possibili-
ties for heuristics and optimisations (especially in the distributed environment) than
the depth-search based ones.

Thus one can use the specialised algorithm profitably whenever it is possible. The
natural question is how expensive is to find out whether a graph is weak. In model
checking applications the graph to be searched for fair cycles is a product of a system
description (that is a graph without fair states) and a rather small graph expressing
a desired property of the system. The weakness of the graph is determined by the
property graph and hence it suffices to put the small graph to the weakness test.

5.2 Generalised Fair Condition

Generalised fair conditionF is a set fFig of fair sets. A cycle is fair in respect to a generalised
fair condition fFig if and only if for each fair set Fi there exists a state q on the cycle
such that q 2 Fi.

In model checking applications, algorithms translating an LTL formula into an
automaton usually end up with generalised fair conditions [18]. One can transform
(and model checker tools usually do so) the generalised condition into the ordinary
one through a “counter construction”. But the transformation increases the number of
states, which is highly undesirable. Therefore it is more favourable to test directly the
generalised condition.

The modification of the DETECT-CYCLE algorithm for generalised condition is
rather simple. It suffices to guarantee that states in S are reachable from all fair sets.

proc GENERALIZED-DETECT-CYCLE(G,F , init state)
S := Reachability(init state);
old := ;;
while (S 6= old) do

old := S;
foreach Fi 2 F do
S := Reachability(S \ Fi);

od
S := Elimination(S);

od
return (S 6= ;);

end

5.3 Streett Fair Condition

Streett fair condition F is a set of tuples f(Pi, Qi)g. A cycle C is fair in respect to a Streett
fair condition if and only if for each tuple (Pi, Qi) it holds C \ Pi 6= ; ) C \Qi 6= ;.

Streett fair condition is used to express strong fairness (compassion), that is, intu-
itively “if there is an infinite number of requests then there is an infinite number of
responses”. Strong fairness can be expressed in LTL and thus it is possible to use the
algorithm for (generalised) Büchi fair condition in order to check properties of system
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with strong fairness requirements. However, this approach leads to the blowup of the
size of formula automaton and thus it is more efficient to check the strong fairness
directly (see [26]).

The set based algorithm for the Street fair condition can be formulated as follows:

proc STREETT-DETECT-CYCLE(G,F , init state)
S := Reachability(init state);
old := ;;
while (S 6= old) do

old := S;
foreach (Pi, Qi) 2 F do
S := (S � Pi) [ Reachability(S \Qi);

od
S := Elimination(S);

od
return (S 6= ;);

end

For the proof of correctness see [26]. Corresponding modification of the explicit
algorithm is more technically involved though rather straightforward.

The important fact is that other algorithms like NESTEDDFS or algorithm pre-
sented in [8] cannot cope with generalised and Streett condition in such a simple way
(in fact the distributed algorithm from [8] cannot be directly modified to cope with
generalised and Streett fair cycles).

6 Experiments

We performed series of experiments in order to test the practical usefulness of the
proposed algorithm. In this section we mention representative results and discuss
conclusions we have drawn from the experiments.

The implementation has been done in C++ and the experiments have been per-
formed on a cluster of twelve 700 MHz Pentium PC Linux workstations with 384
Mbytes of RAM each interconnected with a fast 100Mbps Ethernet and using Message
Passing Interface (MPI) library. Reported runtimes are averaged over several execu-
tions.

6.1 Examples

Graphs for experiments were generated from a protocol and an LTL formula in ad-
vance and programs have been provided with an explicit representation of a graph.
This approach simplifies the implementation. However, as discussed later it has an
unpleasant impact on the scalability of the distributed algorithm.

For graphs generation a simple model-checking tool has been used allowing us to
generate graphs with approximately one million states. The algorithm was tested on
several classical model checking examples:

– Absence of a starvation for a simple mutual exclusion protocol and for the Peter-
son protocol (Mutex, Peterson ).
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– Safety property for the alternation bit protocol (ABP).
– Reply properties (with fairness) for a model of an elevator (Elevator1, Ele-

vator2 ).
– Safety and liveness properties for a token ring (Ring1, Ring2, Ring3, Ring4 ).
– Liveness property for the dining philosophers problem (Philosophers ).

6.2 General Observations

At first, we have compared the sequential version of our algorithm with the sequen-
tially optimal NESTEDDFS algorithm. We remind that from the theoretical point of
view our algorithm is asymptotically worse. Table 1 summarises experiments with
graphs without fair cycles and Table 2 covers experiments with graphs with fair cy-
cles.

System Algorithm Time (s) External
Size Iterations
Peterson NESTEDDFS 0.02
376 DETECT-CYCLE 0.06 18
ABP NESTEDDFS 0.22
7 286 DETECT-CYCLE 0.41 1
Ring1 NESTEDDFS 17.13
172 032 DETECT-CYCLE 7.61 1
Elevator2 NESTEDDFS 35.10
368 925 DETECT-CYCLE 55.76 30
Philosophers NESTEDDFS 72.68
608 185 DETECT-CYCLE 52.04 1

Table 1. Sequential experiments for graphs without fair cycles.

The following conclusions can be drawn from the experiments:

– The number of external iterations of DETECT-CYCLE is very small (less than 40)
even for large graphs. This observation is supported by experiments in [16] with
the symbolic implementation of the set-based algorithm. They obtained similar
results for hardware circuits problems.

– The complexity of DETECT-CYCLE is in practice nearly linear.
– The runtime of our algorithm is comparable to NESTEDDFS for correct specifica-

tions (graphs without fair cycles).
– In the case of an erroneous specification (graphs with fair cycles) the NESTEDDFS

algorithm is significantly faster because it is able to detect cycles “on-the-fly” with-
out traversing the whole graph.

– On the other hand, the counterexamples generated by DETECT-CYCLE are signif-
icantly shorter because of the breadth-first nature of the algorithm. This is practi-
cally very important feature as counterexamples consisting of several thousands
of states (as those generated by NESTEDDFS ) are quite useless.
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– The last observation compares the runtime of the first phase (cycle detection) to
the second phase (cycle extraction) of our algorithm. Evidently the time needed
for the second phase is significantly shorter than that for the first phase. Thus
potential optimisations, heuristics, etc. of the algorithms should be directed at the
first phase.

System Algorithm Time (s) Extract External Fair cycle
Size time (s) Iterations Prefix Loop
Mutex NESTEDDFS 0.01 76 3
232 DETECT-CYCLE 0.02 0.01 2 2 2
Ring3 NESTEDDFS 2.70 14420 3
389 542 DETECT-CYCLE 29.07 1.17 2 28 23
Elevator1 NESTEDDFS 7.28 304 76
683 548 DETECT-CYCLE 99.43 1.80 8 20 22
Ring2 NESTEDDFS 12.82 2754 363
1 027 394 DETECT-CYCLE 305.51 11.31 40 52 14

Table 2. Sequential experiments for graphs with a fair cycle. The column Time gives the overall
time, Extract time is the time needed for the extraction of the cycle.

6.3 Distributed Tests

We note that experiments concerning the distributed version are only preliminary
since the current implementation is straightforward and is far from being optimal. For
example, it suffers from problems with load-balancing. The only optimisation that we
have used is the reduction of communication by packing several messages into one.

We have compared our algorithm to the distributed version of NESTEDDFS where
only one processor, namely the one owning the actual state in the depth-first search,
is executing the search at a time. The network is in fact running the sequential algo-
rithm with extended memory. The runtime of NESTEDDFS increases with the number
of workstations thanks to the additional communication. On the other hand, our algo-
rithm can take advantage of more workstations since it exploits parallelism. Hence in
the distributed environment our algorithm convincingly outperforms NESTEDDFS.

The current implementation of DETECT-CYCLE algorithm is not optimised and
does not scale ideally. We identify two main reasons. The first one is the straight-
forwardness of our implementation. The second, more involved reason, is based on
fact that in our experiments we use pre-generated graphs, which however are not too
large in comparison to the memory capacity of the NOW. Consequently the local com-
putations are very fast and the slow communication has high impact on the overall
runtime. We infer, in a similar way as [6], that if the algorithm computed the graph on-
the-fly from the specification language then the communication and synchronisation
would have smaller impact on the runtime and the algorithm would achieve better
speedup. To support this explanation we have measured besides the real time taken
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Fig. 1. Comparison of distributed NESTEDDFS and DETECT-CYCLE. The system Ring4 cannot
be handled by one computer.
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by the computation also the CPU time consumed by particular workstations. Fig. 2
resumes the results. The numbers indicate that the time taken by a local computation
(CPU time) really scales well.

We have also implemented the distributed WEAK-DETECT-CYCLE algorithm and
performed a comparison of the general and the specialised algorithm on weak graphs.
Fig. 3 indicates that the use of specialised algorithm can yield a considerable improve-
ment.
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Fig. 2. Dependency of the runtime on the number of workstations. Figure shows the difference
between real time taken by the program and the average CPU time used by a workstation.

7 Conclusions & Future Work

In this paper, we presented a new distributed algorithm for fair cycle detection prob-
lem. The demand for such an algorithm becomes visible especially referring to automata-
based LTL model checking. This verification method suffers from the state explosion.
Distributed model checking allows to cope with the state explosion by reason of allo-
cation of the state space to several workstations in a network.

Our distributed algorithm comes out from a set-based algorithm, which searches
the state space in a breadth-first search manner, which makes a distribution possible.
On the other hand, the state space is represented explicitly and thus can be partitioned
very naturally. The algorithm is compatible with other state space saving methods,
namely with static partial order reduction. It aims not to replace but to complement
the classical nested depth-first search algorithm used in explicit LTL model checkers
as it demonstrates its efficiency especially in cases when the searched space does not
contain any fair cycle.
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Fig. 3. DETECT-CYCLE and WEAK-DETECT-CYCLE on weak graphs.

We have implemented our approach within an experimental platform. We found
out that the complexity of our algorithm is nearly linear. The runtime of the sequential
DETECT-CYCLE algorithm is comparable to that of NESTEDDFS on correct specifica-
tions. For an erroneous specifications counterexamples generated by our algorithm
tend to be significantly shorter. The distributed DETECT-CYCLE algorithm is notewor-
thy faster than the distributed implementation of NESTEDDFS for all types of graphs.
In the future we plan to implement our approach to an existing tool and to compare
its efficiency with other distributed LTL model checking algorithms ([1, 8]).

There are several alternatives to One Way Catch Them Young in the literature, for
excellent reviews see [30, 16]. The natural question thus is whether similar distributed
algorithms for fair cycle detection as the one we have proposed can be build upon
other symbolic algorithms for cycle detection.
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