
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Using Assumptions to Distribute CTL Model
Checking

by

Luboš Brim
Jitka Crhová
Karen Yorav

FI MU Report Series FIMU-RS-2002-08

Copyright c© 2002, FI MU October 2002

Using Assumptions to Distribute
CTL Model Checking∗

Luboš Brim1, Jitka Crhová1 and Karen Yorav2

1Faculty of Informatics, Masaryk University, Brno, Czech Republic

2Technion, Haifa, Israel and Carnegie Mellon University, Pittsburgh, USA

Abstract

In this work we discuss the problem of performing distributed
CTL model checking by splitting the given state space into several
“partial state spaces”. The partial state space is modelled as a Kripke
structure with border states. Each computer involved in the distri-
buted computation owns a partial state space and performs a model
checking algorithm on this incomplete structure. To be able to pro-
ceed, the border states are augmented by assumptions about the truth
of formulas and the computers exchange assumptions about relevant
states as they compute more precise information. In the paper we give
the basic definitions and present the distributed algorithm.

1 Introduction

The main aim in exploiting a distributed environment for model check-
ing is to extend the applicability of model checking algorithms to larger
and more complex systems. Many “sequential” approaches have been pro-
posed to deal with large state spaces, e.g. partial-order methods, symbolic
verification, abstractions, and partial state space reasoning. Often these ap-
proaches do not suffice – time or space resources can still significantly limit
the practical applicability. A parallel super computer, grid or a network
of computers can provide extra resources needed to fight more realistic
verification problems. Here we consider a cheap variant – a network of
workstations that communicate via message passing.
∗Research supported by the Grant Agency of Czech Republic grant No. 201/00/1023

and by Ministry of Education grant FRVŠ No. B598/G4/2002

1

The important feature of algorithms running in a distributed environ-
ment is to solve the given task by distributing the data among the par-
ticipating workstations with as small amount of coordination as possible.
One of the main issues in distributing model checking algorithms is how
to partition the state space (data) among the individual computers called
here network nodes. There are two aspects that significantly influence the
overall effectiveness of model-checking in the distributed environment: lo-
cality and (spatial) balance of the state space partition. Locality means that
most of the state’s descendants are assigned to the same node as the parent
state, thus reducing communication and cooperation overhead. Balance
means that each network node is assigned approximately the same num-
ber of states, thus achieving good speed-up.

The main idea of many distributed algorithms is similar: the state graph
is partitioned among the network nodes, i.e., each network node owns a
subset of the state space. The differences are in the way the state space
is partitioned (partition function). Probabilistic techniques to partition the
state space have been used e.g. in [LS99, UD97, BBS01], and a technique
which exploits some structural properties derived from the verified for-
mula has been proposed in[BBv02].

The model checking algorithm running on each network node has thus
access only to a part of the entire system. Depending on the type of the al-
gorithm it communicates with other nodes to achieve the required (global)
result.

Laster (Yorav) and Grumberg [LG98, Yor00] have developed an ap-
proach to model checking of software which uses modularity. Their notion
of a module differs from that used in modular model checking as under-
stood for example in [KV00, KV97, BCC97, Tsa00]. A module here is not a
part of a whole system that runs in parallel with other modules (i.e. that
contributes to the whole system in a multiplicative way), but a subset of a
state space that originates from splitting the whole system in an additive
way. It is defined by following the syntactical structure of the program.
This notion of module has also been used in [PAM00], where the system is
splitted according to the semantics of the program.

Besides this partition, the authors in [LG98, Yor00] have also defined the
notion of an assumption function that represents partial knowledge about
truth of formulas provided by the rest of the system (by other parts).

In this contribution we propose a technique that explores the possibility
to extend the approach of Laster and Grumberg to partitions not necessar-
ily resulting from the syntactical structure of the program, allowing thus
a distributed model checking. Furthermore, we have modified the model

2

checking algorithm in such a way that it can be run in a distributed envi-
ronment.

The main ideas are similar to the ideas introduced by Laster and Grum-
berg. Once the system is partitioned, the Kripke structure on each network
node can contain states that represent “border” states, which are those
states that in fact belong to some other network node. Whenever the model
checking algorithm reaches a border state it uses information provided by
other network nodes about the truth of formulas in that state – assump-
tions. As the assumptions can change, a re-computation is necessary in
general. There are several scenarios how to reduce the amount of required
re-computations. In all cases we have also to take into account the associ-
ated communication complexity.

2 CTL Semantics under Assumptions

Our aim is to perform a model checking algorithm on a cluster of n work-
stations, called (network) nodes. In addition to the sequential case a partition
function f is used to partition the state space among the nodes. After par-
titioning the state space, each node owns a part of the original state space.
For each state s the value f(s) is the identifier of the node the state belongs
to. For simplicity we use natural numbers to identify nodes.

We model the state space owned by one network node as a Kripke struc-
ture with border states. Intuitively, border states are states that in fact belong
to other nodes and within the Kripke structure they represent the missing
parts of the state space.

Definition 1 A Kripke structure is a tuple M = (S,R, I) where S is a finite set
of states, R ⊆ S × S is a transition relation and I ⊆ S is a set of initial states.
The set of border states is border(M) = {s ∈ S | ¬∃s′.(s, s′) ∈ R}.

A Kripke structure M is called total if border(M) = ∅. We suppose that
the whole system under consideration is modelled as a total Kripke struc-
ture M with the set I of initial states containing one initial state ŝ. Once the
given system is partitioned, the resulting Kripke structures K1, . . . ,Kn do
not need to be total. In section 3 we describe a particular technique of trans-
forming M into the parts K1, . . . ,Kn. Kripke structures resulting from the
given Kripke structure by partitioning it are called fragments. A fragment
M1 of M is a substructure of M satisfying the property that every state in
M1 has either no successor in M1 or it has exactly the same successors as in
M .

3

A path π in a Kripke structure M from a state s0 is a sequence π =
s0s1 . . . such that ∀i ≥ 0 : si ∈ S and (si, si+1) ∈ R. A maximal path is a
paths that is either infinite or ends in a border state. For a maximal path
we denote by |π| the length of the path. In case the path is infinite we put
|π| =∞.

Definition 2 A Kripke structure M1 = (S1, R1, I1) is a fragment of a Kripke
structure M = (S,R, I) iff

1. S1 ⊆ S,

2. R1 ⊆ R

3. I1 = I ∩ S1

4. ∀(s1, s2) ∈ R : if s1 ∈ S1, then either (s1, s2) ∈ R1 or s1 ∈ border(M1).

In this paper we consider a state based branching time temporal logic
CTL.

Definition 3 The language of CTL is defined by the following abstract syntax:

ϕ ::= Q | ¬ϕ | ϕ1 ∧ ϕ2 | AXϕ | EXϕ | A(ϕ1 Uϕ2) | E(ϕ1 Uϕ2)

where Q ranges over atomic propositions taken from a set AP .

Let ϕ be a CTL formula. We denote by cl(ϕ) the set of all subformulas of
ϕ and by tcl(ϕ) the set of all subformulas of ϕ of the form EXϕ,E(ϕ1 Uϕ2),
AXϕor A(ϕ1 Uϕ2).

To define the semantics of CTL formulas over Kripke structures with
border states we need to adapt the standard semantic definition. CTL is
usually interpreted over total structures, while our structures are typically
non-total. Furthermore, we need to define the notion of the truth under
assumptions associated with border states. Here we use a modification of
the notion of the truth under assumptions as defined in [LG98].

Definition 4 An assumption function for a Kripke structure M = (S,R, I)
and a CTL formula ψ is a partial function A : S × cl(ψ)→ Bool.

We use the notation A(s, ϕ) =⊥ to say that the value of A(s, ϕ) is un-
defined. ByA⊥ we denote the assumption function which is undefined for
all inputs. Intuitively, A(s, ϕ) = true if we can assume that ϕ holds in the
state s, A(s, ϕ) = false if we can assume that ϕ does not hold in the state s,

4

and A(s, ϕ) =⊥ if we cannot assume anything. Let us denote by ASM the
set of all assumption functions for the Kripke structure M and the formula
ψ.

Definition 5 Let M = (S,R, I) be a Kripke structure, L : AP → 2S a valu-
ation assigning to each atomic proposition a set of states, and ψ a formula. We
define the function CM : ASM → ASM . For Ain ∈ ASM let A = CM (Ain).
Then A is defined inductively as follows:

1. Propositional operators (ϕ /∈ tcl(ψ)):

• A(s, p) =

{
true if s ∈ L(p)
false otherwise

• A(s, ϕ1 ∧ ϕ2) =

 true if A(s, ϕ1) = true and A(s, ϕ2) = true
false if A(s, ϕ1) = false or A(s, ϕ2) = false
⊥ otherwise

• A(s,¬ϕ1) =

 true if A(s, ϕ1) = false
false if A(s, ϕ1) = true
⊥ otherwise

2. Temporal operators (ϕ ∈ tcl(ψ)):
a. if s ∈ border(M) then A(s, ϕ) = Ain(s, ϕ)
b. if s /∈ border(M) then A(s, ϕ) is defined as follows:

• A(s,AXϕ1) =

 true if ∀s′ ∈ S : (s, s′) ∈ R⇒ A(s′, ϕ1) = true
false if ∃s′ ∈ S : (s, s′) ∈ R ∧ A(s′, ϕ1) = false
⊥ otherwise

• A(s,EXϕ1) =

 true if ∃s′ ∈ S : (s, s′) ∈ R ∧ A(s′, ϕ1) = true
false if ∀s′ ∈ S : (s, s′) ∈ R⇒ A(s′, ϕ1) = false
⊥ otherwise

• A(s,A(ϕ1 Uϕ2)) =



true if for all paths π = s0s1s2 . . . with s = s0

there exists an index x < |π| such that:
[either A(sx, ϕ2) = true

or (sx ∈ border(M)
and Ain(sx,A(ϕ1 Uϕ2)) = true)],

and ∀y : 0 ≤ y < x : A(sy, ϕ1) = true
false if there exists a path π = s0s1s2 . . . with

s = s0 such that either ∃x < |π| such that
(A(sx, ϕ1) = false and

∀y ≤ x : A(sy, ϕ2) = false)
or ∀x < |π| : (A(sx, ϕ2) = false and
(|π| =∞
or Ain(s|π|−1,A(ϕ1 Uϕ2)) = false))

⊥ otherwise

5

• A(s,E(ϕ1 Uϕ2)) =



true if there exists a path π = s0s1s2 . . . with
s = s0 such that ∃x < |π| such that
(either A(sx, ϕ2) = true
or (sx ∈ border(M) and

A(sx,E(ϕ1 Uϕ2)) = true)),
and ∀0 ≤ y < x : A(sy, ϕ1) = true

false if for all paths π = s0s1s2 . . . with s = s0

either ∃x < |π| such that
(A(sx, ϕ1) = false and

∀y ≤ x : A(sy, ϕ2) = false)
or ∀x < |π| : (A(sx, ϕ2) = false and
(|π| =∞
or Ain(s|π|−1,E(ϕ1 Uϕ2)) = false))

⊥ otherwise

For a given assumption function A we define the standard notion of
truth s |=M ψ as CM (A)(s, ψ). The truth of a formula in a state is thus
relative to given assumptions.

Notice that a value of an assumption function Ain(s, ϕ) for a state s 6∈
border(M) does not influence the value CM (Ain). Hence, the truth under
assumptions relates to the standard notion of the truth over total Kripke
structures in the following way.

Proposition 1 For any total Kripke structure M , valuation L, CTL formula ψ
and an assumption function Ain ∈ ASM

s |=M ψ iff CM (Ain)(s, ψ) = true

Notice that the truth of a formula in a state s /∈ border(M) depends on
the assumtpion function.

An important feature of the the semantic function CM is that assump-
tions are preserved for fragments.

Definition 6 Let M = (S,R, I) be a Kripke structure, Ain,A ∈ ASM , ψ a CTL
formula. We say that A is correct for a state s ∈ S and a formula ϕ ∈ cl(ψ)
(w.r.t. M and Ain) iff

A(s, ϕ) = CM (Ain)(s, ϕ)

We say thatA is correct for a state s ∈ S (w.r.t. M andAin) if for every ϕ ∈ cl(ψ)
it is correct for s and ϕ.

Lemma 1 Let M = (S,R, I) be a Kripke structure, M1 = (S1, R1, I1) its frag-
ment, and Ain,A1 ∈ ASM . If A1 is correct for every s ∈ border(M1) (w.r.t. M
and Ain) then CM1(A1) is correct for every s ∈ S1.

6

Proof: Let s ∈ S1, ϕ ∈ cl(ψ). We want to prove that CM1(A1)(s, ϕ) =
CM (Ain)(s, ϕ). The proof is by induction on the structure of the formula
ϕ.

For ϕ 6∈ tcl(ψ) it trivially holds that CM1(A1)(s, ϕ) = CM (Ain)(s, ϕ), as
the definition of C depends only on a state and a formula, i.e. it does not
involve neither an assumption function nor transitions of the system.

For ϕ ∈ tcl(ψ) and s ∈ border(M1) we have that CM1(A1)(s, ϕ) =
A1(s, ϕ) from the definition of C and A1(s, ϕ) = CM (Ain)(s, ϕ) from the
correctness of A1.

Let now ϕ ∈ tcl(ψ) and s 6∈ border(M1). We show only the proofs for
EXϕ and E(ϕ1 Uϕ2), the proofs for AXϕ and A(ϕ1 Uϕ2) are dual. We show
that CM1(A1)(s, ϕ) = true ⇔ CM (Ain)(s, ϕ) = true. Using dual arguments
it can be proved that CM1(A1)(s, ϕ) = false ⇔ CM (Ain)(s, ϕ) = false,
concluding that CM1(A1)(s, ϕ) = CM (Ain)(s, ϕ).

• Let ϕ = EXϕ1. From the definition of semantics of EXϕ1 it holds that
CM1(A1)(s, ϕ) = true iff

∃s′ ∈ S1 : (s, s′) ∈ R1 ∧ CM1(A1)(s′, ϕ1) = true

This is equivalent to

∃s′ ∈ S : (s, s′) ∈ R ∧ CM1(A1)(s′, ϕ1) = true

The implication from left to right follows from the facts that S1 ⊆ S

and R1 ⊆ R. The reverse implication follows from the fact that
(s, s′) ∈ R ∧ s ∈ S1 \ border(M1) implies (s, s′) ∈ R1 (meaning also
s′ ∈ S1).

We can apply induction hypothesis to get that the above property is
equivalent to

∃s′ ∈ S : (s, s′) ∈ R ∧ CM (Ain)(s′, ϕ1) = true

which is equivalent to CM (Ain)(s, ϕ) = true.

• Let ϕ = E(ϕ1 Uϕ2)

- First we prove the implication that CM1(A1)(s, ϕ) = true ⇒
CM (Ain)(s, ϕ) = true. From the definition, CM1(A1)(s, ϕ) = true
iff there exists a path π = s0s1s2 . . .with s0 = s inM1 and x < |π|
so that either CM1(A1)(sx, ϕ2) = true or (sx ∈ border(M) ∧

7

A1(sx, ϕ) = true), and ∀0 ≤ y < x : CM1(A1)(sy, ϕ1) = true.
Since S1 ⊆ S and R1 ⊆ R, π is also a path in M . From induction
hypothesis and correctness ofA1 the above property implies that
there exists a path π = s0s1s2 . . . with s0 = s in M and x <

|π| so that either CM (Ain)(sx, ϕ2) = true or CM (Ain)(sx, ϕ) =
true, and ∀0 ≤ y < x : CM (Ain)(sy, ϕ1) = true. This implies
that CM (Ain)(s,E(ϕ1U(ϕ2 ∨ E(ϕ1 Uϕ2)))) = true, which implies
CM (Ain)(s,E(ϕ1 Uϕ2)) = true.

- Second we prove the implication that CM (Ain)(s, ϕ) = true ⇒
CM1(A1)(s, ϕ) = true. From the definition, CM (Ain)(s, ϕ) = true
iff there exists a path π = s0s1s2 . . . in M with s0 = s and x < |π|
so that either CM (Ain)(sx, ϕ2) = true or (sx ∈ border(M) ∧
Ain(sx, ϕ) = true), and ∀0 ≤ y < x : CM (Ain)(sy, ϕ1) = true.
There are two possibilites here:

∗ For every k ≤ x : sk ∈ S1\border(M1). That means that also
every edge in π belongs to R1, so π is a path in M1. We also
know that S1 ∩ border(M) ⊆ border(M1) (because R1 ⊆
R), which implies that sx 6∈ border(M). From induction
hypothesis we have that there exists a path π = s0s1s2 . . .

with s0 = s inM1 and x < |π| so that CM1(A1)(sx, ϕ2) = true
and ∀0 ≤ y < x : CM1(A1)(sy, ϕ1) = true, which implies
CM1(A1)(s, ϕ) = true.
∗ There exists a state sk 6∈ S1 \ border(M1) for k ∈ {1, . . . , x}.

Let k is the smallest number satisfying this condition. It
holds that (sk−1, sk) ∈ R and sk−1 ∈ S1 \ border(M1). That
implies that (sk−1, sk) ∈ R1, so sk ∈ border(M1). We have
that CM (Ain)(sk, ϕ) = true and ∀y < k : CM (Ain)(sy, ϕ1) =
true. From correctness of A1 and induction hypothesis we
get that CM1(A1)(sk, ϕ) = true and ∀y < k : CM1(A1)(sy, ϕ1) =
true, which implies that CM1(A1)(s, ϕ) = true.

3 Distributed CTL Model Checking Algorithm

In this section we describe the algorithm for distributed CTL model check-
ing. The algorithm first partitions the given state space (Kripke structure)
among the participating network nodes.

Definition 7 Let M = (S,R, I) be a Kripke structure, T ⊆ S. We define the

8

Kripke structure FragmentM (T) = (ST , RT , IT) as follows:

1. ST = {s ∈ S | s ∈ T ∨ ∃s′ ∈ T s.t. (s′, s) ∈ R}

2. RT = {(s1, s2) ∈ R | s1 ∈ T, s2 ∈ ST }

3. IT = {s ∈ ST | s ∈ I}

The states from T are called original, the states from ST \ T are called subse-
quent in FragmentM (T).

The structure FragmentM (T) contains the states from T and all its (im-
mediate) successors, and all transitions from states in T . Initial states are
those which are initial in M .

Lemma 2 LetM = (S,R, I) be a Kripke structure, T ⊆ S. ThenFragmentM (T)
is a fragment of M .

Proof: Let FragmentM (T) = (ST , RT , IT). It is obvious that ST ⊆ S and
RT ⊆ R and IT = ST ∩ I . Let (s1, s2) ∈ R, s1 ∈ ST . If s1 is orig-
inal in FragmentM (T), then s2 ∈ ST , which implies (s1, s2) ∈ RT . If
s1 is a subseqent state then for no s ∈ ST holds that (s1, s) ∈ RT so
s1 ∈ border(FragmentM (T)).

The result of splitting the given state space is a collection of fragments
called a partitioning.

Definition 8 Let M = (S,R, I) be a Kripke structure and f : S → {1, . . . , n}
a total function (partition function). A partitioning of M w.r.t. f is a tuple
Kf
M = (K1, . . . ,Kn) such that ∀i ∈ {1, . . . , n} : Ki = FragmentM ({s ∈ S |

f(s) = i}).

Figure 1 shows an example of a system and its partitioning for a parti-
tion function f : {s1, . . . , s6} → {1, 2, 3}, f(s1) = f(s2) = 1, f(s3) = f(s4) =
2, f(s5) = f(s6) = 3. Border states are marked with dotted circles.

In model checking we are interested in answering the question whether
M, ŝ |= ψ. Due to Proposition 1 this is equivalently expressed as
CM (A⊥)(ŝ, ψ) = true. Therefore we can answer the model checking ques-
tion by computing the assumption function CM (A⊥) and return its value
on the input (ŝ, ψ). To be able to distribute the computatiton of CM (A⊥),
we (iteratively) compute assumption functions that are defined on parts of

9

the system M only. We exploit Lemma 1 that ensures us that results of
these assumption functions equal those of assumption function CM (A⊥).

Let us fix a total Kripke structure M = (S,R, I) , a CTL formula ψ, and
a (partition) function f : S → {1, . . . , n} as inputs of the algorithm. More-
over, let us denote by Kf

M = (K1, . . . ,Kn) the corresponding partitioning
and let Ki = (Si, Ri, Ii) for all i ∈ {1, . . . , n}.

III.II.I.

III.

II.

I.
s1

s1 s2 s3 s4 s5

s6

s2 s3

s2 s3 s4 s5

s6

s3 s5

s6

Figure 1: Fragments

The distributed algorithm uses a procedure for computing the function
C on each fragment Ki. We consider a modification of an explicit state
CTL model checking algorithm (see [CGP99]), but other model checking
algorithms can be adapted as well, in particular symbolic algorithms. In-
tuitively, the node algorithm performs standard model checking, but is able
to cope with “undefined values” as well. Moreover, it computes both the
positive and negative results, i.e., if a state s has a successor in which ϕ

is true, it can be concluded both that s satisfies EXϕ and that it does not
satisfy AX¬ϕ, even when the validity of ϕ in other successors of s is unde-
fined yet. The pseudocode of the explicit state node algorithm is given in the
Figure 2.

The main idea of the distributed algorithm is the following. Each frag-
ment Ki is managed by a separate process Pi. These processes are running
in parallel on each network node.

Each process Pi initializes the assumption function Ai to the undefined
assumption function A⊥. After initalization it computes (using the node
algorithm) the function CM (Ai). Then it sends the results to each process
P that may be interested in them (i.e., it sends the part of the assumption
function for P ’s border states) and receives similar information from the

10

proc Basic Node Algorithm
{Let cl(ψ) = {ϕ1, . . . , ϕz} such that ϕi ∈ cl(ϕj)⇒ i ≤ j; }
for i := 1 to z step 1 do

begin
case ϕi of
• ϕi = p, p ∈ AP :

forall s ∈ S do
if ϕ ∈ L(s) then A(s, ϕ) := true else A(s, ϕ) := false od

• ϕi = ϕ1 ∧ ϕ2 :
forall s ∈ S do

if A(s, ϕ1) = true and A(s, ϕ2) = true then A(s, ϕi) := true;
if A(s, ϕ1) = false or A(s, ϕ2) = false then A(s, ϕi) := false od

• ϕi = ¬ϕ1 :
forall s ∈ S do if A(s, ϕ1) 6=⊥ then A(s, ϕi) := ¬A(s, ϕ1) od
• ϕi ∈ tcl(ψ) :

forall s ∈ border(M) do A(s, ϕi) := Ain(s, ϕi) od;
case ϕi of
• ϕi = EXϕ1 :

forall s ∈ S \ border(M) do
if ∃s′ ∈ S : (sj, s

′) ∈ R and A(s′, ϕ1) = true then A(sj, ϕi) := true;
if ∀s′ ∈ S : (s, s′) ∈ R⇒ A(s′, ϕ1) = false then A(s, ϕi) := false od

• ϕi = AXϕ1 :
forall s ∈ S \ border(M) do

if ∃s′ ∈ S : (s, s′) ∈ R and A(s′, ϕ1) = false then A(s, ϕi) := false;
if ∀s′ ∈ S : (s, s′) ∈ R⇒ A(s′, ϕ1) = true then A(s, ϕi) := true od

• ϕi = E(ϕ1 Uϕ2) :
forall s ∈ S do if A(s, ϕ2) = true then A(s, ϕi) := true od;
while ∃s ∈ S : A(s, ϕi) 6= true and A(s, ϕ1) = true and

(∃s′ ∈ S : (s, s′) ∈ R and A(s′, ϕi) = true) do A(s, ϕi) := true od
forall s ∈ S do if A(s, ϕi) =⊥ and A(s, ϕ2) = false

then A(s, ϕi) := false od;
while ∃s ∈ S : A(s, ϕi) = false and A(s, ϕ1) 6= false and

(∃s′ ∈ S : (s, s′) ∈ R and A(s′, ϕi) 6= false) do A(s, ϕi) :=⊥ od
• ϕi = A(ϕ1 Uϕ2) :

forall s ∈ S do if A(s, ϕ2) = true then A(s, ϕi) := true od;
while ∃s ∈ S : A(s, ϕi) 6= true and A(s, ϕ1) = true and

(∀s′ ∈ S : (s, s′) ∈ R⇒ A(s′, ϕi) = true) do A(s, ϕi) := true od;
forall s ∈ S do if A(s, ϕi) =⊥ and A(s, ϕ2) = false

then A(s, ϕi) := false od;
while ∃s ∈ S : A(s, ϕi) = false and A(s, ϕ1) 6= false and

(∀s′ ∈ S : (s, s′) ∈ R⇒ A(s′, ϕi) 6= false) do A(s, ϕi) :=⊥ od
esac

esac
end od

end

Figure 2: Modified model checking algorithm – “Node Algorithm”11

other processes. These steps are repeated until a fixpoint is reached (“global”
stabilisation occurs), i.e. until no new information can be computed.

After stabilisation there still may remain a state s and a formula ϕ for
which Ai(s, ϕ) =⊥. This can happen in the case of the U operator.

A possible situation is exemplified in Figure 3. The state space has three
states S = {s1, s2, s3} equally distributed on the three network nodes. Sup-
pose the valuation is such that L(p) = S and L(q) = ∅. If we want to model
check the formula ϕ = A(pUq) then each node algorithm reaches fixpoint
with value of ϕ being undefined in the border state.

III.

II.I.

I.

III.

II.

s1

s1

s2 s3

s1

s2

s2

s2

s3

Figure 3: Undefined assumptions

However, if the truth of all subformulas of ϕ has already been com-
puted in all states in all nodes, then from the fact that the fixpoint has been
reached we can conclude that ϕ does not hold in s. Therefore all processes
extrapolate this information and continue to compute.

The described computation is repeated until the information we are
searching for is fully computed. The main idea of the distributed algorithm
is summarised in Figure 4.

We now elaborate the distributed algorithm so as to be able to argue
about the correctness of the algorithm. The detailed pseudocode is given
in Figure 5.

Notice that there are two main stages in the execution of algorithm. In
the first stage the processes repeatedly compute information about truth
of formulas and send and receive computed information to and from other
processes, respectively. This stage finishes when a fixpoint is reached. Then
the second stage is performed, when each process extrapolates information,
using the fact that the fixpoint has been reached. These two stages are per-
formed repeatedly until the information we search for is computed. Let
us denote the beginning of the first and second stage point I and II, respec-

12

proc Distributed Algorithm (input: total KS M,ψ, f ; output: Af(ŝ)(ŝ, ψ))
Split M into Ki;
forall i ∈ {1, . . . , n} do in parallel {for all Ki}

Take the initial assumption function;
repeat

repeat
Compute all you can;
Send relevant information to other nodes;
Receive relevant information from other nodes;

until all processes reach fixpoint;
Extrapolate additional information;

until all is computed;
Return result for the initial state ŝ;

od
end

Figure 4: Main Idea of the Distributed Algorithm

tively, as marked in the algorithm. The algorithm is at point II exactly when
the fixpoint is reached. There is no synchronization on the beginning of the
first stage, but without loss of generality we can assume that all processes
start the first stage at the same time.

For each state and each formula we want to say if its value has already
been computed or not. We consider a value for a state and a formula com-
puted if an appropriate value of Ai has already been defined for some i.
Let us denote Def the set of all tuples from S×cl(ψ) that have already been
computed in this sense, and Undef its complement. Formally,

Def = {(s, ϕ) ∈ S × cl(ψ) | ∃i ∈ {1, . . . , n} : Ai(s, ϕ) 6=⊥}

Undef is the complement of Def in S × cl(ψ).
Now, let us define an ordering ≤ on S × cl(ψ). It formalises the notion

of a tuple that is minimal in Undef .

Definition 9 Let s1, s2 ∈ S,ϕ1, ϕ2 ∈ cl(ψ). Then

(s1, ϕ1) ≤ (s2, ϕ2)⇔ ϕ1 ∈ cl(ϕ2)

The fact that a fixpoint has been reached cannot be detected locally.
However, by employing an additional communication between computers
we are able to determine it.

13

1 proc
2 Split M into Ki;
3 forall i ∈ {1, . . . , n} do in parallel
4 {Process Pi}
5 Ai := A⊥;
6 repeat
7 {stage I:}
8 repeat
9 A′i := CKi(Ai)

10 forall ϕ ∈ tcl(ψ), s ∈ Si : s is original in Ki and subsequent in Kj
11 do if A′i(s, ϕ) 6=⊥ and Ai(s, ϕ) =⊥
12 then send A′i(s, ϕ) to the process Pj
13 od;
14 forall received Aj(s, ϕ) do A′i(s, ϕ) := Aj(s, ϕ) od;
15 Ai := A′i
16 until all processes reach fixpoint;
17 {stage II:}
18 forall ϕ ∈ {E(ϕ1 Uϕ2),A(ϕ1 Uϕ2)}, s ∈ border(Ki) do
19 if (s, ϕ) is minimal in Undef then Ai(s, ϕ) = false od
20 until Ai(s, ϕ) 6=⊥, ∀ϕ ∈ cl(ψ), ∀s ∈ Si)
21 od;
22 return Af(ŝ)(ŝ, ψ)
23 end

Figure 5: Distributed algorithm

An additional communication between processes is also needed to find
out what tuples (s, ϕ) are minimal in Undef (line 19). Suppose a fixpoint
has been reached. Each process Pi computes a set LocalyMinimali of tuples
that are minimal in the set for which Ai is undefined. When finished, it
sends the set LocalyMinimalFormulasi = {ϕ ∈ {A(ϕ1 Uϕ2),E(ϕ1 Uϕ2)} |
∃s ∈ Si : (s, ϕ) ∈ LocalyMinimal i} to every other process and receives
similar information from other processes. Using this information, each pro-
cess is able to determine what tuples from LocalyMinimali are minimal in
Undef . (Notice that if a tuple is not in LocalyMinimali, then it cannot be
minimal in Undef).

To improve the performance of the algorithm, we can make it stop ex-
actly at the moment when Af(ŝ)(ŝ, ϕ) is computed, i.e., there is no need
to reach a fixpoint if we already have computed the desired information
earlier.

14

4 Correctness of the Algorithm

In this section we show the correctness of the distributed algorithm, i.e.,
that the algorithm halts and returns the value Af(ŝ)(ŝ, ψ) which equals to
CM (A⊥)(ŝ, ψ).

The following lemma states that in the first stage all computed values
are correct.

Lemma 3 Assume the computation is at point I (line 7) and ∀i ∈ {1, . . . , n}, s ∈
S,ϕ ∈ cl(ψ) it holds that Ai(s, ϕ) 6=⊥ implies Ai(s, ϕ) is correct (w.r.t. M and
A⊥) Then this property holds at point II (line 17) as well.

Proof: We need to show that every step of computation between point I
and point II preserves the validity of the property. As follows from Propo-
sition 1, the computation of the function C preserves it. Receiving and send-
ing correct results cannot violate it as well.

The next Lemma expresses the property that assumptions with defined
values assign truth values in a uniform way.

Lemma 4 Assume the algorithm is at point II and ∀i ∈ {1, . . . , n}, s̄ ∈ S, ϕ̄ ∈
cl(ψ) it holds thatAi(s̄, ϕ̄) 6=⊥ impliesAi(s̄, ϕ̄) is correct (w.r.t. M andA⊥). Let
s ∈ S,ϕ ∈ cl(ψ) s.t. (s, ϕ) ∈ Def . Then it holds either

∀i ∈ {1, . . . , n} : s ∈ Ki ⇒ Ai(s, ϕ) = true

or
∀i ∈ {1, . . . , n} : s ∈ Ki ⇒ Ai(s, ϕ) = false

Proof: From the assumption that ∀i ∈ {1, . . . , n}, s̄ ∈ S, ϕ̄ ∈ cl(ψ) holds that
Ai(s̄, ϕ̄) 6=⊥ impliesAi(s̄, ϕ̄) is correct follows that for no i, j ∈ {1, . . . , n}, i 6=
j it can hold that Ai(s̄, ϕ̄) = true and Aj(s̄, ϕ̄) = false.

It left us to show that ∀i ∈ {1, . . . , n} : s ∈ Ki ⇒ Ai(s, ϕ) 6=⊥. As
(s, ϕ) ∈ Def , there exists k ∈ {1, . . . , n} s.t. Ak(s, ϕ) 6=⊥. Let there exist
l ∈ {1, . . . , n} s.t. s ∈ Kl and Al(s, ϕ) =⊥. We will show by induction
w.r.t. the structure of ϕ that this is a contradiction with the assumption of
reaching fixpoint.

Let ϕ ∈ cl(ψ) \ tcl(ψ). Then the value of Al(s, ϕ) can be computed in a
next execution of the inner loop. Notice that if ϕ ∈ cl(ϕ) \ tcl(ϕ), then the
definition of the function C depends only on the state in which it is com-
puted (the same forAk(s, ϕ) andAl(s, ϕ)) and the values of subformulas ξ,

15

which are both the same inAk(s, ξ) andAl(s, ξ) from the induction hypoth-
esis. So, as the value of Ak(s, ϕ) has been computed, the value of Al(s, ϕ)
can be computed as well.

Let ϕ ∈ tcl(ψ). Notice that for arbitrary i ∈ {1, . . . , n} and s′ ∈ Ki s.t. s′

is subsequent in Ki holds that the value ofAi(s, ϕ) is either undefined or it
is received from the process Pf(s′), in other words from the process where
s′ is original. It follows from the definition of the function C and the fact
that if s′ is subsequent in Ki then it belongs to border(Ki).

We show that Af(s)(s, ϕ) 6=⊥. Either s is original in Kk, which means
that k = f(s) and Af(s)(s, ϕ) = Ak(s, ϕ). Or s is subsequent in Kk, which
implies that the value ofAk(s, ϕ) has been sent to Pk by Pf(s), soAf(s)(s, ϕ)
must be defined.

It cannot hold that l = f(s), for we assumed that Al(s, ϕ) =⊥. So l 6=
f(s), which means that s is subsequent in Kl. Then the value of Af(s)(s, ϕ)
can be send to Pl and the value of Al(s, ϕ) can be computed.

We have shown by induction w.r.t. the structure of formula ϕ, that the
value of Al(s, ϕ) can be computed before a fixpoint is reached, which is a
contradiction with the assumption that the program is at point II.

Lemma 5 states a key idea of the distributed algorithm. After reaching
fixpoint in the distributed computation, there still may be a tuple in Undef .
This is the case of formulas with U operator. In the node algorithm, when
stating that an U -formula does not hold, the greatest fixpoint is computed.
But to compute the greatest fixpoint properly it is necessary to explore the
entire state space, which is not possible in the distributed environment. On
the other hand, when stating that an U -formula holds, the least fixpoint is
computed, and it is possible to perform such a computation only on a part
of the state space iteratively in a manner the distributed algorithm works.
So if we have a tuple in Undef s.t. it is minimal in this set when reaching
fixpoint of the distributed computation, the formula does not hold in the
state in the entire system.

Lemma 5 Assume the computation of the algorithm is at point II and
∀i ∈ {1, . . . , n}, s̄ ∈ S, ϕ̄ ∈ cl(ψ) it holds that Ai(s̄, ϕ̄) 6=⊥ implies Ai(s̄, ϕ̄)
is correct (w.r.t. M and A⊥). Assume also that there exists s ∈ S,ϕ ∈ cl(ψ) s.t.
(s, ϕ) is minimal in Undef . Then CM (A⊥)(s, ϕ) = false.

16

Proof:

- First we show that ϕ = A(ϕ1 Uϕ2) or ϕ = E(ϕ1 Uϕ2). We prove
this by contradiction. Let ϕ 6= A(ϕ1 Uϕ2) and ϕ 6= E(ϕ1 Uϕ2). We
will show that in that case there exists i ∈ {1, . . . , n} s.t. the function
Ai(s, ϕ) can be computed, which is a contradiction to the assumption
of reaching fixpoint.

Notice that ∀s′ ∈ S,∀ξ ∈ cl(ϕ), ξ 6= ϕ holds that (s′, ξ) ∈ Def for (s, ϕ)
is minimal in Undef .

Let i = f(s), meaning s is original in Ki. M is total, hence s 6∈
border(Ki).

– Let ϕ = p. Then it can be computed trivially.
– Let ϕ = ¬ϕ1 or ϕ = ϕ1∧ϕ2. Then CKi(Ai)(s, ϕ) can be computed

because Ai(s, ϕj) is defined for j = 1, 2.
– Let ϕ = EXϕ1 or ϕ = AXϕ1. Let s1, . . . st are all successors of s

in M . As s in original in Ki it holds that s1, . . . , st ∈ Ki. Next,
Ai(sj , ϕ1) is defined for all j ∈ {1, . . . , t}, and it follows that
CKi(Ai)(s, ϕ) can be computed.

- Next, we show that if ϕ = E(ϕ1 Uϕ2) and CM (A⊥)(s, ϕ) = true, then
there exists s′ ∈ S s.t. (s′, ϕ) ∈ Undef can be computed. We as-
sumed that the fixpoint has been reached, so we can conclude that
CM (A⊥)(s, ϕ) = false.

When using the fact that M is total, we can say that CM (A⊥)(s, ϕ) =
true iff there exists a path π = s0s1s2 . . . with s = s0 and x < |π| :
s. t. CM (Ain)(sx, ϕ2) = true and ∀0 ≤ y < x : CM (Ain)(sy, ϕ1) =
true.

Let k is the greatest number such that k ≤ x and (sk, ϕ) ∈ Undef .
Such a number exists for we have assumed that (s0, ϕ) ∈ Undef and
certainly 0 ≤ x. Let i = f(sk) is the identification of the process where
sk is original.

Let k = x. From the fact that (s, ϕ) is minimal in Undef we know that
(sk, ϕ2) ∈ Def . Lemma 4 gives us that Ai(sk, ϕ2) 6=⊥ and from the
assumption that the already computed values are correct we can con-
clude thatAi(sk, ϕ2) = true. It allows us to compute that CKi(Ai)(sk, ϕ) =
true.

Let k < x. We know that sk+1 ∈ Ki and (sk, sk+1) ∈ Ki, for sk is
original in Ki. More, Ai(sk+1, ϕ) 6=⊥ (from the maximality of k) and

17

equals true (from the assumption of correctness of computed values).
Again, it allows us to compute that CKiAi(sk, ϕ) = true.

We have assumed that ϕ = E(ϕ1 Uϕ2), CM (A⊥)(s, ϕ) = true and a
fixpoint has been reached. We have showed that it is a contradiction,
so we can conclude that CM (A⊥)(s, ϕ) = false.

- Now let ϕ = A(ϕ1 Uϕ2). We will follow similar ideas as in the previ-
ous case. Let us assume that CM (A⊥)(s, ϕ) = true and we will show
a contradiction with reaching a fixpoint.

Using the totality of M we can say that CM (A⊥)(s, ϕ) = true iff for all
paths π = s0s1s2 . . .with s = s0 there exists x < |π| s. t. CM (A⊥)(sx, ϕ2) =
true and ∀0 ≤ y < x : CM (A⊥)(sy, ϕ1) = true.

Recall the standard sequential model checking algorithm (see for ex-
ample [CGP99]) of computing universal until using fixpoint on M .
The states that satisfies A(ϕ1 Uϕ2)are kept in a set H . First, all states
that satisfies ϕ2 are added to H . Then, repeatedly, a state is added
to H iff all his successors are in H , until a fixpoint is reached. Let us
choose a sequence t0, . . . , tp of states that would have been added to
H by the algorithm, s.t.

– s = t0

– ∀a, b ∈ {0, . . . , p}, a < b implies that tb would have been added
to H before ta.

– If a state would have been added to H before s, then it equal tc
for some c ∈ {1, . . . , p}

Let k ∈ {0, . . . , p} is the greatest number so that (tk, ϕ) ∈ Undef .
Such a number exists, for we have assumed that (t0, ϕ) ∈ Undef . Let
i = f(tk) is the identification of the process where tk is original.

Let r1, . . . , rq are all successors of tk in M . In Ki the state tk has the
same successors r1, . . . , rq. As tk would have been added to H by the
sequential algorithm onM , it holds that either CM (A⊥)(tk, ϕ2) = true
or that all successors r1, . . . , rq would have been added to H before
tk.

Let CM (A⊥)(tk, ϕ2) = true. From the fact that (tk, ϕ2) ∈ Def (follows
from minimality of (s, ϕ) in Undef), lemma 4 and the assumption
of correctness of already computed values we have that Ai(tk, ϕ2) =
true. This allows us to compute that CKi(Ai)(tk, ϕ) = true.

18

In the second case, the fact that r1, . . . , rq would have been added
to H before tk means that every ra , a ∈ {1, . . . , q} is contained be-
tween states tk+1, . . . , tp, implying that (ra, ϕ) ∈ Def (we chose k to
be maximal with the property that (tk, ϕ) ∈ Undef). Lemma 4 and
the assumption of correctness of already computed values gives us
that Ai(ra, ϕ) = true for all a ∈ {1, . . . , q}, and so it can be computed
that CKi(Ai)(tk, ϕ) = true.

We have assumed that ϕ = A(ϕ1 Uϕ2), CM (A⊥)(s, ϕ) = true and a
fixpoint has been reached. We have showed that it is a contradiction,
so we can conclude that CM (A⊥)(s, ϕ) = false.

Finally, we can state the correctness of the distributed algorithm.

Theorem 1 Let Kf
M be a partitioning of a total Kripke structure M according to

the function f and ψ a formula. Then the distributed algorithm (Figure 5) returns
the value which equals to CM (A⊥)(ŝ, ψ).

Proof: First we prove that along all the computations for every i ∈ {1, . . . , n},
s ∈ S and ϕ ∈ cl(ψ), if Ai(s, ϕ) 6=⊥, then Ai(s, ϕ) is correct w.r.t. M and
A⊥. This can be proved by the induction w.r.t. to the computation of the
algorithm. At the begining, the property holds. Lemma 3 gives us validity
of the property from the point I to point II and lemma 5 from the point II to
point I. In conclusion, the property holds invariantly.

Second, we need to prove that the algorithm halts. The computation
halts when S × cl(ψ) = Def . The set Def changes monotonically. Suppose
S× cl(ψ) 6= Def . This means that Undef 6= ∅. The set Undef is finite, hence
there exists a minimal element in it, say (s, ϕ). When reaching point II, the
process Pf(s) assigns false to Af(s)(s, ϕ). That means that the number of
elements in Def increases, that is the algorithm halts.

As a state in the initial system can be duplicated into several states in
the distributed environment, the size of the state space may enlarge. It is
shown below that the sum of the number of states of every node structure
is at most equal to number of states plus number of transitions in the initial
structure. In practice it may be much less – it depends on the partition
function and number of nodes.

Lemma 6 Let M = (S,R, I) be a Kripke structure, f a partition function. Fur-
thermore, let Kf

M = (K1, . . . ,Kn) is the partitioning of M w.r.t. f , Ki =

19

(Si, Ri, Ii). Then
n∑
i=1

|Si| ≤ |S|+ |R|

Proof: Each state is original in exactly one node structure, so there are max-
imally |S| original states. A state s is subsequent, if it is a successor of some
s′ ∈ S and f(s) 6= f(s′), i.e. for an edge (s, s′) ∈ R there can be created
at most one subsequent state. It means that there are maximally |R| subse-
quent states. To sum up, there are maximally |S|+ |R| states.

5 Conclusions and Related Work

In this work we considered a technique that uses assumptions about miss-
ing parts of the state space to perform CTL model checking in a distributed
environment. We have developed the necessary theoretical background
and described the distributed algorithm. The experimental version of the
algorithm is currently being implemented.

One of the points that would certainly deserve at least some comments
is how to chose the partitioning so as to minimize communications. For ex-
ample if M is the model of a program we could choose to partition accord-
ing to its structure (as done in [LG98]). If it is a hardware system the wise
partitioning is probably according to a few bits that are known to change
rarely. We expect to elaborate more possibilities in the future.

This work is to the best of our knowledge the first algorithm that uses a
modular approach to distribute model checking. Closest to our work is the
modular model checking approach by Yorav and Grumberg. In fact, the
basic idea of the assumption function as defined here has been developed
in their work. Another approach that utilises a decomposition of the sys-
tem into parts (modules, fragments) is that by Burkart and Steffen [SB94].
They present a model checking algorithm for pushdown processes and con-
sider the semantics of “fragments” which are interpreted as “incomplete
portions” of the process. Another work where assumption functions have
been considered is the model checking algorithm for the logic EF and CTL
and pushdown processes developed by [Wal00]. Finally, in [BG99] the au-
thors have used 3-valued logic (with ⊥ representing “don’t know if prop-
erty is true or false”) to reason about Kripke structures with partial labelling
(called partial state space).

For the future work, our first goal is to perform an experimental eval-
uation. In particular we would like to find out how the performance is

20

influenced by various types of partition function. We also intend to con-
sider other logics and model checking algorithms in place of the “node
algorithm”.

References

[BBS01] J. Barnat, L. Brim, and J. Střı́brná. Distributed LTL Model-
Checking in SPIN. In Matthew B. Dwyer, editor, Proceedings of
the 8th International SPIN Workshop on Model Checking of Software
(SPIN’01), volume 2057 of LNCS, pages 217–234. Springer-Verlag,
2001.

[BBv02] J. Barnat, L. Brim, and I. Černá. Property driven distribution of
nested DFS. In VCL 2002: The Third International Workshop on
Verification and Computational Logic, Pittsburgh PA, October 5, 2002
(held at the PLI 2002 Symposium), 2002.

[BCC97] S. Berezin, S. Campos, and E. M. Clarke. Compositional reason-
ing in model checking. In COMPOS, pages 81–102, 1997.

[BG99] G. Bruns and P. Godefroid. Model checking partial state spaces
with 3-valued temporal logics. In Proc. 11th International Com-
puter Aided Verification Conference, pages 274–287, 1999.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[KV97] O. Kupferman and M. Y. Vardi. Modular model checking. In
COMPOS, pages 381–401, 1997.

[KV00] O. Kupferman and M. Vardi. An automata-theoretic approach
to modular model checking. ACMTOPLAS: ACM Transactions on
Programming Languages and Systems, 22, 2000.

[LG98] K. Laster and O. Grumberg. Modular model checking of soft-
ware. In TACAS’98, volume 1384 of LNCS, pages 20–35, 1998.

[LS99] F. Lerda and R. Sisto. Distributed-memory model checking
with SPIN. In Proceedings of the 6th International SPIN Workshop
on Model Checking of Software (SPIN’99), volume 1680 of LNCS.
Springer-Verlag, 1999.

21

[PAM00] Jacques Julliand Pierre-Alain Masson, Hassan Mountassir. Mod-
ular verification for a class of PLTL properties. In LNCS, volume
1945, pages 398–419. Springer-Verlag, 2000.

[SB94] B. Steffen and O. Burkart. Pushdown processes: Parallel compo-
sition and model checking. In CONCUR’94, volume 836 of Lec-
ture Notes in Computer Science (LNCS), pages 98–113, Heidelberg,
Germany, August 1994. Springer-Verlag.

[Tsa00] Yih-Kuen Tsay. Compositional verification in linear-time tempo-
ral logic. In FoSSaCS 2000, pages 344–358, 2000.

[UD97] U.Stern and D. L. Dill. Parallelizing the murϕ verifier. In
O. Grumberg, editor, Proceedings of Computer Aided Verification
(CAV ’97), volume 1254 of LNCS, pages 256–267. Springer-Verlag,
1997.

[Wal00] Igor Walukiewicz. Model checking CTL properties of pushdown
systems. In Foundations of Software Technology and Theoretical Com-
puter Science, pages 127–138, 2000.

[Yor00] K. Yorav. Exploiting Syntactic Structure for Automatic Verification.
PhD thesis, Technion, Haifa, Israel, June 2000.

22

Copyright c© 2002, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

