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Botanická 68a, 60200 Brno, Czech Republic,
{tony,strejcek}@fi.muni.cz.

Abstract

It is known that LTL formulae without the ‘next’ operator are in-

variant under the so-called stutter-equivalence of words. In this paper

we extend this principle to general LTL formulae with given nesting

depths of the ‘next’ and ‘until’ operators. This allows us to prove

the semantical strictness of three natural hierarchies of LTL formulae,

which are parametrized either by the nesting depth of just one of the

two operators, or by both of them. As another interesting corollary

we obtain an alternative characterization of LTL languages, which are

exactly the regular languages closed under the generalized form of

stutter equivalence. We also indicate how to tackle the state-space

explosion problem with the help of presented results.
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1 Introduction

Linear temporal logic (LTL) [Pnu77] is a popular formalism for specifying

properties of (concurrent) programs. The syntax of LTL is given by the

following abstract syntax equation:

ϕ ::= tt | p | ¬ϕ | ϕ1 ∧ϕ2 | Xϕ | ϕ1Uϕ2

Here p ranges over a countable set Λ = {o, p, q, . . . } of letters. We also use

Fϕ to abbreviate ttUϕ, and Gϕ to abbreviate ¬F¬ϕ.

In this paper, we are mainly interested in theoretical aspects of LTL

(though some remarks on a potential applicability of our results to model-

checking with the logic LTL are mentioned in Section 4). To simplify our

notation, we define the semantics of LTL in terms of languages over finite

words (all of our results carry over to infinite words immediately). An al-

phabet is a finite set Σ ⊆ Λ. Let Σ be an alphabet and ϕ an LTL formula. Let

w ∈ Σ∗ be a word over Σ. The length of w is denoted by |w|, and the indi-

vidual letters of w are denoted by w(0),w(1), . . . ,w(n−1), where n = |w|.

Moreover, for every 0 ≤ i < |w| we denote by wi the ith suffix of w, i.e.,

the word w(i) · · ·w(|w|−1). Finally, for all 0 ≤ i < |w| and j ≥ 1 such that

i+j ≤ |w| the symbol w(i, j) denotes the subword of w of length j which

starts with w(i).

Remark 1.1. To simplify our notation, we adopt the following convention: when-

ever we refer to w(i), wi, or w(i, j), we implicitly impose the condition that the

object exists. For example, the condition ‘w(4) = p’ should be read ‘the length of

w is at least 5 and w(4) = p’.

The validity of ϕ for w ∈ Σ∗ is defined as follows:

w |= tt

w |= p iff p = w(0)

w |= ¬ϕ iff w 6|= ϕ
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w |= ϕ1 ∧ϕ2 iff w |= ϕ1 ∧w |= ϕ2

w |= Xϕ iff w1 |= ϕ

w |= ϕ1Uϕ2 iff ∃i ∈ IN0 : wi |= ϕ2 ∧ ∀ 0 ≤ j < i : wj |= ϕ1

For every alphabet Σ, every LTL formulaϕ defines the language LΣϕ = {w ∈

Σ∗ | w |= ϕ}. From now on we omit the ‘Σ’ superscript in LΣϕ, because it is

always clearly determined by the context.

It is well-known that languages definable by LTL formulae form a

proper subclass of regular languages [Tho91]. More precisely, LTL lan-

guages are exactly the languages definable in first-order logic [Kam68] and

thus exactly the languages recognizable by deterministic counter-free au-

tomata [MP71].

Since LTL contains just two modal connectives, a natural question is

how they influence the expressive power of LTL. First, let us (inductively)

define the nesting depth of the X and the U modality in a given LTL formula

ϕ, denoted X(ϕ) and U(ϕ), respectively.

U(tt) = 0 X(tt) = 0

U(p) = 0 X(p) = 0

U(ϕ∧ψ) = max{U(ϕ), U(ψ)} X(ϕ∧ψ) = max{X(ϕ), X(ψ)}

U(Xϕ) = U(ϕ) X(Xϕ) = X(ϕ) + 1

U(ϕUψ) = max{U(ϕ), U(ψ)} + 1 X(ϕUψ) = max{X(ϕ), X(ψ)}

Now we can introduce three natural hierarchies of LTL formulae. For all

m,n ∈ IN0 we define

LTL(Um,Xn) = {ϕ ∈ LTL | U(ϕ) ≤m ∧ X(ϕ) ≤ n}

LTL(Um) =
⋃∞
i=0 LTL(Um,Xi)

LTL(Xn) =
⋃∞
i=0 LTL(Ui,Xn)

Hence, the LTL(Um,Xn) hierarchy takes into account the nesting depths of

both modalities, while the LTL(Um) and LTL(Xn) hierarchies ‘count’ just

the nesting depth of U and X, respectively. Our work is motivated by
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basic questions about the presented hierarchies; in particular, the following

problems seem to be among the most natural ones:

Question 1. Are those hierarchies semantically strict? That is, if we in-

creasem or n just by one, do we always obtain a strictly more expres-

sive fragment of LTL?

Question 2. If we take two classes A,B in the above hierarchies which

are syntactically incomparable (for example, we can consider

LTL(U4,X3) and LTL(U2,X5), or LTL(U3,X0) and LTL(U2)), are they

also semantically incomparable? That is, are there formulae ϕA ∈ A

and ϕB ∈ B such that ϕA is not expressible in B and ϕB is not ex-

pressible in A?

Question 3. In the case of LTL(Um,Xn) hierarchy, what is the semantical

intersection of LTL(Um1 ,Xn1) and LTL(Um2 ,Xn2)? That is, what lan-

guages are expressible in both fragments?

We provide (positive) answers to Question 1 and Question 2. Here, the

results about LTL(Um,Xn) hierarchy seem to be particularly interesting.

As for Question 3, one is tempted to expect the following answer: The

semantical intersection of LTL(Um1 ,Xn1) and LTL(Um2 ,Xn2) are exactly

the languages expressible in LTL(Um,Xn), where m = min{m1,m2} and

n = min{n1, n2}. Surprisingly, this answer turns out to be incorrect. For all

m ≥ 1, n ≥ 0we give an example of a language Lwhich is definable both in

LTL(Um+1,Xn) and LTL(Um,Xn+1), but not in LTL(Um,Xn). It shows that

the answer to Question 3 is not so easy as one might expect. In fact, Ques-

tion 3 is left open as an interesting challenge directing our future work.

The results on Question 1 are closely related to the work of Etessami

and Wilke [EW00] (see also [Wil99] for an overview of related results).

They consider an until hierarchy of LTL formulae which is similar to our

LTL(Um) hierarchy. The difference is that they treat the F operator ‘explic-
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itly’, i.e., their U-depth counts just the nesting of the U -operator and ig-

nores all occurrences of X and F (in our approach, Fϕ is just an abbreviation

for ttUϕ, and hence ‘our’ U-depth of Fp is one and not zero). They prove

the strictness of their until hierarchy in the following way: First, they de-

sign an appropriate Ehrenfeucht-Fraı̈ssé game for LTL (the game is played

on a pair of words) which in a sense characterizes those pairs of words

which can be distinguished by an LTL formulae where the temporal oper-

ators are nested only to a certain depth. Then, for every k they construct

a formula Fairk with until depth k and prove that this particular formula

cannot be equivalently expressed by any (other) formula withU-depth k−1

(here the previous results about the designed EF game are used). Since the

formula Fairk contains just one F operator (and many nested X and U oper-

ators), this proof carries over to our LTL(Um) hierarchy. In fact, [EW00] is in

a sense ‘stronger’ result saying that one additional nesting level of U can-

not be ‘compensated’ by arbitrarily-deep nesting of X and F. On the other

hand, the proof does not allow to conclude that, e.g., LTL(U3,X0) contains

a formula which is not expressible in LTL(U2) (because Fairk contains the

nested X modalities).

Our method for solving Questions 1 and 2 is different. Instead of

designing appropriate Ehrenfeucht-Fraı̈ssé games which could (possibly)

characterize the membership to LTL(Um,Xn), we formulate a general ‘stut-

tering theorem’ for LTL(Um,Xn) languages. Roughly speaking, the theo-

rem says that under certain ‘local-periodicity’ conditions (which depend

on m and n) one can remove a given subword u from a given word w

without influencing the (in)validity of LTL(Um,Xn) formulae (we say that

u is (m,n)-redundant in w). This result can be seen as a generalization of

the well-known form of stutter-invariance admitted by LTL(X0) formulae

(a detailed discussion is postponed to Section 2). Thus, we obtain a simple

(but surprisingly powerful) tool allowing to prove that a certain formula

ϕ is not definable in LTL(Um,Xn). The theorem is applied as follows: we
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choose a suitable alphabet Σ, consider the language Lϕ, and find an appro-

priatew ∈ Lϕ and its subword u such that

• u is (m,n)-redundant in w;

• w ′ 6|= ϕwhere w′ is obtained from w by deleting the subword u.

If we manage to do that, we can conclude that ϕ is not expressible in

LTL(Um,Xn).

We use our stuttering theorem to answer Questions 1 and 2. Proofs are

remarkably short (though it took us some time to find appropriate formulae

which witness the presented claims). As another interesting corollary we

obtain an alternative characterization of LTL languages which are exactly

the regular languages closed under the generalized stutter equivalence of

words. It is worth noting that some of the known results about LTL (like,

e.g., the formula ‘G2p’ is not definable in LTL) admit a one-line proof if our

general stuttering theorem is applied.

The paper is organized as follows. In Section 2 we formulate and prove

the general stuttering theorem for LTL(Um,Xn) languages, together with

some of its direct corollaries. In Section 3 we answer the Questions 1–3 in

the above indicated way. In Section 4 we briefly discuss a potential appli-

cability of our results to the problem of state-space explosion in the context

of model-checking with LTL. Finally, in Section 5 we draw our conclusions

and identify directions of future research.

2 A general stuttering theorem for LTL(Um,Xn)

In this section we formulate and prove the promised stuttering theorem for

LTL(Um,Xn) languages. The definition is slightly technical and therefore

we start with some intuition which aims to explain the underlying princi-

ples.
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It is well-known that LTL(X0) formulae (i.e., formulae without the X

operator) are stutter invariant. It means that one can safely delete redundant

letters from words without influencing the (in)validity of LTL(X0) formulae

(a letter w(i) is redundant in w if w(i) = w(i+1)). Intuitively, it is not very

surprising that this principle can be extended to LTL(Xn) formulae (where

n ∈ IN0). We say that a letter w(i) is n-redundant if w(i) = w(i+j) for

every 1 ≤ j ≤ n+1. Now we could prove that LTL(Xn) formulae are n-

stutter invariant in the sense that deleting n-redundant letters from words

does not influence (in)validity of LTL(Xn) formulae (we do not provide an

explicit proof here because this claim is an immediate consequence of our

general stuttering theorem; see also the ‘pedagogical’ remarks at the end of

this section). Hence, LTL(Xn) languages are closed under deleting (as well

as ‘pumping’) of n-redundant letters.

Since the notion of n-redundancy depends just on the X-depth of LTL

formulae, one can also ask if there is another ‘pumping principle’ which

depends mainly on the U-depth of LTL formulae; and indeed, there is one.

In this case, we do not necessarily pump just individual letters, but whole

subwords. To give some basic intuition, let us first consider the formula

ϕ ≡ (o∨p)Uq. Letw ∈ {o, p, q}∗ be a word such thatw |= ϕ. We claim that

if w is of the form w = vuux, where v, u, x ∈ Σ∗, then the word w′ = vux

also satisfies ϕ. Our (general) arguments can be easier understood if they

are traced down to the following example:

w =

v︷︸︸︷
ppp

u︷ ︸︸ ︷
oppqr

u︷ ︸︸ ︷
oppqr

x︷︸︸︷
orp

w ′ = ppp︸︷︷︸
v

oppqr︸ ︷︷ ︸
u

orp︸︷︷︸
x

Since w |= ϕ, there is wi such that wi |= q. Now we can distinguish three

possibilities.

1. If w(i) is within v, then deleting the first copy of u does not influ-

ence the validity of ϕ (in this case we could in fact delete the whole

subword uux).
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2. If w(i) is within the second copy of u or within x, then the first copy

of u can also be deleted without any problem.

3. Ifw(i) is within the first copy of u then we can delete the second copy

of u and the resulting word still satisfies ϕ.

The previous observation is actually valid for all LTL(U1,X0) formu-

lae. Moreover, one could prove (by induction on n) that for every ϕ ∈

LTL(Un,X0) and a word w = vun+1x such that w |= ϕ we have that

w ′ = vunx also models ϕ. However, we can do even better; there is one

subtle point in the inductive argument which becomes apparent only when

considering LTL(Un,X0) formulae where n ≥ 2. To illustrate this, let us

take ϕ ≡ (oUp)U (qU r) and let w be a word of the form w = vususux

where |s| = 1. Hence, the subword us is repeated ‘basically’ twice after

its first occurrence, but in the last copy we do not insist on the last letter

(the missing ‘s’). We claim that if w |= ϕ, then also the word w′ = vusux

models ϕ. Again, the reason can be well illustrated by an example:

w =

v︷︸︸︷
ppp

u︷ ︸︸ ︷
oppp

s︷︸︸︷
r

u︷ ︸︸ ︷
oppp

s︷︸︸︷
r

u︷ ︸︸ ︷
oppp

x︷ ︸︸ ︷
ooop

w ′ = ppp︸︷︷︸
v

oppp︸ ︷︷ ︸
u

r︸︷︷︸
s

oppp︸ ︷︷ ︸
u

ooop︸ ︷︷ ︸
x

Since w |= ϕ, there must be some wi such that wi |= qU r. The most

interesting situation is when w(i) happens to be within the first copy of

us. Actually, the ‘worst’ possibility is when w(i) is the s (see the example

above). As the U-depth of qU r is just one, we can rely on our previous

observation; since wi = susux, we can surely remove the leading su sub-

word. Thus, sux |= qU r. In a similar way we can show that ysux |= oUp

for each suffix y of vu (we know that ysusux |= oUp and hence we can

again apply our previous observations). Now we can readily confirm that

indeed vusux |= ϕ.
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IncreasingU-depth of LTL(Um,X0) formulae allows to ignore more and

more ‘trailing letters’. More precisely, for any LTL(Um,X0) formula ϕ we

can ‘ignore’ the lastm−1 letters in the repeated pattern.

Our general stuttering theorem for LTL(Um,Xn) formulae combines

both forms of stuttering (i.e., the ‘letter stuttering’ for the X operator, and

the ‘subword stuttering’ for the U operator). In the next definition, the

symbol uω (where |u| ≥ 1) denotes the infinite word obtained by concate-

nating infinitely many copies of u.

Definition 2.1. Let Σ be an alphabet and w ∈ Σ∗. A subword w(i, j) is (m,n)-

redundant in w iff the word w(i + j,m · j + n −m + 1) is a prefix of w(i, j)ω

(i.e., the subwordw(i, j) is repeated at least on the nextm · j+n−m+ 1 letters).

In the context of previous remarks, the above definition admits a good in-

tuitive interpretation; the subword w(i, j) has to be repeated ‘basically’ m

times after its first occurrence (the m · j summand), but we can ignore the

lastm−1 letters. Since there can be n nested X operators, we must ‘prolong’

the repetition by n letters. Hence, the total number of letters by which we

must prolong the repetition is n− (m−1) = n−m+ 1. Before proving the

stuttering theorem, we need to state one auxiliary lemma.

Lemma 2.2. Let Σ be an alphabet, m,n ∈ IN0, and w ∈ Σ∗. If a subword

w(i, j) is

(i) (m,n)-redundant then it is also (m′, n ′)-redundant for all 0 ≤ n′ ≤ n and

0 ≤m ′ ≤m.

(ii) (m,n+ 1)-redundant then the subword w(i+ 1, j) is (m,n)-redundant.

(iii) (m+1, n)-redundant then the subwordw(i+k, j) is (m,n)-redundant for

every 0 ≤ k < j.

Proof. (i) follows immediately as j > 0 implies m′ · j + n ′ − m ′ + 1 ≤

m · j + n − m + 1. (ii) is also simple—due to the (m,n+1)-redundancy
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of w(i, j) we know that the subword is repeated at least on the next m ·

j + n − m + 2 letters. Hence, the subword w(i+1, j) is repeated at least

on the next m · j + n − m + 1 letters and thus it is (m,n)-redundant. A

proof of (iii) is similar; if w(i, j) is repeated on the next (m+1) · j + n −m

letters, then the subword w(i+k, j) (where 0 ≤ k < j) is repeated on the

next (m+1) · j+ n −m− k = m · j+ n−m+ j− k letters, i.e., w(i+k, j) is

(m,n + j − k − 1)-redundant. The (m,n)-redundancy of w(i+k, j) follows

from (i) and k < j.

Definition 2.3. Let Σ be an alphabet. For all m,n ∈ IN0 we define the relation

≺m,n ⊆ Σ∗ × Σ∗ as follows: w ≺m,n v iff v can be obtained from w be delet-

ing some (m,n)-redundant subword. We say that w, v ∈ Σ∗ are (m,n)-stutter

equivalent iff w ≈m,n v, where ≈m,n is the least equivalence on Σ∗ containing

≺m,n. We say that a language L ⊆ Σ∗ is (m,n)-stutter closed if it is closed

under ≈m,n.

Theorem 2.4 (stuttering theorem for LTL(Um,Xn)). Let Σ be an alphabet,

and let ϕ ∈ LTL(Um,Xn) where m,n ∈ IN0. The language Lϕ is (m,n)-stutter

closed.

Proof. Let ϕ ∈ LTL(Um,Xn). It suffices to prove that for all w, v ∈ Σ∗ such

that w ≺m,n v we have that w |= ϕ ⇐⇒ v |= ϕ. We proceed by a

simultaneous induction onm and n (we write (m′, n ′) < (m,n) iffm ′ ≤ m

and n ′ < n, orm ′ < m and n ′ ≤ n).

Basic step: m = 0 and n = 0. Let w, v ∈ Σ∗ be words such that w ≺0,0 v.

Let w(i, j) be the (0, 0)-redundant subword of w which has been

deleted to obtain v. Since LTL(U0,X0) formulae are just ‘Boolean com-

binations’ of letters and tt, it suffices to show that w(0) = v(0). If

i > 0 then it is clearly the case. If i = 0, then v(0) = w(j) and the

(0, 0)-redundancy of w(0, j) implies thatw(j) = w(0).
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Induction step: Let m,n ∈ IN0, and let us assume (I.H.) that the theorem

holds for allm ′, n ′ such that (m ′, n ′) < (m,n). Let ϕ ∈ LTL(Um,Xn)

and let w, v ∈ Σ∗ be words such that w ≺m,n v. Let w(i, j) be the

(m,n)-redundant subword of w which has been deleted to obtain v.

We distinguish four possibilities:

• ϕ ∈ LTL(Um
′
,Xn

′
) for some (m′, n ′) < (m,n). Since w(i, j) is

(m ′, n ′)-redundant by Lemma 2.2 (i), we can apply the induc-

tion hypothesis.

• ϕ = Xψ. We need to prove that w1 |= ψ ⇐⇒ v1 |= ψ.

As ψ is an LTL(Um,Xn−1) formula and (m,n − 1) < (m,n),

the induction hypothesis implies that ψ cannot distinguish be-

tween words related by ≺m,n−1. Hence, it suffices to show that

w1 ≺m,n−1 v1. Let us consider the subword w(i, j). If i > 0

then w1(i − 1, j) is (m,n)-redundant and due to Lemma 2.2 (i)

it is also (m,n − 1)-redundant. Furthermore, v1 can be obtained

from w1 by deleting the subword w1(i− 1, j).

If i = 0 then w(0, j) is (m,n)-redundant. Lemma 2.2 (ii) implies

that w(1, j) is (m,n − 1)-redundant. It means that the subword

w1(0, j) is (m,n − 1)-redundant. Furthermore, v1 is obtained

from w1 by deleting w1(0, j).

• ϕ = ψU ρ. As the subformulae ψ, ρ belong to LTL(Um−1,Xn),

they cannot (by induction hypotheses) distinguish between

words related by ≺m−1,n.

Let g : {0, 1, . . . , |w|−1} −→ {0, 1, . . . , |v|−1} be a function defined

as follows.

g(l) =

{
l, l < i+ j

l− j, l ≥ i+ j

We claim that for every l < i + j we have that wl ≺m−1,n vg(l).

Indeed, for l < i it follows from Lemma 2.2 (i), and for i ≤ l <
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i + j it is due to Lemma 2.2 (iii). For every l ≥ i + j the words

vg(l) and wl are the same. Hence, for every l < |w| we have that

wl |= ψ ⇐⇒ vg(l) |= ψ and the same can be proven for ρ (in the

same way).

Now we show that if w |= ψU ρ then also v |= ψU ρ. If w |=

ψUρ, there is c ≥ 0 such that wc |= ρ and for every d < c we

have that wd |= ψ. Then vg(c) |= ρ (see above) and from the

definition of g it follows that for every d′ < g(c) there is d < c

such that g(d) = d ′. Thus, for every d′ < g(c) we have that

vg(d) = vd ′ |= ψ. To sum up, we obtain that v |= ψUρ.

Similarly, we also show that if v |= ψUρ then w |= ψUρ. If

v |= ψUρ, there is c ≥ 0 such that vc |= ρ and for every d < cwe

have that vd |= ψ. Let c ′ be the least number satisfying g(c′) = c

(there is such a c′ as the function g is surjective). Then wc ′ |= ρ

(see above). From the definition of gwe get that for every d′ < c ′

it holds that g(d ′) < g(c ′) = c (otherwise we would obtain a

contradiction with our choice of c′). Thus, wd ′ |= ψ and hence

w |= ψUρ.

• ϕ is a ‘Boolean combination’ of formulae of the previous cases.

Formally, this case is handled by an ‘embedded’ induction on

the structure of ϕ. The basic step (when ϕ is not of the form ¬ψ

or ψ1∧ψ2) is covered by the previous cases. The induction step

(ϕ ≡ ¬ψ or ϕ ≡ ψ1 ∧ ψ2 where we assume that our theorem

holds for ψ,ψ1, ψ2) follows immediately.

A natural question suggested by Theorem 2.4 is whether it also holds vice

versa, i.e., if every regular (m,n)-stutter closed language is definable by

an LTL(Um,Xn) formula. We must reject this hypotheses, as shown by the

following counterexample:
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Example 2.5. Let Σ = {p, q, r} and ϕ = ¬r ∧ ((pUq)U r). It is easy to see

that the language Lϕ = {p, q}∗qrΣ∗ is (1, 0)-stutter closed. We prove that Lϕ
is not definable in LTL(U1,X0). To do that, it suffices to show that for any ψ ∈

LTL(U1,X0) we have that pqr |= ψ ⇐⇒ pqpr |= ψ (observe that pqr ∈ Lϕ
and pqpr 6∈ Lϕ). There are three cases.

• ψ ∈ LTL(U0,X0). Since the validity of ψ ∈ LTL(U0,X0) formulae de-

pends only on the first letter of a given word, we are done.

• ψ = ψ1Uψ2, where ψ1, ψ2 ∈ LTL(U0,X0). Let S1 = {o ∈ Σ | o |= ψ1}

and S2 = {o ∈ Σ | o |= ψ2}. For every w ∈ Σ∗ we have that w |= ψ1Uψ2

iff there exists j ∈ IN0 such that w(j) ∈ S2 and for all 0 ≤ i < j we have

that w(i) ∈ S1. One can easily check that the words pqr, pqpr cannot be

distinguished by the just specified condition for any S1, S2 ⊆ Σ.

• ψ is a ’Boolean combination’ of formulae of the previous cases. Here we

argue by a (straightforward) structural induction.

Nevertheless, we can easily prove the following alternative characteri-

zation of LTL languages:

Corollary 2.6. A regular language L over Σ is definable in LTL iff L is (m,n)-

stutter closed for some m,n ∈ IN0.

Proof. The ‘=⇒’ direction follows immediately from Theorem 2.4. The

other direction is a simple consequence of the fact that a regular language L

is expressible in LTL iff the minimal deterministic automaton recognizing

L is counter-free [Kam68, MP71]—one can easily argue that if the minimal

deterministic automaton for L is not counter-free, then L cannot be (m,n)-

stutter closed for any m,n ∈ IN0. (Indeed, if the minimal automaton is not

counter-free then there are u,w, v ∈ Σ∗, |w| ≥ 1, and k ≥ 2 such that for

each i ∈ IN0 we have that uwk·iv ∈ L and uwk·i−1v 6∈ L. Now suppose

that L is (m,n)-stutter closed for some m,n ∈ IN0 and let d = (m+n+2).
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Since the first copy of w in uwk·dv ∈ L is (m,n)-redundant, we have a

contradiction with uwk·d−1v 6∈ L.)

In the context of Corollary 2.6, the evidence provided by Example 2.5

cannot be seen as fully satisfactory—since every regular language L which

is (m,n)-stutter closed for somem,n ∈ IN0 is definable in LTL, there surely

exist m ′, n ′ ∈ IN0 such that L is definable in LTL(Um
′
,Xn

′
). Due to Exam-

ple 2.5 we know that the relationship among m,n and m′, n ′ is not purely

m ′ = m and n ′ = n. Maybe the actual relationship is just slightly more

complicated; and maybe there is no direct connection at all. Example 2.5

does not contradict any of the two hypothesis.

It is worth noting that even special cases of Theorem 2.4 can bring inter-

esting consequences. For example, we already mentioned the well-known

form of stuttering admitted by LTL(X0) formulae which can be generalized

to LTL(Xn) formulae. Formally, for each w ∈ Σ∗ and n ∈ IN0 we define

the n-canonical form of w, denoted [w]n, which is the word obtained from

w by deleting all n-redundant letters (see above). Two words w, v ∈ Σ∗

are n-stutter equivalent iff [w]n = [v]n. Observe that 0-stutter equivalence is

exactly the well-known stutter equivalence of LTL(X0), and that n-stutter

equivalence is subsumed by≈m,n for eachm ∈ IN0 (indeed, it suffices to re-

alize thatw(i, 1) is an (m,n)-redundant subword iffw(i) is an n-redundant

letter). Hence, a direct corollary to Theorem 2.4 is

Corollary 2.7. Let ϕ ∈ LTL(Xn) where n ∈ IN0. The language Lϕ is closed

under n-stutter equivalence.

Of course, a direct proof of this corollary is a bit simpler than the proof of

Theorem 2.4. However, it already brings interesting consequences.

Corollary 2.8. The property G2p (which says ‘at every even position is p’) is not

expressible in LTL.

Proof. Suppose the converse. Let Σ = {p, q}. As G2p is expressible in

LTL, there is n ∈ IN0 and a formula ϕ ∈ LTL(Xn) which is equivalent

14



to G2p. Since Lϕ contains the word p2n+2q and the first occurrence of p is

n-redundant, we obtain p2n+1q ∈ Lϕ which is a contradiction.

Another application for Corollary 2.7 will be given in Section 3. So, a direct

proof of Corollary 2.7 might be of some use even in a basic course on LTL,

because it is not much longer than a proof for 0-stutter equivalence (which

is often included) and it brings interesting consequences ‘for free’.

3 Answers for Questions 1, 2, and 3

Now we are ready to provide answers to Questions 1, 2, and 3 which were

stated in Section 1 (though the Question 3 will be left open in fact). We start

with a simple observation.

Lemma 3.1. For each n ≥ 1 there is a formula ϕ ∈ LTL(U0,Xn) which cannot

be expressed in LTL(Xn−1).

Proof. Let Σ = {p} and n ≥ 1. Consider the formula ϕ ≡

n︷ ︸︸ ︷
XX · · ·Xp. We

show that Lϕ is not closed under (n−1)-stutter equivalence (which suffices

due to Corollary 2.7). It is easy; realize that pn+1 ∈ Lϕ and the first oc-

currence of p in this word is (n−1)-redundant. Since pn 6∈ Lϕ, we are

done.

A ‘dual’ fact is proven below (it is already non-trivial).

Lemma 3.2. For each m ≥ 1 there is a formula ϕ ∈ LTL(Um,X0) which cannot

be expressed in LTL(Um−1).

Proof. Let m ≥ 1 and let Σ = {q, p1, . . . , pm}. We define a formula ϕ ∈

LTL(Um,X0) as follows:

ϕ = F(p1 ∧ F(p2 ∧ · · ·∧ F(pm−1 ∧ Fpm) . . . ))

15



Let us fix an arbitrary n ∈ IN0, and define a word w ∈ Σ∗ by

w = (qn+1 pm pm−1 . . . p1)
m qn+1

Clearly w |= ϕ and the subword w(0, n+1+m) is (m−1, n)-redundant. As

the word w ′ obtained from w by removing w(0, n+1+m) does not model

ϕ, the language Lϕ is not (m−1, n)-stutter closed. As it holds for every

n ∈ IN0, the formula ϕ is not expressible in LTL(Um−1).

The last technical lemma which is needed to formulate answers to Ques-

tions 1 and 2 follows.

Lemma 3.3. For all m,n ∈ IN0 there is a formula ϕ ∈ LTL(Um,Xn) which is

expressible neither in LTL(Um−1,Xn) (assumingm ≥ 1), nor in LTL(Um,Xn−1)

(assuming n ≥ 1).

Proof. If m = 0 or n = 0, we can apply Lemma 3.1 or Lemma 3.2, respec-

tively. Now let m,n ≥ 1, and let Σ = {p1, . . . , pk} where k = max{m,n+1}.

We define formulae ψ and ϕ as follows:

ψ =

{
pm ∧ Xnpm−n if m > n

pm ∧ Xnpm+1 if m ≤ n

ϕ =

{
Fψ ifm = 1

F(p1 ∧ F(p2 ∧ F(p3 ∧ · · ·∧ F(pm−1 ∧ Fψ) . . . ))) ifm > 1

where Xl abbreviates

l︷ ︸︸ ︷
XX . . .X. The formula ϕ belongs to LTL(Um,Xn). Let

us consider the wordw defined by

w =


(pm pm−1 . . . p1)

mpm pm−1 . . . pm−n+1 ifm > n

(pn+1 pn . . . p1)
m+1 ifm = n

(pn+1 pn . . . p1)
m+1pn+1 pn . . . pm+2 ifm < n

It is easy to check that w ∈ Lϕ and the subword w(0, k) (where k =

max{m,n+1}) is (m,n−1)-redundant as well as (m−1, n)-redundant. As
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the word w ′ obtained from w by removing w(0, k) does not satisfy ϕ,

the language Lϕ is neither (m,n−1)-stutter closed, nor (m−1, n)-stutter

closed.

The knowledge presented in the three lemmata above allows to conclude

the following:

Corollary 3.4 (Answer to Question 1). The LTL(Um,Xn), LTL(Um), and

LTL(Xn) hierarchies are strict.

Corollary 3.5 (Answer to Question 2). LetA andB be classes of LTL(Um,Xn),

LTL(Um), or LTL(Xn) hierarchy (not necessarily of the same one) such that A is

syntactically not included in B. Then there is a formula ϕ ∈ A which cannot be

expressed in B.

Although we cannot provide a full answer to Question 3, we can at least

reject the aforementioned ‘natural’ hypotheses (see Section 1).

Lemma 3.6 (About Question 3). For all m,n ∈ IN0 there is a language defin-

able in LTL(Um+2,Xn) as well as in LTL(Um+1,Xn+1) which is not definable in

LTL(Um+1,Xn).

Proof. We start with the case when m = n = 0. Let Σ = {p, q}, and let

ψ1 = F(q ∧ (qU¬q)) and ψ2 = F(q ∧ X¬q). Note that ψ1 ∈ LTL(U2,X0)

and ψ2 ∈ LTL(U1,X1). Moreover, ψ1 and ψ2 are equivalent as they define

the same language L = Σ∗q(Σ r {q})Σ∗. This language is not definable in

LTL(U1,X0) as it is not (1, 0)-stutter closed; for example, the word w =

pqpq ∈ L contains a (1, 0)-redundant subword w(0, 2) but w2 = pq 6∈ L.

The above example can be generalized to arbitrary m,n (using the

designed formulae ψ1, ψ2). For given m,n we define formulae ϕ1 ∈

LTL(Um+2,Xn) and ϕ2 ∈ LTL(Um+1,Xn+1), both defining the same lan-

guage L over Σ = {q, p1, . . . , pm+1}, and we give an example of a word

w ∈ L with an (m + 1, n)-redundant subword such that w without this

subword is not from L. We distinguish three cases.
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• m = n > 0. For i ∈ {1, 2}we define

ϕi =

m-times︷ ︸︸ ︷
XF(p∧ XF(p∧ XF(p∧ · · · ∧ XF(p∧ψi) . . . )))

The word w = (pq)m+2 ∈ L, w(0, 2) is (m + 1, n)-redundant, and

w2 = (pq)
m+1 6∈ L.

• m > n. For i ∈ {1, 2}we define

ξi =

(m−n)-times︷ ︸︸ ︷
F(p1 ∧ F(p2 ∧ · · · ∧ F(pm−n∧ψi) . . . )))

ϕi =

n-times︷ ︸︸ ︷
XF(q∧ XF(q∧ · · · ∧ XF(q∧ξi) . . . )))

The word w = (qpm−npm−n−1 . . . p1)m+1q ∈ L, w(0,m − n + 1) is

(m+ 1, n)-redundant, and wm−n+1 6∈ L.

• m < n. For i ∈ {1, 2}we define

ϕi =

m-times︷ ︸︸ ︷
F(p1 ∧ F(p2 ∧ · · ·∧ F(pm∧

n︷ ︸︸ ︷
XX . . .Xψi) . . . ))

The word w = (qn−mpm+1pm . . . p1)m+2qn−m ∈ L, w(0, n + 1) is

(m+ 1, n)-redundant, and wn+1 6∈ L.

In fact, the previous lemma says that if we take two classes LTL(Um1 ,Xn1)

and LTL(Um2 ,Xn2) which are syntactically incomparable and where

m1,m2 ≥ 1, then their semantical intersection is strictly greater than

LTL(Um,Xn) where m = min{m1,m2} and n = min{n1, n2}. Moreover,

it also says that if we try to minimize the nesting depths of X and U in a

given formula ϕ (preserving the meaning of ϕ), there is generally no ‘best’

way how to do that.
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4 A note on model-checking with LTL

The aim of this section is to identify another (potential) application of The-

orem 2.4 in the area of model-checking with the logic LTL. We show that

the theorem can be used as a ‘theoretical basis’ for advanced state-space

reduction techniques which might further improve the efficiency of LTL

model-checking algorithms. The actual development of such techniques is

a complicated problem beyond the scope of this paper; nevertheless, we

can explain the basic principle, demonstate its potential power, and explic-

itly discuss the missing parts which must be completed to obtain a working

implementation. The chosen level of presentation is semi-formal, and the

content is primarily directed to a ‘practically-oriented’ reader.

The model-checking approach to formal verification (with the logic

LTL) works according to the following abstract scheme:

• The verified system is formally described in a suitable modeling lan-

guage whose underlying semantics associates a well-defined Kripke

structure to the constructed model.

• Desired properties of the system are defined as a formula in the logic

LTL. More precisely, one defines the properties which should be sat-

isfied by all possible runs of the system, which formally correspond

to certain maximal paths in the associated Kripke structure.

• It is shown that all runs satisfy the constructed LTL formula.

A principal difficulty is that the size of the associated Kripke structure is

usually very large (this is known as the problem of state-space explosion).

There are various strategies how to deal with this problem. For exam-

ple, one can reduce the number of states by abstracting the code and/or

the data of the system, use various ‘compositional’ techniques, or use re-

stricted formalisms (like, e.g., pushdown automata) which allow for a kind
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of ‘symbolic’ model-checking where the explicit construction of the associ-

ated Kripke structure is not required. One of the most successful methods

is partial order reduction (see, e.g., [CGP99]) which works for the LTL(X0)

fragment of LTL. It has been argued by Lamport [Lam83] that LTL(X0) pro-

vides a sufficient expressive power for specifying correctness properties of

software systems; one should avoid the use of the X operator because it im-

poses very strict requirements on ‘scheduling’ of transitions between states

which can be hard to implement. Partial order reduction conveniently uses

the stutter invariance of LTL(X0) formulae in the sense of Corollary 2.7.

Roughly speaking, the idea is as follows: if we are to decide the validity

of a given LTL(X0) formula for a given Kripke structure, we do not neces-

sarily need to examine all runs; we can safely ignore those runs which are

0-stutter equivalent to already checked ones. To see how it works in prac-

tice, consider the following parallel programme consisting of two threads

A and B.

x = 0;

cobegin

A; B;

coend

procedure A()

begin

for i=1 to 5 do

begin

x = x + 1;

x = x - 1;

end

end

procedure B()

begin

z = 2;

x = x + 7;

z = 2 * z;

z = z - 1;

end

The underlying Kripke structure (see Fig. 1) models all possible interleav-

ings between A and B. The states carry the information about variables and

about the position of control in the two threads. The transitions correspond

to individual instructions. In Fig. 1, we explicitly indicated the value of x

in each state; the ↙ direction corresponds to instructions of A, and the ↘
direction corresponds to instructions of B. Now imagine that we want to
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��??
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Figure 1: The associated Kripke structure.

verify that x is always strictly less than 8 at every run (which is not true).

It can be formally expressed by a formula G(x < 8) where the predicate

x < 8 should be seen as a letter (in the sense of LTL semantics given in

Section 1). Hence, to every run we can associate a word over the alphabet

{x < 8,¬(x < 8)} and interpret our formula in the standard way. Since the

values of all variables except for x are irrelevant, the instructions which do

not modify the value of x always generate 0-redundant letters (while, for

example, the instruction x = x + 1 sometimes generates a redundant letter

and sometimes not). Hence, many of the runs in Fig. 1 are in fact 0-stutter

equivalent and hence one can safely ‘ignore’ many of them. Technically,

a set of runs can be ignored by ignoring certain out-going transitions in

certain states; and since we ignore some transitions, it can also happen that

some states are not visited at all—and thus we could in principle avoid their

construction, keeping the Kripke structure smaller. The question is how to

recognize those superfluous transitions and states. It does not make much

sense to construct the whole Kripke structure and then try to reduce it;

what we need is a method which can be applied on-the-fly while construct-

ing the Kripke structure. Partial-order reduction (as described in [CGP99])

can do the job fairly well—if we apply it to the structure of Fig. 1 and the
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Figure 2: The reduced Kripke structures.

formula G(x < 8), we obtain a ‘pruned’ structure of Fig. 2 (left)1. Now we

come to the actual point of this section—since G(x < 8) is an LTL(U1,X0)

formula, we can also apply the principle of (1, 0)-stuttering which allows to

‘ignore’ even more runs in the Kripke structure of Fig. 1 (many of them are

(1, 0)-stutter equivalent). One of possible results is shown in Fig. 2 (right)2;

it clearly demonstrates the potential power of the new method. However,

it is not clear if the method admits an on-the-fly implementation, which

means that we cannot fully advocate its practical usability at the moment.

This question is left open as another challenge.

To sum up, we believe that (m,n)-stuttering might be (potentially) used

as the underlying principle for optimized model-checking in a similar fash-

ion as 0-stuttering was used in the case of partial-order reduction. How-

ever, it can only be proven by designing a working and efficient on-the-fly

reduction method, which is a non-trivial research problem on its own.

1The instructions which modify the variable x are treated as ‘dangerous’, i.e., as if they

never produced redundant letters.
2To give a ‘fair’ comparison with partial-order reduction, the instructions which modify

the variable x are again treated as ‘dangerous’.
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5 Conclusions

The main technical contribution of this paper is the general stuttering the-

orem presented in Section 2. With its help we were able to construct (short)

proofs of other results. In particular, we gave an alternative characteri-

zation of LTL languages (which are exactly regular (m,n)-stutter closed

languages), proved the strictness of the three hierarchies of LTL formulae

introduced in Section 1, and we also showed several related facts about the

relationship among the classes in the three hierarchies.

Some problems are left open. For example, the exact characterization of

the semantical intersection of LTL(Um1 ,Xn1) and LTL(Um2 ,Xn2) classes (in

the case when they are syntactically incomparable) surely deserves further

attention. Moreover, we would be also interested if the potential applicabil-

ity of Theorem 2.4 to model-checking (as indicated in Section 4) can really

result in a practically usable state-space reduction method.
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