
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

On the Complexity of Semantic Equivalences for
Pushdown Automata and BPA

by

Antonín Kučera
Richard Mayr

FI MU Report Series FIMU-RS-2002-01

Copyright c© 2002, FI MU May 2002

On the Complexity of Semantic Equivalences

for Pushdown Automata and BPA∗

Antonı́n Kučera† Richard Mayr‡

Abstract

We study the complexity of comparing pushdown automata (PDA)

and context-free processes (BPA) to finite-state systems, w.r.t. strong

and weak simulation preorder/equivalence and strong and weak

bisimulation equivalence. We present a complete picture of the com-

plexity of all these problems. In particular, we show that strong

and weak simulation preorder (and hence simulation equivalence)

is EXPTIME-complete between PDA/BPA and finite-state systems in

both directions. For PDA the lower bound even holds if the finite-

state system is fixed, while simulation-checking between BPA and

any fixed finite-state system is already polynomial. Furthermore, we

show that weak (and strong) bisimilarity between PDA and finite-

state systems is PSPACE-complete, while strong (and weak) bisimi-

larity between two (normed) PDAs is EXPTIME-hard.

∗The first author was supported by the Grant Agency of the Czech Republic, grant No.

201/00/0400.
†Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic,

tony@fi.muni.cz.
‡Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-

Koehler-Allee 51, D-79110 Freiburg, Germany, mayrri@informatik.uni-freiburg.de.

1

1 Introduction

Transition systems are a fundamental and widely accepted model of pro-

cesses with discrete states and dynamics (such as computer programs).

Formally, a transition system is a triple T = (S, Act,→) where S is a set

of states (or processes), Act is a finite set of actions, and → ⊆ S × Act × S is

a transition relation. We write s
a→ t instead of (s, a, t) ∈ → and we extend

this notation to elements of Act∗ in the natural way. A state t is reachable

from a state s, written s→∗ t, iff s
w→ t for some w ∈ Act∗.

In the equivalence-checking approach to formal verification, one describes

the specification (the intended behavior) and the actual implementation of a

given process as states in transition systems, and then it is shown that they

are equivalent. Here the notion of equivalence can be formalized in vari-

ous ways according to specific needs of a given practical problem (see, e.g.,

[vG99] for an overview). It seems, however, that simulation and bisimula-

tion equivalence are of special importance as their accompanying theory

has been developed very intensively and found its way to many practical

applications. Let T = (S, Act,→) be a transition system. A binary relation

R ⊆ S × S is a simulation iff whenever (s, t) ∈ R, then for each s
a→ s ′ there

is some t
a→ t ′ such that (s ′, t ′) ∈ R. A process s is simulated by t, written

s v t, iff there is a simulation R such that (s, t) ∈ R. Processes s, t are simula-

tion equivalent, written s ' t, iff they can simulate each other. A bisimulation

is a symmetric simulation relation, and two processes s and t are bisimilar

iff they are related by some bisimulation. In order to abstract from internal

(‘invisible’) transitions of a given system, simulations and bisimulations

are sometimes considered in their weak forms. Here, the silent steps are

usually modeled by a distinguished action τ, and the extended transition re-

lation⇒ ⊆ S × Act × S is defined by s
a⇒ t iff either s = t and a = τ, or

s
τi→ s ′

a→ t ′
τj→ t for some i, j ∈ IN0 and s ′, t ′ ∈ S.

2

Simulations (and bisimulations) can also be viewed as games [Sti98,

Tho93] between two players, the attacker and the defender. In a simulation

game the attacker wants to show that s 6v t, while the defender attempts

to frustrate this. Imagine that there are two tokens put on states s and t.

Now the two players, attacker and defender, start to play a simulation game

which consists of a (possibly infinite) number of rounds where each round

is performed as follows: The attacker takes the token which was put on s

originally and moves it along a transition labeled by (some) a; the task of

the defender is to move the other token along a transition with the same

label. If one player cannot move then the other player wins. The defender

wins every infinite game. It can be easily shown that s v t iff the defender

has a universal winning strategy. The only difference between a simulation

game and a bisimulation game is that the attacker can choose his token at the

beginning of every round (the defender has to respond by moving the other

token). Again we get that s ∼ t iff the defender has a winning strategy. Cor-

responding ‘weak forms’ of the two games are defined in the obvious way.

We use the introduced games at some points to give a more intuitive justi-

fication for our claims. Simulations and bisimulations can also be used to

relate states of different transition systems; formally, two systems are con-

sidered to be a single one by taking the disjoint union.

In this paper we mainly consider processes of pushdown automata, which

are interpreted as a (natural) model of sequential systems with mutually

recursive procedures. A pushdown automaton is a tuple ∆ = (Q, Γ, Act, δ)

where Q is a finite set of control states, Γ is a finite stack alphabet, Act is a finite

input alphabet, and δ : (Q × Γ) → P(Act × (Q × Γ∗)) is a transition function

with finite image (here P(M) denotes the power set of M). We can assume

(w.l.o.g.) that each transition increases the height (or length) of the stack

by at most one (each PDA can be efficiently transformed to this kind of

normal form). In the rest of this paper we adopt a more intuitive notation,

writing pA
a→ qβ ∈ δ instead of (a, (q,β)) ∈ δ(p,A). To ∆ we associate the

3

transition system T∆ where Q× Γ∗ is the set of states (we write pα instead

of (p,α)), Act is the set of actions, and the transition relation is determined

by pAα
a→ qβα iff pA

a→ qβ ∈ δ.

Let A,B be classes of processes. The problem whether a given process s

of A is simulated (or weakly simulated) by a given process t of B is denoted

by A v B (or A vw B, respectively). Similarly, the problem if s and t are

simulation equivalent, weakly simulation equivalent, bisimilar, or weakly

bisimilar, is denoted by A ' B, A 'w B, A ∼ B, or A ≈ B, respectively. The

classes of all pushdown processes and finite-state processes (i.e., processes

of finite-state transition systems) are denoted PDA and FS, respectively.

BPA (basic process algebra), also called context-free processes, is the sub-

class of PDA where |Q| = 1, i.e., without a finite-control.

The state of the art for simulation:

It has been known for some time that strong simulation preorder between

PDA and FS is decidable in exponential time. This is because one can re-

duce the simulation problem to the model-checking problem with PDA

and a fixed formula of the modal µ-calculus (see, e.g., [KM02a, Kuč00]).

As model checking PDA with the modal µ-calculus is EXPTIME-complete

[Wal01] the result follows. A PSPACE lower bound for the FS v BPA prob-

lem and a co-NP lower bound for the BPA v FS and BPA ' FS problems

have been shown in [KM02a]. Furthermore, an EXPTIME lower bound for

the FS v PDA and FS ' PDA problems have been shown in [Kuč00], but

in these constructions the finite-state systems were not fixed. The prob-

lems of comparing two different BPA/PDA processes w.r.t. simulation pre-

order/equivalence are all undecidable.

Our contribution:

We show that the problems BPA v FS, FS v BPA and BPA ' FS are

EXPTIME-complete, but polynomial for every fixed finite-state system. On

the other hand, the problems PDA v FS, FS v PDA and PDA ' FS are

EXPTIME-complete, even for a fixed finite-state system. Here, the main

4

point are the lower bounds, which require some new insights into the

power of the defender in simulation games. The matching upper bounds

are obtained by a straightforward extension of the above mentioned reduc-

tion to the model-checking problem with the modal µ-calculus.

The state of the art for bisimulation:

It was known that strong and weak bisimulation equivalence between PDA

and FS is decidable in exponential time, because one can construct (in poly-

nomial time) characteristic modal µ-calculus formulae for the finite-state

system and thus reduce the problem to model checking the PDA with a

modal µ-calculus formula [SI94], which is decidable in exponential time

[Wal01]. The best known lower bound for the PDA ≈ FS problem was

PSPACE-hardness, which even holds for a fixed finite state system [May00].

The problem PDA ∼ FS is also PSPACE-hard, but polynomial in the size

of the PDA for every fixed finite-state system [May00]. Interestingly, the

problem BPA ≈ FS (and BPA ∼ FS) is polynomial [KM02b]. The symmet-

ric problem of PDA ∼ PDA is decidable [Sén98, Sti01], but the complexity

is not known. So far, the best known lower bound for it was PSPACE-

hardness [May00]. The decidability of the PDA ≈ PDA problem is still

open.

Our contribution:

We show that the problems PDA ∼ FS and PDA ≈ FS are PSPACE-

complete by improving the known EXPTIME upper bound to PSPACE.

Furthermore, we show that the symmetric problem PDA ∼ PDA

is EXPTIME-hard, by improving the known PSPACE lower bound to

EXPTIME. This new EXPTIME lower bound even holds for the subclass

of normed PDA.

5

2 Lower Bounds

In this section we prove that all of the problems BPA v FS, FS v BPA

and BPA ' FS are EXPTIME-hard. The problems PDA v FS, FS v PDA,

PDA ' FS are EXPTIME-hard even for a fixed finite-state system. More-

over, we show EXPTIME-hardness of the PDA ∼ PDA problem.

An alternating LBA is a tuple M = (S, Σ, γ, s0,`,a, π) where

S, Σ, γ, s0,`, and a are defined as for ordinary non-deterministic LBA. In

particular, S is a finite set of control states (we reserve ‘Q’ to denote a set of

control states of pushdown automata), `,a ∈ Σ are the left-end and right-

end markers, respectively, and π : S → {∀,∃, acc, rej} is a function which

partitions the control states of S into universal, existential, accepting, and re-

jecting, respectively. We assume (w.l.o.g.) that γ is defined so that

• for all s ∈ S and A ∈ Σ such that π(s) = ∀ or π(s) = ∃ we have

that |γ(s,A)| = 2 (i.e., γ(s,A) = {s1, s2} for some s1, s2 ∈ S). The first

element of γ(s,A) is denoted by first(s,A), and the second one by

second(s,A). It means that each configuration ofMwhere the control

state is universal or existential has exactly two immediate successors

(configurations reachable in one computational step).

• for all s ∈ S and A ∈ Σ such that π(s) = acc or π(s) = rej we have

that γ(s,A) = ∅, i.e., each configuration ofM where the control state

is accepting or rejecting is ‘terminated’ (without any successors).

A computational tree forM on a word w ∈ Σ∗ is a finite tree T satisfying the

following: the root of T is (labeled by) the initial configuration s0`wa of

M, and if N is a node ofM labeled by a configuration usv where u, v ∈ Σ∗

and s ∈ S, then the following holds:

• if s is accepting or rejecting, then T is a leaf;

• if s is existential, then T has one successor whose label is one of the

two configurations reachable from usv in one step (here, the notion

6

of a computational step is defined in the same way as for ‘ordinary’

Turing machines);

• if s is universal, then T has two successors labeled by the two config-

urations reachable from usv in one step.

M accepts w iff there is a computational tree T such that all leafs of T are

accepting configurations. The acceptance problem for alternating LBA is

known to be EXPTIME-complete [Pap94].

In subsequent proofs we often use M? to denote the set M ∪ {?} where

M is a set and ? 6∈M is a fresh symbol.

Theorem 2.1. The problem BPA v FS is EXPTIME-hard.

Proof. Let M = (S, Σ, γ, s0,`,a, π) be an alternating LBA and w ∈ Σ∗ an

input word. We construct (in polynomial time) a BPA system ∆ = (Γ, Act, δ),

a finite-state system F = (S, Act,→), and processes α and X of ∆ and F ,

resp., such thatM accepts w iff α 6v X. Let n be the length of w. We put

Γ = S?×Σ ∪ S×Σ?×{0, · · · , n+2} ∪ S×Σ×{W} ∪ {T, Z}

Configurations ofM are encoded by strings over S? × Σ of length n+ 2. A

configuration usv, where u, v ∈ Σ∗ and s ∈ S, is written as

〈?, v(k)〉 〈?, v(k − 1)〉 · · · 〈?, v(2)〉 〈s, v(1)〉 〈?, u(m)〉 · · · 〈?, u(1)〉

where k and m are the lengths of v and u, resp., and v(i) denotes the ith

symbol of v (configurations are represented in a ‘reversed order’ since we

want to write the top stack symbol on the left-hand side). Elements of

S× Σ? × {0, · · · , n + 2} are used as top stack symbols when pushing a new

configuration to the stack (see below); they should be seen as a finite mem-

ory where we keep (and update) the information about the position of the

symbol which will be guessed by the next transition (as we count symbols

from zero, the bounded counter reaches the value n + 2 after guessing the

7

last symbol), about the control state which is to be pushed, and about the

(only) symbol of the form 〈s, a〉which was actually pushed. The Z is a spe-

cial ‘bottom’ symbol which can emit all actions and cannot be popped. The

role of symbols of S×Σ×{W} ∪ {T } will be clarified later. The set of actions

is Act = {a, c, f, s, d, t} ∪ (S?×Σ), and δ consists of the following transitions:

1. (〈s, ?〉, i) a→ (〈s, ?〉, i + 1) 〈?, A〉 for all A ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;

2. (〈s, ?〉, i) a→ (〈s,A〉, i + 1) 〈s,A〉 for all A ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;

3. (〈s,A〉, i) a→ (〈s,A〉, i + 1) 〈?, B〉 for all A,B ∈ Σ, s ∈ S, 0 ≤ i ≤ n+1;

4. (〈s,A〉, n + 2)
c→ (〈s,A〉,W) for all A ∈ Σ, s ∈ S;

5. (〈s,A〉,W) d→ ε for all s ∈ S, A ∈ Σ such that s is

not rejecting;

6. (〈s,A〉,W) f→ (〈s ′, ?〉, 0) for all s, s ′ ∈ S, A ∈ Σ such that

π(s) ∈ {∀,∃} and s ′ = first(s,A);

7. (〈s,A〉,W) s→ (〈s ′, ?〉, 0) for all s, s ′ ∈ S, A ∈ Σ such

that π(s) ∈ {∀,∃} and s ′ =

second(s,A);

8. (〈s,A〉,W) f→ (〈s ′, ?〉, 0) for all s, s ′ ∈ S, A ∈ Σ such that

π(s) = ∃ and s ′ = second(s,A);

9. (〈s,A〉,W) s→ (〈s ′, ?〉, 0) for all s, s ′ ∈ S, A ∈ Σ such that

π(s) = ∃ and s ′ = first(s,A);

10. (〈s,A〉,W)
y→ T for all s ∈ S, y ∈ {f, s} such that

π(s) = acc;

11. T
t→ T

12. Z
y→ Z for all y ∈ Act;

13. 〈x,A〉
〈x,A〉→ ε for all x ∈ S?, A ∈ Σ.

8

The process α corresponds to the initial configuration ofM, i.e.,

α = (〈s0,`〉, n+2) 〈?,a〉 〈?,w(n)〉 · · · 〈?,w(2)〉 〈?,w(1)〉 〈s0,`〉Z

The behavior of α can be described as follows: whenever the top stack sym-

bol is of the form (〈s,A〉,W), we know that the previously pushed configu-

ration contains the symbol 〈s,A〉. If s is rejecting, no further transitions are

possible. Otherwise, (〈s,A〉,W) can either disappear (emitting the action

d—see rule 5), or it can perform one of the f and s actions as follows:

• If s is universal or existential, (〈s,A〉,W) can emit either f or s, stor-

ing first(s,A) or second(s,A) in the top stack symbol, respectively

(rules 6, 7).

• If s is existential, (〈s,A〉,W) can also emit f and s while storing

second(s,A) and first(s,A), respectively (rules 8, 9).

• If s is accepting, (〈s,A〉,W) emits f or s and pushes the symbol T which

can do the action t forever (rules 10, 11).

If (〈s,A〉,W) disappears, the other symbols stored in the stack subse-

quently perform their symbol-specific actions and disappear (rule 13). If s

is not accepting and (〈s,A〉,W) emits f or s, a new configuration is guessed

and pushed to the stack; the construction of δ ensures that

• exactly n+ 2 symbols are pushed (rules 1–4);

• at most one symbol of the form 〈s′, B〉 is pushed; moreover, the s′

must be the control state stored in the top stack symbol. After push-

ing 〈s ′, B〉, the B is also remembered in the top stack symbol (rule 2);

• if no symbol of the form 〈s′, B〉 is pushed, no further transitions are

possible after guessing the last symbol of the configuration (there are

no transitions for symbols of the form (〈s′, ∗〉, n + 2));

9

• after pushing the last symbol, the action c is emitted and a ‘waiting’

symbol (〈s ′, B〉,W) is pushed.

Now we define the finite-state system F . The set of states of F is given by

S = {X, F, S,U,C0, · · · , Cn} ∪ {C0, · · · , Cn}× {0, · · · , n + 1}× (S? × Σ)4?.

Transitions of F are

1. X
a→ X, X

c→ F, X
c→ S, X

c→ Ci for every 0 ≤ i ≤ n;

2. F
f→ X, F

y→ U for every y ∈ Act − {f};

3. S
s→ X, S

y→ U for every y ∈ Act − {s};

4. Ci
d→ (Ci, 0, ?, ?, ?, ?), Ci

y→ U for every 0 ≤ i ≤ n, y ∈ Act−{d};

5. U
y→ U for every y ∈ Act;

6. (Ci, j, ?, ?, ?, ?)
y→ (Ci, j+1, ?, ?, ?, ?) for all 0 ≤ i ≤ n, 0 ≤ j < i, and

y ∈ S?×Σ;

7. (Ci, i, ?, ?, ?, ?)
y→ (Ci, i+1, y, ?, ?, ?) for all 0 ≤ i ≤ n and y ∈ S?×Σ;

8. (Ci, i+1, y, ?, ?, ?)
z→ (Ci, (i+2)mod(n+2), y, z, ?, ?)

for all 0 ≤ i ≤ n and y, z ∈ S?×Σ;

9. (Ci, j, y, z, ?, ?)
u→ (Ci, (j+1)mod(n+2), y, z, ?, ?)

for all 0 ≤ i ≤ n, i+2 ≤ j ≤ n+1, and y, z ∈ S?×Σ;

10. (Ci, j, y, z, ?, ?)
u→ (Ci, j+1, y, z, ?, ?)

for all 0 ≤ i ≤ n, 0 ≤ j < i, and y, z, u ∈ S?×Σ;

11. (Ci, i, y, z, ?, ?)
u→ (Ci, i+1, y, z, u, ?)

for all 0 ≤ i ≤ n and y, z, u ∈ S?×Σ;

12. (Ci, i+1, y, z, u, ?)
v→ (Ci, (i+2)mod(n+2), y, z, u, v)

for all 0 ≤ i ≤ n and y, z, u, v ∈ S?×Σ;

10

13. (Ci, (i+2)mod(n+2), y, z, u, v)
x→ U

for all 0 ≤ i ≤ n, x ∈ Act, and y, z, u, v ∈ S?×Σ such that (y, z) and

(u, v) are not compatible pairs (see below).

A fragment of F is shown in Fig. 1. The role of states of the form

(Ci, 0, ?, ?, ?, ?) and their successors (which are not drawn in Fig. 1) is clar-

ified below.

SF

U

X

Act−{f}

Act−{s} Act−{d}

Act

Act−{d} d

f

c

c
s c

a

c

d

CnC0

0(C ,0,*,*,*,*) n(C ,0,*,*,*,*)

X

Act−{f}

Act−{s}

Act

c

c
s c

a

CSF
v

d vrd

Act−{v}

Act−{r}

Act−{d,t}

R
U A

V

f

Figure 1: The systems F and F ′ (successors of (Ci, 0, ?, ?, ?, ?) in F are

omitted).

Now we prove thatM accepts w iff α 6v X. Intuitively, the simulation

game between α and X corresponds to constructing a branch in a compu-

tational tree forM on w. The attacker (who plays with α) wants to show

that there is an accepting computational tree, while the defender aims to

demonstrate the converse. The attacker is therefore ‘responsible’ for choos-

ing the appropriate successors of all existential configurations (selecting

those for which an accepting subtree exists), while the defender chooses

successors of universal configurations (selecting those for which no accept-

ing subtree exists). The attacker wins iff the constructed branch reaches an

accepting configuration. The choice is implemented as follows: after push-

ing the last symbol of a configuration, the attacker has to emit the c action

and push a ‘waiting’ symbol (see above). The defender can reply by en-

tering the state F, S, or one of the Ci states. Intuitively, he chooses among

the possibilities of selecting the first or the second successor, or checking

11

that the ith symbol of the lastly pushed configuration was guessed cor-

rectly (w.r.t. the previous configuration). Technically, the choice is done

by forcing the attacker to emit a specific action in the next round—observe

that if the defender performs, e.g., the X
c→ F, transition, then the attacker

must use one of his f transitions in the next round, because otherwise the

defender would go immediately to the state U where he can simulate ‘ev-

erything’, i.e., the attacker loses the game. As the defender is responsible

only for selecting the successors of universal configurations, the attacker has

to follow his ‘dictate’ only if the lastly pushed configuration was universal;

if it was existential, he can choose the successor according to his own will

(see the rules 6–9 in the definition of δ). If the lastly pushed configuration

was rejecting, the attacker cannot perform any further transitions from the

waiting symbol, which means that the defender wins. If the configuration

was accepting and the defender enters F of S via the action c, then the at-

tacker wins; first he replaces the waiting symbol with T , emitting f or s,

resp. (so that the defender has to go back to X) and then he does the ac-

tion t. The purpose of the states Ci (and their successors) is to ensure that

the attacker cannot gain anything by ‘cheating’, i.e., by guessing configura-

tions incorrectly. If the defender is suspicious that the attacker has cheated

when pushing the last configuration, he can ‘punish’ the attacker by going

(via the action c) to one of the Ci states. Doing so, he forces the attacker

to remove the waiting symbol in the next round (see the rule 5 in the def-

inition of δ). Now the atacker can only pop symbols from the stack and

emit the symbol-specific actions. The defender ‘counts’ those actions and

‘remembers’ the symbols at positions i and i + 1 in the lastly and the pre-

viously pushed configurations. After the defender collects the four sym-

bols, he either enters a universal state U (i.e., he wins the game), or gets

‘stuck’ (which means that the attacker wins). It depends on whether the

two pairs of symbols are compatible w.r.t. the transition function γ ofM or

not (here we use a folklore technique of checking the consistency of succes-

12

sive configurations of Turing machines). Observe that if the lastly pushed

configuration was accepting, the defender still has a chance to perform a

consistency check (in fact, it is his ‘last chance’ to win the game). On the

other hand, if the defender decides to check the consistency right at the be-

ginning of the game (when the attacker plays the c transition from α), he

inevitably loses because the attacker reaches the bottom symbol Z in n+2

transitions and then he can emit the action t. It follows that the attacker has

a winning strategy iffM accepts w.

Theorem 2.2. The problem PDA v FS is EXPTIME-hard even for a fixed finite-

state process.

Proof. We modify the construction of Theorem 2.1. Intuitively, we just re-

implement the cheating detection so that the compatibility of selected pairs

of symbols is checked by the pushdown system and not by F (now we can

store the four symbols in the finite control). However, it must still be the

defender who selects the (position of the) pair; we show how to achieve

this with a fixed number of states.

First, we define Act = {a, c, f, s, d, t, v, r} and instead of F we take the

system F ′ of Fig. 1 (which is fixed). Now we construct a pushdown system

(Q, Γ, Act, δ ′), where Γ is the same as in Theorem 2.1, the set of control states

is

Q = {g, p0, · · · , pn+1} ∪ {c0, · · · , cn}× {0, · · · , n+ 1}× (S? × Σ)4?

and δ ′ is constructed as follows:

1. for each transition X
y→ α of δ which has not been defined by the

rule 5. or 13. (see the proof of Theorem 2.1) we add to δ′ the transition

gX
y→ gα;

2. for each ‘waiting’ symbol X of Γ (i.e., a symbol of the form (〈s,A〉,W))

we add to δ ′ the transition gX
d→ p0ε;

13

3. for all 0 ≤ i ≤ n and X ∈ Γ we add to δ ′ the transitions piX
d→ piX,

piX
r→ pi+1X, and piX

v→ (ci, 0, ?, ?, ?, ?)X;

4. for all X ∈ Γ we add to δ ′ the transitions pn+1X
t→ pn+1X;

5. finally, we add to δ ′ the transitions which perform consistency checks;

they are (informally) described below.

The initial configuration of ∆ is the α of Theorem 2.1 augmented with the

control state g.

The proof follows the line of Theorem 2.1. The only difference is how

the defender checks the consistency of the lastly and the previously pushed

configurations. If he wants to perform such a check, he replies by X
c→ C

when the attacker enters a ‘waiting’ state via his c-transition. It means that

the attacker is forced to pop the waiting symbol and change the control

state to p0 via a d-transition in the next round (rule 2). Intuitively, the at-

tacker ‘offers’ the defender a possibility to check the pair of symbols at

positions 0 and 1. Now we distinguish two cases:

• If the defender wants to accept the proposal, he replies by C
d→ A; it

means that the attacker must emit the action v in the next round and

change the control state to (c0, 0, ?, ?, ?, ?). From now on the attacker

will only pop symbols from the stack, emitting the action v, until he

finds the four symbols or reaches the bottom of stack. If the collected

pairs of symbols are compatible (or if the bottom of stack is reached),

the attacker emits t and wins; otherwise, he becomes ‘stuck’ and the

defender wins.

• If the defender does not want to accept the proposal (i.e., if he wants

to check pairs at another position), he replies by C
d→ R, forcing the

attacker to use his (only) r-transition in the next round (the control

state is changed from p0 to p1). The defender replies by R
r→ C. Now

the attacker must use his p1X
d→ p1X transition, which is in fact an

14

0(C ,0,*,*,*,*) n(C ,0,*,*,*,*)
SF

X

c

a

ca a

f

s

SF

X

c

a

a a

sc

sC S

f

s

Figure 2: The systems F̄ and F̄ ′ (successors of (Ci, 0, ?, ?, ?, ?) in F̄ are

omitted).

offer to check symbols at positions 1 and 2. Now the game continues

in the same fashion.

If the defender does not accept any ‘offer’ from the attacker (i.e., if the at-

tacker reaches the control state pn+1), the attacker wins by emitting the ac-

tion t (rule 4). Now we can readily confirm that the attacker has a winning

strategy iffM accepts w.

Theorem 2.3. The problem FS v BPA is EXPTIME-hard.

Proof. The technique is similar to the one of Theorem 2.1 Given an alternat-

ing LBAM = (S, Σ, γ, s0,`,a, π) and w ∈ Σ∗, we construct (in polynomial

time) a finite-state system F̄ = (S, Act,→), a BPA system ∆̄ = (Γ, Act, δ),

and processes X and α of F̄ and ∆̄, resp., such thatM accepts w iff X 6v α.

The set of states of F̄ is

{X, F, S} ∪ {C0, · · · , Cn}× {0, · · · , n+ 1}× (S?×Σ)4?,

and the set of actions Act is {a, c, f, s, t} ∪ (S?×Σ). Transitions of F̄ look as

follows (see Fig. 2):

1. X
a→ X, X

f→ F, X
s→ S,X

c→ (Ci, 0, ?, ?, ?, ?) for all 0 ≤ i ≤ n;

2. F
a→ X, S

a→ X;

3. we add all transitions given by the rules 6.–12. in the definition of the

system F in (the proof of) Theorem 2.1;

15

4. (Ci, (i+2)mod(n+2), y, z, u, v)
t→ X for all 0 ≤ i ≤ n and y, z, u, v ∈

S?×Σ such that (y, z) and (u, v) are not compatible pairs.

The stack alphabet Γ of ∆̄ is (S?×Σ) ∪ (S×Σ?×{0, · · · , n+2}) ∪ {U,Z}.

Here U is the ‘universal’ symbol (which can simulate everything), and Z is

a bottom symbol. δ consists of the following transitions:

1. (〈s, ?〉, i) a→ (〈s, ?〉, i + 1) 〈?, A〉 for all A ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;

2. (〈s, ?〉, i) a→ (〈s,A〉, i + 1) 〈s,A〉 for all A ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;

3. (〈s,A〉, i) a→ (〈s,A〉, i + 1) 〈?, B〉 for all A,B ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;

4. (〈s, ?〉, i) x→ U for all s ∈ S, 0 ≤ i ≤ n + 1, and x ∈

{f, s, c};

5. (〈s,A〉, i) x→ U for all s ∈ S, 0 ≤ i ≤ n + 1, and x ∈

{f, s, c};

6. (〈s,A〉, n + 2)
f→ (〈s ′, ?〉, 0) for all s, s ′ ∈ S, A ∈ Σ such that

π(s) ∈ {∀,∃} and s ′ = first(s,A);

7. (〈s,A〉, n + 2)
s→ (〈s ′, ?〉, 0) for all s, s ′ ∈ S, A ∈ Σ such that

π(s) ∈ {∀,∃} and s ′ = second(s,A);

8. (〈s,A〉, n + 2)
f→ (〈s ′, ?〉, 0) for all s, s ′ ∈ S, A ∈ Σ such that

π(s) = ∀ and s ′ = second(s,A);

9. (〈s,A〉, n + 2)
s→ (〈s ′, ?〉, 0) for all s, s ′ ∈ S, A ∈ Σ such that

π(s) = ∀ and s ′ = first(s,A);

10. (〈s,A〉, n + 2)
c→ ε for all s ∈ S and A ∈ Σ;

11. (〈s,A〉, n + 2)
a→ U for all s ∈ S and A ∈ Σ;

12. (〈s,A〉, n + 2)
x→ U for all s ∈ S, A ∈ Σ, and x ∈ {f, s} such

that π(s) = rej;

16

13. 〈x,A〉
〈x,A〉→ ε for all x ∈ S? and A ∈ Σ;

14. 〈x,A〉
〈y,B〉→ U for all x, y ∈ S? and A,B ∈ Σ such

that x 6= y or A 6= B;

15. Z
x→ U for all X ∈ Act− {t};

16. U
x→ U for all X ∈ Act;

The process α corresponds to the initial configuration ofM, i.e.,

α = (〈s0,w(1)〉, n+2) 〈?,a〉 〈?,w(n)〉 · · · 〈?,w(2)〉 〈?,w(1)〉 〈s0,`〉Z

Again, the simulation game corresponds to constructing a branch in a com-

putational tree for M on w. The attacker (who plays with X now) wants

to show that there is an accepting computational tree, while the defender

wants to prove the converse. It means that the attacker chooses successors

of existential configurations, and the defender chooses successors of uni-

versal configurations. At the beginning, the attacker has to use one of his

f, s, or c transitions (if he uses X
a→ X, the defender wins by pushing U; see

the rule 11). It corresponds to choosing the first or the second successor, or

forcing a consistency check. As the defender is responsible for choosing the

successors of universal configurations, he can ‘ignore’ the attacker’s choice

if the lastly pushed configuration was universal (rules 6.–9.). If the lastly

pushed configuration was accepting, the defender gets ‘stuck’ and loses. If

it was rejecting, the attacker’s only chance is to use one of his c-transitions

and perform a consistency check (if the attacker emits any other action, the

defender wins by pushing U—see the rules 11, 12). The consistency check is

implemented as follows: first, the attacker chooses the (index of the) pair to

be verified by one of his X
c→ (Ci, 0, ?, ?, ?, ?) transitions (observe that if this

transition is used ‘too early’, i.e., before the whole configuration is pushed,

the defender wins by pushing U—see the rules 4, 5). Now the attacker has

to guess the symbols which are stored in the stack, remembering the four

17

crucial symbols. If he makes an incorrect guess, the defender pushes U

and wins (rule 14). Otherwise, the defender has to pop symbols from the

stack (rule 13). If the collected pairs of symbols are compatible, the attacker

gets stuck (and the defender wins). Otherwise, the attacker wins by emit-

ting t. The bottom symbol Z ensures that the attacker loses if he decides

to make a consistency check right at beginning of the game, because then

the defender reaches U before the attacker can emit t. Also observe that we

cannot use U as the bottom symbol, because then the attacker would not

be able to check the consistency of symbols at positions n and n + 1 in the

first two configurations (the attacker’s t-transition would be matched by

U). We see that the attacker has a winning strategy iffM accepts w.

Theorem 2.4. The problem FS v PDA is EXPTIME-hard even for a fixed finite-

state process.

Proof. The required modification of the proof of Theorem 2.3 is quite

straightforward. Instead of F̄ we take the system F̄ ′ of Fig. 2. The con-

sistency check is performed by the pushdown system, but the attacker still

selects the index of the pair he wants to verify by performing the corre-

sponding number of c-transitions. The only thing the defender can do is

to ‘count’ those c’s in the finite control of the pushdown system (if the at-

tacker uses more than n+1 c-transitions, the defender can push U and thus

he wins). When the attacker emits the first s, the defender has to start the

consistency check of the previously selected pairs—he successively pops

symbols from the stack (emitting s) until he collects the four symbols. If

they are compatible, the defender can go on and perform an infinite num-

ber of s-transitions (and hence he wins); otherwise, the defender gets stuck

and the attacker wins.

An immediate consequence of Theorem 2.1 and Theorem 2.2 is the follow-

ing:

18

Corollary 2.5. The problem BPA ' FS is EXPTIME-hard. Moreover, the prob-

lem PDA ' FS is EXPTIME-hard even for a fixed finite-state process.

Proof. There is a simple (general) reduction from the A v B problem to the

A ' B problem (where A,B are classes of processes) which applies also in

this case—given processes p ∈ A and q ∈ B, we construct processes p′, q ′

such that p′ has only the transitions p′
a→ p, p ′

a→ q, and q ′ has only the

transition q ′
a→ q. It follows immediately that p ′ ' q ′ iff p v q.

The problem of PDA ∼ PDA is decidable, but the exact complexity is not

known. The decision procedures described in [Sén98, Sti01] do not give

any upper complexity bound. So far, the best known lower bound for this

problem was PSPACE-hardness [May00]. Here we show that, while the

problem PDA ∼ FS is PSPACE-complete (see Section 3), the problem PDA ∼

PDA is at least EXPTIME-hard. This EXPTIME lower bound even holds

for the subclass of normed PDA (a PDA is normed iff from every reachable

configuration it is possible to empty the stack).

The proof of the following theorem uses a technique which can be

traced back to Jančar [Jan95]; a more explicit formulation is due to Srba

[Srb02] who used the technique in the different context of Basic Parallel

Processes. The main idea is that in a bisimulation game the defender can

force the attacker to do certain things according to the defender’s choices.

Theorem 2.6. The problem PDA ∼ PDA is EXPTIME-hard, even for normed

PDA.

Proof. Since the proof is somewhat technical, we explain the main ideas

in general terms first. Figure 3 describes a variant of the technique of

Jančar/Srba. It shows how the defender in the bisimulation game can force

the attacker to push either 1 or 2 onto the stack. The intuition for this is,

that the defender can ‘threaten’ to make the two processes equal (in which

case he would win), unless the attacker does what the defender wants.

19

X X ′

a a
a

a a

Y1 Y2

1 2
1 2

2

1

Y

Z.1 Z.2 Z ′.1 Z ′.2

Figure 3: A method how the defender can force the attacker to push either

1 or 2 onto the stack.

The hardness proof of the PDA ∼ PDA problem is done by a

polynomial-time reduction of the (EXPTIME-complete [Pap94]) acceptance

problem of alternating LBA to the PDA ∼ PDA problem. The bisimula-

tion game proceeds as follows. The attacker guesses LBA configurations

and pushes them onto the stack. The defender is forced to copy these

moves. At existential control states (of the LBA) the attacker chooses the

successor control state, and at the universal control states (of the LBA) the

defender gets to choose the successor control state (this requires Jančar’s

technique mentioned above where the defender forces the attacker to do

certain things). At any time, the defender can force the attacker to enter a

so-called check-phase. In this check-phase it is verified if the LBA configu-

ration at the top of the stack is really a successor configuration (according to

the transition rules of the LBA) of the LBA configuration that was pushed

onto the stack before. If not, then the defender wins the bisimulation game.

This construction forces the attacker to play ‘honestly’, i.e., to correctly sim-

ulate the behavior of the LBA. If an accepting configuration (of the LBA) is

20

reached in this way then the attacker wins the bisimulation game (having

proved, despite the interference of the defender’s choices at the universal

control states, that the alternating LBA accepts). Otherwise, the bisimula-

tion game goes on forever and the defender wins. This construction en-

sures that the attacker has a winning strategy if and only if the alternating

LBA accepts. Thus, the alternating LBA accepts iff the two PDAs are not

bisimilar.

Now we describe the detailed construction of the proof. Let M =

(S, Σ, γ, s0,`,a, π) be an alternating LBA and w ∈ Σ∗ an input word. Let n

be the length of w. We construct (in polynomial time) a PDA (Q, Γ, Act, δ)

and processes α := (q0, 0)q0w and α ′ := (q ′0, 0)q0w such thatM accepts w

iff α 6∼ α ′.

We represent an LBA configuration as uqv where u is the tape to the left

of the head, q is the control-state, and v is the tape under the head and to the

right of it. Let S ′ := {q ′ |q ∈ S} and S ′′ := {q ′′ |q ∈ S}. Q := S× {0, . . . , n −

1} ∪ (S × Σ)× {1, . . . , n} ∪ S ′ × {0, . . . , n − 1} ∪ (S ′ × Σ)× {1, . . . , n} ∪ S ′′ ×

{0, . . . , n−1}∪(S ′′×Σ)×{1, . . . , n}∪{(q̃, 0) |q ∈ S}∪(S×S)×{0}∪{qc, q ′′c }∪{x}.

For every state q ∈ Q, the states q′, q ′′ and q̃ are seen as being associated to

q. Γ := Σ∪S, Act := Σ∪S×Σ∪S∪ {a, c,w, e}∪ {λ} and the set of transitions

∆ is defined as follows:

1. (q, i)
X→ (q, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

2. (q, i)
(q,Y)→ ((q, Y), i + 1)Yq for all q ∈ S, Y ∈ Σ, 0 ≤ i ≤ n− 1;

3. ((q, Y), i)
X→ ((q, Y), i + 1)X for all q ∈ S, X, Y ∈ Σ, 0 ≤ i ≤ n− 1;

4. ((q, Y), n)
q1→ (q1, 0) if π(q) = ∃ and q1 ∈ γ(q, Y);

5. (q ′, i) X→ (q ′, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

6. (q ′, i)
(q,Y)→ ((q ′, Y), i + 1)Yq for all q ∈ S, Y ∈ Σ, 0 ≤ i ≤ n− 1;

7. ((q ′, Y), i) X→ ((q ′, Y), i + 1)X for all q ∈ S, X, Y ∈ Σ, 0 ≤ i ≤ n− 1;

21

8. ((q ′, Y), n)
q1→ (q ′1, 0) if π(q) = ∃ and q1 ∈ γ(q, Y);

9. ((q, Y), n)
a→ (q̃1, 0) if π(q) = ∀ and q1 = first(q, Y);

10. ((q, Y), n)
a→ (q̃2, 0) if π(q) = ∀ and q2 = second(q, Y);

11. ((q, Y), n)
a→ ((q1, q2), 0) if π(q) = ∀, q1 = first(q, Y), q2 =

second(q, Y);

12. ((q ′, Y), n) a→ (q̃1, 0) if π(q) = ∀ and q1 = first(q, Y);

13. ((q ′, Y), n) a→ (q̃2, 0) if π(q) = ∀ and q2 = second(q, Y);

14. ((q1, q2), 0)
q1→ (q1, 0)

15. ((q1, q2), 0)
q2→ (q2, 0)

16. (q̃1, 0)
q1→ (q ′1, 0)

17. (q̃1, 0)
q2→ (q2, 0)

18. (q̃2, 0)
q1→ (q1, 0)

19. (q̃2, 0)
q2→ (q ′2, 0)

20. ((q, Y), n)
w→ qc if π(q) = acc;

21. (q, i)
X→ (q ′′, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

22. (q, i)
(q,Y)→ ((q ′′, Y), i + 1)Yq for all q ∈ S, 0 ≤ i ≤ n− 1;

23. ((q, Y), i)
X→ ((q ′′, Y), i + 1)X for all q ∈ S, X, Y ∈ Σ, 0 ≤ i ≤ n− 1;

24. (q ′, i) X→ (q ′′, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

25. (q ′, i)
(q,Y)→ ((q ′′, Y), i + 1)Yq for all q ∈ S, 0 ≤ i ≤ n− 1;

26. ((q ′, Y), i) X→ ((q ′′, Y), i + 1)X for all q ∈ S, X, Y ∈ Σ, 0 ≤ i ≤ n− 1;

27. (q ′′, i) X→ (q, i + 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

22

28. (q ′′, i)
(q,Y)→ ((q, Y), i + 1)Yq for all q ∈ S, Y ∈ Σ, 0 ≤ i ≤ n− 1;

29. ((q ′′, Y), i) X→ ((q, Y), i + 1)X for all q ∈ S, X, Y ∈ Σ, 0 ≤ i ≤ n− 1;

30. ((q ′′, Y), n)
q1→ (q1, 0) if π(q) = ∃ and q1 ∈ γ(q, Y);

31. (q ′′, i) X→ (q ′′, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

32. (q ′′, i)
(q,Y)→ ((q ′′, Y), i + 1)Yq for all q ∈ S, Y ∈ Σ, 0 ≤ i ≤ n− 1;

33. ((q ′′, Y), i) X→ ((q ′′, Y), i + 1)X for all q ∈ S, X, Y ∈ Σ, 0 ≤ i ≤ n− 1;

34. ((q ′′, Y), n)
q1→ (q ′′1 , 0) if π(q) = ∃ and q1 ∈ γ(q, Y);

35. ((q ′′, Y), n) a→ (q̃1, 0) if π(q) = ∀ and q1 = first(q, Y);

36. ((q ′′, Y), n) a→ (q̃2, 0) if π(q) = ∀ and q2 = second(q, Y);

37. ((q ′′, Y), n) a→ ((q1, q2), 0) if π(q) = ∀, q1 = first(q, Y), q2 =

second(q, Y);

38. (q, i)
c→ qc for all q ∈ S, 0 ≤ i ≤ n− 1;

39. ((q, Y), i)
c→ qc for all q ∈ S, 0 ≤ i ≤ n;

40. (q ′, i) c→ qc for all q ∈ S, 0 ≤ i ≤ n− 1;

41. ((q ′, Y), i) c→ qc for all q ∈ S, 0 ≤ i ≤ n;

42. (q ′′, i) c→ q ′′c for all q ∈ S, 0 ≤ i ≤ n− 1;

43. ((q ′′, Y), i) c→ q ′′c for all q ∈ S, 0 ≤ i ≤ n;

44. ((q ′′, Y), n) w→ q ′′c if π(q) = acc;

Furthermore, at control-state q′′c the system emits exactly n + 4 times the

action ‘c’ and then deadlocks. At control-state qc the system behaves de-

terministically as follows:

23

1. First read the top 3 symbols from the stack (while emitting ‘c’ actions)

and remember them.

2. Then pop n − 2 symbols from the stack (by ‘c’ actions). Thus, one is

at the same position in the previous LBA-configuration that is stored

on the stack.

3. Read another 3 symbols from the stack and check if there is an error

(according to the transition rules of the LBA). If yes, then deadlock. If

no, then emit the special action ‘e’.

Finally, we add some extra transitions to make the whole system

normed. For every control-state q ∈ Q we add a transition q
λ→ x. x ∈ Q

is a special control-state where the stack is emptied. So we have transitions

xG
λ→ x for every stack symbol G ∈ Γ . The system deadlocks when the

stack is empty. There are no other transitions at control-state x and the ac-

tion λ is not enabled anywhere else. This means that if action λ is done once

then the system does λ exactly m times (where m is the current size of the

stack) and then stops. These extra transitions do not influence the property

we want to show, i.e., that α 6∼ α′ iff the alternating LBA accepts. This is

because throughout the whole bisimulation game between α and α′, the

size of the stack of α is always the same as the size of the stack of α′. So the

attacker cannot win if he chooses a transition with action λ.

The construction above ensures that the attacker plays only in one pro-

cess (on the α-side; the q-side), while the defender only plays in the other

process (on the α′-side; the q′-side). In the important cases the attacker can-

not play on the q ′-side, because the defender could then immediately make

the two processes equal and win. In the rest of the cases it does not matter

on which side the attacker plays. In the bisimulation game, configurations

of the LBA are pushed onto the stack. The attacker determines which sym-

bols are pushed (rules 1–3). We say that the attacker ‘cheats’ if he pushes an

LBA configuration onto the stack that is not a successor of the previous one

24

(according to the transition rules of the LBA). The attacker also determines

the successor-control-state in those cases where the control-state is labeled

as existential (rule 4). However, the defender determines the successor-

control-state in those cases where the control-state is labeled as universal

(rules 9–19). The defender can also, in any step, go from the q′ domain of

control-states go to the q ′′ domain of control-states (rules 24–26). By do-

ing so, he threatens to make the two processes equal in the very next step

(rules 27–37 and 21–23). The only way for the attacker to avoid this, is to

do the action ‘c’ and go to the control-state qc, while the defender is forced

to go to the control-state q ′′c in the other process (rules 38–43). Processes

with control states qc or q ′′c a said to be in the ‘check-phase’. In the control-

state qc it is checked if the two most recently pushed LBA configurations

on the stack have an error at this particular point (according to the tran-

sitions of the LBA). In this way it is checked if the attacker has ‘cheated’

in the bisimulation game by breaking the rules of the LBA and pushing

wrong configurations on the stack. If the attacker has cheated (i.e., an error

is found) then the defender wins, since both processes are deadlocked after

n + 4 ‘c’-actions. If the attacker was honest (i.e., there is no error) then the

attacker wins, since he can do the action ‘e’ at the end, and the defender

cannot. This construction ensures that the attacker never cheats, i.e., never

pushes wrong LBA configurations onto the stack.

We now show that the LBA accepts the input w iff α 6∼ α′.

If the LBA accepts w then the attacker has the following winning strat-

egy. The attacker plays honestly and in the α process. He pushes a suc-

cessive sequence of LBA configurations onto the stack. The defender is

forced to do the same in the α′ process. The attacker gets to choose the

successor-control-states at the existential states and the defender chooses

the successors at the universal states. Since the attacker plays honestly,

the defender would lose if he went to the q′′ domain of control-states and

forced a check-phase. Since the LBA accepts w, the attacker can eventually

25

reach an accepting control-state and then do the action ‘w’ (rule 20). If the

defender is still in the q′ domain of control-states, he loses immediately.

If the defender is in the q′′ domain of control-states then a check-phase

is initiated. The attacker will still win after n + 4 ‘c’ actions and the fi-

nal (winning) ‘e’ action, since he has not cheated. If the defender initiates

the check-phase too early, such that the stack bottom is reached during the

check-phase, then the attacker still wins. In this particular case more ‘c’

actions are possible in q′′c than in qc. Thus α 6∼ α ′.

If the LBA does not accept w then the defender has the following win-

ning strategy. If the attacker plays on the α′ side then the defender makes

the two processes equal. If the attacker does not play honestly then the de-

fender goes to the q′′ domain and so threatens to make the two processes

equal in the next step, unless the attacker does the ‘c’ action and begins a

check-phase. In this check-phase the defender wins after n + 4 ‘c’-actions

(deadlock in both processes), because the attacker has cheated. If the at-

tacker himself goes to the q′′ domain of control-states, then the defender

can immediately make the two processes equal and win. The definition

of the rules 9–19 ensures that the defender gets to choose the successor-

control-state at the universal states. Thus, since the LBA does not accept w,

the attacker can never reach an accepting control-state (unless by cheating).

So the defender can defend forever and wins. Thus α ∼ α′.

3 Upper Bounds

The next theorem extends the result for strong simulation which appeared

in [KM02a]; the proof is based on the same idea, but the constructed for-

mula ϕ is now completely fixed.

Theorem 3.1. The problems PDA vw FS, FS vw PDA, and PDA 'w FS are

in EXPTIME.

26

Proof. All of the above mentioned problems are polynomially reducible to

the model-checking problem with pushdown automata and a fixed formula

ϕ of the modal µ-calculus (which is decidable in deterministic exponential

time [Wal01]).

Let ϕ ≡ νX.2a3b〈c〉X, where 2aψ ≡ νY.(ψ ∧ [a]Y) and 3bψ ≡

νZ.(ψ∨〈b〉Z). Intuitively, 2aψ says that each state which is reachable from

a given process via a finite sequence of a-transitions satisfies ψ, and 3bψ

says that a given process can reach a state satisfying ψ via a finite sequence

of b-transitions. Hence, the meaning of ϕ can be explained as follows: a

process satisfies ϕ iff after each finite sequence of a-transitions it can per-

form a finite sequence of b-transitions ended with one c-transition so that

the state which is entered again satisfies ϕ (we refer to [Koz83] for a pre-

cise definition of the syntax and semantics of the modal µ-calculus). Now

let ∆ = (Q, Γ, Act, δ) be a pushdown system, F = (F, Act,→) a finite-state

system, pα a process of ∆, and f a process of F . We construct a pushdown

system ∆ = (Q×F×Act×{0, 1}, Γ∪{Z}, {a, b, c}, δ′) (where Z 6∈ Γ is a new bot-

tom symbol) which ‘alternates’ the x⇒ transitions of ∆ and F , remembering

the ‘x’ in its finite control. Formally, δ′ is constructed as follows:

• for all qA
x→ rβ ∈ δ and g ∈ F we add (q, g, τ, 0)A

a→ (r, g, x, 0)β to

δ ′;

• for all qA
τ→ rβ ∈ δ, x ∈ Act, and g ∈ F we add (q, g, x, 0)A

a→
(r, g, x, 0)β to δ ′;

• for all q ∈ Q, g ∈ F, x ∈ Act, and Y ∈ Γ ∪ {Z} we add (q, g, x, 0)Y
b→

(q, g, x, 1)Y to δ ′;

• for each transition g
x→ g ′ of F and all q ∈ Q, Y ∈ Γ ∪ {Z} we add

(q, g, x, 1)Y
b→ (q, g ′, τ, 1)Y to δ ′;

• for all g
τ→ g ′ of F , x ∈ Act, q ∈ Q, and Y ∈ Γ ∪ {Z} we add

(q, g, x, 1)Y
b→ (q, g ′, x, 1)Y to δ ′;

27

• for all q ∈ Q, g ∈ F, and Y ∈ Γ ∪ {Z}we add (q, g, τ, 1)Y
c→ (q, g, τ, 0)Y

to δ ′;

We claim that pα vw f iff (p, f, τ, 0)αZ |= ϕ. Indeed, each sequence of

a-transitions of (p, f, τ, 0)αZ corresponds to some x⇒ move of pα and vice

versa; and after each such sequence, the ‘token’ can be switched from 0

to 1 (performing b), and now each sequence of b’s ended with one c cor-

responds to a x⇒ move of f. Then, the token is switched back to 0 and the

computation proceeds in the same way. ϕ says that this can be repeated for-

ever, unless we reach a state which cannot do any a when the token is set

to 0. The new bottom symbol Z has been added to ensure that (p, f, τ, 0)αZ

cannot get stuck just due to the emptiness of the stack. The FS vw PDA

direction is handled in a very similar way (the roles of pα and f are just

interchanged).

Corollary 3.2. The problems BPA vw FS, FS vw BPA, and BPA 'w FS are

decidable in polynomial time for (any) fixed finite-state process.

Proof. The complexity result of [Wal01] says that model-checking with any

fixed formula of the modal µ-calculus and pushdown processes with a fixed

number of control states is decidable in polynomial time. By synchroniz-

ing a given BPA process with a given (fixed) finite-state process as in The-

orem 3.1 we obtain a pushdown system with a fixed number of control

states, and the result follows.

Now we show that the problem PDA ≈ FS is in PSPACE. First, we recall

some results from [JKM01]. A characteristic formula of a finite-state sys-

tem F w.r.t. ≈ is a formula ΘF s.t. for every general system G which uses

the same set of actions as F we have that G |= ΘF ⇐⇒ G ≈ F. It has been

shown in [JKM01] that characteristic formulae for finite-state systems w.r.t.

≈ can be effectively constructed in the temporal logic EF (a simple fragment

of CTL), by using the following theorem (here, ≈k denotes ‘weak bisimilar-

28

ity up-to k’, which means that the defender has a strategy to defend for at

least k rounds in the weak bisimulation game).

Theorem 3.3. (taken from [JKM01])

Let F be a finite-state system with n states and G a general system. States g ∈ G

and f ∈ F are weakly bisimilar iff the following conditions hold: (1) g ≈n f and

(2) For each state g′ which is reachable from g there is a state f′ ∈ F such that

g ′ ≈n f ′.

One constructs characteristic formulae Φk,f for states f in F w.r.t. ≈k that

satisfy g |= Φk,f ⇐⇒ g ≈k f. The family of Φk,f formulae is defined

inductively on k as follows:

Φ0,f := true

Φk+1,f :=

 ∧
a∈Act

∧
f ′∈S(f,a)

3aΦk,f ′

∧
 ∧
a∈Act

(¬3a(
∧

f ′∈S(f,a)

¬Φk,f ′))


where S(f, a) = {f′ | f

a→ f ′} and 3τ means “reachable via a finite number

of τ-transitions” and 3a := 3τ〈a〉3τ for a 6= τ.

Empty conjunctions are equivalent to true. Thus, by Theorem 3.3,

the characteristic formula Θf for a process f of a finite-state system F =

(F, Act,→) with n states is

Θf ≡ Φn,f ∧ ¬3

(∧
f ′∈F

¬Φn,f ′

)

So one can reduce the problem PDA ≈ FS to a model checking problem for

pushdown automata and (a slight extension of) the logic EF. The following

proof-sketch uses many results by Walukiewicz [Wal00]. For a complete

proof, it would be necessary to repeat many of these, so we just sketch

the main ideas and the crucial modification of the algorithm from [Wal00].

It has been shown by Walukiewicz in [Wal00] that model checking push-

down automata with the logic EF is PSPACE-complete. But our result does

29

not follow directly from that. First, our characteristic formulae use a slight

extension of EF, because of the 3τ operator (normal EF has only the 3 op-

erator). However, the model checking algorithm of [Wal00] can trivially be

generalized to this extension of EF, without increasing its complexity. The

second, and more important problem is that the size of the characteristic

formula ΘF is exponential in n (where n is the number of states of F). How-

ever, a closer analysis of the model checking algorithm presented in [Wal00]

reveals that its complexity does not depend directly on the size of the for-

mula, but rather on the number of its distinct subformulae. More precisely,

this algorithm uses a so-called assumption function that assigns sets of sub-

formulae to every control-state of the PDA. Of course, each EF formula has

only a polynomial number of subformulae and hence the assumption func-

tion can be represented in polynomial space. However, it is also true for

our characteristic formula ΘF — although its size is exponential in n, the

number of its distinct subformulae Φk,f is Ω(n2), because 0 ≤ k ≤ n and

F has only n states. Hence, we can run the mentioned model-checking al-

gorithm for EF. Instead of ‘unwinding’ the Φk,f subformulae, we keep the

abbreviations Φk,f as long as possible and expand them only (on-the-fly)

when necessary (using the inductive definitions above). Thus, the whole

algorithm works in polynomial space and we obtain the following theo-

rem.

Theorem 3.4. The problem PDA ≈ FS is in PSPACE.

4 Conclusions

The following table summarizes the complexity of all problems of compar-

ing PDA and BPA to finite-state systems w.r.t. strong and weak simulation

preorder/equivalence and strong and weak bisimilarity. FS means a finite-

state system that is part of the input of the problem, while F means “any

30

fixed finite-state system” for the upper complexity bounds and “some fixed

finite-state system” for the lower complexity bounds.

vw FS vw F FS vw F vw 'w FS 'w F ≈ FS ∼ F ≈ F

v FS v F FS v F v ' FS ' F ∼ FS

BPA EXPTIME in P EXPTIME in P EXPTIME in P in P in P in P
complete complete complete

PDA EXPTIME EXPTIME EXPTIME EXPTIME EXPTIME EXPTIME PSPACE in P PSPACE
complete complete complete complete complete complete complete complete

Finally, we have also shown (in Theorem 2.6) that the problem PDA ∼

PDA of checking bisimilarity of two pushdown systems is EXPTIME-hard.

Thus, it is harder than the problem PDA ∼ FS of checking bisimilarity

of a pushdown system and a finite-state system, which is only PSPACE-

complete.

References

[Jan95] P. Jančar. High undecidability of weak bisimilarity for Petri nets. In

Proceedings of CAAP’95, volume 915 of LNCS, pages 349–363. Springer,

1995.

[JKM01] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equiv-

alences with finite-state processes. Theoretical Computer Science, 258(1–

2):409–433, 2001.

[KM02a] A. Kučera and R. Mayr. Simulation preorder over simple process alge-

bras. Information and Computation, 173(2):184–198, 2002.

[KM02b] A. Kučera and R. Mayr. Weak bisimilarity between finite-state systems

and BPA or normed BPP is decidable in polynomial time. Theoretical

Computer Science, 270(1–2):677–700, 2002.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer

Science, 27:333–354, 1983.

[Kuč00] A. Kučera. On simulation-checking with sequential systems. In Pro-

ceedings of ASIAN 2000, volume 1961 of LNCS, pages 133–148. Springer,

2000.

31

[May00] R. Mayr. On the complexity of bisimulation problems for pushdown

automata. In Proceedings of IFIP TCS’2000, volume 1872 of LNCS, pages

474–488. Springer, 2000.

[Pap94] Ch. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Sén98] G. Sénizergues. Decidability of bisimulation equivalence for equational

graphs of finite out-degree. In Proceedings of 39th Annual Symposium on

Foundations of Computer Science, pages 120–129. IEEE Computer Society

Press, 1998.

[SI94] B. Steffen and A. Ingólfsdóttir. Characteristic formulae for processes

with divergence. Information and Computation, 110(1):149–163, 1994.

[Srb02] J. Srba. Strong bisimilarity and regularity of basic parallel processes

is PSPACE-hard. In Proceedings of STACS 2002, volume 2285 of LNCS,

pages 535–546. Springer, 2002.

[Sti98] C. Stirling. The joys of bisimulation. In Proceedings of MFCS’98, volume

1450 of LNCS, pages 142–151. Springer, 1998.

[Sti01] C. Stirling. Decidability of DPDA equivalence. Theoretical Computer Sci-

ence, 255:1–31, 2001.

[Tho93] W. Thomas. On the ehrenfeucht-fraı̈ssé game in theoretical computer

science. In Proceedings of TAPSOFT’93, volume 668 of LNCS, pages 559–

568. Springer, 1993.

[vG99] R. van Glabbeek. The linear time—branching time spectrum. Handbook

of Process Algebra, pages 3–99, 1999.

[Wal00] I. Walukiewicz. Model checking CTL properties of pushdown systems.

In Proceedings of FST&TCS 2000, volume 1974 of LNCS, pages 127–138.

Springer, 2000.

[Wal01] I. Walukiewicz. Pushdown processes: Games and model-checking. In-

formation and Computation, 164(2):234–263, 2001.

32

Copyright c© 2002, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

