
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

How to Employ Reverse Search in Distributed
Single Source Shortest Paths

by

Luboš Brim
Ivana Černá
Pavel Krčál

Radek Pelánek

FI MU Report Series FIMU-RS-2001-09

Copyright c© 2001, FI MU November 2001



How to Employ Reverse Search in Distributed
Single Source Shortest Paths?

Luboš Brim, Ivana Černá, Pavel Krčál, and Radek Pelánek

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic

{brim,cerna,xkrcal,xpelanek }@fi.muni.cz

Abstract. A distributed algorithm for the single source shortest path prob-
lem for directed graphs with arbitrary edge lengths is proposed. The new
algorithm is based on relaxations and uses reverse search for inspecting
edges. No additional data structures are required. At the same time the
algorithm uses a novel distributed way to recognize a reachable negative-
length cycle in the graph which facilitates the scalability of the algorithm.

1 Introduction

The single source shortest paths problem is a key component of many
applications and lots of effective sequential algorithms are proposed for
its solution (for an excellent survey see [CG99]). However, in many ap-
plications graphs are too massive to fit completely inside the computer’s
internal memory. The resulting input/output communication between
fast internal memory and slower external memory (such as disks) can
be a major performance bottleneck. Several methods are used to evade
this bottleneck. External memory algorithms [Vit98] exploit locality in
order to reduce input/output cost. Another successful approach comes
out from parallel processing.

In particular, in LTL model checking application (see Section 6) the
graph is typically extremely large. In order to optimize the space com-
plexity of the computation the graph is generated on-the-fly. Successors
of a vertex are determined dynamically and consequently there is no
need to store any information about edges permanently. Therefore nei-
ther the techniques used in external memory algorithms (we do not know
any properties of the examined graph in advance) nor the parallel algo-
rithms based on adjacency matrix graph representation are applicable.

? This work has been partially supported by the Grant Agency of Czech Republic grant
No. 201/00/1023.



The approach we have been looking upon is to increase the computa-
tional power (especially the amount of randomly accessed memory) by
building a powerful parallel computer as a network of cheap worksta-
tions with disjoint memory which communicate via message passing.

Futhermore, we require that the distributed algorithm is compatible
with other space-saving techniques (e.g. on-the-fly technique or partial
order technique). Our distributed algorithm is based on the relaxation
of graph’s edges [CLR90]. Distributed relaxation-based algorithms are
known only for special settings of single source shortest paths prob-
lem. For general digraphs with non-negative edge lengths parallel al-
gorithms are presented in [CMMS98,MS00,RV92]. For special cases of
graphs, like planar digraphs [TZ96,KPSZ94], graphs with separator de-
composition [Coh96] or graphs with small tree-width [CZ95], more ef-
ficient algorithms are known. Yet none of these algorithms is applicable
to general digraphs with negative length cycles.

The most notable features of our proposed distributed algorithm are
reverse search and walk to root approaches. The reverse search method is
known to be an exceedingly space efficient technique [AF96,Nie00]. Data
structures of the proposed algorithm can be naturally used by the reverse
search and it is possible to reduce the memory requirements which would
be otherwise induced by structures used for traversing graph (such as a
queue or a stack). This could save up to one third of memory which is
practically significant.

Walk to root is a strategy how to detect the presence of a negative
length cycle in the input graph. The cycle is searched for in the graph
of parent pointers maintained by the method. The parent graph cycles,
however, can appear and disappear. The aim is to detect a cycle as soon
as possible and at the same time not to increase the time complexity of
underlying relaxation algorithm significantly. To that end we introduce a
solution which allows to amortize the time complexity of cycle detection
over the complexity of relaxation.

2 Problem Definition and General Method

Let (G, s, l) be a given triple, where G = (V,E) is a directed graph, l :
E ! R is a length function mapping edges to real-valued lengths and
s 2 V is the source vertex. We denote n =j V j and m =j E j. The length
l(p) of the path p is the sum of the lengths of its constituent edges. We

2



define the shortest path length from s to v by

δ(s, v) =

�
minfl(p) j p is a path from s to vg if there is such a path
1 otherwise

A shortest path from vertex s to vertex v is then defined as any path pwith
length l(p) = δ(s, v). If the graph G contains no negative length cycles
(negative cycles) reachable from the source vertex s, then for all v 2 V

the shortest path length remains well-defined and the graph is called
feasible. The single source shortest paths (SSSP) problem is to determine
whether the given graph is feasible and if so to compute δ(s, v) for all v 2
V . For purposes of our algorithm we suppose that some linear ordering
on vertices is given.

The general method for solving the SSSP problem is the relaxation
method [CG99,CLR90]. For every vertex v the method maintains its dis-
tance label d(v) and parent vertex p(v). The subgraph Gp of G induced
by edges (p(v), v) for all v such that p(v) 6= nil is called the parent graph.
The method starts by setting d(s) = 0 and p(s) = nil. At every step
the method selects an edge (v, u) and relaxes it, which means that if
d(u) > d(v) + l(v, u) then it sets d(u) to d(v) + l(v, u) and sets p(u) to
v.

If no d(v) can be improved by any relaxation then d(v) = δ(s, v) for
all v 2 V and Gp determines the shortest paths. Different strategies for
selecting an edge to be relaxed next lead to different algorithms. For
graphs where negative cycles could exist the relaxation method must
be modified to recognize the unfeasibility of the graph. As in the case of
relaxation various strategies are used to detect negative cycles [CG99].
However, not all of them are suitable for our purposes – they are either
uncompetitive (as for example time-out strategy) or they are not suitable
for distribution (such as the admissible graph search which uses hardly
parallelizable depth-first search or level-based strategy which employs
global data structures). For our version of distributed SSSP we have used
the walk to root strategy.

The sequential walk to root strategy can be described as follows.
Suppose the relaxation operation applies to an edge (v, u) (i.e. d(u) >
d(v) + l(v, u)) and the parent graph Gp is acyclic. The operation creates
a cycle in Gp if and only if u is an ancestor of v in the current parent
graph (see Fig. 1). This can be detected by following the parent pointers
from v to s. If the vertex u lies on this path then there is a negative cycle;
otherwise the relaxation operation does not create a cycle.

3



The walk to root method gives immediate cycle detection and can be
easily combined with the relaxation method. However, since the path to
the root can be long, it increases the cost of applying the relaxation opera-
tion to an edge toO(n). We can use amortization to pay the cost of check-
ing Gp for cycles. Since the cost of such a search is O(n), the search is
performed only after the underlying shortest paths algorithm performs
Ω(n) work. The running time is thus increased only by a constant factor.
To preserve the correctness, the behavior of the walk to root has to be
significantly modified. The amortization is used in the distributed algo-
rithm and is described in detail in Section 5.

2

67

1

2

u

v

−6 5

5 4

1

1

2

6

1

2

−6

5 4 4

1

1

1

−6
u

v

u

v

u

v

−6 5

5 4

1

1

3

Fig. 1. The part of the graph G and the induced parent graph Gp before and after the
relaxation of the edge (v, u) which creates the negative cycle in the parent graph Gp

3 Reverse Search

Reverse search is originally a technique for generating large sets of dis-
crete objects [AF96,Nie00]. Reverse search can be viewed as a depth-first
graph traversal that requires neither stack nor node marks to be stored
explicitly – all necessary information can be recomputed. Such recom-

4



putations are naturally time-consuming, but when traversing extremely
large graphs, the actual problem is not the time but the memory require-
ments.

In its basic form the reverse search can be viewed as the traversal of
a spanning tree, called the reverse search tree. We are given a local search
function f and an optimum vertex v�. For every vertex v, repeated applica-
tion of f has to generate a path from v to v�. The set of these paths defines
the reverse search tree with the root v�. A reverse search is initiated at v�

and only edges of the reverse search tree are traversed.
In the context of the SSSP problem we want to traverse the graph G.

The parent graph Gp corresponds to the reverse search tree. The opti-
mum vertex v� corresponds to the source vertex s and the local search
function f to the parent function p. The correspondence is not exact since
p(v) can change during the computation whereas original search func-
tion is fixed. Consequently some vertices can be visited more than once.
This is in fact the desired behavior for our application. Moreover, if there
is a negative cycle in the graph G then a cycle in Gp will occur and Gp
will not be a spanning tree. In such a situation we are not interested in
the shortest distances and the way in which the graph is traversed is not
important anymore. We just need to detect such a situation and this is
delegated to the cycle detection strategy.

proc Reverse search (s)
p(s) := ?;
v := s;
while v 6= ? do

Do something (v);
u := Get successor (v ,NULL);
while u does not exist do

last := v ; v := p(v);
u := Get successor (v , last);

od
v := u;

od
end

proc Call recursively (v)
Do something (v);
for each edge (v ,w) 2 E do

if p(w) = v then
Call recursively (w)

fi
od

end

Fig. 2. Demonstration of the reverse search

Fig. 2 demonstrates the use of the reverse search within our algo-
rithm. Both procedures Call recursively(v) and Reverse search(v) traverse
the subtree of v in the same manner and perform operation do something(v)

5



on its children. Call recursively uses a stack whereas Reverse search uses
the parent edges for the traversal. The function Get successor(v, w) re-
turns the first successor u of v which is greater than w with respect to
the ordering on the vertices and p(u) = v. If no such successor exists an
appropriate announcement is returned.

4 Sequential SSSP Algorithm with Reverse Search

We first present the sequential version algorithm (Fig. 3) and prove its
correctness and complexity. The algorithm forms the base for the dis-
tributed algorithm presented in the subsequent section.

The Trace procedure visits vertices in the graph (we say that a vertex
is visited if it is the value of the variable v in the while cycle in the Trace
procedure). The procedure terminates either when a negative cycle is
detected or when the traversal of the graph is completed.

The RGS function combines the relaxation of an edge as introduced
in Section 2 and the Get successor function from Section 3. It finds the next
vertex u whose label can be improved. The change of p(u) can create a
cycle in Gp and therefore the WTR procedure is started to detect this
possibility. If the change is “safe” the values d(u) and p(u) are updated
and u is returned.

In what follows the correctness of the algorithm is stated.

Lemma 1. LetG contains no negative cycle reachable from the source vertex s.
Then Gp forms a rooted tree with root s and d(v) � δ(s, v) for all v 2 V at any
time during the computation. Moreover, once d(v) = δ(s, v) it never changes.

Proof: The proof is principally the same as for other relaxation meth-
ods [CLR90].

Lemma 2. After every change of the value d(v) the algorithm visits the ver-
tex v.

Proof: Follows directly from the algorithm.

Lemma 3. Let G contains no negative cycle reachable from the source vertex
s. Every time a vertex w is visited the sequence S of the assignments on line 6
of the procedure Trace will eventually be executed for this vertex. Until this
happens p(w) is not changed.

Proof: The value p(w) cannot be changed because G has no negative
cycle and due to Lemma 1 the parent graph Gp does not have any cycle

6



1 proc Trace (s)
2 p(s) := ?; v := s;
3 while v 6= ? do
4 u := RGS (v ,NULL);
5 while u does not exist do
6 last := v ; v := p(v);
7 u := RGS (v , last); od
8 v := u; od
9 end

1 proc RGS (v , last)fRelax and Get Successorg
2 u := successor of v greater than last;
3 while d(u) � d(v) + l(u, v) do
4 u := next successor of v ; od
5 if u exists then
6 WTR (v , u);
7 d(u) := d(v) + l(u, v); p(u) := v ;
8 return u;
9 else return “u does not exist”; fi

10 end

1 proc WTR (at , looking for)fWalk To Rootg
2 while at 6= s and at 6= looking for do at := p(at); od
3 if at = looking for then negative cycle detected fi
4 end

Fig. 3. Pseudo-code of the sequential algorithm

7



and hence w could not be visited during the traversal of the subtree of
w.

Let h(w) denotes the depth of w in Gp. We prove the lemma by back-
ward induction (from n to 0) with respect to h(w). For the basis we have
h(w) = n, w has no child and therefore RGS(w,NULL) returns “u does not
exist” and the sequence S is executed immediately. For the inductive step
we assume that the lemma holds for each v such that h(v) � k and we
will prove it for h(w) = k � 1. Let A = fa1, a2, . . . , arg = fu j (w,u) 2 Eg
be the set of all successors of w. Since h(ai) = k for all i 2 f1, . . . , rg, we
can use the induction hypothesis for each ai, i.e. each ai will be visited,
its subtree will be traversed and the sequence S will be executed finish-
ing thus the visit of ai and starting the visit of ai+1 in finite time. Because
r is finite too, the RGS procedure will return “u does not exist” for w after
a finite number of steps and the sequence S will be executed.

Theorem 1 (Correctness of the sequential algorithm). If G has no nega-
tive cycle reachable from the source s then the sequential algorithm terminates
with d(v) = δ(s, v) for all v 2 V and Gp forms a shortest-paths tree rooted at
s. If G has a negative cycle, its existence is reported.

Proof: Let us at first suppose that there is no negative cycle. Lemma 3
applied to the source vertex s gives the termination of the algorithm. Let
v 2 V is any vertex and< v0, v1, . . . , vk >, s = v0, v = vk is a shortest path
from s to v. We show that d(vi) = δ(s, vi) for all i 2 f0, . . . kg by induction
on i and therefore d(v) = δ(s, v).

For the basis we have d(v0) = d(s) = δ(s, s) = 0 by Lemma 1. From
the induction hypothesis we have d(vi) = δ(s, vi). The value d(vi) was
set to δ(s, vi) at some moment during the computation. From Lemma 2
vertex vi is visited afterward and the edge (vi, vi+1) is relaxed. Due to
Lemma 1, d(vi+1) � δ(s, vi+1) = δ(s, vi) + l(vi, vi+1) = d(vi) + l(vi, vi+1)
is true before the relaxation and therefore d(vi+1) = d(vi) + l(vi, vi+1) =
δ(s, vi) + l(vi, vi+1) = δ(s, vi+1) holds after the relaxation. By Lemma 1
this equality is maintained afterward.

For all vertices v, u with v = p(u) we have d(u) = d(v) + l(v, u). This
follows directly from line 7 of the RGS procedure. After the termination
d(v) = δ(s, v) and therefore Gp forms a shortest paths tree.

On the other side, if there is a negative cycle in G, then the relaxation
process alone would run forever and would create a cycle in Gp. The
cycle is detected because before any change of p(v) WTR tests whether
this change does not create a cycle in Gp.

8



Let us suppose that edges have integer lengths and let C = maxfj
l(v,w) j : (v,w) 2 Eg.

Theorem 2. The worst time complexity of the sequential algorithm is O(Cn4).

Proof: Each simple shortest path consists of at most n � 1 edges and
�C(n�1) � δ(s, v) � C(n�1) holds for all v 2 V, δ(s, v) <1. Each vertex
v is visited only after d(v) is decreased. Therefore each vertex with finite
δ(s, v) is visited at most O(Cn) times. If d(v) of some vertex is decresead
under �C(n � 1) then this vertex could not lie on a simple path from s

to v and therefore this vertex lies on a cycle and this cycle is detected
by WTR procedure. Hence vertices with δ(s, v) = �1 are visited at most
O(Cn) times. Each visit consists of updating at most n successors and an
update can take O(n) time (due to the walk to root). Together we have
O(Cn3) bound for total visiting time of each vertex and O(Cn4) bound
for the algorithm.

We stress that the use of the walk to root in this algorithm is avoid-
able and the algorithm can be modified to detect a cycle without the walk
to root and run in O(Cn3) time. The walk to root has been used to make
the presentation of the distributed algorithm (where the walk to root is
essential) clearer.

5 Distributed Algorithm

In this section we describe a distributed algorithm with amortized walk
to root strategy. The algorithm runs on a network of P processors which
communicate through a message-passing interface. One processor is dis-
tinguished as the Manager and is responsible for starting and terminating
the distributed computation. All processors perform the same program.

Before introducing our algorithm let us specify the way how a graph
is stored in distributed environment. The typical solution is to use an ad-
jacency matrix representation of the graph and divide the matrix among
processors. This solution has two major disadvantages. Matrix adjacency
representation is not effective for sparse graphs and moreover it is not
compatible with on-the-fly construction of the graph, which is essential
in the intended application of the algorithm.

Therefore we have to use a different approach. Instead of using an
adjacency matrix we generate the adjacency list on-the-fly using the func-
tion successor. The set of vertices is divided into disjoint subsets and
each processor is responsible for the owned subset of vertices and for
edges coming out from these vertices. The distribution is determined by

9



the function owner which assigns every vertex v to a processor i. The
partition of vertices should be well-balanced and should minimize the
number of cross-edges (the edge (u, v) 2 E is cross-edge iff owner(u) 6=
owner(v)). Good partition of vertices among processors is important be-
cause it has impact on communication complexity and thus on run-time
of the program. We do not discuss the balancing of the partition here as it
is itself quite a difficult problem and depends on particular application.

The main idea of the distributed algorithm can be summarized as
follows (for details see the pseudo-code). The computation is initialized
by the processor owning the source vertex by calling Trace(s,?) and is
expanded to other processors as soon as the traversal visits the “border”
vertices. Each processor visits and labels vertices basically in the same
manner as the sequential algorithm does.

Because the walk to root is expensive operation – it has complexity
O(n) – we amortize it over the relaxation operations. For that reason it is
not initiated after every change in the parent graph but only after O(n)
changes. Under such circumstances it can happen that even when the
relaxation of an edge (u, v) does not create a cycle in the parent graphGp,
there can be a cycle on the way from v to swhich was created meanwhile.
Therefore we have to modify the walk to root strategy. In the following
we describe the changes that have to be taken into account when running
the amortized walk to root in a distributed environment.

The walk to root used in sequential algorithm detects a cycle by re-
turning to the vertex it has been started from. Let us call this vertex the
origin of the walk. On the contrary the distributed walk to root detects a
cycle whenever it returns to any vertex it has already passed through. In
order to detect such a situation, the distributed walk to root marks every
vertex it passes through.

In the distributed environment it is possible to start more than one
walk concurrently. It is necessary to distinguish marks set by different
walks. Hence every walk marks vertices by its origin. It may happen
that a walk reaches a vertex that is already marked by some other walk.
To avoid blocking and infinite overwriting of marks set by several walks,
we introduce ordering on walks (which is induced by ordering on ver-
tices) and we give ”priority” to higher walks (Fig. 4). When walk from
the origin x reaches a vertex that is already marked by some other ori-
gin y then it is either finished (in case that x < y) or it overwrites the
previous mark (in case that x > y).

After finishing walk its marks have to be removed. Otherwise, the
marks could block future runs of walks from lower origins as well as

10



yyyy x x

yyx x

xy

x

walk x

walk y
walk y

y

yy

walk x

x x
x

x

xy

walk x

walk y

x

x x

x x
y

x
y

A)

C)

B)

Fig. 4. A) Mutually blocking walks – the cycle is not detected; B) Mutually overwriting
walks – walks do not terminate; C) Solution – higher walk has priority, both termination
and cycle detection are guaranteed

they would disable future walks from the same origin. The removal is
done by the REM procedure which proceeds in the same way as the
WTR procedure using parent pointers. This is the reason why the change
of p(v) of marked vertices is forbidden (line 6 of the RGS procedure). The
REM procedure finishes after reaching the source or vertex marked by
some other walk. It may happen that some of the marks have been over-
written and therefore the REM procedure does not remove all marks.
These marks will be eventually overwritten and removed by the REM
procedure started in some other vertex. However, before this happens
these marks could spoil the correctness of the cycle detection (see Fig. 5).
We stress that scenario sketched in Fig. 5 is possible only in the dis-
tributed environment.

To avoid uncorrect cycle detection we introduce stamps. Each pro-
cessor maintains a counter of started walks. Vertices are marked both by
the origin of the walk and by the current value of the processor counter
(stamp) so it is possible to distinguish marks.

Let us summarize the main features of the distributed walk to root
strategy (referenced lines are from the WTR procedure):

11



x xy y yx x x x

y y y

yyy

yyy

x xy y y

x x x x x xx x

x

B)

C)

A)

x xy yy

Fig. 5. A) Walk x is partially overwritten by walk y which is still in progress; B) the REM
procedure does not remove all x marks; C) a new walk from x can detect false cycle

– The walk traverses the parent graph Gp using parent pointers p(v) in
the same manner as the sequential one.

– The complexity of walks is amortized over the complexity of the re-
laxation operations – the condition WTR amortization becomes true
every n-th time it is called.

– Vertices through which walk passes are marked by the couple [ori-
gin, stamp]. The origin is the vertex where the walk has started and
the stamp is the actual value of the counter of started walks on par-
ticular processor.

– The walk can reach a vertex already marked by some other walk.
� If the vertex is marked by the actual origin and stamp then a cycle

is detected (line 6). The cycle can be easily reconstructed by fol-
lowing parent edges. If necessary, the path connecting the cycle
with the source vertex can be found using a suitable distributed
reachability algorithm.

� If the vertex is marked by lower origin or by the actual origin but
lower stamp (line 15) then the walk overwrites the mark by actual
mark and continues.

� If the vertex is marked by higher origin (line 9) then the walk
stops and the REM procedure is started.

– Marks are removed by the REM procedure.

12



1 proc Main
2 while not finished do
3 req := pop(queue);
4 Trace (req.vertex , req.father , req.length );
5 od
6 end

1 proc Trace (v, father , length)
2 if d(v) � length then exit fi
3 p(v) := father ; d(v) := length;
4 while v 6= father do
5 Handle messages;
6 u := RGS (v,NULL);
7 while u does not exist do
8 last := v; v := p(v);
9 u := RGS (v, last); od

10 v := u;
11 od
12 end

1 proc RGS (v , last) fRelax and Get Successorg
2 u := successor of v greater than last;
3 while u exists do
4 if u is local then
5 if d(u) > d(v) + l (u, v) then
6 if mark(u) then wait; fi
7 p(u) := v;
8 d(u) := d(v) + l (u, v);
9 if WTR amortization then WTR([u, stamp], u); inc(stamp); fi

10 return u;
12 fi
13 else send message(owner(u), “update u, v, d(u) + l(u, v)”);
14 fi
15 u := next successor of v ;
16 od
17 return u does not exist;
18 end

1 proc WTR ([origin, stamp], at) fWalk To Rootg
2 done := false;
3 while :done do
4 if at is local
5 then
6 if mark(at) = [origin, stamp] !
7 send message(Manager , “negative cycle found”);
8 terminate
9 at = source _mark(at) > [origin, stamp] !

13



10 if origin is local
11 then REM ([origin, stamp], origin)
12 else send message(owner(origin),
13 “start REM ([origin, stamp], origin))” fi
14 done := true;
15 mark(at) = nil _mark(at) < [origin, stamp] !
16 mark(at) := [origin , stamp];
17 at := p(at)
18 fi
19 else send message(owner(at), “start WTR([origin, stamp], at)”);
20 done := true
21 fi
22 od
23 end

1 proc REM ([origin, stamp], at) fRemove Marksg
2 done := false;
3 while :done do
4 if at is local
5 then if walk(at) = [origin , stamp]
6 then walk(at) := [nil, nil];
7 at := p(at)
8 else
9 done := true fi

10 else send message(owner(at), start REM ([origin, stamp], at));
11 done := true fi
12 od
13 end

1 proc Handle messages
2 if message = req then
3 if d(req.vertex) > req.length then push queue(req); fi
4 fi
5 if message = start WTR then WTR; fi
6 if message = start REM then REM ; fi
7 end

Whenever a processor is about to process a vertex (during traversing
or walk to root) it checks whether the vertex belongs to its own sub-
graph. If the vertex is local, the processor continues locally otherwise
a message is sent to the owner of the vertex. The algorithm periodically
checks incoming messages (line 5 of Trace). When a request to update pa-
rameters of a vertex u arrives, the processor compares the current value
d(u) with the received one. If the received value is lower than the current
one then the request is placed into the local queue. Whenever the traver-
sal ends the next request from the queue is popped and a new traversal
is started. Another type of message is a request to continue in the walk
to root (resp. in removing marks), which is immediately satisfied by ex-
ecuting the WTR (resp. the REM) procedure.

14



The distributed algorithm terminates when all local queues of all pro-
cessors are empty and there are no pending messages or when a negative
cycle is detected. The Manager process is used to detect the termination
and to finish the algorithm by sending a termination signal to all proces-
sors.

In what follows we prove the correctness of the algorithm. The proof
is similar to the sequential one but is more technically involved.

Lemma 4. Let G be a given graph. Then d(v) � δ(s, v) for all v 2 V and this
invariant is maintained over any sequence of relaxations performed on the graph
G. Moreover, once d(v) achieves its lower bound δ(s, v), it never changes.

Lemma 5. Let G contains no reachable negative cycle. Then the parent graph
Gp forms a rooted tree with root s, and any sequence of relaxations on G main-
tains this property invariantly true.

Lemma 6. Let G contains no negative cycle reachable from the source vertex
s. Every time a vertex w is visited the sequence S of the assignments on line 8
of the procedure Trace will eventually be executed for this vertex. Until this
happens p(w) is not changed.

Proofs of Lemmas 4-6 are analogical to the proofs of their sequential
counterparts.

Lemma 7. The algorithm visits a vertex u if and only if the value d(u) has been
decreased.

Proof: “)” Let us suppose that vertex u is visited, i.e. it is the value of
the variable v in the while cycle of the Trace procedure. This may happen
in two ways. At first, the procedure Trace has been called with the pa-
rameter u. Due to the test at the beginning of the procedure, value d(u)
has been decreased by the assignment on line 3. Secondly, the variable
v may be set to u during the previous iteration of the while cycle. This
may happen only if the RGS procedure has returned u and consequently
d(u) has been decreased on line 8 of the RGS procedure.

“(” Let us suppose that d(u) has been decreased. This may happen
only on line 3 of the Trace procedure or on line 8 of the RGS procedure.
In both cases, vertex u is visited immediately afterwards.

Note that the algorithm can not visit vertex with the same d(v) twice.

Lemma 8. Every walk takes at most O(n) time.

15



Proof: A walk can visit each vertex only once – the linear ordering on
walks prevents multiple visits of the vertex by the same walk. Since there
are n vertices, walk can take at most O(n) time.

Lemma 9. If G contains no reachable negative cycle then the distributed algo-
rithm terminates with d(v) = δ(s, v) for all v 2 V and Gp forms a shortest-
paths tree rooted at s.

Proof: In the absence of negative cycles algorithm terminates when all
local queues are empty and there are no pending messages. Every ver-
tex is placed into a queue only after the value d(v) has been decreased.
This can happen at most 2 �C � (n�1) times (see the proof of Theorem 2).
After removing the vertex v from a queue the procedure Trace(v) is exe-
cuted. Lemma 6 applied to the vertex v gives the termination of the Trace
procedure. Therefore, all queues will become empty in finite time and
the algorithm will terminate.

The arguments, that d(v) = δ(s, v) and that Gp forms shortest path
tree are the same as in the sequential case (see the proof of Theorem 1).

Lemma 10. If the procedure WTR detects a cycle, then there is a negative cycle
in G.

Proof: The walk initiated in a vertex u with stamp i detects a cycle by
finding a vertex marked with the same origin u and stamp i. The equality
of stamps ensures that this vertex has already been visited during the
current walk. From Lemma 5 it follows that any cycle in Gp is a negative
cycle in G.

Lemma 11. IfG contains a reachable negative cycle then after finite time either
a cycle is detected or for every visited vertex v holds that v lies on cycle or on a
path to cycle in Gp.

Proof: Let us suppose that cycle was not detected. According to lemma 7
each visit of vertex v is consequence of lowering of d(v). Hence after
finite time, all d(v)’s are either settled and v is not visited any more or
d(v) is lower than C(n� 1). Because there could not exist simple path in
Gp from s to v if d(v) < C(n � 1), each such vertex has to lie either on a
cycle or on a path to a cycle.

Lemma 12. IfG contains a reachable negative cycle then some procedure WTR
detects the cycle.

16



Proof: According to Lemma 11 after finite time the cycle is either already
detected or for every visited vertex v holds that v lies on a cycle or on
a path to cycle in Gp. In the second case, after at most n steps a walk
will be started. This walk will either detect cycle or reach a vertex that
is marked by some higher walk. However, in this case the cycle in the
parent graph is the same for the second walk. We now have a similar
situation as before for the walk started at higher origin. As the number
of possible origins is finite, there has to be a walk that will not be termi-
nated by another one and that will detect the cycle.

Theorem 3 (Correctness of the distributed algorithm). If G contains no
reachable negative cycle then the distributed algorithm terminates with d(v) =
δ(s, v) for all v 2 V and Gp forms a shortest-paths tree rooted at s. If G has a
negative cycle, its existence is reported.

Proof: Lemma 9 gives the correctness for the case that G contains no
negative cycle. Lemmas 10 and 12 give the correctness of the other case.

Theorem 4 (Complexity of the distributed algorithm). The worst time
complexity of the algorithm is O(Cn3).

Proof: Complexity is O(Cn3) due to the amortization of the walk to root,
other arguments are the same as for the sequential case (see proof of
Theorem 2).

6 Experiments

We have implemented the distributed algorithm (DSP-R) in C++ and
the experiments have been performed on a cluster of eight 366 MHz
Pentium PC Linux workstations with 128 Mbytes of RAM each inter-
connected with a fast 100Mbps Ethernet and using Message Passing In-
terface (MPI) library.

Our objective was to compare the performance of our algorithm with
other algorithms on particular types of graphs that represent the LTL
model checking problem. Automata based approach to model-checking of
linear temporal logic (LTL) formulas is a very elegant method developed
by Vardi and Wolper [VW86]. The basic idea is to associate with each
LTL formula a Büchi automaton that accepts exactly all the computations
that satisfy the formula. At the same time, states of modelled finite-state
system are indentified with states of a Büchi automaton. This enables the
reduction of the model-checking problem to the non-emptiness problem

17



for Büchi automata. It can be shown that non-emptiness problem for
Büchi automata is equivalent to the problem of finding a cycle that is
reachable from the initial state and contains an accepting state.

The connection between the negative cycle problem and the Büchi
automaton emptiness problem is following. A Büchi automaton corre-
sponds to a directed graph. Let us assign lengths to its edges in such
a way that all edges out-coming from vertices corresponding to accept-
ing states have length -1 and all others have length 0. With this length
assignment, negative cycles simply coincide with accepting cycles and
the problem of Büchi automaton emptiness reduces to the negative cycle
problem.

The algorithm used in LTL model-checkers is very effective nested
depth first search (NDFS) algorithm [HPY96]. For instance, SPIN veri-
fication tool [Hol97] uses this algorithm. In its distributed version the
graph is divided over processors like in the DSP algorithm. Only one
processor, namely the one owning the actual vertex in the NDFS search,
is executing the nested search at a time. The network is in fact running
the sequential algorithm with extended memory.

At the same time we wanted to compare our algorithm with simi-
lar algorithm [BCKP01] which does not employ reverse search (DSP-Q),
but which traverses graph using the queue (classical Bellman-Ford ap-
proach [For56,Bel58]). The distribution of DSP-Q algorithm is the very
same as the distribution of DSP-R algorithm. Our aim was to document,
that avoiding the additional data structure (such as the queue in this
case) does not impact the running time.

In the implementation of the DSP-R and the DSP-Q algorithms we
have employed the following optimization scheme. For more efficient
communication between processors we do not send separate messages.
The messages are sent in packets of pre-specified size. The optimal size
of a packet depends on the network connection and the underlying com-
munication structure. In our case we have achieved the best results for
packets of size around 100 single messages.

Our experiments were performed on three kinds of systems given
by random graphs, product graphs and generated graphs. Graphs were
generated using a simple specification language and an LTL formula. In
all the cases we tested graphs with and without cycles to model faulty
and correct behavior of systems. As our real example we tested the parametrised
Dining Philosophers problem. Each instance is characterized by the num-
ber of vertices and the number of cross-edges. The number of cross-

18



edges significantly influences the overall performance of distributed al-
gorithms.

For each experiment we report the average time in minutes as the
main metric. Table 1 summarizes the achieved results.

Vertices Cross–edges NDFS DSP-Q DSP-R
Generated, without cycle

40398 34854 1:01 0:11 0:09
71040 1301094 31:13 0:48 0:42

696932 1044739 27:02 1:31 1:36
736400 5331790 126:46 5:17 4:25
777488 870204 21:36 2:02 2:05

1859160 1879786 49:04 6:00 4:39
Generated, with cycle

18699 22449 0:06 0:05 0:04
33400 2073288 0:37 0:24 0:22
46956 83110 0:05 0:09 0:09

Product, without cycle
20360 783170 18:16 0:10 0:13
35300 2634667 63:43 2:05 0:35
71040 1301094 31:13 0:48 0:42

736400 5331790 126:46 5:17 4:25
Product, with cycle

33400 2073288 0:37 0:24 0:22
Random, without cycle

4000 353247 14:03 0:17 0:06
5000 839679 31:48 0:32 0:21

80000 522327 30:11 1:39 0:40
60000 1111411 57:19 4:08 1:07

Random, with cycle
18000 1169438 1:20 0:09 0:09

Philosophers
(12) 94578 42154 2:06 0:13 0:15
(14) 608185 269923 16:11 1:40 1:35

Table 1. Summary of experimental results

The experiments lead basically to the following conclusions:

– DSP-R algorithm is comparable with the NDFS one on all graphs.
– DSP-R algorithm is significantly better on graphs without negative cycles.
– DSP-R algorithm is practically the same as the DSP-Q one on all

graphs.

19



Experiments show that in spite of worse theoretical worst time com-
plexity of DSP-R algorithm its behavior in practice can outperform the
theoretically better NDFS one. This is due to the number of communi-
cations which has essential impact on the resulting time. In DSP-R al-
gorithm the messages can be grouped into packets and sent together. It
is a general experience that the time needed for delivering t single mes-
sages is much higher than the time needed for delivering those messages
grouped into one packet. On the other hand, NDFS algorithm does not
admit such a grouping. Another disadvantage of NDFS is that during the
passing of messages all the processors are idle, while in DSP-R algorithm
the computation can continue immediately after sending a message. Last
but not least, in NDFS all but one processor are idle whereas in DSP-R all
can compute concurrently. We notice that all mentioned advantages of
DSP-R algorithm demonstrate themselves especially for systems with-
out cycles where the whole graph has to be searched. This is in fact the
desired property of our algorithm as the state explosion demonstrates
itself just in these cases. Both algorithms perform equally well on graphs
with cycles. When comparing the results of the DSP-R algorithm and the
DSP-Q one we can conclude that avoiding the additional data structure
for the traversal of the graph does not impact the running time. More
significant differences can be explained by different traversal order - the
DSP-R algorithm performs quasi-depth-first traversal and the DSP-Q al-
gorithm performs quasi-breath-first traversal. Practical running time of
these two approaches can differ, but it depends on the particular graphs.

We have accomplished yet another set of tests (see Table 2) in order to
validate the scalability of the DSP-R algorithm. The table shows how the
number of computers influences the computation time. Time is given in
minutes, ’M’ means that the computation failed due to low memory. The
tests confirm that it scales well, i.e. the overall time needed for treating a
graph is decreasing as the number of involved processors is heightened.

Computers
Vertices 1 2 3 4 5 6 7
94578 0:38 0:35 0:26 0:21 0:18 0:17 0:15
608185 5:13 4:19 3:04 2:26 2:03 1:49 1:35
777488 M 6:50 4:09 3:12 2:45 2:37 2:05
736400 M M M 6:19 4:52 4:39 4:25

Table 2. Scalability over the number of the computers

20



7 Conclusions

We have proposed a distributed algorithm for the single source shortest
paths problem for arbitrary directed graphs which can contain negative
length cycles. The algorithm employs reverse search and uses one data
structure for two purposes — computing the shortest paths and travers-
ing the graph. A novel distributed variant of the walk to root negative
cycle detection strategy is engaged. The algorithm is thus space-efficient
and scalable.

Because of the wide variety of relaxation and cycle detection strate-
gies there is plenty of space for future research. Although not all strate-
gies are suitable for distributed solution, there are surely other possibil-
ities besides the one proposed in this paper.

References

[AF96] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math.,
65:21–46, 1996.

[BCKP01] L. Brim, I. Cerná, P. Krčál, and R. Pelánek. Distributed shortest path for di-
rected graphs with negative edge lengths. Technical Report FIMU-RS-2001-
01, Faculty of Informatics, Masaryk University Brno, 2001.

[Bel58] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–
90, 1958.

[CG99] B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms.
Mathematical Programming, Springer-Verlag, 85:277–311, 1999.

[CLR90] T. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT, 1990.

[CMMS98] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of
Dijkstra’s shortest path algorithm. In Proc. 23rd MFCS’98, Lecture Notes in
Computer Science, volume 1450, pages 722–731. Springer-Verlag, 1998.

[Coh96] E. Cohen. Efficient parallel shortest-paths in digraphs with a separator de-
composition. Journal of Algorithms, 21(2):331–357, 1996.

[CZ95] S. Chaudhuri and C. D. Zaroliagis. Shortest path queries in digraphs of small
treewidth. In Automata, Languages and Programming, pages 244–255, 1995.

[For56] L.R. Ford. Network flow theory. Rand Corp., Santa Monica, Cal., 1956.
[Hol97] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5):279–295, May 1997. Special Issue: Formal Methods in Software
Practice.

[HPY96] G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search.
In The Spin Verification System, pages 23–32. American Mathematical Society,
1996. Proc. of the Second Spin Workshop.

[KPSZ94] D. Kavvadias, G. Pantziou, P. Spirakis, and C. Zaroliagis. Efficient sequential
and parallel algorithms for the negative cycle problem. In Proc. 5th ISAAC’94,
LNCS, volume 834, pages 270–278. Springer, 1994.

[MS00] U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In 6th
International EURO-PAR Conference. LNCS, 2000.

21



[Nie00] J. Nievergelt. Exhaustive search, combinatorial optimization and enumer-
ation: Exploring the potential of raw computing power. In SOFSEM 2000,
number 1963 in LNCS, pages 18–35. Springer, 2000.

[RV92] K. Ramarao and S. Venkatesan. On finding and updating shortest paths dis-
tributively. Journal of Algorithms, 13:235–257, 1992.

[TZ96] J. Traff and C.D. Zaroliagis. A simple parallel algorithm for the single-source
shortest path problem on planar digraphs. In Parallel algorithms for irregularly
structured problems, volume 1117 of LNCS, pages 183–194. Springer, 1996.

[Vit98] J. S. Vitter. External memory algorithms and data structures: Dealing with
massive data. In Proc. of 6th European Symposium on Algorithms (ESA ’98),
pages 1–25, 1998.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In 1st Symp. on Logic in Computer
Science, LICS’86, pages 332–344. Computer Society Press, 1986.

22



Copyright c© 2001, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic


