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Abstract

A distributed algorithm for single source shortest path problem in an
arbitrary directed graph which can contain negative length cycles is
presented. The new algorithm is a label-correcting one and uses a
novel way for detection of negative length cycles. It works on a net-
work of processors with disjoint memory that communicate via mes-
sage passing. Correctness of the algorithm is proved. The algorithm
is work-efficient as its worst time complexity is O(n2: n

P), where P is
the number of processors. As an application a simple distributed al-
gorithm for LTL model checking is presented.

Keywords: directed graphs, single source shortest paths, negative cycles,
distributed algorithms

1 Introduction

The single source shortest path problem (SSSP) is a fundamental problem
with many theoretical and practical applications and plenty of effective and
well-grounded sequential algorithms. However, in some applications we
have to deal with extremely large graphs (a particular application we have

�This work has been partially supported by the Grant Agency of Czech Republic grants
No. 201/00/1023 and 201/00/0400.
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in mind is briefly discussed bellow). Whenever a graph is too large to fit
into memory that is randomly accessed a memory that is sequentially ac-
cessed has to be employed. This causes a bottleneck in the performance
of a sequential algorithm owing to the significant amount of paging in-
volved during its execution. An usual approach to deal with these practi-
cal limitations is to increase the computational power (especially randomly
accessed memory) by building a powerful (yet cheap) parallel computer
as a network of workstations (NOWs). Individual workstations commu-
nicate through message-passing interface such as MPI. From outside, a
NOW appears as one single parallel computer with high computing power
and huge amount of memory. We stress, that in this structure the avail-
able memory is not shared but is distributed among individual processors.
Hence, it is an essential goal to find efficient distributed algorithms.

The natural starting point for building a distributed algorithm is to dis-
tribute a sequential one. Effective PRAM parallelisations are known for al-
gorithms working with adjacency matrix graph’s representation (Floyd’s
algorithms, see e.g. [Roo00]) but their efficiency hardly depends on as-
sumptions that all processors work synchronously and share common mem-
ory. These assumptions are not valid in a distributed environment. Other
algorithms (for excellent survey see [CG99]), which are based on relax-
ation of graph’s edges, are inherently sequential and their parallel versions
are known only for special settings of the problem. For general digraphs
with non-negative edge lengths parallel algorithms are presented in [MS00,
RV92, CMMS98] together with studies concerning good decompositions
[HTB97]. For special cases of graphs, like planar digraphs [TZ96, DKZ94],
graphs with separator decomposition [Coh96] or graphs with small tree-
width [CZ95] more efficient algorithms are known. Yet none of these algo-
rithms are applicable on general digraphs with potential negative-length
cycles.

This paper presents a distributed algorithm for the SSSP problem on
graphs with real edge lengths. The algorithm comes out from the Bellman-
Ford algorithm and uses a novel way for detection of negative cycles, al-
lowing thus to employ the full strength of parallelism. We prove the cor-
rectness of the algorithm and analyse its worst-case complexity.

Our motivation for this work was to develop a distributed model check-
ing algorithm for linear temporal logic. Despite the development in the last
years the so called state space explosion still limits practical applications of
model checking techniques. We have shown that model checking prob-
lem for linear temporal logic can be reduced to the negative cycle detection
problem in directed graphs with arbitrary length edge [BČKP01]. In our
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search for effective distributed algorithm for this problem we wanted to
preserve its compatibility with another efficient technique dealing with the
state space explosion, namely on the fly way of graph generation. Here
the graph to be processed is not completely given at the beginning of the
computation through its adjacency-list or adjacency-matrix representation.
Instead, we are given a source vertex together with a function which for ev-
ery vertex computes its adjacency-list. As successors of a vertex are deter-
mined dynamically there is no need to store any information about edges
permanently. Moreover, the technique allows to generate only reachable
part of the graph and thus reduces the space requirements for graph repre-
sentation.

The structure of the paper is the following. In the next section we briefly
summarise the necessary background. In Section 3 we present the dis-
tributed algorithm and in Section 4 we formally prove its correctness and
complexity. Experimental results are discussed in Section 5. Concluding
remarks are presented in Section 6.

2 Basic Notations and Definitions

We are given a triple (G; s; l), where G = (V;E) is a directed graph with
n vertices and m edges, l : E ! R is a length function mapping edges to
real-valued lengths, and s 2 V is the source vertex. The length of the path
� =< v0; v1; : : : ; vk > is the sum of the lengths of its constituent edges, l(�) =Pk

i=1 l(vi�1; vi). We define the shortest path length from s to v by

�(s; v) =

�
minfl(�) j � is a path from s to vg if there is such a path
1 otherwise

A shortest path from vertex s to vertex v is then defined as any path � with
length l(�) = �(s; v). If the graph G contains no cycle with negative length
(negative cycle) that is reachable from the source vertex s, then for all v 2

V the shortest path length remains well-defined and the graph is called
feasible. If there is a negative cycle reachable from s, shortest paths are not
well-defined as no path from s to a vertex on the cycle can be a shortest path.
If there is a negative cycle on some path from s to v, we define �(s; v) = �1.

The SSSP problem is to decide whether, for a given triple (G; s; l), the
graph G is feasible and if it is then to compute the shortest paths from the
source vertex s to all vertices v 2 V. The negative cycle problem is to decide
whether G is feasible.
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The general sequential method for solving the SSSP problem is the scan-
ning method. For every vertex v, the method maintains its distance label
d(v), parent vertex p(v) and status S(v) 2 funreached ; labelled ; scannedg. The
subgraph Gp of G induced by edges (p(v); v) for all v such that p(v) 6= nil ,
is called the parent graph. Initially for every vertex v, d(v) = 1; p(v) = nil
and S(v) = unreached . The method starts by setting d(s) = 0, p(s) = nil
and S(s) = labelled . At every step, the method selects a labelled vertex
v and applies on it the SCAN operation (see Figure 1). During scanning
a vertex v the edges out-coming from v are relaxed which means that if
d(u) > d(v) + l(v; u) then d(u) is set to d(v) + l(v; u) and p(u) is set to v. The
status of v is changed to scanned while the status of u is changed to labelled.
If all vertices are either scanned or unreached then d gives the shortest path
lengths and Gp is the graph of shortest paths.

proc SCAN (v)
for each edge (v; u) 2 E do frelax(v; u)g

if d(u) > d(v) + l(v; u) then d(u) := d(v) + l(v; u); p(u) := v;
S(u) := labelled fi od;

S(v) := scanned
end

Figure 1: Scanning of vertex v

Different strategies for selecting a labelled vertex to be scanned next
lead to different algorithms. The optimal strategy is to scan vertices with
exact distance label, i.e. vertices for which d(v) = �(s; v). However, efficient
implementations of this idea are known only for special problem settings
as graphs with non-negative length edges (Dijkstra’s algorithm [Dij59]) or
directed acyclic graphs (Lawler’s algorithm [Law76]). In comparison with
these special, so called label-setting algorithms, algorithms for the general
problem are called label-correcting.

Label-correcting SSSP algorithms may select arbitrary labelled vertex to
be scanned next, hence generally to re-insert the vertices for scanning until
they are finally settled (d(v) = �(s; v)). The well-known Bellman–Ford algo-
rithm [Bel58, For56] uses FIFO strategy to select vertices. The next vertex to
be scanned is removed from the head of the queue; a vertex that becomes
labelled is added to the tail of the queue if it is not already in the queue.
The algorithm runs in O(mn) time in the worst case.

For graphs where negative cycles could exist the scanning method must
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be modified in such a way, that in the presence of a negative cycle the
method detects such a cycle and terminates. As in the case of scanning,
various strategies are used to detect negative cycles. For our distributed al-
gorithm we have used the walk to root cycle detection strategy. This strategy
is based on the following fact (see e.g. [CG99]).

Fact 1 Any cycle in the parent graph Gp has negative length. If Gp is acyclic, then
its edges form a tree rooted at s.

The walk to root method tests whether Gp is acyclic. Suppose the scan-
ning operation applies to an edge (v; u) (i.e. d(u) > d(v) + l(v; u)) and the
parent graph Gp is acyclic. This operation will create a cycle in Gp if and
only if u is an ancestor of v in the current tree. Before applying the opera-
tion, we follow the parent pointers from v until we reach u or s. If we stop at
u we have found a negative cycle; otherwise, the scanning operation does
not create a cycle.

The walk to root method gives immediate cycle detection and can be eas-
ily combined with various scanning heuristics. However, since the path to
the root can be long, the cost of applying the scanning operation to an edge
becomes O(n) instead of O(1). In order to optimise the overall computa-
tional complexity we propose to use amortisation to pay the cost of check-
ing Gp for cycles. More precisely, the parent graph Gp is tested only after
the underlying shortest paths algorithm performs Ω(n) work. The running
time is thus increased only by a constant factor.

However, a cycle in Gp can appear after a relaxation of some edge and
disappear after some later relaxation (see Figure 2). The correctness of the
amortised strategy is based on the following fact (see e.g. [CG99]).

Fact 2 If G contains a negative cycle reachable from s, then after a finite number
of scanning operation Gp always has a cycle.

Another drawback of the amortised strategy is the fact that even if the
relaxation of an edge (v; u) does not create a cycle in Gp, there can be a
cycle on the way from v to s. The particular modification of the walk to
root strategy allowing to cope with this situation is presented in the next
section.

We stress that the presented sequential approaches to the SSSP problem
and especially to the negative cycle detection problem are not the only ones
- for an excellent survey see [CG99]. Those presented above are in our
opinion the best starting points for developing a distributed algorithm.
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Figure 2: Disappearing cycles in the parent graph. (a) Part of the input
graph. Vertex a has distance label 2. (b) Gp after scanning vertices a; b; c. (c)
Scanning of the vertex d. (d) The distance label of the vertex a is decreased
to �3 and the vertex a is scanned once more.

3 Distributed SSSP Algorithm

In this section we describe a new algorithm that works in a distributed en-
vironment and solves the SSSP problem for arbitrary directed graphs that
can contain negative cycles. The algorithm runs on a network of P proces-
sors which communicate through some message-passing interface. One of
the processors is distinguished as the Manager processor and is responsible
for starting and terminating the computation. All processors perform the
same program. The set of vertices is supposed to be a priori divided into
several disjoint subsets. The number of subsets corresponds to the num-
ber of processors involved in the computation. The partition of vertices
is given by the function owner which assigns a vertex to a processor. Each
processor � is responsible for its own part of the graph G determined by the
owned subset of vertices. Good partition of vertices among processor can
evidently affect the overall computational complexity but its construction
is not a subject of our interest in this paper. The function successor gives for
a vertex its adjacency list. It allows to construct the graph on the fly (see Sec-
tion 1). Each processor knows the functions owner and successor. Moreover,
we suppose that some total linear order on vertices is given (induced e.g.
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from the numerical representation of vertices).
The pseudo-code of the distributed algorithm is presented below. Its

main idea can be summarised as follows. Each processor performs repeat-
edly the basic scanning operation on all owned vertices with labelled status
(the MAIN procedure). Such vertices are maintained in the processor’s lo-
cal queue Q�. To relax a cross-edge (v; u), where v and u belong to different
processors, a message is sent to the owner of u. In each iteration the pro-
cessor at first handles messages received from other processors.

Pseudo-Code of the Distributed Algorithm DSP

1 proc MAIN () frunning on each processor �g
2 stamp := 0;
3 if � = Manager then Q� = fsg; d(s) := 0; p(s) := nil else Q� := ; fi
4 while not finished do process_messages; v := pop(Q�); SCAN (v) od
5 end

1 proc SCAN (v)
2 foreach (v;u) 2 E do
3 if owner(u) = �

4 then UPDATE(u; v; d(v) + l(v;u))
5 else send_message(owner(u);“start UPDATE (u; v; d(v) + l(v;u))”) fi od
6 end

1 proc UPDATE (u; v; t)
2 if d(u) > t then if walk(u) 6= nil
3 then if owner(v) = �

4 then push (Q�; v)
5 else send_message(owner(v);“do push (Q; v)”) fi
6 else d(u) := t; p(u) := v;
7 if WTR_amortization then WTR([u; stamp];u);
8 stamp + + fi;
9 if u =2 Q� then push (Q�;u) fi fi fi

10 end

1 proc WTR([origin; stamp]; at) fWalk To Rootg
2 done := false;
3 while :done do
4 if owner(at) = �

5 then
6 if walk(at) = [origin ; stamp] !
7 send_message(Manager;“negative cycle found”);
8 terminate
9 (at = source) _ (walk(at) > [origin; stamp]) !
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10 if owner(origin) = �

11 then REM ([origin; stamp]; origin)
12 else send_message(owner(origin);
13 “start REM ([origin; stamp]; origin))” fi
14 done := true;
15 (walk(at) = [nil;nil]) _ (walk(at) < [origin; stamp]) !
16 walk(at) := [origin; stamp];
17 at := p(at)
18 fi
19 else
20 send_message(owner(at);“start WTR([origin; stamp]; at)”);
21 done := true
22 fi
23 od
24 end

1 proc REM ([origin; stamp]; at) fRemove Marksg
2 done := false;
3 while :done do
4 if owner(at) = �

5 then if walk(at) = [origin ; stamp]
6 then walk(at) := [nil;nil];
7 at := p(at)
8 else
9 done := true fi

10 else send_message(owner(at); start REM ([origin; stamp]; at));
11 done := true fi
12 od
13 end

For the detection of a negative cycle in the graph G the procedure WTR
is used in an amortised manner. The processor starts the detection only
after it has relaxed n edges. WTR tries to identify a cycle in the parent
graph by following the parent pointers from a current vertex.

As the relaxation of edges is performed in parallel and the cycle detec-
tion is not initiated after every change in the parent graph, it can happen
that even if the relaxation of an edge (v; u) does not create a cycle in the par-
ent graph Gp there can be a cycle in Gp on the way from v to the source s (see
Figure 3). In order to recognise such a cycle we introduce for each vertex
x a new variable walk(x). Its initial value is nil . Once the WTR procedure
started in a vertex (let us call this vertex origin) passes through a vertex
v, the value of the variable walk(v) is set to origin (we say that the vertex
v has been marked). Reaching a vertex already marked with the value ori-
gin clearly indicates a cycle in the parent graph. However, it can happen
that more than one WTR procedure is active at a time. Consequently WTR
initiated in origin can get to a vertex marked with a value different from
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Processor 1

v

Processor 2

Figure 3: Cycle on the path to the source

origin indicating that some other WTR is active. Such a collision is resolved
in favour of the procedure which has started in the higher vertex (with re-
spect to the linear ordering on vertices). WTR started in the lower vertex
is terminated. Another situation that could happen is that WTR started in
origin gets to a vertex already marked with origin but this mark has been
introduced by some previous WTR initiated from origin. This would lead
to a detection of a false cycle (see Figure 4). To guarantee correctness even
in this special situation we in fact mark every vertex with two values: ori-
gin and stamp (the initial value of walk(x) beeing [nil ;nil ]). The value stamp
is equal to the number of WTR procedures initiated by the particular pro-
cessor. This value allows to distinguish among vertices marked by current
and some previous WTR initiated from the same vertex.

Let us summarise the four possible situations which can happen in cycle
detection.

� the procedure WTR reaches the source vertex s (line 9 in WTR). A neg-
ative cycle has not been detected and the REM procedure is started.

� the procedure WTR reaches a vertex marked with the same origin and
the same stamp (line 6). This indicates that a negative cycle has been
recognised. The cycle can be easily reconstructed by following the
parent edges. If necessary, the path connecting the cycle with the
source vertex can be found using a suitable distributed reachability
algorithm.

� the procedure WTR reaches a non-marked vertex, a vertex already
marked with lower origin or a vertex marked with the same origin but
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Figure 4: Detection of a false cycle. Vertices s; x1; x2; x3; x4 have been marked
by the value x. After that the parent pointer of x has been changed to x1 and
a new WTR is started from the vertex x.

lower stamp (line 15). The vertex is marked with [origin; stamp] and
the walk follows the parent edge.

� the procedure WTR reaches a vertex already marked with higher ori-
gin (line 9). The walk is stopped and the REM procedure is started.

Whenever WTR has to continue in a non-local vertex a request to the vertex
owner is sent and the local walk is finished.

Once the WTR procedure finishes without detecting a cycle, the marks
introduced by it must be removed (i.e. the value of the variable walk is
reset to [nil ;nil ]). A non-removed mark y can prevent detection of a cycle
by WTR which has started in a vertex x where x < y.

The REM procedure is responsible for removing marks. Marks to be
removed are found with the help of parent edges. This is why the updat-
ing of a marked vertex is postponed (line 2 of the procedure UPDATE).
The REM procedure follows the path in the parent graph in a similar way
as WTR does. REM starts from the origin and terminates after reaching a
source vertex or a vertex with different mark.

The distributed algorithm terminates when either all queues of all pro-
cessors are empty and there are no pending messages, or a negative cycle
has been detected. The Manager process is used to detect termination and

10



to finish the algorithm by sending a termination signal to all the processors.

4 Correctness and Complexity

The formal proof of the correctness of the distributed algorithm comes out
from several lemmas. Some of the arguments are similar to that for the
sequential algorithms (see e.g.[CLR90]). The main difference in the dis-
tributed case is that vertices are scanned in parallel, hence the edges can be
relaxed concurrently. For the correctness argumentation we will suppose a
fixed but arbitrary linear ordering of concurrently performed steps.

Lemma 1 Let G be a given graph. Then d(v) � �(s; v) for all v 2 V and this
invariant is maintained over any sequence of relaxations performed on the graph
G. Moreover, once d(v) achieves its lower bound �(s; v), it never changes.

Proof: The invariant d(v) � �(s; v) is true after the initialisation performed
on each processor. We shall use the proof by contradiction to show that the
invariant is maintained over any linearly ordered sequence of relaxation
steps performed on G. Suppose that v 2 V is the first vertex (in the sense of
linear ordering of relaxation steps) for which d(v) < �(s; v). Then there is a
vertex u 2 V; u 6= v (in fact u = p(v)) such that

d(u) + l(u; v) = d(v) < �(s; v) � �(s; u) + l(u; v)

which implies that d(u) < �(s; u). Then we have a contradiction, because the
relaxation of the edge (u; v) does not change the value d(u) and v was the
first vertex violating the invariant.

To see that the value of d(v) never changes once d(v) = �(s; v) note, that
relaxation steps do not increase d values.

Lemma 2 Let G contains no reachable negative cycle. Then the parent graph Gp

forms a rooted tree with root s, and any sequence of relaxations on G maintains this
property invariantly true.

Proof: Initially, the only vertex in Gp is the source vertex s, and the lemma
is trivially true.

We first prove that Gp forms a tree. Consider a parent graph Gp that
arises after an arbitrary sequence of relaxations and suppose that Gp has a
cycle. Let the cycle be c =< v0; v1; : : : ; vk >, where vk = v0. Then p(vi) = vi�1

for i = 1; 2; : : : ; k and, without loss of generality, we can assume that it
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was the relaxation of the edge (vk�1; vk) that created the cycle in Gp. Each
vertex on the cycle c is reachable from s. We show that c is a negative cycle,
thereby contradicting the assumption that G contains no negative cycles
reachable from s. Before relaxing the edge (vk�1; vk) we had d(vi) � d(vi�1)+
l(vi�1; vi) for all i = 1; 2; : : : ; k � 1. Because p(vk) has changed, immediately
beforehand we also have the strict inequality d(vk) > d(vk�1) + l(vk�1; vk)
from which we obtain

kX
i=1

d(vi) >
kX

i=1

(d(vi�1) + l(vi�1; vi)) =
kX

i=1

d(vi�1) +
kX

i=1

l(vi�1; vi):

But
Pk

i=1 d(vi) =
Pk

i=1 d(vi�1) since each vertex in the cycle c appears ex-
actly once in each summation. This implies 0 >

Pk
i=1 l(vi�1; vi). Thus the

sum of lengths around the cycle c is negative, thereby providing the desired
contradiction.

To show that Gp forms a rooted tree with root s, it suffices to prove that
for each vertex v 2 Vp, there is a unique simple path from s to v in Gp. This
follows directly from the definition of the parent graph and the way it is
constructed in the UPDATE procedure.

Lemma 3 Let s ; u ! v be a shortest path in G for some vertices u; v 2 V.
Suppose a sequence of relaxations that include the edge (u; v) has been executed on
G. If d(u) = �(s; u) at any point prior this execution, then d(v) = �(s; v) is true at
all times after this execution.

Proof: By Lemma 1, if d(u) = �(s; u) at some point prior to relaxing the edge
(u; v), then this equality holds thereafter. In particular, after relaxing the
edge (u; v), we have

d(v) � d(u) + l(u; v) = �(s; u) + l(u; v) = �(s; v)

By Lemma 1 �(s; v) bounds d(v) from bellow, from which we conclude that
d(v) = �(s; v), and this equality is maintained thereafter.

Lemma 4 Let G contains no reachable negative cycles. Then, at the termination
of the algorithm, we have d(v) = �(s; v) (d(v) is exact) for all vertices v 2 V and
the parent graph Gp is a shortest-path tree rooted at s.

Proof: Suppose first that v 2 V is reachable from s. According to Lemma 2
the graph Gp forms at the termination of the algorithm a rooted tree with
root s. Let us prove the assertion by induction on the depth of a vertex v
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in this tree. For the basis we have d(s) = �(s; s) = 0 after initialisation and
by Lemma 1 this equality is maintained thereafter. For the inductive step,
we assume that d(u) = �(s; u) for every vertex of depth at most i � 1. Let
v be a vertex of depth i and let u = p(v). Obviously the depth of u is i � 1.
Once the value d(u) is settled to �(s; u) the vertex u is pushed into the queue
by the procedure UPDATE. Consequently, the edge (u; v) is relaxed and by
Lemma 3 we conclude that d(v) is settled to �(s; v) and it remains true for
the rest of the computation.

Let v 2 V is not reachable from s. Then there is no path from s to v, d(v)
is never updated, and keeps its initial value. Therefore d(v) = 1 = �(s; v).

It remains to prove that Gp is a shortest-path tree, i.e. that for each v 2 V
the unique simple path s ; v in Gp is a shortest path from s to v in G.
Let the path be � =< v0; v1; : : : ; vk >, where v0 = s and vk = v. We know
that d(vi�1) + l(vi�1; vi) = d(v) whenever p(vi) = vi�1. At the termination
of the algorithm we have d(vi) = �(s; vi) and therefore l(vi�1; vi) = �(s; vi) �
�(s; vi�1). Summing the lengths along the path � yields

l(�) =
kX

i=1

l(vi�1; vi) =
kX

i=1

(�(s; vi)� �(s; vi�1)) = �(s; vk)� �(s; v0) = �(s; vk)

We conclude that l(�) = �(s; vk) and thus � is a shortest path from s to v = vk.

In the sequel we prove that the DSP algorithm correctly detects negative
cycles. To that end let us define a notion of a pass inductively. Pass zero
consists of the initial scanning of the source vertex s. Pass i starts as soon as
pass i � 1 ends, and ends as soon as the SCAN operation has been applied
to all vertices v which were in processors’ queues at the end of pass i � 1
and for which d(v) was equal to �(s; v) at that time.

Let A = fv 2 V j �1 < �(s; v) < 1g and B = fv 2 V j �(s; v) = �1g. Let
< v0; : : : ; vk >, where v0 = s and vk = v, be a shortest simple path from s
to a vertex v. It is easy to verify (by induction on k) that after finishing the
pass k the vertex v has distance label d(v) � l(< v0; : : : ; vk >) (for a vertex
v 2 A equality d(v) = �(s; v) holds). If the graph is feasible (i.e. B is empty),
then the total number of passes is at most n and at the end of the last pass
all distance labels become exact and all queues become empty. If the graph
has a negative cycle, then at the end of the last pass all vertices from the
set A have exact distance label and all vertices from B are in queues. In the
subsequent computation (let us call this phase the final pass) only vertices
from the set B are scanned.
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Lemma 5 If G contains a reachable negative cycle, then after the first vertex up-
date of the final pass, Gp always has a cycle.

Proof: Let v be a vertex which distance label is updated as the first in the
final pass. Since d(v) is non-increasing, the new value of d(v) is less than the
length of a shortest simple path from s to v. Suppose we start at v and follow
the parent pointers. If we find a cycle of parent pointers in this process, we
are done. Otherwise we reach s and d(s) = 0. This indicates the existence of
a simple path � with l(�) = d(v) which contradicts our assumption about v.

Lemma 6 If the WTR procedure detects a cycle, then there is a negative cycle
in G.

Proof: The WTR procedure initiated in a vertex u with stamp i detects a cy-
cle by finding a vertex marked with the same vertex u and the same stamp
i. The equality of stamps ensures that this vertex has already been visited
during the current WTR. From the proof of Lemma 2 it follows that any
cycle in Gp is a negative cycle in G.

Lemma 7 If G contains a reachable negative cycle, then some WTR procedure
detects a cycle.

Proof: Suppose the distributed algorithm is in the final pass and no cycle
has been detected up to this moment. Arguments similar to that used in the
proof of Lemma 5 manifest that from every vertex which distance label has
been updated a cycle in Gp is reachable. The WTR procedure is called on
line 7 of UPDATE procedure for some u 2 B and stamp i. WTR backtracks
the parent graph systematically. The procedure can “meet” another walk
to root initiated concurrently for an origin z, i.e. it gets to a vertex already
marked by [z; j]. Then for u > z or u = z; i 6= j the marks of the second walk
to root are overwritten (line 15) by [u; i]. Otherwise the current walk to root
is terminated, its marks are removed by the procedure REM and the other
walk continues. However, in such a case the cycle in the parent graph is
the same for both walks. We now have a similar situation as before for the
walk started at the origin z > u. As the number of vertices is finite, walk to
root with highest priority cannot be terminated by another one, detecting
thus the cycle.

The previous lemmas give the proof of the correctness of the distributed
algorithm.
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Theorem 1 (Correctness of DSP) If G contains no negative cycles that are reach-
able from the source vertex s, then the algorithm terminates, d(v) = �(s; v) for all
vertices v 2 V, and the parent graph Gp is a shortest-path tree rooted at s. If G
does contain a negative cycle reachable from s, then the algorithm terminates and
reports “negative cycle found”.

Complexity

We use a simple model [GS93, CKP+93] to analyse the performance of the
DSP algorithm. We view the distributed algorithm as a sequence of local
computations interleaved with communication steps, where we allow com-
putation and communication to overlap. We define the computation time
Tcomp(n; p) as the maximum time it takes a processor to perform all the local
computation steps.

Theorem 2 (Computational Complexity of DSP) Let the input graph with n
vertices is distributed over P processors each of which owns O(n

P) vertices. Then
the worst case computational complexity of the DSP algorithm is Tcomp(n;P) =
O(n2 � n

P).

Proof: The analysis of the time complexity proceeds in two steps. Every
processor performs two basic operations: relaxation of edges and marking
of vertices. First of all we state the time complexity of relaxation operations
and then proceed by analysing the complexity of marking operations. Re-
call that the computation can be divided into at most n + 1 passes. At the
beginning of each pass (with the exception of the final one) every proces-
sor has its own queue of size O(n

P ). The pass ends not later than when all
vertices from all the queues have been scanned. The scanning of a vertex
requires at most n relaxation operations (we consider this as a primitive
operation) and the worst time complexity of one pass is O(n � n

P). In the
presence of a negative cycle in the input graph G the existence of a cycle in
Gp is guaranteed in the final pass (Lemma 5). After that it takes at most n
relaxation operations before a new WTR procedure is initiated. According
to Lemma 7 this procedure must detect the presence of a negative cycle.

Now, let us analyse the complexity of the WTR and the REM proce-
dures. The negative cycle search is performed (on various processors) se-
quentially and its time complexity is proportional to the length of the sear-
ched path. On the searched path WTR cannot enter a vertex more than
once as entering a vertex with the same mark indicates the presence of a
cycle and causes the termination of the whole computation. Consequently,
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every WTR procedure takes at most O(n) time. The complexity of the sub-
sequent removing of marks is asymptotically the same. Every processor
initiates the WTR procedure only when it has done n relaxation operations.
Therefore the time complexity of WTR and REM is amortised over the time
complexity of relaxation operations.

5 Application to Model Checking of LTL

Automata based approach to model-checking of linear temporal logic (LTL)
formulas is a very elegant method developed by Vardi and Wolper [VW86].
The basic idea is to associate with each LTL formula a Büchi automaton that
accepts exactly all the computations that satisfy the formula. At the same
time, states of modelled finite-state system are identified with states of a
Büchi automaton. This enables the reduction of the model-checking prob-
lem to the non-emptiness problem for Büchi automata. It can be shown
that non-emptiness problem for Büchi automata is equivalent to the prob-
lem of finding a cycle that is reachable from the initial state and contains an
accepting state. This problem can be effectively solved using nested depth
first search (NDFS) algorithm [HPY96] incorporated in the SPIN verifica-
tion tool [Hol97]. The practical limitation of this algorithm is the amount
of the randomly accessed memory which the algorithm requires. A very
natural way how to overcome the memory limitation is to distribute the
given graph onto several processors (computers) and to perform a dis-
tributed computation. As the depth first search is P-complete, promising
parallel depth-first-search-based algorithm is unlikely to exist [Rei85]. A
completely different approach to distributed emptiness problem is needed.

The connection between the negative cycle problem and the Büchi au-
tomaton emptiness problem is the following. A Büchi automaton corre-
sponds to a directed graph. Let us assign lengths to its edges in such a way
that all edges out-coming from vertices corresponding to accepting states
have length -1 and all others have length 0. With this length assignment,
negative cycles simply coincide with accepting cycles and the problem of
Büchi automaton emptiness reduces to the negative cycle problem.

Our objective was to compare the performance of the DSP algorithm
with the nested depth first search (NDFS) algorithm. In the distributed
version of NDFS the graph is divided over processors like in the DSP algo-
rithm. Only one processor, namely the one owning the actual vertex in the
NDFS search, is executing the nested search at a time. The network is in
fact running the sequential algorithm with extended memory.
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The implementation has been done in C++ and the experiments have
been performed on a cluster of eight 366 MHz Pentium PC Linux work-
stations with 128 Mbytes of RAM each interconnected with a fast 100Mbps
Ethernet and using Message Passing Interface (MPI) library. In the imple-
mentation of the DSP algorithm we have employed the following optimi-
sation scheme. For more efficient communication between processors we
do not send separate messages. The messages are sent in packets of pre-
specified size. The optimal size of a packet depends on the network con-
nection and the underlying communication structure. In our case we have
achieved the best results for packets of size around 100 single messages.

NDFS DSP
Vertices Cross–edges Time Messages Time Messages
Generated, without cycle

40398 34854 1:01 79376 0:11 809
71040 1301094 31:13 3008902 0:48 1108

696932 1044739 27:02 2387220 1:31 14029
736400 5331790 126:46 12316618 5:17 48577
777488 870204 21:36 1887252 2:02 13872

1859160 1879786 49:04 4226714 6:00 25396
Generated, with cycle

18699 22449 0:06 22 0:05 68
33400 2073288 0:37 30824 0:24 555
46956 83110 0:05 108 0:09 702

448875 1863905 0:51 21106 0:56 3435
Random, without cycle

4000 353247 14:03 1390262 0:17 17868
5000 839679 31:48 3151724 0:32 2489

80000 522327 30:11 2042212 1:39 87002
60000 1111411 57:19 4131210 4:08 98686

947200 5781959 184:23 13338462 9:49 47030
Random, with cycle

18000 1169438 1:20 104822 0:09 862
Philosophers
(12) 94578 42154 2:06 168616 0:13 756
(14) 608185 269923 16:11 1079692 1:40 4500

Table 1: Summary of experimental results
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We performed several sets of tests on different instances in order to ver-
ify how fast is the algorithm in practice, i.e. beyond its theoretical charac-
terisation. Our experiments were performed on two kinds of systems given
by random graphs and generated graphs. Graphs were generated using a
simple specification language and an LTL formula. In both cases we tested
graphs with and without cycles to model faulty and correct behaviour of
systems. As our real example we tested the parametrised Dining Philoso-
phers problem. Each instance is characterised by the number of vertices
and the number of cross-edges. The number of cross-edges significantly
influences the overall performance of distributed algorithms.

For each experiment we report the average time in minutes and the
number of sent messages (communication) as the main metrics. Table 1
summarises the achieved results.
The experiments lead basically to the following two conclusions:

� the DSP algorithm is comparable with the NDFS one on all graphs.
� the DSP algorithm is significantly better on graphs without negative

cycles.

The experiments show that in spite of worse theoretical worst time com-
plexity of the DSP algorithm its behaviour in practice can outperform the
theoretically better NDFS one. This is due to the number of communi-
cations which has essential impact on the resulting time. In the DSP al-
gorithm messages can be grouped into packets and sent together. It is a
general experience that the time needed for delivering t single messages is
much higher than the time needed for delivering those messages grouped
into one packet. On the other hand, the NDFS algorithm does not admit
such a grouping. Another disadvantage of NDFS is that during the pass-
ing of messages all the processors are idle, while in the DSP algorithm the
computation can continue immediately after sending a message. Last but
not least, in NDFS all but one processor are idle whereas in DSP all can
compute concurrently. We notice that all mentioned advantages of the DSP
algorithm demonstrate themselves especially for systems without cycles
where the whole graph has to be searched. This is in fact the desired prop-
erty of our algorithm as the state explosion demonstrates itself just in these
cases. Both algorithms perform equally well on graphs with cycles.

We have accomplished yet another set of tests (see Table 2) in order to
validate the scalability of the DSP algorithm. The tests confirm that it scales
well, i.e. the overall time needed for treating a graph is decreasing as the
number of involved processors is increased.
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Computers Time Messages
1 - -
2 4:37.96 5668
4 3:11.80 16340
6 2:20.17 22057
8 1:59.92 28019
10 1:50.18 32104

Table 2: Scalability for graph with 777488 vertices, without cycle

6 Conclusions

We propose a novel distributed algorithm for the single source shortest
path problem for directed graphs which can contain negative length cy-
cles. A unique distributed variant of the walk to root negative cycle de-
tection strategy has been employed. The algorithm is scalable and work-
efficient as the total number of operations of the distributed algorithm is of
the same order as the number of operations of the best known sequential
algorithm [CLR90, CG99].

We have evaluated the empirical performance of our distributed algo-
rithm and applied it to the distributed model checking problem for finite
state systems and LTL formulas and these experiments show that we are
able to verify systems for which the standard sequential algorithm fails.
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